CS 4650/7650, Lecture 4
Logistic Regression and
Expectation Maximization

Jacob Hisenstein

August 29, 2013

1 Recap
1.1 WSD

Last time we talked about word sense disambiguation, a little faster than I wanted.
Here’s are the key concepts:

e Word: toasted + POS: V

e Lemma: TOAST/V

e Sense: V:TOASTH#2

e Synset: V:{TOAST#2, PLEDGE#3, DRINK#3, SALUTE# 1, WASSAIL#2}

WordNet is a big lexical resource with synsets and senses for each lemma.

The “all-words” sense disambiguation problem is to label each ambiguous word
with its sense.
This implicitly requires POS tagging and lemmatisation.

"Right[RB#1] now[RB#1], the focus[NN#1] is on the elected[JJ#1] official[NN#1],”
she said.

Now let’s talk about your examples.

1.2 Recap of discriminative classification

Last time we talked about why Naive Bayes is “naive”: it assumes observations are
conditionally independent. This is not true for bag-of-words features (e.g., colloca-
tions like Georgia tech), and it is even worse for n-gram features (e.g., The President
of, President of the, of the United, the United States, . ..).

One appealing solution is “error-driven” classification. We discussed two algo-
rithms:

e Perceptron

j =argmaxw' f(@n, y) (1)
w" —w" + f(xn, yn) — (0, 9) (2)

o MIRA
j =argmaxw' f(@n, y) (3)

— min ((w; x5, Y;)
i <C’ TFonw) - f(:cz-,z?)H?) @

wiyy =w + 7 (f(yi, i) — F(§, %)) (5)

We can differentiate these classifiers in terms of the loss functions that they
optimize.

e Perceptron optimizes a non-convex and discontinuous loss function, the zero-
one loss.
— Weight averaging can reduce thrashing and improve generalization.

— Care must be taken to make this operation efficient.
e MIRA optimizes a convex loss function, the hinge loss.
— MIRA tries to make the smallest weight change that will satisfy a con-

straint of zero hinge loss on the current example.

— The introduction of slack variables allows MIRA to tolerate mistakes,
improving generalization.

— The slack parameter C' controls the tradeoff between small weight changes
and slack; consequently it is related to the bias-variance tradeoff.

Unlike Naive Bayes, neither perceptron nor MIRA is probabilistic. Probabilities
allow us to reason about uncertainty, which may be useful in both the input and
output of a classifier.

2 Logistic regression

Logistic regression is error-driven like the perceptron, but probabilistic like Naive
Bayes.

Recall that NB selects weights to optimize the joint probability P(Y,X) =
P(Y|X)P(X).

Since we know X, we really care only about P(Y|X). Logistic regression opti-
mizes this directly. We begin by defining this conditional probability as,

 exp{wf(z,y))
POl =5 et Fla)})
log P(ylx) =Y w' (s y:) —log Y expw’ f(ai,y) (7)
w —argmax y_log P(yi|z; w) (8)

This is (additive inverse of) the logistic loss. In binary classification, we can
write this as

glogistic(w; T, yi) = —(yi’wTil?i —log (1 + exp mez)) (9)

(draw loss function)
This loss is smooth and convex, so we can optimize it through gradient steps:

t= Z’wa(mu?/z‘) - logZexp w' f(zi,y) (10)
A y’

>y expw’ f(zi,) f(x:,y)
:Z f Cl:m?ﬁ) - Z N eXp’wa(ZL'i,y’)

—Z f mwyz Z Zexpw f (@:,y) f<$i7y/) (12)

pexpw f(wi,y')

= Z f(zi,vi) — ZP(y’\a:l-; w) f(x;,y) (13)
= Z fxi,yi) — E[f(xi,)] (14)

This gradient has a very pleasing interpretation as the difference between the
observed counts and the expected counts.! Compare it with perceptron update rule.

The bias-variance tradeoff is handled by penalizing large w in the objective,
adding a term of 3||w|[3. This is called L2 regularization, because of the L2 norm.
It can be viewed as placing a 0-mean Gaussian prior on w.

