diff --git a/develop/_sources/guides/cli.md b/develop/_sources/guides/cli.md
index 134461c60..339c5405b 100644
--- a/develop/_sources/guides/cli.md
+++ b/develop/_sources/guides/cli.md
@@ -230,7 +230,7 @@ optional arguments:
   --tracking.kf_node_indices TRACKING.KF_NODE_INDICES
                         For Kalman filter: Indices of nodes to track. (default: )
   --tracking.kf_init_frame_count TRACKING.KF_INIT_FRAME_COUNT
-                        For Kalman filter: Number of frames to track with other tracker. 0 means no Kalman filters will be used. (default: 0)
+                        For Kalman filter: Number of frames to track with other tracker. 0 means no Kalman filters will be used. (default: 0) Kalman filters require TRACKING.KF_NODE_INDICES, TRACKING.MAX_TRACKING and TRACKING.MAX_TRACKS or TRACKING.TARGET_INSTANCE_COUNT, TRACKING.TRACKER to be simple or simplemaxtracks, and TRACKING.SIMILARITY to not be normalized_instance.
 ```
 
 #### Examples:
@@ -285,6 +285,12 @@ sleap-track --gpu 1 ...
 sleap-track -m "models/my_model" --frames 1000-2000 "input_video.mp4"
 ```
 
+**9. Use Kalman tracker (not recommended since flow is preferred):**
+
+```none
+sleap-track -m "models/my_model" --tracking.similarity instance --tracking.tracker simplemaxtracks --tracking.max_tracking 1 --tracking.max_tracks 4 --tracking.kf_init_frame_count 10 --tracking.kf_node_indices 0,1 -o "output_predictions.slp" "input_video.mp4"
+```
+
 ## Dataset files
 
 (sleap-convert)=
diff --git a/develop/api/sleap.nn.inference.html b/develop/api/sleap.nn.inference.html
index 5681a012d..302664f90 100644
--- a/develop/api/sleap.nn.inference.html
+++ b/develop/api/sleap.nn.inference.html
@@ -638,7 +638,7 @@ <h2> Contents </h2>
 function which provides a simplified interface for creating <a href="#id3"><span class="problematic" id="id4">`</span></a>Predictor`s.</p>
 <dl class="py class">
 <dt class="sig sig-object py" id="sleap.nn.inference.BottomUpInferenceLayer">
-<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">BottomUpInferenceLayer</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L2695-L2961"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.BottomUpInferenceLayer" title="Permalink to this definition">#</a></dt>
+<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">BottomUpInferenceLayer</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L2697-L2963"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.BottomUpInferenceLayer" title="Permalink to this definition">#</a></dt>
 <dd><p>Keras layer that predicts instances from images using a trained model.</p>
 <p>This layer encapsulates all of the inference operations required for generating
 predictions from a centered instance confidence map model. This includes
@@ -761,7 +761,7 @@ <h2> Contents </h2>
 
 <dl class="py method">
 <dt class="sig sig-object py" id="sleap.nn.inference.BottomUpInferenceLayer.call">
-<span class="sig-name descname"><span class="pre">call</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L2896-L2961"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.BottomUpInferenceLayer.call" title="Permalink to this definition">#</a></dt>
+<span class="sig-name descname"><span class="pre">call</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L2898-L2963"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.BottomUpInferenceLayer.call" title="Permalink to this definition">#</a></dt>
 <dd><p>Predict instances for one batch of images.</p>
 <dl class="field-list simple">
 <dt class="field-odd">Parameters<span class="colon">:</span></dt>
@@ -795,13 +795,13 @@ <h2> Contents </h2>
 
 <dl class="py method">
 <dt class="sig sig-object py" id="sleap.nn.inference.BottomUpInferenceLayer.find_peaks">
-<span class="sig-name descname"><span class="pre">find_peaks</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">cms</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">offsets</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L2850-L2894"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.BottomUpInferenceLayer.find_peaks" title="Permalink to this definition">#</a></dt>
+<span class="sig-name descname"><span class="pre">find_peaks</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">cms</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">offsets</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L2852-L2896"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.BottomUpInferenceLayer.find_peaks" title="Permalink to this definition">#</a></dt>
 <dd><p>Run peak finding on predicted confidence maps.</p>
 </dd></dl>
 
 <dl class="py method">
 <dt class="sig sig-object py" id="sleap.nn.inference.BottomUpInferenceLayer.forward_pass">
-<span class="sig-name descname"><span class="pre">forward_pass</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L2822-L2848"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.BottomUpInferenceLayer.forward_pass" title="Permalink to this definition">#</a></dt>
+<span class="sig-name descname"><span class="pre">forward_pass</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L2824-L2850"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.BottomUpInferenceLayer.forward_pass" title="Permalink to this definition">#</a></dt>
 <dd><p>Run preprocessing and model inference on a batch.</p>
 </dd></dl>
 
@@ -809,7 +809,7 @@ <h2> Contents </h2>
 
 <dl class="py class">
 <dt class="sig sig-object py" id="sleap.nn.inference.BottomUpInferenceModel">
-<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">BottomUpInferenceModel</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L2964-L3010"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.BottomUpInferenceModel" title="Permalink to this definition">#</a></dt>
+<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">BottomUpInferenceModel</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L2966-L3012"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.BottomUpInferenceModel" title="Permalink to this definition">#</a></dt>
 <dd><p>Bottom-up instance prediction model.</p>
 <p>This model encapsulates the bottom-up approach where points are first detected by
 local peak detection and then grouped into instances by connectivity scoring using
@@ -823,7 +823,7 @@ <h2> Contents </h2>
 
 <dl class="py method">
 <dt class="sig sig-object py" id="sleap.nn.inference.BottomUpInferenceModel.call">
-<span class="sig-name descname"><span class="pre">call</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">example</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L2984-L3010"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.BottomUpInferenceModel.call" title="Permalink to this definition">#</a></dt>
+<span class="sig-name descname"><span class="pre">call</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">example</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L2986-L3012"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.BottomUpInferenceModel.call" title="Permalink to this definition">#</a></dt>
 <dd><p>Predict instances for one batch of images.</p>
 <dl class="field-list simple">
 <dt class="field-odd">Parameters<span class="colon">:</span></dt>
@@ -856,7 +856,7 @@ <h2> Contents </h2>
 
 <dl class="py class">
 <dt class="sig sig-object py" id="sleap.nn.inference.BottomUpMultiClassInferenceLayer">
-<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">BottomUpMultiClassInferenceLayer</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L3309-L3547"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.BottomUpMultiClassInferenceLayer" title="Permalink to this definition">#</a></dt>
+<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">BottomUpMultiClassInferenceLayer</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L3311-L3549"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.BottomUpMultiClassInferenceLayer" title="Permalink to this definition">#</a></dt>
 <dd><p>Keras layer that predicts instances from images using a trained model.</p>
 <p>This layer encapsulates all of the inference operations required for generating
 predictions from a centered instance confidence map model. This includes
@@ -962,7 +962,7 @@ <h2> Contents </h2>
 
 <dl class="py method">
 <dt class="sig sig-object py" id="sleap.nn.inference.BottomUpMultiClassInferenceLayer.call">
-<span class="sig-name descname"><span class="pre">call</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L3483-L3547"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.BottomUpMultiClassInferenceLayer.call" title="Permalink to this definition">#</a></dt>
+<span class="sig-name descname"><span class="pre">call</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L3485-L3549"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.BottomUpMultiClassInferenceLayer.call" title="Permalink to this definition">#</a></dt>
 <dd><p>Predict instances for one batch of images.</p>
 <dl class="field-list simple">
 <dt class="field-odd">Parameters<span class="colon">:</span></dt>
@@ -993,13 +993,13 @@ <h2> Contents </h2>
 
 <dl class="py method">
 <dt class="sig sig-object py" id="sleap.nn.inference.BottomUpMultiClassInferenceLayer.find_peaks">
-<span class="sig-name descname"><span class="pre">find_peaks</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">cms</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">offsets</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L3451-L3481"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.BottomUpMultiClassInferenceLayer.find_peaks" title="Permalink to this definition">#</a></dt>
+<span class="sig-name descname"><span class="pre">find_peaks</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">cms</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">offsets</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L3453-L3483"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.BottomUpMultiClassInferenceLayer.find_peaks" title="Permalink to this definition">#</a></dt>
 <dd><p>Run peak finding on predicted confidence maps.</p>
 </dd></dl>
 
 <dl class="py method">
 <dt class="sig sig-object py" id="sleap.nn.inference.BottomUpMultiClassInferenceLayer.forward_pass">
-<span class="sig-name descname"><span class="pre">forward_pass</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L3425-L3449"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.BottomUpMultiClassInferenceLayer.forward_pass" title="Permalink to this definition">#</a></dt>
+<span class="sig-name descname"><span class="pre">forward_pass</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L3427-L3451"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.BottomUpMultiClassInferenceLayer.forward_pass" title="Permalink to this definition">#</a></dt>
 <dd><p>Run preprocessing and model inference on a batch.</p>
 </dd></dl>
 
@@ -1007,7 +1007,7 @@ <h2> Contents </h2>
 
 <dl class="py class">
 <dt class="sig sig-object py" id="sleap.nn.inference.BottomUpMultiClassInferenceModel">
-<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">BottomUpMultiClassInferenceModel</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L3550-L3592"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.BottomUpMultiClassInferenceModel" title="Permalink to this definition">#</a></dt>
+<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">BottomUpMultiClassInferenceModel</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L3552-L3594"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.BottomUpMultiClassInferenceModel" title="Permalink to this definition">#</a></dt>
 <dd><p>Bottom-up multi-class instance prediction model.</p>
 <p>This model encapsulates the bottom-up multi-class approach where points are first
 detected by local peak finding and then grouped into instances by their identity
@@ -1021,7 +1021,7 @@ <h2> Contents </h2>
 
 <dl class="py method">
 <dt class="sig sig-object py" id="sleap.nn.inference.BottomUpMultiClassInferenceModel.call">
-<span class="sig-name descname"><span class="pre">call</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">example</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L3566-L3592"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.BottomUpMultiClassInferenceModel.call" title="Permalink to this definition">#</a></dt>
+<span class="sig-name descname"><span class="pre">call</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">example</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L3568-L3594"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.BottomUpMultiClassInferenceModel.call" title="Permalink to this definition">#</a></dt>
 <dd><p>Predict instances for one batch of images.</p>
 <dl class="field-list simple">
 <dt class="field-odd">Parameters<span class="colon">:</span></dt>
@@ -1054,7 +1054,7 @@ <h2> Contents </h2>
 
 <dl class="py class">
 <dt class="sig sig-object py" id="sleap.nn.inference.BottomUpMultiClassPredictor">
-<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">BottomUpMultiClassPredictor</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">config</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="sleap.nn.config.training_job.html#sleap.nn.config.training_job.TrainingJobConfig" title="sleap.nn.config.training_job.TrainingJobConfig"><span class="pre">TrainingJobConfig</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="sleap.nn.model.html#sleap.nn.model.Model" title="sleap.nn.model.Model"><span class="pre">Model</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">inference_model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="#sleap.nn.inference.BottomUpMultiClassInferenceModel" title="sleap.nn.inference.BottomUpMultiClassInferenceModel"><span class="pre">BottomUpMultiClassInferenceModel</span></a><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">peak_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.2</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">4</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_refinement</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_patch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tracks</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">List</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="sleap.instance.html#sleap.instance.Track" title="sleap.instance.Track"><span class="pre">Track</span></a><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbosity</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'rich'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">report_rate</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">2.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">model_paths</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">_Nothing.NOTHING</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L3596-L3818"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.BottomUpMultiClassPredictor" title="Permalink to this definition">#</a></dt>
+<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">BottomUpMultiClassPredictor</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">config</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="sleap.nn.config.training_job.html#sleap.nn.config.training_job.TrainingJobConfig" title="sleap.nn.config.training_job.TrainingJobConfig"><span class="pre">TrainingJobConfig</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="sleap.nn.model.html#sleap.nn.model.Model" title="sleap.nn.model.Model"><span class="pre">Model</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">inference_model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="#sleap.nn.inference.BottomUpMultiClassInferenceModel" title="sleap.nn.inference.BottomUpMultiClassInferenceModel"><span class="pre">BottomUpMultiClassInferenceModel</span></a><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">peak_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.2</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">4</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_refinement</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_patch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tracks</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">List</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="sleap.instance.html#sleap.instance.Track" title="sleap.instance.Track"><span class="pre">Track</span></a><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbosity</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'rich'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">report_rate</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">2.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">model_paths</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">_Nothing.NOTHING</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L3598-L3820"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.BottomUpMultiClassPredictor" title="Permalink to this definition">#</a></dt>
 <dd><p>Bottom-up multi-instance predictor.</p>
 <p>This high-level class handles initialization, preprocessing and tracking using a
 trained bottom-up multi-instance SLEAP model.</p>
@@ -1173,7 +1173,7 @@ <h2> Contents </h2>
 
 <dl class="py method">
 <dt class="sig sig-object py" id="sleap.nn.inference.BottomUpMultiClassPredictor.from_trained_models">
-<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">from_trained_models</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model_path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">4</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">peak_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.2</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_refinement</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_patch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">resize_input_layer</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference internal" href="#sleap.nn.inference.BottomUpMultiClassPredictor" title="sleap.nn.inference.BottomUpMultiClassPredictor"><span class="pre">BottomUpMultiClassPredictor</span></a></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L3654-L3705"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.BottomUpMultiClassPredictor.from_trained_models" title="Permalink to this definition">#</a></dt>
+<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">from_trained_models</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model_path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">4</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">peak_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.2</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_refinement</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_patch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">resize_input_layer</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference internal" href="#sleap.nn.inference.BottomUpMultiClassPredictor" title="sleap.nn.inference.BottomUpMultiClassPredictor"><span class="pre">BottomUpMultiClassPredictor</span></a></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L3656-L3707"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.BottomUpMultiClassPredictor.from_trained_models" title="Permalink to this definition">#</a></dt>
 <dd><p>Create predictor from a saved model.</p>
 <dl class="field-list simple">
 <dt class="field-odd">Parameters<span class="colon">:</span></dt>
@@ -1212,7 +1212,7 @@ <h2> Contents </h2>
 
