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1 Linear classification and features

Suppose you want to build a spam detector. Spam vs. Ham. How would you
do it, (using only the text in the email)?

One solution is to represent document i as a column vector of word counts:
xi = [0 1 1 0 0 2 0 1 13 0 . . .]T, where xi,j is the count of word j in document
i. Suppose the size of the vocabulary is M .

We’ve thrown out grammar, sentence boundaries, paragraphs — everything
but the words! But this could still work. If you see the word free, is it spam or
ham? How about c1al1s? How about Bayesian?

Now, suppose we want to build a multi-way classifier to distinguish stories
about sports, celebrities, music, and business? Each label is an element y in a
set of K possible labels Y. Then for any pair 〈xi, yi〉, we can define a feature
vector f(xi, yi), such that:

f(x, 0) = [xi 0M(K−1)]
T (1)

f(x, 1) = [0M xi 0M(K−2)]
T (2)

f(x, 2) = [02M xi 0M(K−3)]
T (3)

. . . (4)

f(x,K) = [0M(K−1) xi]
T, (5)

where 0MK is a vector of MK zeros. Often we’ll add an offset feature at the
end of x, which is always 1. This makes the length of the entire feature vector
(M + 1)K.

Now, given a vector of weights, w ∈ R(M+1)K , we can compute the inner
product wTf(x, y). Then for any document xi, we can predict a label ŷ as

ŷ = arg max
y
wTf(xi, y) (6)

We could just set the weights by hand. If we wanted to distinguish, say,
English from Spanish, we could just use English and Spanish dictionaries, and
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set each weight to 1. For example,

wenglish,bicycle =1 wspanish,bicycle =0

wenglish,bicycleta =0 wspanish,bicycle =1

wenglish,con =1 wspanish,con =1

wenglish,ordinateur =0 wspanish,ordinateur =0

Similarly, if we want to distinguish positive and negative sentiment, we could
use positive and negative sentiment lexicons. You’ll do this in Project 1.

But it’s usually not easy to set the weights by hand. Instead, we will learn
them from data. An important tool for this is probability.

2 Review of basic probability

• Conditional probability: P (x|y) = P (x, y)/P (y)

• Chain rule: P (x, y) = P (x|y)P (y)

• We can apply the chain rule multiple times:

P (x, y, z) =P (x, y|z)P (z)

=P (x|y, z)P (y, z)

=P (x|y, z)P (y|z)P (z)

P (x, y|z) =P (x|y, z)P (y|z)

• Bayes’ rule follows from the Chain rule: P (y|x) = P (x, y)/P (x) = P (x|y)P (y)/P (x)

Often we want the maximum a posteriori (MAP) estimate

ŷ = arg max
y

P (y|x)

= arg max
y

P (x|y)P (y)/P (x)

∝ arg max
y

P (x|y)P (y)

We don’t need to normalize the probability because P (x) is the same for all
values of y.

Sometimes we want the expectation of a function, such as E[g(x)|y] =∑
x∈X g(x)P (x|y). For this, we need P (x|y) to be a normalized probability.
Expectations are easiest to think about in terms of probability distributions

over discrete events:

• If it is sunny, Marcia will eat three ice creams.

• If it is rainy, she will eat only one ice cream.

• There’s a 80% chance it will be sunny.
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• The expected number of ice creams she will eat is 0.8× 3 + 0.2× 1 = 2.6.

If the random variable X is continuous, the sum becomes an integral. For
example, a fast food restaurant in Quebec gives a 1% discount on french fries
for every degree below zero. Assuming they used a thermometer with infinite
precision, the expected price would be an integral over all possible temperatures.

3 Näıve Bayes

A Näıve Bayes classifier chooses the weights w to maximize the joint probabil-
ity P (x, y). We first need to define this probability. We’ll do that through a
“generative model,” which describes a hypothesized stochastic process that has
generated the observed data.1

• For each document i,

– draw the label yi ∼ Categorical(θ)

– draw the vector of counts xi ∼ Multinomial(φyi
)

The first thing this generative model tells us is that we can treat each docu-
ment independently: the probability of the whole dataset is equal to the product
of the probabilities of each individual document.

P (x, y; θ, φ) =
∏
i

P (xi, yi; θ, φ) (7)

In other words, the documents are conditionally independent given the param-
eters θ and φ.

