-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathiouEval.py
executable file
·61 lines (50 loc) · 2.25 KB
/
iouEval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import torch
class iouEval:
def __init__(self, nClasses):
self.nClasses = nClasses
self.ignoreIndex = self.nClasses-1 ## Ignore the last labeled class, which by default *should* be background.
self.reset()
def reset (self):
classes = self.nClasses if self.ignoreIndex==-1 else self.nClasses-1
self.tp = torch.zeros(classes).double()
self.fp = torch.zeros(classes).double()
self.fn = torch.zeros(classes).double()
def addBatch(self, x, y):
if (x.is_cuda or y.is_cuda):
x = x.cuda()
y = y.cuda()
#if size is "batch_size x 1 x H x W" scatter to onehot
if (x.size(1) == 1):
x_onehot = torch.zeros(x.size(0), self.nClasses, x.size(2), x.size(3))
if x.is_cuda:
x_onehot = x_onehot.cuda()
x_onehot.scatter_(1, x, 1).float()
else:
x_onehot = x.float()
if (y.size(1) == 1):
y_onehot = torch.zeros(y.size(0), self.nClasses, y.size(2), y.size(3))
if y.is_cuda:
y_onehot = y_onehot.cuda()
y_onehot.scatter_(1, y, 1).float()
else:
y_onehot = y.float()
if (self.ignoreIndex != -1):
ignores = y_onehot[:,self.ignoreIndex].unsqueeze(1)
x_onehot = x_onehot[:, :self.ignoreIndex]
y_onehot = y_onehot[:, :self.ignoreIndex]
else:
ignores=0
tpmult = x_onehot * y_onehot
tp = torch.sum(torch.sum(torch.sum(tpmult, dim=0, keepdim=True), dim=2, keepdim=True), dim=3, keepdim=True).squeeze()
fpmult = x_onehot * (1-y_onehot-ignores)
fp = torch.sum(torch.sum(torch.sum(fpmult, dim=0, keepdim=True), dim=2, keepdim=True), dim=3, keepdim=True).squeeze()
fnmult = (1-x_onehot) * (y_onehot)
fn = torch.sum(torch.sum(torch.sum(fnmult, dim=0, keepdim=True), dim=2, keepdim=True), dim=3, keepdim=True).squeeze()
self.tp += tp.double().cpu()
self.fp += fp.double().cpu()
self.fn += fn.double().cpu()
def getIoU(self):
num = self.tp
den = self.tp + self.fp + self.fn + 1e-15
iou = num / den
return torch.mean(iou), iou #returns "iou mean", "iou per class"