 <dl class="py class">
 <dt class="sig sig-object py" id="sleap.nn.inference.BottomUpPredictor">
-<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">BottomUpPredictor</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">bottomup_config</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="sleap.nn.config.training_job.html#sleap.nn.config.training_job.TrainingJobConfig" title="sleap.nn.config.training_job.TrainingJobConfig"><span class="pre">TrainingJobConfig</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">bottomup_model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="sleap.nn.model.html#sleap.nn.model.Model" title="sleap.nn.model.Model"><span class="pre">Model</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">inference_model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="#sleap.nn.inference.BottomUpInferenceModel" title="sleap.nn.inference.BottomUpInferenceModel"><span class="pre">BottomUpInferenceModel</span></a><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">peak_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.2</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">4</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_refinement</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_patch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_edge_length_ratio</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.25</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">dist_penalty_weight</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">1.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">paf_line_points</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">10</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">min_line_scores</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.25</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbosity</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'rich'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">report_rate</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">2.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">model_paths</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">_Nothing.NOTHING</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L3014-L3306"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.BottomUpPredictor" title="Permalink to this definition">#</a></dt>
+<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">BottomUpPredictor</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">bottomup_config</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="sleap.nn.config.training_job.html#sleap.nn.config.training_job.TrainingJobConfig" title="sleap.nn.config.training_job.TrainingJobConfig"><span class="pre">TrainingJobConfig</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">bottomup_model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="sleap.nn.model.html#sleap.nn.model.Model" title="sleap.nn.model.Model"><span class="pre">Model</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">inference_model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="#sleap.nn.inference.BottomUpInferenceModel" title="sleap.nn.inference.BottomUpInferenceModel"><span class="pre">BottomUpInferenceModel</span></a><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">peak_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.2</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">4</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_refinement</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_patch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_edge_length_ratio</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.25</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">dist_penalty_weight</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">1.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">paf_line_points</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">10</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">min_line_scores</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.25</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbosity</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'rich'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">report_rate</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">2.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">model_paths</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">_Nothing.NOTHING</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L3016-L3308"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.BottomUpPredictor" title="Permalink to this definition">#</a></dt>
 <dd><p>Bottom-up multi-instance predictor.</p>
 <p>This high-level class handles initialization, preprocessing and tracking using a
 trained bottom-up multi-instance SLEAP model.</p>
@@ -1396,7 +1396,7 @@ <h2> Contents </h2>
 
 <dl class="py method">
 <dt class="sig sig-object py" id="sleap.nn.inference.BottomUpPredictor.from_trained_models">
-<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">from_trained_models</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model_path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">4</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">peak_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.2</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_refinement</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_patch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_edge_length_ratio</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.25</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">dist_penalty_weight</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">1.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">paf_line_points</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">10</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">min_line_scores</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.25</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">resize_input_layer</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference internal" href="#sleap.nn.inference.BottomUpPredictor" title="sleap.nn.inference.BottomUpPredictor"><span class="pre">BottomUpPredictor</span></a></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L3109-L3186"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.BottomUpPredictor.from_trained_models" title="Permalink to this definition">#</a></dt>
+<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">from_trained_models</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model_path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">4</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">peak_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.2</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_refinement</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_patch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_edge_length_ratio</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.25</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">dist_penalty_weight</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">1.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">paf_line_points</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">10</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">min_line_scores</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.25</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">resize_input_layer</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference internal" href="#sleap.nn.inference.BottomUpPredictor" title="sleap.nn.inference.BottomUpPredictor"><span class="pre">BottomUpPredictor</span></a></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L3111-L3188"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.BottomUpPredictor.from_trained_models" title="Permalink to this definition">#</a></dt>
 <dd><p>Create predictor from a saved model.</p>
 <dl class="field-list simple">
 <dt class="field-odd">Parameters<span class="colon">:</span></dt>
@@ -1449,7 +1449,7 @@ <h2> Contents </h2>
 
 <dl class="py class">
 <dt class="sig sig-object py" id="sleap.nn.inference.CentroidCrop">
-<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">CentroidCrop</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L1625-L1941"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.CentroidCrop" title="Permalink to this definition">#</a></dt>
+<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">CentroidCrop</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L1627-L1943"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.CentroidCrop" title="Permalink to this definition">#</a></dt>
 <dd><p>Inference layer for applying centroid crop-based models.</p>
 <p>This layer encapsulates all of the inference operations requires for generating
 predictions from a centroid confidence map model. This includes preprocessing,
@@ -1643,7 +1643,7 @@ <h2> Contents </h2>
 
 <dl class="py class">
 <dt class="sig sig-object py" id="sleap.nn.inference.CentroidInferenceModel">
-<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">CentroidInferenceModel</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L2169-L2209"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.CentroidInferenceModel" title="Permalink to this definition">#</a></dt>
+<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">CentroidInferenceModel</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L2171-L2211"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.CentroidInferenceModel" title="Permalink to this definition">#</a></dt>
 <dd><p>Centroid only instance prediction model.</p>
 <p>This model encapsulates the first step in a top-down approach where instances are detected by
 local peak detection of an anchor point and then cropped.</p>
@@ -1657,7 +1657,7 @@ <h2> Contents </h2>
 
 <dl class="py method">
 <dt class="sig sig-object py" id="sleap.nn.inference.CentroidInferenceModel.call">
-<span class="sig-name descname"><span class="pre">call</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">example</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">Tensor</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">Tensor</span><span class="p"><span class="pre">]</span></span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">Tensor</span><span class="p"><span class="pre">]</span></span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L2185-L2209"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.CentroidInferenceModel.call" title="Permalink to this definition">#</a></dt>
+<span class="sig-name descname"><span class="pre">call</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">example</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">Tensor</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">Tensor</span><span class="p"><span class="pre">]</span></span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">Tensor</span><span class="p"><span class="pre">]</span></span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L2187-L2211"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.CentroidInferenceModel.call" title="Permalink to this definition">#</a></dt>
 <dd><p>Predict instances for one batch of images.</p>
 <dl class="field-list simple">
 <dt class="field-odd">Parameters<span class="colon">:</span></dt>
@@ -1685,7 +1685,7 @@ <h2> Contents </h2>
 
 <dl class="py class">
 <dt class="sig sig-object py" id="sleap.nn.inference.FindInstancePeaks">
-<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">FindInstancePeaks</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L1944-L2166"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.FindInstancePeaks" title="Permalink to this definition">#</a></dt>
+<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">FindInstancePeaks</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L1946-L2168"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.FindInstancePeaks" title="Permalink to this definition">#</a></dt>
 <dd><p>Keras layer that predicts instance peaks from images using a trained model.</p>
 <p>This layer encapsulates all of the inference operations required for generating
 predictions from a centered instance confidence map model. This includes
@@ -1766,7 +1766,7 @@ <h2> Contents </h2>
 
 <dl class="py method">
 <dt class="sig sig-object py" id="sleap.nn.inference.FindInstancePeaks.call">
-<span class="sig-name descname"><span class="pre">call</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">inputs</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">Tensor</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">Tensor</span><span class="p"><span class="pre">]</span></span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">Tensor</span><span class="p"><span class="pre">]</span></span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L2027-L2166"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.FindInstancePeaks.call" title="Permalink to this definition">#</a></dt>
+<span class="sig-name descname"><span class="pre">call</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">inputs</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">Tensor</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">Tensor</span><span class="p"><span class="pre">]</span></span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">Tensor</span><span class="p"><span class="pre">]</span></span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L2029-L2168"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.FindInstancePeaks.call" title="Permalink to this definition">#</a></dt>
 <dd><p>Predict confidence maps and infer peak coordinates.</p>
 <p>This layer can be chained with a <a class="reference internal" href="#sleap.nn.inference.CentroidCrop" title="sleap.nn.inference.CentroidCrop"><code class="xref py py-obj docutils literal notranslate"><span class="pre">CentroidCrop</span></code></a> layer to create a top-down
 inference function from full images.</p>
@@ -1949,14 +1949,14 @@ <h2> Contents </h2>
 
 <dl class="py class">
 <dt class="sig sig-object py" id="sleap.nn.inference.InferenceModel">
-<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">InferenceModel</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L970-L1158"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.InferenceModel" title="Permalink to this definition">#</a></dt>
+<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">InferenceModel</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L970-L1160"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.InferenceModel" title="Permalink to this definition">#</a></dt>
 <dd><p>SLEAP inference model base class.</p>
 <p>This class wraps the <code class="xref py py-obj docutils literal notranslate"><span class="pre">tf.keras.Model</span></code> class to provide SLEAP-specific inference
 utilities such as handling different input data types, preprocessing and variable
 output shapes.</p>
 <dl class="py method">
 <dt class="sig sig-object py" id="sleap.nn.inference.InferenceModel.export_model">
-<span class="sig-name descname"><span class="pre">export_model</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">save_path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">signatures</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'serving_default'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">save_traces</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">model_name</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tensors</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">str</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">unrag_outputs</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L1081-L1158"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.InferenceModel.export_model" title="Permalink to this definition">#</a></dt>
+<span class="sig-name descname"><span class="pre">export_model</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">save_path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">signatures</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'serving_default'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">save_traces</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">model_name</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tensors</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">str</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">unrag_outputs</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L1081-L1160"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.InferenceModel.export_model" title="Permalink to this definition">#</a></dt>
 <dd><p>Save the frozen graph of a model.</p>
 <dl class="field-list simple">
 <dt class="field-odd">Parameters<span class="colon">:</span></dt>
@@ -2066,7 +2066,7 @@ <h2> Contents </h2>
 
 <dl class="py class">
 <dt class="sig sig-object py" id="sleap.nn.inference.MoveNetInferenceLayer">
-<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">MoveNetInferenceLayer</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L4593-L4638"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.MoveNetInferenceLayer" title="Permalink to this definition">#</a></dt>
+<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">MoveNetInferenceLayer</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L4595-L4640"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.MoveNetInferenceLayer" title="Permalink to this definition">#</a></dt>
 <dd><p>Inference layer for applying single instance models.</p>
 <p>This layer encapsulates all of the inference operations requires for generating
 predictions from a single instance confidence map model. This includes
@@ -2116,7 +2116,7 @@ <h2> Contents </h2>
 
 <dl class="py method">
 <dt class="sig sig-object py" id="sleap.nn.inference.MoveNetInferenceLayer.call">
-<span class="sig-name descname"><span class="pre">call</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">ex</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L4628-L4638"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.MoveNetInferenceLayer.call" title="Permalink to this definition">#</a></dt>
+<span class="sig-name descname"><span class="pre">call</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">ex</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L4630-L4640"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.MoveNetInferenceLayer.call" title="Permalink to this definition">#</a></dt>
 <dd><p>Call the model with preprocessed data.</p>
 <dl class="field-list simple">
 <dt class="field-odd">Parameters<span class="colon">:</span></dt>
@@ -2132,7 +2132,7 @@ <h2> Contents </h2>
 
 <dl class="py class">
 <dt class="sig sig-object py" id="sleap.nn.inference.MoveNetInferenceModel">
-<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">MoveNetInferenceModel</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L4641-L4665"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.MoveNetInferenceModel" title="Permalink to this definition">#</a></dt>
+<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">MoveNetInferenceModel</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L4643-L4667"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.MoveNetInferenceModel" title="Permalink to this definition">#</a></dt>
 <dd><p>MoveNet prediction model.</p>
 <p>This model encapsulates the basic MoveNet approach. The images are passed to a model
 which is trained to detect all body parts (17 joints in total).</p>
@@ -2149,7 +2149,7 @@ <h2> Contents </h2>
 
 <dl class="py method">
 <dt class="sig sig-object py" id="sleap.nn.inference.MoveNetInferenceModel.call">
-<span class="sig-name descname"><span class="pre">call</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">x</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L4664-L4665"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.MoveNetInferenceModel.call" title="Permalink to this definition">#</a></dt>
+<span class="sig-name descname"><span class="pre">call</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">x</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L4666-L4667"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.MoveNetInferenceModel.call" title="Permalink to this definition">#</a></dt>
 <dd><p>Calls the model on new inputs and returns the outputs as tensors.</p>
 <p>In this case <a class="reference internal" href="#sleap.nn.inference.MoveNetInferenceModel.call" title="sleap.nn.inference.MoveNetInferenceModel.call"><code class="xref py py-obj docutils literal notranslate"><span class="pre">call()</span></code></a> just reapplies
 all ops in the graph to the new inputs
@@ -2183,7 +2183,7 @@ <h2> Contents </h2>
 
 <dl class="py class">
 <dt class="sig sig-object py" id="sleap.nn.inference.MoveNetPredictor">
-<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">MoveNetPredictor</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">inference_model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="#sleap.nn.inference.MoveNetInferenceModel" title="sleap.nn.inference.MoveNetInferenceModel"><span class="pre">MoveNetInferenceModel</span></a><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">peak_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.2</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">model_name</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'lightning'</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbosity</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'rich'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">report_rate</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">2.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">model_paths</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">_Nothing.NOTHING</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L4669-L4810"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.MoveNetPredictor" title="Permalink to this definition">#</a></dt>
+<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">MoveNetPredictor</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">inference_model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="#sleap.nn.inference.MoveNetInferenceModel" title="sleap.nn.inference.MoveNetInferenceModel"><span class="pre">MoveNetInferenceModel</span></a><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">peak_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.2</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">model_name</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'lightning'</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbosity</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'rich'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">report_rate</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">2.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">model_paths</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">_Nothing.NOTHING</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L4671-L4812"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.MoveNetPredictor" title="Permalink to this definition">#</a></dt>
 <dd><p>MoveNet predictor.</p>
 <p>This high-level class handles initialization, preprocessing and tracking using a
 trained MoveNet model.
@@ -2250,7 +2250,7 @@ <h2> Contents </h2>
 
 <dl class="py method">
 <dt class="sig sig-object py" id="sleap.nn.inference.MoveNetPredictor.from_trained_models">
-<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">from_trained_models</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model_name</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">peak_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.2</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference internal" href="#sleap.nn.inference.MoveNetPredictor" title="sleap.nn.inference.MoveNetPredictor"><span class="pre">MoveNetPredictor</span></a></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L4721-L4743"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.MoveNetPredictor.from_trained_models" title="Permalink to this definition">#</a></dt>
+<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">from_trained_models</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model_name</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">peak_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.2</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference internal" href="#sleap.nn.inference.MoveNetPredictor" title="sleap.nn.inference.MoveNetPredictor"><span class="pre">MoveNetPredictor</span></a></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L4723-L4745"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.MoveNetPredictor.from_trained_models" title="Permalink to this definition">#</a></dt>
 <dd><p>Create the predictor from a saved model.</p>
 <dl class="field-list simple">
 <dt class="field-odd">Parameters<span class="colon">:</span></dt>
@@ -2416,7 +2416,7 @@ <h2> Contents </h2>
 
 <dl class="py class">
 <dt class="sig sig-object py" id="sleap.nn.inference.SingleInstanceInferenceLayer">
-<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">SingleInstanceInferenceLayer</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L1216-L1367"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.SingleInstanceInferenceLayer" title="Permalink to this definition">#</a></dt>
+<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">SingleInstanceInferenceLayer</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L1218-L1369"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.SingleInstanceInferenceLayer" title="Permalink to this definition">#</a></dt>
 <dd><p>Inference layer for applying single instance models.</p>
 <p>This layer encapsulates all of the inference operations requires for generating
 predictions from a single instance confidence map model. This includes
@@ -2505,7 +2505,7 @@ <h2> Contents </h2>
 