When we write yi ∼ Categorical(θ), that means yi is a stochastic draw from a
categorical distribution with parameter θ. A categorical distribution is just like
a weighted die. A multinomial distribution is similar, but you draw a vector
of counts.2 By specifying the multinomial distribution, we are working with
multinomial näıve Bayes.3

3.1 Distributions

A categorical distribution is very simple: Pcategorical(Y = y; θ) = θy, where θy
is the probability of the outcome Y = y.

1We’ll see a lot of different generative stories in this course. They are a helpful tool because
they clearly and explicitly define the assumptions that underly the model.

2Technically, a multinomial distribution requires a second parameter, the total number of
counts (the number of words in the document). Even more technically, that number should
be treated as a random variable, and drawn from some other distribution. But none of that
matters for classification.

3You can plug in any probability distribution to the generative story and it will still be näıve
Bayes, as long as you are making the “näıve” assumption that your features are generated
independently. We’ll talk about this later.
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A multinomial distribution is only slightly more complex:

Pmultinomial(x;φ) =

(∑
j xj

)
!∏

j xj !

∏
j

φ
xj

j (8)

We require that
∑

j φj = 1 and φj ≥ 0 for all j. The first part of the
equation doesn’t depend on φ, and can usually be ignored. Can you see why we
need the first part at all?

Note that we write P (x|y;φ) to indicate the conditional probability of ran-
dom variable x given y, with parameter φ. Parameters are not random variables,
so we cannot write P (φ).

3.2 Prediction

The Naive Bayes prediction rule is to choose the label y which maximizes
P (x, y;φ, θ):

ŷ =arg max
y

P (x, y; θ, φ)

=arg max
y

P (x|y;φ)P (y; θ)

=arg max
y

logP (x|y;φ) + logP (y; θ)

Converting to logarithms makes the notation easier. It doesn’t change the
prediction rule because the log function is monotonically increasing.

Now we can plug in the probability distributions from the generative story.

logP (x, y; θ, φ) =arg max
y

logP (x|y;φ) + logP (y; θ)

= log


(∑

j xj

)
!∏

j xj !

∏
j

φ
xj

y,j

+ log θy

= log

(∑
j xj

)
!∏

j xj !
+
∑
j

xj log φy,j + log θy

∝
∑
j

xj log φy,j + log θy

=wTf(x, y),

where

w = [w(1) w(2) . . . w(K)]

w(y) = [log φy,1 log φy,2 . . . log φy,M log θy]

and f(x, y) is a vector of word counts and an offset, padded by zeros for the
labels not equal to y (see equations 1-5).
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3.3 Estimation

The parameters of a multinomial distribution have a simple interpretation:
they’re the expected proportions for each word. Based on this interpretation,
it’s tempting to set the parameters empirically, as

φy,j =

∑
i:Yi=y xi,j∑

j′
∑

i:Yi=y xi,j′
=

count(y, j)∑
j′ count(y, j′)

(9)

In NLP this is called a relative frequency estimator. It can be justified more
rigorously as a maximum likelihood estimate.

As in prediction, our desiderata is to maximize the joint likelihood of the
data,

L =
∑
i

logPmultinomial(xi;φyi
) + Pcategorical(yi; θ) (10)

Since P (y) is unrelated to φ, we can forget about it. But before we can just
optimize L, we have to deal with a constraint:∑

j

φy,j = 1 (11)

We’ll do this by adding a Lagrange multiplier. Here’s the objective of the
unconstrained optimization problem:

`[φy] =
∑

i:Yi=y

∑
j

xij log φy,j + λ(1−
∑
j

φy,j) (12)

We solve by setting ∂`
φj

= 0.

0 =
∑

i:Yi=y

xi,j/φy,j − λ

λφy,j =
∑

i:Yi=y

xi,j

φy,j ∝
∑

i:Yi=y

xi,j

=

∑
i:Yi=y xi,j∑

j′
∑

i:Yi=y xi,j′

Similarly, θy ∝
∑

i δ(Yi = y), where δ(Yi = y) = 1 if Yi = y and 0 otherwise.

3.4 Smoothing and MAP estimation

If data is sparse, you can end up with values of φ = 0, allowing a single feature to
completely veto a label. This is undesirable, because it imposes high variance:
depending on what data happens to be in the training set, we could get vastly
different classification rules.
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One solution is Laplace smoothing: adding “pseudo-counts” of α to each
estimate, and then normalize.