This penalty contributes a term of Aw to the gradient, so we have,

A
(=3 w fwy) ~loz Y expw () + 5wl
ol ,
=D flaiy) — Elf (@i1))] — Xw,

2.1 Optimization

Batch optimization is when you can keep all the data in memory and iterate over
it many times.

e The logistic loss is smooth and convex, so we can find the global optimum using

gradient descent. But in practice, this can be very slow.

e Second-order (Newton) optimization would incorporate the inverse Hessian.
The Hessian is

82
Hyj=—=———L,
" 8w18wj

'Recall that the definition of an expected value E[f(z)] = > f(z)P(x)

(15)

4

but this matrix is usually too big to deal with.

e In practice, people usually apply quasi-Newton optimization, which ap-
proximates the Hessian matrix. The specific method that is particularly pop-
ular is L-BFGS? NLP people usually treat L-BFGS as a black box; you will
typically pass it a pointer to a function that computes the likelihood and gra-
dient. L-BFGS is provided in scipy.optimize.

Online optimization is when you consider one example at a time. Stochastic
gradient descent makes a stochastic online approximation to the overall gradient:

(t+1)

w <—w(t) - ntvwg(w(t)7 w? y)

N
—w® — ﬂt%()‘w(t) - Z Fxiy:) — E[f(zi,9)])

N
= w4 S Fa) — Blf ()

where 7, is the stepsize at time .
o If we set g, = ot for « € [1,2], we have guaranteed convergence.

e We can also just fix 7, to a small value. In either case, we have to tune this
parameter on a development set.

e Note how similar this update is to the perceptron.

2.2 Names

Logistic regression is so named because in the binary case where y € {0, 1}, we are
performing a regression of « against y, after passing the inner product w ' through
a logistic transformation. You could always do a linear regression, but this would
ignore the fact that the y is to a few values.

Logistic regression is also called maximum conditional likelihood (MCL),
because it maximizes... the conditional likelihood P(Y|X).

Logistic regression can be viewed as part of a larger family, called generalized
linear models. If you use R, you are probably familiar with glmnet.

2A friend of mine told me you can remember the order of the letters as “Large Big Friendly
Giants.” Does this help you?

Logistic regression is also called maximum entropy, especially in the older NLP
literature. This is due to an alternative formulation, which tries to find the maximum
entropy probability function that satisfies moment-matching constraints.

The moment matching constraints specify that the empirical counts of each label-
feature pair should match the predicted counts:

V5 2 i@y = DD Plylwiw) (i) (16)

Note that this constraint will be met exactly when the derivative of the likelihood
function (equation 14) is equal to zero. However, this will be true for many values
of w. Which should we choose?

The entropy of a conditional function p(Y'|X) is H(p) = — >, p(z)P(Y|x) log P(Y|z),
where p(z) is the empirical probability of x. If the entropy is large, this function is
smooth across possible values of y; if it is small, the function is sharp. The entropy
is zero if P(y|x) = 1 for some particular Y = y and zero for everything else. By
saying we want maximum-entropy classifier, we are saying we want to make the least
commitments possible, while satisfying the moment-matching constraints:

w

max — Zﬁ(m)P(th;w) log P(Y|x; w)

s.t. V7, Z fi(xi i) = Z Z P(y|x:; w) f(x;,y)

Now, the solution to this constrained optimization problem is identical to the
maximum conditional likelihood (logistic-loss) formulation we’ve considered in the
previous section.

This view of logistic regression is arguably a little dated, but it’s useful to un-
derstand what’s going on. The information-theoretic concept of entropy will pop
up again a few times in the course. For a tutorial on maximum entropy, seehttp:
//www.cs.cmu.edu/afs/cs/user/aberger/www/html/tutorial/tutorial.html.

3 Summary of learning algorithms

e Naive Bayes. pros: easy and probabilistic. cons: arguably optimizes wrong
objective; usually has poor accuracy, especially with overlapping features.

e Perceptron and MIRA. pros: easy, online, and error-driven. cons: not
probabilistic. this can be bad in pipeline architectures, where the output of
one system becomes the input for another.

e Logistic regression. pros: error-driven and probabilistic. cons: batch learn-
ing requires black-box software; hinge loss sometimes yields better accuracy
than logistic loss.