 <dl class="py method">
 <dt class="sig sig-object py" id="sleap.nn.inference.SingleInstanceInferenceLayer.call">
-<span class="sig-name descname"><span class="pre">call</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L1306-L1367"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.SingleInstanceInferenceLayer.call" title="Permalink to this definition">#</a></dt>
+<span class="sig-name descname"><span class="pre">call</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L1308-L1369"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.SingleInstanceInferenceLayer.call" title="Permalink to this definition">#</a></dt>
 <dd><p>Predict instance confidence maps and find peaks.</p>
 <dl class="field-list simple">
 <dt class="field-odd">Parameters<span class="colon">:</span></dt>
@@ -2533,7 +2533,7 @@ <h2> Contents </h2>
 
 <dl class="py class">
 <dt class="sig sig-object py" id="sleap.nn.inference.SingleInstanceInferenceModel">
-<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">SingleInstanceInferenceModel</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L1370-L1402"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.SingleInstanceInferenceModel" title="Permalink to this definition">#</a></dt>
+<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">SingleInstanceInferenceModel</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L1372-L1404"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.SingleInstanceInferenceModel" title="Permalink to this definition">#</a></dt>
 <dd><p>Single instance prediction model.</p>
 <p>This model encapsulates the basic single instance approach where it is assumed that
 there is only one instance in the frame. The images are passed to a peak detector
@@ -2548,7 +2548,7 @@ <h2> Contents </h2>
 
 <dl class="py method">
 <dt class="sig sig-object py" id="sleap.nn.inference.SingleInstanceInferenceModel.call">
-<span class="sig-name descname"><span class="pre">call</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">example</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L1387-L1402"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.SingleInstanceInferenceModel.call" title="Permalink to this definition">#</a></dt>
+<span class="sig-name descname"><span class="pre">call</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">example</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L1389-L1404"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.SingleInstanceInferenceModel.call" title="Permalink to this definition">#</a></dt>
 <dd><p>Predict instances for one batch of images.</p>
 <dl class="field-list simple">
 <dt class="field-odd">Parameters<span class="colon">:</span></dt>
@@ -2574,7 +2574,7 @@ <h2> Contents </h2>
 
 <dl class="py class">
 <dt class="sig sig-object py" id="sleap.nn.inference.SingleInstancePredictor">
-<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">SingleInstancePredictor</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">confmap_config</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="sleap.nn.config.training_job.html#sleap.nn.config.training_job.TrainingJobConfig" title="sleap.nn.config.training_job.TrainingJobConfig"><span class="pre">TrainingJobConfig</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">confmap_model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="sleap.nn.model.html#sleap.nn.model.Model" title="sleap.nn.model.Model"><span class="pre">Model</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">inference_model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="#sleap.nn.inference.SingleInstanceInferenceModel" title="sleap.nn.inference.SingleInstanceInferenceModel"><span class="pre">SingleInstanceInferenceModel</span></a><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">peak_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.2</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_refinement</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_patch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">4</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbosity</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'rich'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">report_rate</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">2.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">model_paths</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">_Nothing.NOTHING</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L1406-L1622"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.SingleInstancePredictor" title="Permalink to this definition">#</a></dt>
+<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">SingleInstancePredictor</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">confmap_config</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="sleap.nn.config.training_job.html#sleap.nn.config.training_job.TrainingJobConfig" title="sleap.nn.config.training_job.TrainingJobConfig"><span class="pre">TrainingJobConfig</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">confmap_model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="sleap.nn.model.html#sleap.nn.model.Model" title="sleap.nn.model.Model"><span class="pre">Model</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">inference_model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="#sleap.nn.inference.SingleInstanceInferenceModel" title="sleap.nn.inference.SingleInstanceInferenceModel"><span class="pre">SingleInstanceInferenceModel</span></a><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">peak_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.2</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_refinement</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_patch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">4</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbosity</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'rich'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">report_rate</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">2.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">model_paths</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">_Nothing.NOTHING</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L1408-L1624"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.SingleInstancePredictor" title="Permalink to this definition">#</a></dt>
 <dd><p>Single instance predictor.</p>
 <p>This high-level class handles initialization, preprocessing and tracking using a
 trained single instance SLEAP model.</p>
@@ -2678,7 +2678,7 @@ <h2> Contents </h2>
 
 <dl class="py method">
 <dt class="sig sig-object py" id="sleap.nn.inference.SingleInstancePredictor.export_model">
-<span class="sig-name descname"><span class="pre">export_model</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">save_path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">signatures</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'serving_default'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">save_traces</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">model_name</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tensors</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">str</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">unrag_outputs</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L1602-L1622"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.SingleInstancePredictor.export_model" title="Permalink to this definition">#</a></dt>
+<span class="sig-name descname"><span class="pre">export_model</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">save_path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">signatures</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'serving_default'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">save_traces</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">model_name</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tensors</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">str</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">unrag_outputs</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L1604-L1624"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.SingleInstancePredictor.export_model" title="Permalink to this definition">#</a></dt>
 <dd><p>Export a trained SLEAP model as a frozen graph. Initializes model,
 creates a dummy tracing batch and passes it through the model. The
 frozen graph is saved along with training meta info.</p>
@@ -2707,7 +2707,7 @@ <h2> Contents </h2>
 
 <dl class="py method">
 <dt class="sig sig-object py" id="sleap.nn.inference.SingleInstancePredictor.from_trained_models">
-<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">from_trained_models</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model_path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">peak_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.2</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_refinement</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_patch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">4</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">resize_input_layer</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference internal" href="#sleap.nn.inference.SingleInstancePredictor" title="sleap.nn.inference.SingleInstancePredictor"><span class="pre">SingleInstancePredictor</span></a></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L1466-L1519"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.SingleInstancePredictor.from_trained_models" title="Permalink to this definition">#</a></dt>
+<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">from_trained_models</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model_path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">peak_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.2</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_refinement</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_patch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">4</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">resize_input_layer</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference internal" href="#sleap.nn.inference.SingleInstancePredictor" title="sleap.nn.inference.SingleInstancePredictor"><span class="pre">SingleInstancePredictor</span></a></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L1468-L1521"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.SingleInstancePredictor.from_trained_models" title="Permalink to this definition">#</a></dt>
 <dd><p>Create the predictor from a saved model.</p>
 <dl class="field-list simple">
 <dt class="field-odd">Parameters<span class="colon">:</span></dt>
@@ -2746,7 +2746,7 @@ <h2> Contents </h2>
 
 <dl class="py class">
 <dt class="sig sig-object py" id="sleap.nn.inference.TopDownInferenceModel">
-<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">TopDownInferenceModel</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L2212-L2277"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.TopDownInferenceModel" title="Permalink to this definition">#</a></dt>
+<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">TopDownInferenceModel</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L2214-L2279"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.TopDownInferenceModel" title="Permalink to this definition">#</a></dt>
 <dd><p>Top-down instance prediction model.</p>
 <p>This model encapsulates the top-down approach where instances are first detected by
 local peak detection of an anchor point and then cropped. These instance-centered
@@ -2771,7 +2771,7 @@ <h2> Contents </h2>
 
 <dl class="py method">
 <dt class="sig sig-object py" id="sleap.nn.inference.TopDownInferenceModel.call">
-<span class="sig-name descname"><span class="pre">call</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">example</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">Tensor</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">Tensor</span><span class="p"><span class="pre">]</span></span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">Tensor</span><span class="p"><span class="pre">]</span></span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L2239-L2277"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.TopDownInferenceModel.call" title="Permalink to this definition">#</a></dt>
+<span class="sig-name descname"><span class="pre">call</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">example</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">Tensor</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">Tensor</span><span class="p"><span class="pre">]</span></span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">Tensor</span><span class="p"><span class="pre">]</span></span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L2241-L2279"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.TopDownInferenceModel.call" title="Permalink to this definition">#</a></dt>
 <dd><p>Predict instances for one batch of images.</p>
 <dl class="field-list simple">
 <dt class="field-odd">Parameters<span class="colon">:</span></dt>
@@ -2805,7 +2805,7 @@ <h2> Contents </h2>
 
 <dl class="py class">
 <dt class="sig sig-object py" id="sleap.nn.inference.TopDownMultiClassFindPeaks">
-<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">TopDownMultiClassFindPeaks</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L3821-L4087"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.TopDownMultiClassFindPeaks" title="Permalink to this definition">#</a></dt>
+<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">TopDownMultiClassFindPeaks</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L3823-L4089"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.TopDownMultiClassFindPeaks" title="Permalink to this definition">#</a></dt>
 <dd><p>Keras layer that predicts and classifies peaks from images using a trained model.</p>
 <p>This layer encapsulates all of the inference operations required for generating
 predictions from a centered instance confidence map and multi-class model. This
@@ -2913,7 +2913,7 @@ <h2> Contents </h2>
 
 <dl class="py method">
 <dt class="sig sig-object py" id="sleap.nn.inference.TopDownMultiClassFindPeaks.call">
-<span class="sig-name descname"><span class="pre">call</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">inputs</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">Tensor</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">Tensor</span><span class="p"><span class="pre">]</span></span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">Tensor</span><span class="p"><span class="pre">]</span></span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L3929-L4087"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.TopDownMultiClassFindPeaks.call" title="Permalink to this definition">#</a></dt>
+<span class="sig-name descname"><span class="pre">call</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">inputs</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">Tensor</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">Tensor</span><span class="p"><span class="pre">]</span></span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">Tensor</span><span class="p"><span class="pre">]</span></span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L3931-L4089"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.TopDownMultiClassFindPeaks.call" title="Permalink to this definition">#</a></dt>
 <dd><p>Predict confidence maps and infer peak coordinates.</p>
 <p>This layer can be chained with a <a class="reference internal" href="#sleap.nn.inference.CentroidCrop" title="sleap.nn.inference.CentroidCrop"><code class="xref py py-obj docutils literal notranslate"><span class="pre">CentroidCrop</span></code></a> layer to create a top-down
 inference function from full images.</p>
@@ -2974,7 +2974,7 @@ <h2> Contents </h2>
 
 <dl class="py class">
 <dt class="sig sig-object py" id="sleap.nn.inference.TopDownMultiClassInferenceModel">
-<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">TopDownMultiClassInferenceModel</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L4090-L4160"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.TopDownMultiClassInferenceModel" title="Permalink to this definition">#</a></dt>
+<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">TopDownMultiClassInferenceModel</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L4092-L4162"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.TopDownMultiClassInferenceModel" title="Permalink to this definition">#</a></dt>
 <dd><p>Top-down instance prediction model.</p>
 <p>This model encapsulates the top-down approach where instances are first detected by
 local peak detection of an anchor point and then cropped. These instance-centered
@@ -2999,7 +2999,7 @@ <h2> Contents </h2>
 
 <dl class="py method">
 <dt class="sig sig-object py" id="sleap.nn.inference.TopDownMultiClassInferenceModel.call">
-<span class="sig-name descname"><span class="pre">call</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">example</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">Tensor</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">Tensor</span><span class="p"><span class="pre">]</span></span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">Tensor</span><span class="p"><span class="pre">]</span></span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L4117-L4145"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.TopDownMultiClassInferenceModel.call" title="Permalink to this definition">#</a></dt>
+<span class="sig-name descname"><span class="pre">call</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">example</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">Tensor</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">Tensor</span><span class="p"><span class="pre">]</span></span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">Tensor</span><span class="p"><span class="pre">]</span></span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L4119-L4147"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.TopDownMultiClassInferenceModel.call" title="Permalink to this definition">#</a></dt>
 <dd><p>Predict instances for one batch of images.</p>
 <dl class="field-list simple">
 <dt class="field-odd">Parameters<span class="colon">:</span></dt>
@@ -3031,7 +3031,7 @@ <h2> Contents </h2>
 
 <dl class="py method">
 <dt class="sig sig-object py" id="sleap.nn.inference.TopDownMultiClassInferenceModel.export_model">
-<span class="sig-name descname"><span class="pre">export_model</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">save_path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">signatures</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'serving_default'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">save_traces</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">model_name</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tensors</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">str</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">unrag_outputs</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L4147-L4160"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.TopDownMultiClassInferenceModel.export_model" title="Permalink to this definition">#</a></dt>
+<span class="sig-name descname"><span class="pre">export_model</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">save_path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">signatures</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'serving_default'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">save_traces</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">model_name</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tensors</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">str</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">unrag_outputs</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L4149-L4162"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.TopDownMultiClassInferenceModel.export_model" title="Permalink to this definition">#</a></dt>
 <dd><p>Save the frozen graph of a model.</p>
 <dl class="field-list simple">
 <dt class="field-odd">Parameters<span class="colon">:</span></dt>
@@ -3062,7 +3062,7 @@ <h2> Contents </h2>
 
 <dl class="py class">
 <dt class="sig sig-object py" id="sleap.nn.inference.TopDownMultiClassPredictor">
-<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">TopDownMultiClassPredictor</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">centroid_config</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="sleap.nn.config.training_job.html#sleap.nn.config.training_job.TrainingJobConfig" title="sleap.nn.config.training_job.TrainingJobConfig"><span class="pre">TrainingJobConfig</span></a><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">centroid_model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="sleap.nn.model.html#sleap.nn.model.Model" title="sleap.nn.model.Model"><span class="pre">Model</span></a><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">confmap_config</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="sleap.nn.config.training_job.html#sleap.nn.config.training_job.TrainingJobConfig" title="sleap.nn.config.training_job.TrainingJobConfig"><span class="pre">TrainingJobConfig</span></a><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">confmap_model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="sleap.nn.model.html#sleap.nn.model.Model" title="sleap.nn.model.Model"><span class="pre">Model</span></a><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">inference_model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="#sleap.nn.inference.TopDownMultiClassInferenceModel" title="sleap.nn.inference.TopDownMultiClassInferenceModel"><span class="pre">TopDownMultiClassInferenceModel</span></a><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">4</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">peak_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.2</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_refinement</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_patch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tracks</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">List</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="sleap.instance.html#sleap.instance.Track" title="sleap.instance.Track"><span class="pre">Track</span></a><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbosity</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'rich'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">report_rate</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">2.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">model_paths</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">_Nothing.NOTHING</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L4164-L4553"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.TopDownMultiClassPredictor" title="Permalink to this definition">#</a></dt>
+<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">TopDownMultiClassPredictor</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">centroid_config</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="sleap.nn.config.training_job.html#sleap.nn.config.training_job.TrainingJobConfig" title="sleap.nn.config.training_job.TrainingJobConfig"><span class="pre">TrainingJobConfig</span></a><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">centroid_model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="sleap.nn.model.html#sleap.nn.model.Model" title="sleap.nn.model.Model"><span class="pre">Model</span></a><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">confmap_config</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="sleap.nn.config.training_job.html#sleap.nn.config.training_job.TrainingJobConfig" title="sleap.nn.config.training_job.TrainingJobConfig"><span class="pre">TrainingJobConfig</span></a><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">confmap_model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="sleap.nn.model.html#sleap.nn.model.Model" title="sleap.nn.model.Model"><span class="pre">Model</span></a><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">inference_model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="#sleap.nn.inference.TopDownMultiClassInferenceModel" title="sleap.nn.inference.TopDownMultiClassInferenceModel"><span class="pre">TopDownMultiClassInferenceModel</span></a><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">4</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">peak_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.2</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_refinement</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_patch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tracks</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">List</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="sleap.instance.html#sleap.instance.Track" title="sleap.instance.Track"><span class="pre">Track</span></a><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbosity</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'rich'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">report_rate</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">2.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">model_paths</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">_Nothing.NOTHING</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L4166-L4555"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.TopDownMultiClassPredictor" title="Permalink to this definition">#</a></dt>
 <dd><p>Top-down multi-instance predictor with classification.</p>
 <p>This high-level class handles initialization, preprocessing and tracking using a
 trained top-down multi-instance classification SLEAP model.</p>
@@ -3221,7 +3221,7 @@ <h2> Contents </h2>
 