φy,j =
α+

∑
i:Yi=y xi,j∑

j′ α+
∑

i:Yi=y xi,j′
=

α+ count(i, j)

V α+
∑

j′ count(i, j′)
(13)

Laplace smoothing has a nice Bayesian justification, in which we extend the
generative story to include φ as a random variable (rather than as a parameter).
The resulting estimate is called maximum a posteriori, or MAP.

Smoothing reduces variance, but it takes us away from the maximum-
likelihood estimate: it imposes a bias (towards uniform probabilities). Machine
learning theory shows that errors on held out data result from the sum of bias
and variance. Techniques for reducing variance typically increase the bias, so
there is a bias-variance tradeoff.

• Unbiased classifiers overfit the training data, yielding poor performance
on unseen data.

• But if we set a very large smoothing value, we can underfit instead. In
the limit of α → ∞, we have zero variance: it is the same classifier no
matter what data we see! But the bias of such a classifier will be high.

• Navigating this tradeoff is hard. But in general, as you have more data,
you can afford more variance.

3.5 Training, testing, and tuning (development) sets

We’ll soon talk about more learning algorithms, but whichever one we apply,
we will want to report its accuracy. Really, this is an educated guess about how
well the algorithm will do on new data in the future.

To do this, we need to hold out a separate “test set” from the data that we
use for estimation (i.e., training, learning). Otherwise, if we measure accuracy
on the same data that is used for estimation, we will badly overestimate the
accuracy we’re likely to get on new data. See http://xkcd.com/1122/ for a
cartoon related to this idea.

Many learning algorithms also have “tuning” parameters:

• the smoothing pseudo-counts α in Naive Bayes

• the regularization λ in logistic regression

• the slack weight C in the Passive-Aggressive algorithm

All of these tuning parameters really do the same thing: they navigate the
bias-variance tradeoff. Where is the best position on this tradeoff curve? It’s
hard to tell in advance. Sometimes it is tempting to see which tuning parameter
gives the best performance on the test set, and then report that performance.
Resist this temptation! It will also lead to overestimating accuracy on truly
unseen future data. For that reason, this is a surefire way to get your research
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paper rejected. Instead, you should split off a piece of your training data, called
a “development set” (or “tuning set”).

Sometimes, people average across multiple test sets and/or multiple devel-
opment sets. One way to do this is to divide your data into “folds,” and allow
each fold to be the development set one time. This is called K-fold cross-
validation. In the extreme, each fold is a single data point. This is called
leave-one-out.

3.6 Pros and cons of Naive Bayes

Naive Bayes is very simple to work with. Estimation and prediction can done
in closed form, and the nice probabilistic interpretation makes it relatively easy
to extend the model in various ways.

But Naive Bayes makes assumptions which seriously limit its accuracy, es-
pecially in NLP.

• The multinomial distribution assumes that each word is generated inde-
pently of all the others (conditioned on the parameter φy).

• But this is clearly wrong, because words travel together: if a document
contains the word näıve, it is far more likely than average to also contain
the word Bayes!

• Put another way, P (näıve,Bayes) 6= P (näıve)P (Bayes).

Traffic lights Dan Klein makes this point with an example about traffic lights.
In his hometown of Pittsburgh, there is a 1/7 chance that the lights will be
broken, and both lights will be red. There is a 3/7 chance that the lights will
work, and the north-south lights will be green; there is a 3/7 chance that the
lights work and the east-west lights are green.

The prior probability that the lights are broken is 1/7. If they are broken,
the conditional likelihood of each light being red is 1. The prior for them not
being broken is 6/7. If they are not broken, the conditional likelihood of each
being light being red is 1/2.

Now, suppose you see that both lights are red. According to Naive Bayes,
the probability that the lights are broken is 1/7 × 1 × 1 = 1/7 = 4/28. The
probability that the lights are not broken is 6/7×1/2×1/2 = 6/28. So according
to naive Bayes, there is a 60% chance that the lights are not broken!

What went wrong? We have made an independence assumption to factor the
probability P (R,R|not-broken) = Pnorth-south(R|not-broken)Peast-west(R|not-broken).
But this independence assumption is clearly incorrect, because P (R,R|not-broken) =
0.

Less Naive Bayes? Of course we could decide not to make the naive Bayes
assumption, and model P (R,R) explicitly. But this idea does not scale when
the feature space is large (as it often is in NLP). The number of possible feature
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configurations grows exponentially, so our ability to estimate accurate param-
eters will suffer from high variance. With an infinite amount of data, we’d be
fine; but we never have that. Naive Bayes accepts some bias (because of the
incorrect modeling assumption) in exchange for lower variance.
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