3.1 What about non-linear classification?

The feature spaces that we consider in NLP are usually huge, so non-linear classi-
fication can be quite difficult. More often, people will add non-linear features, such
as bigrams. Another option is to apply non-linear transformations to the feature
vector. Recall that the reading defined the feature function as f(z,y) = g(x) ® e,
We can then apply non-linear transformations, such as g(x) = [z; x o x; |x|], etc.

There is some work in NLP on using kernels for strings, bags-of-words, sequences,
trees, etc. Kernelized learning algorithms are outside the scope of this class. Boosting
and decision tree algorithms sometimes do well on NLP tasks, but they are less
frequently these days, especially as the field increasingly emphasizes big data and
simple classifiers.

If you propose to do a final project comparing a bunch of linear and non-linear
classifiers, I won’t be very excited about it. These sorts of results rarely generalize
beyond the specific problem at hand. However, if you come up with a persuasive
argument about why a particular type of non-linear classifier is necessary for a par-
ticular linguistic phenomenon, I would be much more encouraging.

4 Summary of classifiers

So now we’ve talked about four different classifiers. That’s it! No more classifiers in
this class. Yay? Anyway, let’s review.

Naive Bayes Logistic Regression Perceptron MIRA
Objective Joint likelihood Conditional likelihood 0-1 loss Hinge loss
maxy . _owWAS:“@:V max y_, log P(yn|y) min) 6(yn,7) Yol = v(wixn, yn)l+
estimation 0y = WEI=IHE 0L S0 £z, y) E[f(@a,y)] w® e w4 F(@a,y) — F(@a,d) w00 w0 br(F(@n,yo) —F (@0)
tuning smoothing « regularizer \||w|3 weight averaging slack penalty C
complexity O(NV) O(NVT) O(NVT) O(NVT)
easy”? very not really yes yes
probabilities? yes yes no no
features? no yes yes yes

number of

number of examples, V

N =

Table 1: Comparison of classifiers.

features, T' = number of instances.

5 Document and sense clustering with EM

5.1 Motivation

So far we’ve assumed the following setup:
e A training set where you get observations @, and labels y,
e A test set where you only get observations x,

What if you never get labels 1,7
For example, you get a bunch of text, and you suspect that there are at least two
different meanings for the word concern.?

The immediate context includes two groups of words:

e services, produces, banking, pharmaceutical, energy, electronics
e about, said, that, over, in, with, had

Suppose we plot each instance of concern on a graph

e x-axis is the density of words in group 1

e y-axis is the density of words in group 2

Two blobs might emerge. These blobs would correspond to two different sense of
concern.

e But in reality, we don’t know the word groupings in advance.

e We have to try to apply the same idea in a very high dimensional space, where
every word gets its own dimension (and most dimensions are irrelevant!)

e Or we have to automatically find a low-dimensional projection. More on that
much later in the course.

Here’s a related scenario:
e You look at thousands of news articles from today

e Plot them on a graph of Miley vs Syria

3example from Pedersen and Bruce (1997)

e Three clumps emerge (Miley, Syria, others)
e Those clumps correspond to natural document classes
e Again, in reality this is a hugely high-dimensional graph

So these examples show that we can find structure in data, even without labels.

5.2 K-means clustering

So you might know about clustering algorithms like K-means. These algorithms are
iterative.

1. Guess the location of cluster centers.

2. Assign each point to the nearest center.

3. Re-estimate the centers as the mean of the assigned points.
4. Goto 2.

This is an algorithm for finding coherent “blobs” of documents.
There is a variant called “soft k-means.”

e Instead of assigning each point x,, to a specific cluster z,
e You assign it a distribution over clusters ¢(z,)

We're now going to explore a more principled, statistical version of soft K-means,
called EM clustering.

By understanding the statistical principles underlying the algorithm, we can ex-
tend it in a number of cool ways.