 <dl class="py method">
 <dt class="sig sig-object py" id="sleap.nn.inference.TopDownMultiClassPredictor.export_model">
-<span class="sig-name descname"><span class="pre">export_model</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">save_path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">signatures</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'serving_default'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">save_traces</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">model_name</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tensors</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">str</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">unrag_outputs</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L4526-L4553"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.TopDownMultiClassPredictor.export_model" title="Permalink to this definition">#</a></dt>
+<span class="sig-name descname"><span class="pre">export_model</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">save_path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">signatures</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'serving_default'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">save_traces</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">model_name</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tensors</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">str</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">unrag_outputs</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L4528-L4555"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.TopDownMultiClassPredictor.export_model" title="Permalink to this definition">#</a></dt>
 <dd><p>Export a trained SLEAP model as a frozen graph. Initializes model,
 creates a dummy tracing batch and passes it through the model. The
 frozen graph is saved along with training meta info.</p>
@@ -3250,7 +3250,7 @@ <h2> Contents </h2>
 
 <dl class="py method">
 <dt class="sig sig-object py" id="sleap.nn.inference.TopDownMultiClassPredictor.from_trained_models">
-<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">from_trained_models</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">centroid_model_path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">confmap_model_path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">4</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">peak_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.2</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_refinement</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_patch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">resize_input_layer</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference internal" href="#sleap.nn.inference.TopDownMultiClassPredictor" title="sleap.nn.inference.TopDownMultiClassPredictor"><span class="pre">TopDownMultiClassPredictor</span></a></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L4263-L4351"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.TopDownMultiClassPredictor.from_trained_models" title="Permalink to this definition">#</a></dt>
+<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">from_trained_models</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">centroid_model_path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">confmap_model_path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">4</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">peak_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.2</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_refinement</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_patch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">resize_input_layer</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference internal" href="#sleap.nn.inference.TopDownMultiClassPredictor" title="sleap.nn.inference.TopDownMultiClassPredictor"><span class="pre">TopDownMultiClassPredictor</span></a></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L4265-L4353"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.TopDownMultiClassPredictor.from_trained_models" title="Permalink to this definition">#</a></dt>
 <dd><p>Create predictor from saved models.</p>
 <dl class="field-list simple">
 <dt class="field-odd">Parameters<span class="colon">:</span></dt>
@@ -3293,7 +3293,7 @@ <h2> Contents </h2>
 
 <dl class="py method">
 <dt class="sig sig-object py" id="sleap.nn.inference.TopDownMultiClassPredictor.make_pipeline">
-<span class="sig-name descname"><span class="pre">make_pipeline</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data_provider</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">Provider</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference internal" href="sleap.nn.data.pipelines.html#sleap.nn.data.pipelines.Pipeline" title="sleap.nn.data.pipelines.Pipeline"><span class="pre">Pipeline</span></a></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L4371-L4405"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.TopDownMultiClassPredictor.make_pipeline" title="Permalink to this definition">#</a></dt>
+<span class="sig-name descname"><span class="pre">make_pipeline</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data_provider</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">Provider</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference internal" href="sleap.nn.data.pipelines.html#sleap.nn.data.pipelines.Pipeline" title="sleap.nn.data.pipelines.Pipeline"><span class="pre">Pipeline</span></a></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L4373-L4407"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.TopDownMultiClassPredictor.make_pipeline" title="Permalink to this definition">#</a></dt>
 <dd><p>Make a data loading pipeline.</p>
 <dl class="field-list simple">
 <dt class="field-odd">Parameters<span class="colon">:</span></dt>
@@ -3315,7 +3315,7 @@ <h2> Contents </h2>
 
 <dl class="py class">
 <dt class="sig sig-object py" id="sleap.nn.inference.TopDownPredictor">
-<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">TopDownPredictor</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">centroid_config</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="sleap.nn.config.training_job.html#sleap.nn.config.training_job.TrainingJobConfig" title="sleap.nn.config.training_job.TrainingJobConfig"><span class="pre">TrainingJobConfig</span></a><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">centroid_model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="sleap.nn.model.html#sleap.nn.model.Model" title="sleap.nn.model.Model"><span class="pre">Model</span></a><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">confmap_config</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="sleap.nn.config.training_job.html#sleap.nn.config.training_job.TrainingJobConfig" title="sleap.nn.config.training_job.TrainingJobConfig"><span class="pre">TrainingJobConfig</span></a><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">confmap_model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="sleap.nn.model.html#sleap.nn.model.Model" title="sleap.nn.model.Model"><span class="pre">Model</span></a><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">inference_model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="#sleap.nn.inference.TopDownInferenceModel" title="sleap.nn.inference.TopDownInferenceModel"><span class="pre">TopDownInferenceModel</span></a><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">4</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">peak_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.2</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_refinement</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_patch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbosity</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'rich'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">report_rate</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">2.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">model_paths</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">_Nothing.NOTHING</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L2281-L2692"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.TopDownPredictor" title="Permalink to this definition">#</a></dt>
+<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">TopDownPredictor</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">centroid_config</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="sleap.nn.config.training_job.html#sleap.nn.config.training_job.TrainingJobConfig" title="sleap.nn.config.training_job.TrainingJobConfig"><span class="pre">TrainingJobConfig</span></a><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">centroid_model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="sleap.nn.model.html#sleap.nn.model.Model" title="sleap.nn.model.Model"><span class="pre">Model</span></a><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">confmap_config</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="sleap.nn.config.training_job.html#sleap.nn.config.training_job.TrainingJobConfig" title="sleap.nn.config.training_job.TrainingJobConfig"><span class="pre">TrainingJobConfig</span></a><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">confmap_model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="sleap.nn.model.html#sleap.nn.model.Model" title="sleap.nn.model.Model"><span class="pre">Model</span></a><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">inference_model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="#sleap.nn.inference.TopDownInferenceModel" title="sleap.nn.inference.TopDownInferenceModel"><span class="pre">TopDownInferenceModel</span></a><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">4</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">peak_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.2</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_refinement</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_patch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbosity</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'rich'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">report_rate</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">2.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">model_paths</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">_Nothing.NOTHING</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L2283-L2694"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.TopDownPredictor" title="Permalink to this definition">#</a></dt>
 <dd><p>Top-down multi-instance predictor.</p>
 <p>This high-level class handles initialization, preprocessing and tracking using a
 trained top-down multi-instance SLEAP model.</p>
@@ -3476,7 +3476,7 @@ <h2> Contents </h2>
 
 <dl class="py method">
 <dt class="sig sig-object py" id="sleap.nn.inference.TopDownPredictor.export_model">
-<span class="sig-name descname"><span class="pre">export_model</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">save_path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">signatures</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'serving_default'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">save_traces</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">model_name</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tensors</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">str</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">unrag_outputs</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L2665-L2692"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.TopDownPredictor.export_model" title="Permalink to this definition">#</a></dt>
+<span class="sig-name descname"><span class="pre">export_model</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">save_path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">signatures</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'serving_default'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">save_traces</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">model_name</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tensors</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">str</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">unrag_outputs</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L2667-L2694"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.TopDownPredictor.export_model" title="Permalink to this definition">#</a></dt>
 <dd><p>Export a trained SLEAP model as a frozen graph. Initializes model,
 creates a dummy tracing batch and passes it through the model. The
 frozen graph is saved along with training meta info.</p>
@@ -3505,7 +3505,7 @@ <h2> Contents </h2>
 
 <dl class="py method">
 <dt class="sig sig-object py" id="sleap.nn.inference.TopDownPredictor.from_trained_models">
-<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">from_trained_models</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">centroid_model_path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">confmap_model_path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">4</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">peak_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.2</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_refinement</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_patch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">resize_input_layer</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference internal" href="#sleap.nn.inference.TopDownPredictor" title="sleap.nn.inference.TopDownPredictor"><span class="pre">TopDownPredictor</span></a></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L2392-L2488"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.TopDownPredictor.from_trained_models" title="Permalink to this definition">#</a></dt>
+<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">from_trained_models</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">centroid_model_path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">confmap_model_path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">4</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">peak_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.2</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_refinement</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_patch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">resize_input_layer</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference internal" href="#sleap.nn.inference.TopDownPredictor" title="sleap.nn.inference.TopDownPredictor"><span class="pre">TopDownPredictor</span></a></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L2394-L2490"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.TopDownPredictor.from_trained_models" title="Permalink to this definition">#</a></dt>
 <dd><p>Create predictor from saved models.</p>
 <dl class="field-list simple">
 <dt class="field-odd">Parameters<span class="colon">:</span></dt>
@@ -3552,7 +3552,7 @@ <h2> Contents </h2>
 
 <dl class="py method">
 <dt class="sig sig-object py" id="sleap.nn.inference.TopDownPredictor.make_pipeline">
-<span class="sig-name descname"><span class="pre">make_pipeline</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data_provider</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">Provider</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference internal" href="sleap.nn.data.pipelines.html#sleap.nn.data.pipelines.Pipeline" title="sleap.nn.data.pipelines.Pipeline"><span class="pre">Pipeline</span></a></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L2500-L2546"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.TopDownPredictor.make_pipeline" title="Permalink to this definition">#</a></dt>
+<span class="sig-name descname"><span class="pre">make_pipeline</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data_provider</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">Provider</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference internal" href="sleap.nn.data.pipelines.html#sleap.nn.data.pipelines.Pipeline" title="sleap.nn.data.pipelines.Pipeline"><span class="pre">Pipeline</span></a></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L2502-L2548"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.TopDownPredictor.make_pipeline" title="Permalink to this definition">#</a></dt>
 <dd><p>Make a data loading pipeline.</p>
 <dl class="field-list simple">
 <dt class="field-odd">Parameters<span class="colon">:</span></dt>
@@ -3628,13 +3628,13 @@ <h2> Contents </h2>
 
 <dl class="py function">
 <dt class="sig sig-object py" id="sleap.nn.inference.export_cli">
-<span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">export_cli</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">args</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">list</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L4998-L5013"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.export_cli" title="Permalink to this definition">#</a></dt>
+<span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">export_cli</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">args</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">list</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L5000-L5015"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.export_cli" title="Permalink to this definition">#</a></dt>
 <dd><p>CLI for sleap-export.</p>
 </dd></dl>
 
 <dl class="py function">
 <dt class="sig sig-object py" id="sleap.nn.inference.export_model">
-<span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">export_model</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model_path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">save_path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'exported_model'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">signatures</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'serving_default'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">save_traces</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">model_name</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tensors</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">str</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">unrag_outputs</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L4955-L4995"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.export_model" title="Permalink to this definition">#</a></dt>
+<span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">export_model</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model_path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">save_path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'exported_model'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">signatures</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'serving_default'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">save_traces</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">model_name</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tensors</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">str</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">unrag_outputs</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L4957-L4997"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.export_model" title="Permalink to this definition">#</a></dt>
 <dd><p>High level export of a trained SLEAP model as a frozen graph.</p>
 <dl class="field-list simple">
 <dt class="field-odd">Parameters<span class="colon">:</span></dt>
@@ -3662,7 +3662,7 @@ <h2> Contents </h2>
 
 <dl class="py function">
 <dt class="sig sig-object py" id="sleap.nn.inference.find_head">
-<span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">find_head</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Model</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">name</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L1191-L1213"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.find_head" title="Permalink to this definition">#</a></dt>
+<span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">find_head</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Model</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">name</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L1193-L1215"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.find_head" title="Permalink to this definition">#</a></dt>
 <dd><p>Return the index of a head in a model’s outputs.</p>
 <dl class="field-list simple">
 <dt class="field-odd">Parameters<span class="colon">:</span></dt>
@@ -3703,7 +3703,7 @@ <h2> Contents </h2>
 
 <dl class="py function">
 <dt class="sig sig-object py" id="sleap.nn.inference.get_model_output_stride">
-<span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">get_model_output_stride</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Model</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">input_ind</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">output_ind</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">-1</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><span class="pre">int</span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L1161-L1188"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.get_model_output_stride" title="Permalink to this definition">#</a></dt>
+<span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">get_model_output_stride</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Model</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">input_ind</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">output_ind</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">-1</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><span class="pre">int</span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L1163-L1190"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.get_model_output_stride" title="Permalink to this definition">#</a></dt>
 <dd><p>Return the stride (1/scale) of the model outputs relative to the input.</p>
 <dl class="field-list simple">
 <dt class="field-odd">Parameters<span class="colon">:</span></dt>
@@ -3729,7 +3729,7 @@ <h2> Contents </h2>
 
 <dl class="py function">
 <dt class="sig sig-object py" id="sleap.nn.inference.load_model">
-<span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">load_model</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model_path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">4</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">peak_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.2</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">refinement</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'integral'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tracker</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tracker_window</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tracker_max_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">disable_gpu_preallocation</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">progress_reporting</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'rich'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">resize_input_layer</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference internal" href="#sleap.nn.inference.Predictor" title="sleap.nn.inference.Predictor"><span class="pre">Predictor</span></a></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L4813-L4952"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.load_model" title="Permalink to this definition">#</a></dt>
+<span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">load_model</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model_path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">4</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">peak_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.2</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">refinement</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'integral'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tracker</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tracker_window</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tracker_max_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">disable_gpu_preallocation</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">progress_reporting</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'rich'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">resize_input_layer</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference internal" href="#sleap.nn.inference.Predictor" title="sleap.nn.inference.Predictor"><span class="pre">Predictor</span></a></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L4815-L4954"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.load_model" title="Permalink to this definition">#</a></dt>
 <dd><p>Load a trained SLEAP model.</p>
 <dl class="field-list simple">
 <dt class="field-odd">Parameters<span class="colon">:</span></dt>
@@ -3788,7 +3788,7 @@ <h2> Contents </h2>
 
 <dl class="py function">
 <dt class="sig sig-object py" id="sleap.nn.inference.main">
-<span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">main</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">args</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">list</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L5503-L5719"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.main" title="Permalink to this definition">#</a></dt>
+<span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">main</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">args</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">list</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L5505-L5721"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.main" title="Permalink to this definition">#</a></dt>
 <dd><p>Entrypoint for <code class="xref py py-obj docutils literal notranslate"><span class="pre">sleap-track</span></code> CLI for running inference.</p>
 <dl class="field-list simple">
 <dt class="field-odd">Parameters<span class="colon">:</span></dt>
@@ -3799,7 +3799,7 @@ <h2> Contents </h2>
 
