CS 4650/7650, Lecture 4: Semi-supervised classification with EM

Jacob Eisenstein

August 29, 2013

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Motivation

Nigam *et al.*(1999):

... after a person read and labeled 1000 articles (from UseNet), a learned classifier achieved a precision of about 50% when making predictions for only the 10% of documents about which it was most confident. Most users of a practical system, however, would not have the patience to label a thousand articles... one would obviously prefer algorithms that can provide accurate classifications after hand-labeling only a few dozen articles.

Learning from unlabeled examples?

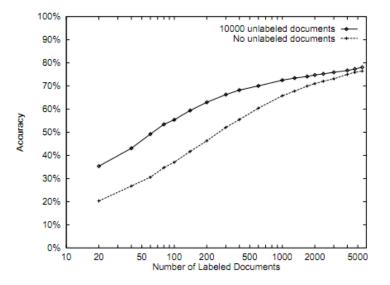
 Unlabeled data can improve learning by giving a better idea of the underlying shape of the data.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Learning from unlabeled examples?

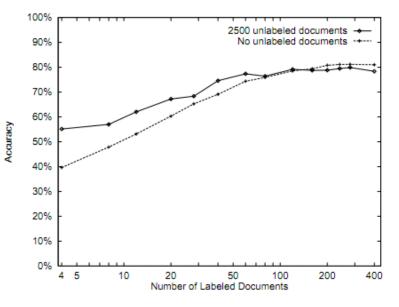
- Unlabeled data can improve learning by giving a better idea of the underlying shape of the data.
- Nigam *et al.* augment Naive Bayes to include both labeled and unlabeled examples.
 - For the unlabeled examples, they maintain a distribution $q(y_i)$.
 - For the labeled example, y_i is known.
 - The algorithm alternates between updating θ, φ and q(y_i) for the unlabeled examples

Accuracy on 20 Newsgroups



◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへ(?)

Accuracy on WebKB



▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへ(で)

Downweighting unlabeled data

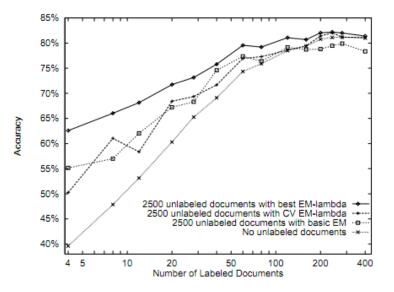
For unlabeled documents, we're just guessing the label. Maybe they should count less.

$$\log P(\mathbf{x}^{(\ell)}, \mathbf{x}^{(u)}, \mathbf{y}^{(\ell)}) = \log P(\mathbf{x}^{(\ell)}, \mathbf{y}^{(\ell)}) + \lambda \sum_{y} \log P(\mathbf{x}^{(u)}, y) \quad (1)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- When $\lambda = 0$, it's supervised classification.
- When $\lambda = 1$, it's standard EM.

Accuracy on WebKB with downweighting



Naive Bayes assumes one "component" θ per class.

- Suppose we are classifying "baseball" vs "other."
- There are many ways to not write about baseball. Why not have many possible components?

With EM, we can treat each class as a mixture of components.

- Assume there are k components per class $y \in \mathcal{Y}$
- ► Assume a distribution P(c|y), where P(c|y) = 0 for components c not associated with the class y.

$$P(\mathbf{x}_i, y_i) = \sum_{c} P(\mathbf{x}_i, y_i, c)$$
$$= \sum_{c} P(\mathbf{x}_i | c) P(c | y_i) P(y_i)$$

The component for each document, c_i , is called a latent variable.

We perform inference over latent variables, computing the distribution q_{Ci}(c) = P(c|x_i, y_i).

- This is part of the E-step in EM.
- The ability to incorporate latent variables is a major advantage of probabilistic models.

Category	EM1	EM3	EM5	EM10	EM20	EM40
acq	70.7	75.0	72.5	77.1	68.7	57.5
corn	44.6	45.3	45.3	46.7	41.8	19.1
crude	68.2	72.1	70.9	71.6	64.2	44.0
earn	89.2	88.3	88.5	86.5	87.4	87.2
grain	67.0	68.8	70.3	68.0	58.5	41.3
interest	36.8	43.5	47.1	49.9	34.8	25.8
money-fx	40.3	48.4	53.4	54.3	51.4	40.1
ship	34.1	41.5	42.3	36.1	21.0	5.4
trade	56.1	54.4	55.8	53.4	35.8	27.5
wheat	52.9	56.0	55.5	60.8	60.8	43.4

- This can help, but it is sensitive to choosing the right number of components per class.
- With too many components, we will overfit "memorizing" the training data.

Summary

- As a probabilistic model, Naive Bayes can go beyond just supervised classification.
- Expectation maximization allows us to handle missing data
 - In clustering and semi-supervised learning, the label y_i is missing.
 - ▶ In multi-component modeling, the component *c_i* is missing.

There are lots of other ways to do semi-supervised learning. We'll talk about them towards the end of the course.