5.3 The Expectation-Maximization Algorithm
Let’s go back to the Naive Bayes model:

log P(w,y; ¢,60) = > _log P(x:|y;;) P(y:; 0)

For example, can describe the documents that we see today, and y can correspond
to their labels. But suppose we never observe y;7 Can we still do something?

10

Since we don’t know y, let’s marginalize it:
log P(x ZlogZP (@:1,y:0,0) = > log»_ Plaily;¢)Py;0) (17)
{ y

Now we introduce an auxiliary variable g;, for each y;. We have:
¢ Zy a:(y) =

In other words, ¢; defines a probability distribution over Y, for each instance 1.

Now since q’Eyi =1,

~—

log P(x ZlogZP (x|y; d)P) Z)

P(xily; ¢)P(y; 0)
_ZlogE %(y)]’

by the definition of expectation. (Note that E, just means the expectation under
the distribution ¢;(y).)

Now we apply Jensen’s inequality, which says that because log is concave, we can
push it inside the sum and obtain a lower bound.

:Bz|y ¢) (yu)}
¢i(y)
J = Z Eqy[log P(xi|y; ¢)] + Eyllog P(y; 0)] — Eqlqi(y)]

log P(x >ZE [log

By maximizing J, we are maximizing a lower bound on the joint likelihood log P(x).
Now, J is a function of two arguments:

e the distributions ¢;(y) for each 7
e the parameters @ and ¢

We’ll optimize with respect to each of these in turn, holding the other one fixed.

11

5.4 The E-step

First, we expand the expectation in the lower bound as:
J = Z Eq[log P(;|y:)] + E,[log P(y: 0)] — Eylai(y)]

—ZZ%) (log P(x;|Y; = y; @) + log P(Y; = y;0) — log ¢:(y))

As in relative frequency estimation of Naive Bayes, we need to add a Lagrange
multiplier to ensure »_ ¢i(y) = 1, so

J = ZZq (log P(a|Y: = y; ¢) +log P(Y; = y;) — log gi(y)) + A1 = > as(v))

=log P(x;|Y; = y; @) +log P(Y; = y;0) — log q;(y) — 1 — \;

5qz(y)
log qi(y) =log P(x;|V; = y; @) + log P(Y; = 1;0) — 1 — \;
i(y) < P(z]Y; = y; ¢>) (Yi=y;0)
6i(y) =P(Y; = y|z:; 6, 0)

After normalizing, each ¢;(y) — which is the soft distribution over clusters for data
@; — is set to the conditional probability P(y;|x;) under the current parameters 6, ¢.

This is called the E-step, or “expectation step,” because it is derived from up-
dating the expected likelihood under ¢(y).

5.5 The M-step

Next, we hold ¢(y) fixed and update the parameters. Again, we start by adding
Lagrange multipliers to the lower bound,

J = ZZ%) (log P(a;]Y; = y; @) + log P(Y; = y;0) — log g;(y)) + _ Ay(1 - Zeby,j)

ai(y
8¢y J ZZ: ¢y J &

AnQy.j = Z 4:(y)i,

AR Eq[count(y,j)]
Z > i Giy)ws g E,[count(y)]

12

qby,j =

So ¢, is now equal to the relative frequency estimate of the expected counts
under the distribution ¢(y).

e As before, we can apply smoothing to add « to all these counts

e The update for @ is identical: 8, o > . ¢;(y), the expected proportion of cluster
Y = y. Again, we can add smoothing here too.

e Everything in the M-step is just like Naive Bayes, except we used expected

counts rather than observed counts.

5.6 Coordinate ascent

Algorithms that alternate between updating various subsets of the parameters are
called “coordinate-ascent” algorithms.

The objective function J is biconvex, meaning that it is separately convex in
q(y) and (@, ¢), but it is not jointly convex.

e Each step is guaranteed not to decrease J
e This is called hill-climbing: you never go down.
e But the overall procedure is not guaranteed to find a global maximum.

e This means that initialization is important: where you start can determine
where you finish.

13