 <dl class="py function">
 <dt class="sig sig-object py" id="sleap.nn.inference.make_model_movenet">
-<span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">make_model_movenet</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model_name</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><span class="pre">Model</span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L4556-L4590"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.make_model_movenet" title="Permalink to this definition">#</a></dt>
+<span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">make_model_movenet</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model_name</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><span class="pre">Model</span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/inference.py#L4558-L4592"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.make_model_movenet" title="Permalink to this definition">#</a></dt>
 <dd><p>Load a MoveNet model by name.</p>
 <dl class="field-list simple">
 <dt class="field-odd">Parameters<span class="colon">:</span></dt>
diff --git a/develop/api/sleap.nn.tracking.html b/develop/api/sleap.nn.tracking.html
index 8f63b9c08..56c394bcd 100644
--- a/develop/api/sleap.nn.tracking.html
+++ b/develop/api/sleap.nn.tracking.html
@@ -549,7 +549,7 @@ <h2> Contents </h2>
 
 <dl class="py class">
 <dt class="sig sig-object py" id="sleap.nn.tracking.FlowMaxTracker">
-<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.tracking.</span></span><span class="sig-name descname"><span class="pre">FlowMaxTracker</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">max_tracks:</span> <span class="pre">~typing.Optional[int]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">track_window:</span> <span class="pre">int</span> <span class="pre">=</span> <span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">similarity_function:</span> <span class="pre">~typing.Optional[~typing.Callable]</span> <span class="pre">=</span> <span class="pre">&lt;function</span> <span class="pre">instance_similarity&gt;</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">matching_function:</span> <span class="pre">~typing.Callable</span> <span class="pre">=</span> <span class="pre">&lt;function</span> <span class="pre">greedy_matching&gt;</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">candidate_maker:</span> <span class="pre">object</span> <span class="pre">=</span> <span class="pre">_Nothing.NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_tracking:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">cleaner:</span> <span class="pre">~typing.Optional[~typing.Callable]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">target_instance_count:</span> <span class="pre">int</span> <span class="pre">=</span> <span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">pre_cull_function:</span> <span class="pre">~typing.Optional[~typing.Callable]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">post_connect_single_breaks:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">robust_best_instance:</span> <span class="pre">float</span> <span class="pre">=</span> <span class="pre">1.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">min_new_track_points:</span> <span class="pre">int</span> <span class="pre">=</span> <span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">track_matching_queue:</span> <span class="pre">~typing.Deque[~sleap.nn.tracking.MatchedFrameInstances]</span> <span class="pre">=</span> <span class="pre">_Nothing.NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">track_matching_queue_dict:</span> <span class="pre">~typing.Dict[~sleap.instance.Track</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">~typing.Deque[~sleap.nn.tracking.MatchedFrameInstance]]</span> <span class="pre">=</span> <span class="pre">_Nothing.NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">spawned_tracks:</span> <span class="pre">~typing.List[~sleap.instance.Track]</span> <span class="pre">=</span> <span class="pre">_Nothing.NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">save_tracked_instances:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tracked_instances:</span> <span class="pre">~typing.Dict[int</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">~typing.List[~sleap.nn.tracker.components.InstanceType]]</span> <span class="pre">=</span> <span class="pre">_Nothing.NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">last_matches:</span> <span class="pre">~typing.Optional[~sleap.nn.tracker.components.FrameMatches]</span> <span class="pre">=</span> <span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/tracking.py#L1172-L1179"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.FlowMaxTracker" title="Permalink to this definition">#</a></dt>
+<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.tracking.</span></span><span class="sig-name descname"><span class="pre">FlowMaxTracker</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">max_tracks:</span> <span class="pre">~typing.Optional[int]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">track_window:</span> <span class="pre">int</span> <span class="pre">=</span> <span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">similarity_function:</span> <span class="pre">~typing.Optional[~typing.Callable]</span> <span class="pre">=</span> <span class="pre">&lt;function</span> <span class="pre">instance_similarity&gt;</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">matching_function:</span> <span class="pre">~typing.Callable</span> <span class="pre">=</span> <span class="pre">&lt;function</span> <span class="pre">greedy_matching&gt;</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">candidate_maker:</span> <span class="pre">object</span> <span class="pre">=</span> <span class="pre">_Nothing.NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_tracking:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">cleaner:</span> <span class="pre">~typing.Optional[~typing.Callable]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">target_instance_count:</span> <span class="pre">int</span> <span class="pre">=</span> <span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">pre_cull_function:</span> <span class="pre">~typing.Optional[~typing.Callable]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">post_connect_single_breaks:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">robust_best_instance:</span> <span class="pre">float</span> <span class="pre">=</span> <span class="pre">1.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">min_new_track_points:</span> <span class="pre">int</span> <span class="pre">=</span> <span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">track_matching_queue:</span> <span class="pre">~typing.Deque[~sleap.nn.tracking.MatchedFrameInstances]</span> <span class="pre">=</span> <span class="pre">_Nothing.NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">track_matching_queue_dict:</span> <span class="pre">~typing.Dict[~sleap.instance.Track</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">~typing.Deque[~sleap.nn.tracking.MatchedFrameInstance]]</span> <span class="pre">=</span> <span class="pre">_Nothing.NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">spawned_tracks:</span> <span class="pre">~typing.List[~sleap.instance.Track]</span> <span class="pre">=</span> <span class="pre">_Nothing.NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">save_tracked_instances:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tracked_instances:</span> <span class="pre">~typing.Dict[int</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">~typing.List[~sleap.nn.tracker.components.InstanceType]]</span> <span class="pre">=</span> <span class="pre">_Nothing.NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">last_matches:</span> <span class="pre">~typing.Optional[~sleap.nn.tracker.components.FrameMatches]</span> <span class="pre">=</span> <span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/tracking.py#L1205-L1212"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.FlowMaxTracker" title="Permalink to this definition">#</a></dt>
 <dd><p>Pre-configured tracker to use optical flow shifted candidates with max tracks.</p>
 <dl class="py method">
 <dt class="sig sig-object py" id="sleap.nn.tracking.FlowMaxTracker.matching_function">
@@ -600,13 +600,13 @@ <h2> Contents </h2>
 
 <dl class="py class">
 <dt class="sig sig-object py" id="sleap.nn.tracking.FlowTracker">
-<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.tracking.</span></span><span class="sig-name descname"><span class="pre">FlowTracker</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">max_tracks:</span> <span class="pre">~typing.Optional[int]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">track_window:</span> <span class="pre">int</span> <span class="pre">=</span> <span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_tracking:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">cleaner:</span> <span class="pre">~typing.Optional[~typing.Callable]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">target_instance_count:</span> <span class="pre">int</span> <span class="pre">=</span> <span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">pre_cull_function:</span> <span class="pre">~typing.Optional[~typing.Callable]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">post_connect_single_breaks:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">robust_best_instance:</span> <span class="pre">float</span> <span class="pre">=</span> <span class="pre">1.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">min_new_track_points:</span> <span class="pre">int</span> <span class="pre">=</span> <span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">track_matching_queue:</span> <span class="pre">~typing.Deque[~sleap.nn.tracking.MatchedFrameInstances]</span> <span class="pre">=</span> <span class="pre">_Nothing.NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">track_matching_queue_dict:</span> <span class="pre">~typing.Dict[~sleap.instance.Track</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">~typing.Deque[~sleap.nn.tracking.MatchedFrameInstance]]</span> <span class="pre">=</span> <span class="pre">_Nothing.NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">spawned_tracks:</span> <span class="pre">~typing.List[~sleap.instance.Track]</span> <span class="pre">=</span> <span class="pre">_Nothing.NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">save_tracked_instances:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tracked_instances:</span> <span class="pre">~typing.Dict[int</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">~typing.List[~sleap.nn.tracker.components.InstanceType]]</span> <span class="pre">=</span> <span class="pre">_Nothing.NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">last_matches:</span> <span class="pre">~typing.Optional[~sleap.nn.tracker.components.FrameMatches]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">similarity_function:</span> <span class="pre">~typing.Callable</span> <span class="pre">=</span> <span class="pre">&lt;function</span> <span class="pre">instance_similarity&gt;</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">matching_function:</span> <span class="pre">~typing.Callable</span> <span class="pre">=</span> <span class="pre">&lt;function</span> <span class="pre">greedy_matching&gt;</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">candidate_maker:</span> <span class="pre">object</span> <span class="pre">=</span> <span class="pre">_Nothing.NOTHING</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/tracking.py#L1161-L1166"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.FlowTracker" title="Permalink to this definition">#</a></dt>
+<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.tracking.</span></span><span class="sig-name descname"><span class="pre">FlowTracker</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">max_tracks:</span> <span class="pre">~typing.Optional[int]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">track_window:</span> <span class="pre">int</span> <span class="pre">=</span> <span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_tracking:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">cleaner:</span> <span class="pre">~typing.Optional[~typing.Callable]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">target_instance_count:</span> <span class="pre">int</span> <span class="pre">=</span> <span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">pre_cull_function:</span> <span class="pre">~typing.Optional[~typing.Callable]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">post_connect_single_breaks:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">robust_best_instance:</span> <span class="pre">float</span> <span class="pre">=</span> <span class="pre">1.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">min_new_track_points:</span> <span class="pre">int</span> <span class="pre">=</span> <span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">track_matching_queue:</span> <span class="pre">~typing.Deque[~sleap.nn.tracking.MatchedFrameInstances]</span> <span class="pre">=</span> <span class="pre">_Nothing.NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">track_matching_queue_dict:</span> <span class="pre">~typing.Dict[~sleap.instance.Track</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">~typing.Deque[~sleap.nn.tracking.MatchedFrameInstance]]</span> <span class="pre">=</span> <span class="pre">_Nothing.NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">spawned_tracks:</span> <span class="pre">~typing.List[~sleap.instance.Track]</span> <span class="pre">=</span> <span class="pre">_Nothing.NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">save_tracked_instances:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tracked_instances:</span> <span class="pre">~typing.Dict[int</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">~typing.List[~sleap.nn.tracker.components.InstanceType]]</span> <span class="pre">=</span> <span class="pre">_Nothing.NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">last_matches:</span> <span class="pre">~typing.Optional[~sleap.nn.tracker.components.FrameMatches]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">similarity_function:</span> <span class="pre">~typing.Callable</span> <span class="pre">=</span> <span class="pre">&lt;function</span> <span class="pre">instance_similarity&gt;</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">matching_function:</span> <span class="pre">~typing.Callable</span> <span class="pre">=</span> <span class="pre">&lt;function</span> <span class="pre">greedy_matching&gt;</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">candidate_maker:</span> <span class="pre">object</span> <span class="pre">=</span> <span class="pre">_Nothing.NOTHING</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/tracking.py#L1194-L1199"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.FlowTracker" title="Permalink to this definition">#</a></dt>
 <dd><p>A Tracker pre-configured to use optical flow shifted candidates.</p>
 </dd></dl>
 
 <dl class="py class">
 <dt class="sig sig-object py" id="sleap.nn.tracking.KalmanTracker">
-<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.tracking.</span></span><span class="sig-name descname"><span class="pre">KalmanTracker</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">init_tracker</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="#sleap.nn.tracking.Tracker" title="sleap.nn.tracking.Tracker"><span class="pre">Tracker</span></a><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">init_set</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">KalmanInitSet</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">kalman_tracker</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">BareKalmanTracker</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">cull_function</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">Callable</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">init_frame_count</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">10</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">re_init_cooldown</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">100</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">re_init_after</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">20</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">init_done</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">pre_tracked</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">last_t</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">last_init_t</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/tracking.py#L1279-L1472"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.KalmanTracker" title="Permalink to this definition">#</a></dt>
+<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.tracking.</span></span><span class="sig-name descname"><span class="pre">KalmanTracker</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">init_tracker</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="#sleap.nn.tracking.Tracker" title="sleap.nn.tracking.Tracker"><span class="pre">Tracker</span></a><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">init_set</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">KalmanInitSet</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">kalman_tracker</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">BareKalmanTracker</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">cull_function</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">Callable</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">init_frame_count</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">10</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">re_init_cooldown</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">100</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">re_init_after</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">20</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">init_done</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">pre_tracked</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">last_t</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">last_init_t</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/tracking.py#L1312-L1510"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.KalmanTracker" title="Permalink to this definition">#</a></dt>
 <dd><p>Class for Kalman filter-based tracking pipeline.</p>
 <p>Kalman filters need to be initialized with a certain number of already
 tracked instances.</p>
@@ -647,7 +647,7 @@ <h2> Contents </h2>
 
 <dl class="py method">
 <dt class="sig sig-object py" id="sleap.nn.tracking.KalmanTracker.make_tracker">
-<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">make_tracker</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">init_tracker</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="#sleap.nn.tracking.Tracker" title="sleap.nn.tracking.Tracker"><span class="pre">Tracker</span></a><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">node_indices</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">instance_count</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">instance_iou_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.8</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">init_frame_count</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">10</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/tracking.py#L1331-L1382"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.KalmanTracker.make_tracker" title="Permalink to this definition">#</a></dt>
+<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">make_tracker</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">init_tracker</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="#sleap.nn.tracking.Tracker" title="sleap.nn.tracking.Tracker"><span class="pre">Tracker</span></a><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">node_indices</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">instance_count</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">instance_iou_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.8</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">init_frame_count</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">10</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/tracking.py#L1364-L1419"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.KalmanTracker.make_tracker" title="Permalink to this definition">#</a></dt>
 <dd><p>Creates KalmanTracker object.</p>
 <dl class="field-list simple">
 <dt class="field-odd">Parameters<span class="colon">:</span></dt>
@@ -672,7 +672,7 @@ <h2> Contents </h2>
 
 <dl class="py method">
 <dt class="sig sig-object py" id="sleap.nn.tracking.KalmanTracker.track">
-<span class="sig-name descname"><span class="pre">track</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">untracked_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">InstanceType</span><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">img</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">ndarray</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">t</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">InstanceType</span><span class="p"><span class="pre">]</span></span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/tracking.py#L1384-L1462"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.KalmanTracker.track" title="Permalink to this definition">#</a></dt>
+<span class="sig-name descname"><span class="pre">track</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">untracked_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">InstanceType</span><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">img</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">ndarray</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">t</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">InstanceType</span><span class="p"><span class="pre">]</span></span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/tracking.py#L1421-L1500"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.KalmanTracker.track" title="Permalink to this definition">#</a></dt>
 <dd><p>Tracks individual frame, using Kalman filters if possible.</p>
 </dd></dl>
 
@@ -686,7 +686,7 @@ <h2> Contents </h2>
 
 <dl class="py class">
 <dt class="sig sig-object py" id="sleap.nn.tracking.SimpleMaxTracker">
-<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.tracking.</span></span><span class="sig-name descname"><span class="pre">SimpleMaxTracker</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">track_window:</span> <span class="pre">int</span> <span class="pre">=</span> <span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">cleaner:</span> <span class="pre">~typing.Optional[~typing.Callable]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">target_instance_count:</span> <span class="pre">int</span> <span class="pre">=</span> <span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">pre_cull_function:</span> <span class="pre">~typing.Optional[~typing.Callable]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">post_connect_single_breaks:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">robust_best_instance:</span> <span class="pre">float</span> <span class="pre">=</span> <span class="pre">1.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">min_new_track_points:</span> <span class="pre">int</span> <span class="pre">=</span> <span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">track_matching_queue:</span> <span class="pre">~typing.Deque[~sleap.nn.tracking.MatchedFrameInstances]</span> <span class="pre">=</span> <span class="pre">_Nothing.NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">track_matching_queue_dict:</span> <span class="pre">~typing.Dict[~sleap.instance.Track</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">~typing.Deque[~sleap.nn.tracking.MatchedFrameInstance]]</span> <span class="pre">=</span> <span class="pre">_Nothing.NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">spawned_tracks:</span> <span class="pre">~typing.List[~sleap.instance.Track]</span> <span class="pre">=</span> <span class="pre">_Nothing.NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">save_tracked_instances:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tracked_instances:</span> <span class="pre">~typing.Dict[int</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">~typing.List[~sleap.nn.tracker.components.InstanceType]]</span> <span class="pre">=</span> <span class="pre">_Nothing.NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">last_matches:</span> <span class="pre">~typing.Optional[~sleap.nn.tracker.components.FrameMatches]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">similarity_function:</span> <span class="pre">~typing.Callable</span> <span class="pre">=</span> <span class="pre">&lt;function</span> <span class="pre">instance_iou&gt;</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">matching_function:</span> <span class="pre">~typing.Callable</span> <span class="pre">=</span> <span class="pre">&lt;function</span> <span class="pre">hungarian_matching&gt;</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">candidate_maker:</span> <span class="pre">object</span> <span class="pre">=</span> <span class="pre">_Nothing.NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_tracking:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">*</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_tracks:</span> <span class="pre">int</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/tracking.py#L1192-L1199"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.SimpleMaxTracker" title="Permalink to this definition">#</a></dt>
+<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.tracking.</span></span><span class="sig-name descname"><span class="pre">SimpleMaxTracker</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">track_window:</span> <span class="pre">int</span> <span class="pre">=</span> <span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">cleaner:</span> <span class="pre">~typing.Optional[~typing.Callable]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">target_instance_count:</span> <span class="pre">int</span> <span class="pre">=</span> <span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">pre_cull_function:</span> <span class="pre">~typing.Optional[~typing.Callable]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">post_connect_single_breaks:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">robust_best_instance:</span> <span class="pre">float</span> <span class="pre">=</span> <span class="pre">1.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">min_new_track_points:</span> <span class="pre">int</span> <span class="pre">=</span> <span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">track_matching_queue:</span> <span class="pre">~typing.Deque[~sleap.nn.tracking.MatchedFrameInstances]</span> <span class="pre">=</span> <span class="pre">_Nothing.NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">track_matching_queue_dict:</span> <span class="pre">~typing.Dict[~sleap.instance.Track</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">~typing.Deque[~sleap.nn.tracking.MatchedFrameInstance]]</span> <span class="pre">=</span> <span class="pre">_Nothing.NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">spawned_tracks:</span> <span class="pre">~typing.List[~sleap.instance.Track]</span> <span class="pre">=</span> <span class="pre">_Nothing.NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">save_tracked_instances:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tracked_instances:</span> <span class="pre">~typing.Dict[int</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">~typing.List[~sleap.nn.tracker.components.InstanceType]]</span> <span class="pre">=</span> <span class="pre">_Nothing.NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">last_matches:</span> <span class="pre">~typing.Optional[~sleap.nn.tracker.components.FrameMatches]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">similarity_function:</span> <span class="pre">~typing.Callable</span> <span class="pre">=</span> <span class="pre">&lt;function</span> <span class="pre">instance_iou&gt;</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">matching_function:</span> <span class="pre">~typing.Callable</span> <span class="pre">=</span> <span class="pre">&lt;function</span> <span class="pre">hungarian_matching&gt;</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">candidate_maker:</span> <span class="pre">object</span> <span class="pre">=</span> <span class="pre">_Nothing.NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_tracking:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">*</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_tracks:</span> <span class="pre">int</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/tracking.py#L1225-L1232"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.SimpleMaxTracker" title="Permalink to this definition">#</a></dt>
 <dd><p>Pre-configured tracker to use simple, non-image-based candidates with max tracks.</p>
 </dd></dl>
 
@@ -698,13 +698,13 @@ <h2> Contents </h2>
 
 <dl class="py class">
 <dt class="sig sig-object py" id="sleap.nn.tracking.SimpleTracker">
-<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.tracking.</span></span><span class="sig-name descname"><span class="pre">SimpleTracker</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">max_tracks:</span> <span class="pre">~typing.Optional[int]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">track_window:</span> <span class="pre">int</span> <span class="pre">=</span> <span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_tracking:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">cleaner:</span> <span class="pre">~typing.Optional[~typing.Callable]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">target_instance_count:</span> <span class="pre">int</span> <span class="pre">=</span> <span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">pre_cull_function:</span> <span class="pre">~typing.Optional[~typing.Callable]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">post_connect_single_breaks:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">robust_best_instance:</span> <span class="pre">float</span> <span class="pre">=</span> <span class="pre">1.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">min_new_track_points:</span> <span class="pre">int</span> <span class="pre">=</span> <span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">track_matching_queue:</span> <span class="pre">~typing.Deque[~sleap.nn.tracking.MatchedFrameInstances]</span> <span class="pre">=</span> <span class="pre">_Nothing.NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">track_matching_queue_dict:</span> <span class="pre">~typing.Dict[~sleap.instance.Track</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">~typing.Deque[~sleap.nn.tracking.MatchedFrameInstance]]</span> <span class="pre">=</span> <span class="pre">_Nothing.NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">spawned_tracks:</span> <span class="pre">~typing.List[~sleap.instance.Track]</span> <span class="pre">=</span> <span class="pre">_Nothing.NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">save_tracked_instances:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tracked_instances:</span> <span class="pre">~typing.Dict[int</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">~typing.List[~sleap.nn.tracker.components.InstanceType]]</span> <span class="pre">=</span> <span class="pre">_Nothing.NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">last_matches:</span> <span class="pre">~typing.Optional[~sleap.nn.tracker.components.FrameMatches]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">similarity_function:</span> <span class="pre">~typing.Callable</span> <span class="pre">=</span> <span class="pre">&lt;function</span> <span class="pre">instance_iou&gt;</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">matching_function:</span> <span class="pre">~typing.Callable</span> <span class="pre">=</span> <span class="pre">&lt;function</span> <span class="pre">hungarian_matching&gt;</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">candidate_maker:</span> <span class="pre">object</span> <span class="pre">=</span> <span class="pre">_Nothing.NOTHING</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/tracking.py#L1183-L1188"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.SimpleTracker" title="Permalink to this definition">#</a></dt>
+<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.tracking.</span></span><span class="sig-name descname"><span class="pre">SimpleTracker</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">max_tracks:</span> <span class="pre">~typing.Optional[int]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">track_window:</span> <span class="pre">int</span> <span class="pre">=</span> <span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_tracking:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">cleaner:</span> <span class="pre">~typing.Optional[~typing.Callable]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">target_instance_count:</span> <span class="pre">int</span> <span class="pre">=</span> <span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">pre_cull_function:</span> <span class="pre">~typing.Optional[~typing.Callable]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">post_connect_single_breaks:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">robust_best_instance:</span> <span class="pre">float</span> <span class="pre">=</span> <span class="pre">1.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">min_new_track_points:</span> <span class="pre">int</span> <span class="pre">=</span> <span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">track_matching_queue:</span> <span class="pre">~typing.Deque[~sleap.nn.tracking.MatchedFrameInstances]</span> <span class="pre">=</span> <span class="pre">_Nothing.NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">track_matching_queue_dict:</span> <span class="pre">~typing.Dict[~sleap.instance.Track</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">~typing.Deque[~sleap.nn.tracking.MatchedFrameInstance]]</span> <span class="pre">=</span> <span class="pre">_Nothing.NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">spawned_tracks:</span> <span class="pre">~typing.List[~sleap.instance.Track]</span> <span class="pre">=</span> <span class="pre">_Nothing.NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">save_tracked_instances:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tracked_instances:</span> <span class="pre">~typing.Dict[int</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">~typing.List[~sleap.nn.tracker.components.InstanceType]]</span> <span class="pre">=</span> <span class="pre">_Nothing.NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">last_matches:</span> <span class="pre">~typing.Optional[~sleap.nn.tracker.components.FrameMatches]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">similarity_function:</span> <span class="pre">~typing.Callable</span> <span class="pre">=</span> <span class="pre">&lt;function</span> <span class="pre">instance_iou&gt;</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">matching_function:</span> <span class="pre">~typing.Callable</span> <span class="pre">=</span> <span class="pre">&lt;function</span> <span class="pre">hungarian_matching&gt;</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">candidate_maker:</span> <span class="pre">object</span> <span class="pre">=</span> <span class="pre">_Nothing.NOTHING</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/tracking.py#L1216-L1221"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.SimpleTracker" title="Permalink to this definition">#</a></dt>
 <dd><p>A Tracker pre-configured to use simple, non-image-based candidates.</p>
 </dd></dl>
 
 <dl class="py class">
 <dt class="sig sig-object py" id="sleap.nn.tracking.TrackCleaner">
-<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.tracking.</span></span><span class="sig-name descname"><span class="pre">TrackCleaner</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">instance_count</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">iou_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">float</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/tracking.py#L1476-L1501"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.TrackCleaner" title="Permalink to this definition">#</a></dt>
+<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.tracking.</span></span><span class="sig-name descname"><span class="pre">TrackCleaner</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">instance_count</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">iou_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">float</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/tracking.py#L1514-L1539"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.TrackCleaner" title="Permalink to this definition">#</a></dt>
 <dd><p>Class for merging breaks in the predicted tracks.</p>
 <p>Method:
 1. You specify how many instances there should be in each frame.
@@ -743,7 +743,7 @@ <h2> Contents </h2>
 
 <dl class="py class">
 <dt class="sig sig-object py" id="sleap.nn.tracking.Tracker">
-<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.tracking.</span></span><span class="sig-name descname"><span class="pre">Tracker</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">max_tracks:</span> <span class="pre">~typing.Optional[int]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">track_window:</span> <span class="pre">int</span> <span class="pre">=</span> <span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">similarity_function:</span> <span class="pre">~typing.Optional[~typing.Callable]</span> <span class="pre">=</span> <span class="pre">&lt;function</span> <span class="pre">instance_similarity&gt;</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">matching_function:</span> <span class="pre">~typing.Callable</span> <span class="pre">=</span> <span class="pre">&lt;function</span> <span class="pre">greedy_matching&gt;</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">candidate_maker:</span> <span class="pre">object</span> <span class="pre">=</span> <span class="pre">_Nothing.NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_tracking:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">cleaner:</span> <span class="pre">~typing.Optional[~typing.Callable]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">target_instance_count:</span> <span class="pre">int</span> <span class="pre">=</span> <span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">pre_cull_function:</span> <span class="pre">~typing.Optional[~typing.Callable]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">post_connect_single_breaks:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">robust_best_instance:</span> <span class="pre">float</span> <span class="pre">=</span> <span class="pre">1.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">min_new_track_points:</span> <span class="pre">int</span> <span class="pre">=</span> <span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">track_matching_queue:</span> <span class="pre">~typing.Deque[~sleap.nn.tracking.MatchedFrameInstances]</span> <span class="pre">=</span> <span class="pre">_Nothing.NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">track_matching_queue_dict:</span> <span class="pre">~typing.Dict[~sleap.instance.Track</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">~typing.Deque[~sleap.nn.tracking.MatchedFrameInstance]]</span> <span class="pre">=</span> <span class="pre">_Nothing.NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">spawned_tracks:</span> <span class="pre">~typing.List[~sleap.instance.Track]</span> <span class="pre">=</span> <span class="pre">_Nothing.NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">save_tracked_instances:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tracked_instances:</span> <span class="pre">~typing.Dict[int</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">~typing.List[~sleap.nn.tracker.components.InstanceType]]</span> <span class="pre">=</span> <span class="pre">_Nothing.NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">last_matches:</span> <span class="pre">~typing.Optional[~sleap.nn.tracker.components.FrameMatches]</span> <span class="pre">=</span> <span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/tracking.py#L542-L1157"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.Tracker" title="Permalink to this definition">#</a></dt>
+<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.tracking.</span></span><span class="sig-name descname"><span class="pre">Tracker</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">max_tracks:</span> <span class="pre">~typing.Optional[int]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">track_window:</span> <span class="pre">int</span> <span class="pre">=</span> <span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">similarity_function:</span> <span class="pre">~typing.Optional[~typing.Callable]</span> <span class="pre">=</span> <span class="pre">&lt;function</span> <span class="pre">instance_similarity&gt;</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">matching_function:</span> <span class="pre">~typing.Callable</span> <span class="pre">=</span> <span class="pre">&lt;function</span> <span class="pre">greedy_matching&gt;</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">candidate_maker:</span> <span class="pre">object</span> <span class="pre">=</span> <span class="pre">_Nothing.NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_tracking:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">cleaner:</span> <span class="pre">~typing.Optional[~typing.Callable]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">target_instance_count:</span> <span class="pre">int</span> <span class="pre">=</span> <span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">pre_cull_function:</span> <span class="pre">~typing.Optional[~typing.Callable]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">post_connect_single_breaks:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">robust_best_instance:</span> <span class="pre">float</span> <span class="pre">=</span> <span class="pre">1.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">min_new_track_points:</span> <span class="pre">int</span> <span class="pre">=</span> <span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">track_matching_queue:</span> <span class="pre">~typing.Deque[~sleap.nn.tracking.MatchedFrameInstances]</span> <span class="pre">=</span> <span class="pre">_Nothing.NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">track_matching_queue_dict:</span> <span class="pre">~typing.Dict[~sleap.instance.Track</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">~typing.Deque[~sleap.nn.tracking.MatchedFrameInstance]]</span> <span class="pre">=</span> <span class="pre">_Nothing.NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">spawned_tracks:</span> <span class="pre">~typing.List[~sleap.instance.Track]</span> <span class="pre">=</span> <span class="pre">_Nothing.NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">save_tracked_instances:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tracked_instances:</span> <span class="pre">~typing.Dict[int</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">~typing.List[~sleap.nn.tracker.components.InstanceType]]</span> <span class="pre">=</span> <span class="pre">_Nothing.NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">last_matches:</span> <span class="pre">~typing.Optional[~sleap.nn.tracker.components.FrameMatches]</span> <span class="pre">=</span> <span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/tracking.py#L542-L1190"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.Tracker" title="Permalink to this definition">#</a></dt>
 <dd><p>Instance pose tracker.</p>
 <p>Use by instantiated with the desired parameters and then calling the
 <a class="reference internal" href="#sleap.nn.tracking.Tracker.track" title="sleap.nn.tracking.Tracker.track"><code class="xref py py-obj docutils literal notranslate"><span class="pre">track</span></code></a> method for each frame.</p>
@@ -847,7 +847,7 @@ <h2> Contents </h2>
 
 <dl class="py method">
 <dt class="sig sig-object py" id="sleap.nn.tracking.Tracker.final_pass">
-<span class="sig-name descname"><span class="pre">final_pass</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">frames</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="sleap.instance.html#sleap.instance.LabeledFrame" title="sleap.instance.LabeledFrame"><span class="pre">LabeledFrame</span></a><span class="p"><span class="pre">]</span></span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/tracking.py#L816-L828"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.Tracker.final_pass" title="Permalink to this definition">#</a></dt>
+<span class="sig-name descname"><span class="pre">final_pass</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">frames</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="sleap.instance.html#sleap.instance.LabeledFrame" title="sleap.instance.LabeledFrame"><span class="pre">LabeledFrame</span></a><span class="p"><span class="pre">]</span></span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/tracking.py#L816-L835"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.Tracker.final_pass" title="Permalink to this definition">#</a></dt>
 <dd><p>Called after tracking has run on all frames to do any post-processing.</p>
 </dd></dl>
 
@@ -880,7 +880,7 @@ <h2> Contents </h2>
 
 <dl class="py function">
 <dt class="sig sig-object py" id="sleap.nn.tracking.run_tracker">
-<span class="sig-prename descclassname"><span class="pre">sleap.nn.tracking.</span></span><span class="sig-name descname"><span class="pre">run_tracker</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">frames</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="sleap.instance.html#sleap.instance.LabeledFrame" title="sleap.instance.LabeledFrame"><span class="pre">LabeledFrame</span></a><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tracker</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="#sleap.nn.tracking.BaseTracker" title="sleap.nn.tracking.BaseTracker"><span class="pre">BaseTracker</span></a></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="sleap.instance.html#sleap.instance.LabeledFrame" title="sleap.instance.LabeledFrame"><span class="pre">LabeledFrame</span></a><span class="p"><span class="pre">]</span></span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/tracking.py#L1504-L1542"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.run_tracker" title="Permalink to this definition">#</a></dt>
+<span class="sig-prename descclassname"><span class="pre">sleap.nn.tracking.</span></span><span class="sig-name descname"><span class="pre">run_tracker</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">frames</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="sleap.instance.html#sleap.instance.LabeledFrame" title="sleap.instance.LabeledFrame"><span class="pre">LabeledFrame</span></a><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tracker</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="#sleap.nn.tracking.BaseTracker" title="sleap.nn.tracking.BaseTracker"><span class="pre">BaseTracker</span></a></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="sleap.instance.html#sleap.instance.LabeledFrame" title="sleap.instance.LabeledFrame"><span class="pre">LabeledFrame</span></a><span class="p"><span class="pre">]</span></span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1/sleap/nn/tracking.py#L1542-L1580"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.run_tracker" title="Permalink to this definition">#</a></dt>
 <dd><p>Run a tracker on a set of labeled frames.</p>
 <dl class="field-list simple">
 <dt class="field-odd">Parameters<span class="colon">:</span></dt>
diff --git a/develop/guides/cli.html b/develop/guides/cli.html
index bb886e10a..88e405088 100644
--- a/develop/guides/cli.html
+++ b/develop/guides/cli.html
@@ -572,7 +572,7 @@ <h2>Inference and Tracking<a class="headerlink" href="#inference-and-tracking" t
   --tracking.kf_node_indices TRACKING.KF_NODE_INDICES
                         For Kalman filter: Indices of nodes to track. (default: )
   --tracking.kf_init_frame_count TRACKING.KF_INIT_FRAME_COUNT
-                        For Kalman filter: Number of frames to track with other tracker. 0 means no Kalman filters will be used. (default: 0)
+                        For Kalman filter: Number of frames to track with other tracker. 0 means no Kalman filters will be used. (default: 0) Kalman filters require TRACKING.KF_NODE_INDICES, TRACKING.MAX_TRACKING and TRACKING.MAX_TRACKS or TRACKING.TARGET_INSTANCE_COUNT, TRACKING.TRACKER to be simple or simplemaxtracks, and TRACKING.SIMILARITY to not be normalized_instance.
 </pre></div>
 </div>
 <section id="examples">
@@ -610,6 +610,10 @@ <h4>Examples:<a class="headerlink" href="#examples" title="Permalink to this hea
 <div class="highlight-none notranslate"><div class="highlight"><pre><span></span>sleap-track -m &quot;models/my_model&quot; --frames 1000-2000 &quot;input_video.mp4&quot;
 </pre></div>
 </div>
+<p><strong>9. Use Kalman tracker (not recommended since flow is preferred):</strong></p>
+<div class="highlight-none notranslate"><div class="highlight"><pre><span></span>sleap-track -m &quot;models/my_model&quot; --tracking.similarity instance --tracking.tracker simplemaxtracks --tracking.max_tracking 1 --tracking.max_tracks 4 --tracking.kf_init_frame_count 10 --tracking.kf_node_indices 0,1 -o &quot;output_predictions.slp&quot; &quot;input_video.mp4&quot;
+</pre></div>
+</div>
 </section>
 </section>
 </section>
diff --git a/develop/searchindex.js b/develop/searchindex.js
index 7820c5cdc..d79c29dfc 100644
--- a/develop/searchindex.js
+++ b/develop/searchindex.js
@@ -1 +1 @@
-Search.setIndex({"docnames": ["CODE_OF_CONDUCT", "CONTRIBUTING", "api", "api/sleap.info.align", "api/sleap.info.feature_suggestions", "api/sleap.info.labels", "api/sleap.info.metrics", "api/sleap.info.summary", "api/sleap.info.trackcleaner", "api/sleap.info.write_tracking_h5", "api/sleap.instance", "api/sleap.io.convert", "api/sleap.io.dataset", "api/sleap.io.format.adaptor", "api/sleap.io.format.alphatracker", "api/sleap.io.format.coco", "api/sleap.io.format.csv", "api/sleap.io.format.deeplabcut", "api/sleap.io.format.deepposekit", "api/sleap.io.format.dispatch", "api/sleap.io.format.filehandle", "api/sleap.io.format.genericjson", "api/sleap.io.format.hdf5", "api/sleap.io.format.labels_json", "api/sleap.io.format.leap_matlab", "api/sleap.io.format.main", "api/sleap.io.format.ndx_pose", "api/sleap.io.format.nix", "api/sleap.io.format.sleap_analysis", "api/sleap.io.format.text", "api/sleap.io.legacy", "api/sleap.io.pathutils", "api/sleap.io.video", "api/sleap.io.videowriter", "api/sleap.io.visuals", "api/sleap.message", "api/sleap.nn.architectures.common", "api/sleap.nn.architectures.encoder_decoder", "api/sleap.nn.architectures.hourglass", "api/sleap.nn.architectures.hrnet", "api/sleap.nn.architectures.leap", "api/sleap.nn.architectures.pretrained_encoders", "api/sleap.nn.architectures.resnet", "api/sleap.nn.architectures.unet", "api/sleap.nn.architectures.upsampling", "api/sleap.nn.callbacks", "api/sleap.nn.config.data", "api/sleap.nn.config.model", "api/sleap.nn.config.optimization", "api/sleap.nn.config.outputs", "api/sleap.nn.config.training_job", "api/sleap.nn.config.utils", "api/sleap.nn.data.augmentation", "api/sleap.nn.data.confidence_maps", "api/sleap.nn.data.dataset_ops", "api/sleap.nn.data.edge_maps", "api/sleap.nn.data.general", "api/sleap.nn.data.grouping", "api/sleap.nn.data.identity", "api/sleap.nn.data.inference", "api/sleap.nn.data.instance_centroids", "api/sleap.nn.data.instance_cropping", "api/sleap.nn.data.normalization", "api/sleap.nn.data.offset_regression", "api/sleap.nn.data.pipelines", "api/sleap.nn.data.providers", "api/sleap.nn.data.resizing", "api/sleap.nn.data.training", "api/sleap.nn.data.utils", "api/sleap.nn.evals", "api/sleap.nn.heads", "api/sleap.nn.identity", "api/sleap.nn.inference", "api/sleap.nn.losses", "api/sleap.nn.model", "api/sleap.nn.paf_grouping", "api/sleap.nn.peak_finding", "api/sleap.nn.system", "api/sleap.nn.tracker.components", "api/sleap.nn.tracker.kalman", "api/sleap.nn.tracking", "api/sleap.nn.training", "api/sleap.nn.utils", "api/sleap.nn.viz", "api/sleap.skeleton", "api/sleap.util", "datasets", "guides/bonsai", "guides/choosing-models", "guides/cli", "guides/colab", "guides/custom-training", "guides/gui", "guides/index", "guides/merging", "guides/proofreading", "guides/remote", "guides/skeletons", "guides/training", "guides/troubleshooting-workflows", "help", "index", "installation", "notebooks/Analysis_examples", "notebooks/Data_structures", "notebooks/Interactive_and_realtime_inference", "notebooks/Interactive_and_resumable_training", "notebooks/Model_evaluation", "notebooks/Post_inference_tracking", "notebooks/Training_and_inference_on_an_example_dataset", "notebooks/Training_and_inference_using_Google_Drive", "notebooks/analysis_example/README", "notebooks/index", "overview", "tutorials/analysis", "tutorials/assisted-labeling", "tutorials/initial-labeling", "tutorials/initial-training", "tutorials/new-project", "tutorials/proofreading", "tutorials/tutorial"], "filenames": ["CODE_OF_CONDUCT.md", "CONTRIBUTING.md", "api.rst", "api/sleap.info.align.rst", "api/sleap.info.feature_suggestions.rst", "api/sleap.info.labels.rst", "api/sleap.info.metrics.rst", "api/sleap.info.summary.rst", "api/sleap.info.trackcleaner.rst", "api/sleap.info.write_tracking_h5.rst", "api/sleap.instance.rst", "api/sleap.io.convert.rst", "api/sleap.io.dataset.rst", "api/sleap.io.format.adaptor.rst", "api/sleap.io.format.alphatracker.rst", "api/sleap.io.format.coco.rst", "api/sleap.io.format.csv.rst", "api/sleap.io.format.deeplabcut.rst", "api/sleap.io.format.deepposekit.rst", "api/sleap.io.format.dispatch.rst", "api/sleap.io.format.filehandle.rst", "api/sleap.io.format.genericjson.rst", "api/sleap.io.format.hdf5.rst", "api/sleap.io.format.labels_json.rst", "api/sleap.io.format.leap_matlab.rst", "api/sleap.io.format.main.rst", "api/sleap.io.format.ndx_pose.rst", "api/sleap.io.format.nix.rst", "api/sleap.io.format.sleap_analysis.rst", "api/sleap.io.format.text.rst", "api/sleap.io.legacy.rst", "api/sleap.io.pathutils.rst", "api/sleap.io.video.rst", "api/sleap.io.videowriter.rst", "api/sleap.io.visuals.rst", "api/sleap.message.rst", "api/sleap.nn.architectures.common.rst", "api/sleap.nn.architectures.encoder_decoder.rst", "api/sleap.nn.architectures.hourglass.rst", "api/sleap.nn.architectures.hrnet.rst", "api/sleap.nn.architectures.leap.rst", "api/sleap.nn.architectures.pretrained_encoders.rst", "api/sleap.nn.architectures.resnet.rst", "api/sleap.nn.architectures.unet.rst", "api/sleap.nn.architectures.upsampling.rst", "api/sleap.nn.callbacks.rst", "api/sleap.nn.config.data.rst", "api/sleap.nn.config.model.rst", "api/sleap.nn.config.optimization.rst", "api/sleap.nn.config.outputs.rst", "api/sleap.nn.config.training_job.rst", "api/sleap.nn.config.utils.rst", "api/sleap.nn.data.augmentation.rst", "api/sleap.nn.data.confidence_maps.rst", "api/sleap.nn.data.dataset_ops.rst", "api/sleap.nn.data.edge_maps.rst", "api/sleap.nn.data.general.rst", "api/sleap.nn.data.grouping.rst", "api/sleap.nn.data.identity.rst", "api/sleap.nn.data.inference.rst", "api/sleap.nn.data.instance_centroids.rst", "api/sleap.nn.data.instance_cropping.rst", "api/sleap.nn.data.normalization.rst", "api/sleap.nn.data.offset_regression.rst", "api/sleap.nn.data.pipelines.rst", "api/sleap.nn.data.providers.rst", "api/sleap.nn.data.resizing.rst", "api/sleap.nn.data.training.rst", "api/sleap.nn.data.utils.rst", "api/sleap.nn.evals.rst", "api/sleap.nn.heads.rst", "api/sleap.nn.identity.rst", "api/sleap.nn.inference.rst", "api/sleap.nn.losses.rst", "api/sleap.nn.model.rst", "api/sleap.nn.paf_grouping.rst", "api/sleap.nn.peak_finding.rst", "api/sleap.nn.system.rst", "api/sleap.nn.tracker.components.rst", "api/sleap.nn.tracker.kalman.rst", "api/sleap.nn.tracking.rst", "api/sleap.nn.training.rst", "api/sleap.nn.utils.rst", "api/sleap.nn.viz.rst", "api/sleap.skeleton.rst", "api/sleap.util.rst", "datasets.md", "guides/bonsai.md", "guides/choosing-models.md", "guides/cli.md", "guides/colab.rst", "guides/custom-training.md", "guides/gui.md", "guides/index.md", "guides/merging.rst", "guides/proofreading.md", "guides/remote.md", "guides/skeletons.md", "guides/training.rst", "guides/troubleshooting-workflows.md", "help.md", "index.rst", "installation.md", "notebooks/Analysis_examples.ipynb", "notebooks/Data_structures.ipynb", "notebooks/Interactive_and_realtime_inference.ipynb", "notebooks/Interactive_and_resumable_training.ipynb", "notebooks/Model_evaluation.ipynb", "notebooks/Post_inference_tracking.ipynb", "notebooks/Training_and_inference_on_an_example_dataset.ipynb", "notebooks/Training_and_inference_using_Google_Drive.ipynb", "notebooks/analysis_example/README.md", "notebooks/index.rst", "overview.rst", "tutorials/analysis.rst", "tutorials/assisted-labeling.md", "tutorials/initial-labeling.rst", "tutorials/initial-training.rst", "tutorials/new-project.md", "tutorials/proofreading.rst", "tutorials/tutorial.rst"], "titles": ["Contributor Covenant Code of Conduct", "Contributing to SLEAP", "Developer API", "sleap.info.align", "sleap.info.feature_suggestions", "sleap.info.labels", "sleap.info.metrics", "sleap.info.summary", "sleap.info.trackcleaner", "sleap.info.write_tracking_h5", "sleap.instance", "sleap.io.convert", "sleap.io.dataset", "sleap.io.format.adaptor", "sleap.io.format.alphatracker", "sleap.io.format.coco", "sleap.io.format.csv", "sleap.io.format.deeplabcut", "sleap.io.format.deepposekit", "sleap.io.format.dispatch", "sleap.io.format.filehandle", "sleap.io.format.genericjson", "sleap.io.format.hdf5", "sleap.io.format.labels_json", "sleap.io.format.leap_matlab", "sleap.io.format.main", "sleap.io.format.ndx_pose", "sleap.io.format.nix", "sleap.io.format.sleap_analysis", "sleap.io.format.text", "sleap.io.legacy", "sleap.io.pathutils", "sleap.io.video", "sleap.io.videowriter", "sleap.io.visuals", "sleap.message", "sleap.nn.architectures.common", "sleap.nn.architectures.encoder_decoder", "sleap.nn.architectures.hourglass", "sleap.nn.architectures.hrnet", "sleap.nn.architectures.leap", "sleap.nn.architectures.pretrained_encoders", "sleap.nn.architectures.resnet", "sleap.nn.architectures.unet", "sleap.nn.architectures.upsampling", "sleap.nn.callbacks", "sleap.nn.config.data", "sleap.nn.config.model", "sleap.nn.config.optimization", "sleap.nn.config.outputs", "sleap.nn.config.training_job", "sleap.nn.config.utils", "sleap.nn.data.augmentation", "sleap.nn.data.confidence_maps", "sleap.nn.data.dataset_ops", "sleap.nn.data.edge_maps", "sleap.nn.data.general", "sleap.nn.data.grouping", "sleap.nn.data.identity", "sleap.nn.data.inference", "sleap.nn.data.instance_centroids", "sleap.nn.data.instance_cropping", "sleap.nn.data.normalization", "sleap.nn.data.offset_regression", "sleap.nn.data.pipelines", "sleap.nn.data.providers", "sleap.nn.data.resizing", "sleap.nn.data.training", "sleap.nn.data.utils", "sleap.nn.evals", "sleap.nn.heads", "sleap.nn.identity", "sleap.nn.inference", "sleap.nn.losses", "sleap.nn.model", "sleap.nn.paf_grouping", "sleap.nn.peak_finding", "sleap.nn.system", "sleap.nn.tracker.components", "sleap.nn.tracker.kalman", "sleap.nn.tracking", "sleap.nn.training", "sleap.nn.utils", "sleap.nn.viz", "sleap.skeleton", "sleap.util", "Datasets", "Using Bonsai with SLEAP", "Configuring models", "Command line interfaces", "Run training and inference on Colab", "Creating a custom training profile", "GUI", "Guides", "Importing predictions for labeling", "Tracking and proofreading", "Running SLEAP remotely", "Skeleton design", "Training with GUI", "Troubleshooting workflows", "Help", "Social LEAP Estimates Animal Poses (SLEAP)", "Installation", "Analysis examples", "Data structures", "Interactive and realtime inference", "Interactive and resumable training", "Model evaluation", "Post-inference tracking", "Training and inference on an example dataset", "Training and inference on your own data using Google Drive", "&lt;no title&gt;", "Notebooks", "Overview", "Export Data For Analysis", "Prediction-assisted labeling", "Initial Labeling", "Training and Inference", "Creating a project", "Tracking instances across frames", "Tutorial"], "terms": {"In": [0, 8, 38, 43, 50, 72, 75, 76, 87, 88, 92, 95, 96, 97, 99, 103, 104, 105, 106, 108, 109, 110, 112, 113, 117, 119], "interest": [0, 100], "foster": 0, "an": [0, 1, 3, 4, 6, 9, 10, 11, 12, 13, 14, 20, 23, 25, 26, 28, 32, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 54, 56, 60, 61, 62, 64, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 84, 85, 86, 88, 89, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 110, 114, 115, 116, 117, 119], "open": [0, 1, 12, 20, 32, 84, 85, 86, 87, 89, 91, 92, 94, 99, 100, 101, 102, 104, 107, 108, 109, 110, 111, 120], "welcom": [0, 109, 110], "environ": [0, 77, 86, 101, 102, 103, 104, 107, 118], "we": [0, 3, 6, 7, 10, 11, 12, 14, 17, 20, 23, 25, 28, 30, 31, 32, 34, 35, 78, 79, 80, 84, 85, 86, 87, 89, 92, 94, 95, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 112, 115, 116, 117], "maintain": [0, 12, 42, 48, 53, 54, 101, 102], "make": [0, 1, 4, 9, 10, 12, 32, 47, 50, 53, 55, 58, 63, 65, 67, 68, 70, 72, 73, 77, 79, 82, 84, 88, 91, 92, 94, 95, 96, 97, 102, 104, 105, 106, 107, 108, 113, 116, 117], "particip": 0, "project": [0, 10, 12, 26, 89, 90, 91, 92, 93, 94, 96, 98, 104, 110, 113, 116, 117, 120], "commun": [0, 1, 2, 100, 101, 102], "harass": 0, "free": [0, 1, 41, 90, 99, 100, 102, 109, 116], "experi": [0, 1, 47, 86, 100, 105, 108, 112, 113], "everyon": [0, 1], "regardless": [0, 12, 48, 49, 72, 85, 88], "ag": 0, "bodi": [0, 3, 47, 48, 52, 60, 69, 70, 72, 73, 84, 95, 97, 113, 116, 117, 118], "size": [0, 10, 34, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 54, 61, 62, 65, 66, 68, 69, 72, 75, 76, 80, 83, 86, 88, 89, 95, 98, 104, 107], "disabl": [0, 72, 77, 109], "ethnic": 0, "gender": 0, "ident": [0, 6, 37, 42, 43, 47, 54, 65, 67, 68, 70, 72, 79, 80, 83, 84, 86, 87, 89, 92, 93, 95, 96, 103, 115, 119], "express": [0, 41], "level": [0, 10, 12, 14, 27, 32, 43, 44, 50, 61, 64, 69, 72, 74, 75, 80, 81, 89, 104, 105, 106, 113], "nation": 0, "person": [0, 41, 75, 84, 102, 118], "appear": [0, 10, 86, 89, 92, 94, 98, 116, 119], "race": 0, "religion": 0, "sexual": 0, "orient": [0, 32, 88, 92], "exampl": [0, 12, 20, 21, 25, 29, 32, 37, 44, 45, 46, 48, 49, 52, 53, 54, 56, 57, 60, 61, 64, 65, 66, 67, 68, 72, 73, 75, 76, 81, 82, 84, 86, 87, 88, 90, 91, 92, 96, 100, 104, 106, 110, 111, 113, 117], "behavior": [0, 1, 32, 51, 86, 92, 101, 113], "contribut": [0, 58, 88, 100], "creat": [0, 1, 4, 9, 10, 12, 13, 14, 17, 23, 25, 26, 32, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 72, 74, 75, 77, 78, 80, 81, 83, 84, 85, 87, 89, 92, 93, 94, 96, 97, 101, 102, 103, 104, 105, 106, 108, 109, 113, 120], "posit": [0, 12, 27, 42, 69, 88, 89, 92, 95, 104, 107, 116, 117], "includ": [0, 8, 9, 10, 12, 22, 23, 28, 32, 34, 37, 41, 42, 69, 72, 77, 85, 88, 89, 91, 92, 94, 96, 100, 101, 102, 104, 105, 107, 112, 113, 115], "us": [0, 1, 3, 4, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 53, 54, 55, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108, 109, 111, 113, 115, 116, 117, 118, 119, 120], "inclus": 0, "languag": [0, 87], "Being": 0, "respect": [0, 27, 34, 37, 42, 43, 47, 48, 49, 54, 55, 68, 73, 76, 86, 116], "differ": [0, 11, 12, 14, 25, 32, 37, 41, 42, 43, 44, 46, 48, 60, 63, 65, 69, 72, 75, 80, 82, 84, 88, 91, 92, 93, 95, 96, 99, 102, 103, 104, 105, 106, 107, 110, 116, 119], "viewpoint": 0, "gracefulli": 0, "accept": [0, 32, 72, 84], "construct": [0, 10, 12, 30, 37, 42, 74, 105], "critic": [0, 47, 72, 104, 105, 106, 107, 109], "focus": 0, "what": [0, 34, 45, 79, 83, 88, 91, 95, 96, 99, 102, 103, 104, 105, 107, 109, 110, 119], "i": [0, 1, 3, 4, 7, 8, 9, 10, 11, 12, 14, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119], "best": [0, 1, 3, 6, 77, 78, 79, 92, 95, 96, 97, 116, 117], "show": [0, 10, 34, 72, 89, 92, 95, 103, 109, 110, 112, 116, 117, 119], "empathi": 0, "toward": 0, "other": [0, 3, 6, 10, 12, 23, 25, 28, 32, 41, 43, 48, 49, 50, 64, 65, 66, 67, 74, 78, 79, 80, 84, 85, 87, 89, 90, 91, 92, 96, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 109, 111, 112, 116, 117], "member": [0, 1], "unaccept": [0, 1], "The": [0, 1, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 87, 88, 89, 90, 91, 92, 94, 96, 97, 98, 100, 102, 103, 104, 105, 106, 107, 109, 110, 111, 113, 114, 115, 116, 117, 119, 120], "imageri": 0, "unwelcom": 0, "attent": [0, 88], "advanc": [0, 101], "troll": 0, "insult": 0, "derogatori": 0, "comment": [0, 1], "polit": 0, "attack": 0, "public": 0, "privat": 0, "publish": [0, 35, 41, 49, 100, 101], "inform": [0, 12, 14, 27, 38, 40, 41, 43, 47, 50, 60, 72, 78, 87, 89, 91, 92, 94, 96, 99, 100, 104, 105, 106, 114, 116, 117, 119], "physic": [0, 77, 101], "electron": 0, "address": [0, 35, 45, 49], "without": [0, 9, 10, 12, 13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 26, 27, 28, 29, 32, 35, 40, 41, 48, 49, 54, 62, 67, 69, 74, 75, 77, 78, 84, 89, 94, 96, 101, 102, 103, 106, 108, 112], "explicit": [0, 61, 66, 77], "permiss": [0, 41, 107, 109], "which": [0, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 34, 37, 38, 39, 44, 45, 47, 48, 49, 52, 53, 54, 57, 58, 60, 61, 63, 65, 66, 69, 70, 72, 73, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 102, 103, 104, 105, 107, 110, 112, 115, 116, 117, 119], "could": [0, 12, 13, 32, 69, 91, 102, 104, 105, 107, 108, 109], "reason": [0, 48, 75], "consid": [0, 48, 69, 72, 73, 75, 80, 84, 89, 100], "inappropri": 0, "profession": 0, "set": [0, 1, 3, 4, 6, 9, 10, 12, 23, 26, 32, 37, 38, 40, 42, 43, 44, 46, 47, 48, 49, 51, 52, 53, 54, 55, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 72, 75, 76, 79, 80, 81, 82, 85, 86, 89, 91, 92, 94, 95, 96, 97, 98, 102, 103, 104, 105, 106, 107, 108, 109, 110, 112, 113, 116, 117, 119], "ar": [0, 1, 3, 4, 6, 7, 8, 9, 10, 11, 12, 16, 23, 25, 26, 27, 28, 31, 32, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 75, 76, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 91, 92, 94, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 107, 108, 109, 112, 114, 115, 116, 117, 119], "clarifi": 0, "expect": [0, 1, 9, 11, 12, 49, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 66, 67, 69, 70, 72, 75, 76, 87, 89, 103, 114], "take": [0, 4, 6, 25, 37, 41, 42, 44, 48, 53, 54, 55, 58, 72, 76, 80, 84, 85, 90, 91, 92, 95, 98, 103, 104, 105, 106, 107, 108, 111, 116, 117, 119], "appropri": [0, 13, 14, 15, 17, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 37, 46, 64, 69, 72, 79, 81, 92, 97, 98, 104, 105, 106, 107, 109, 116], "fair": 0, "correct": [0, 12, 25, 69, 70, 75, 92, 93, 94, 95, 97, 107, 113, 115, 117, 119], "action": [0, 41, 45, 92], "ani": [0, 1, 4, 6, 9, 10, 12, 20, 21, 25, 27, 29, 32, 34, 35, 37, 41, 42, 45, 46, 47, 48, 49, 50, 54, 55, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 72, 73, 74, 75, 79, 80, 81, 84, 85, 89, 90, 92, 94, 95, 96, 97, 99, 100, 101, 102, 103, 107, 108, 112, 113, 116, 119], "instanc": [0, 3, 6, 7, 8, 9, 12, 14, 23, 25, 27, 30, 32, 34, 38, 40, 41, 42, 43, 44, 46, 47, 48, 50, 52, 53, 55, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 78, 79, 80, 81, 83, 84, 86, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 103, 104, 105, 107, 108, 109, 113, 115, 116, 117, 120], "have": [0, 1, 3, 4, 8, 9, 10, 12, 23, 25, 28, 31, 32, 35, 37, 38, 41, 42, 43, 46, 47, 48, 49, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 65, 66, 67, 68, 69, 71, 72, 75, 78, 79, 80, 84, 85, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 102, 103, 104, 105, 106, 107, 108, 110, 112, 115, 116, 117, 118, 119], "right": [0, 1, 41, 46, 48, 52, 66, 84, 87, 92, 95, 97, 103, 113, 116, 118, 119], "remov": [0, 9, 10, 12, 65, 69, 71, 78, 79, 80, 84, 85, 89, 94, 95, 97, 102, 108, 110], "edit": [0, 50, 91, 92, 94, 95, 96, 102, 106, 112, 115, 119], "reject": [0, 72, 75], "commit": [0, 1], "wiki": 0, "issu": [0, 66, 99, 100, 101, 102, 104], "align": [0, 10, 53, 66, 72, 76], "thi": [0, 1, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 112, 113, 114, 115, 116, 117, 119, 120], "ban": 0, "temporarili": 0, "perman": 0, "thei": [0, 1, 10, 11, 12, 23, 24, 37, 44, 46, 47, 48, 49, 50, 55, 65, 66, 68, 72, 73, 75, 77, 80, 84, 85, 90, 91, 92, 94, 95, 97, 102, 103, 104, 105, 106, 107, 108, 114], "deem": 0, "threaten": 0, "offens": 0, "harm": 0, "appli": [0, 4, 7, 10, 31, 37, 38, 43, 44, 46, 47, 48, 52, 54, 61, 62, 66, 72, 73, 75, 76, 80, 89, 92, 95, 97, 102, 108, 113, 119], "both": [0, 1, 12, 14, 23, 38, 46, 47, 49, 53, 55, 61, 66, 67, 68, 69, 72, 78, 79, 87, 88, 91, 94, 95, 96, 106, 117], "within": [0, 9, 10, 12, 26, 27, 32, 37, 38, 44, 46, 47, 49, 54, 61, 65, 67, 69, 71, 72, 75, 77, 84, 85, 90, 92, 96, 102, 104, 108, 112], "space": [0, 10, 47, 49, 68, 75, 90, 92, 100, 102, 116, 118], "when": [0, 1, 10, 12, 23, 27, 32, 34, 37, 42, 44, 46, 47, 48, 49, 52, 53, 54, 55, 60, 61, 62, 65, 68, 69, 72, 73, 75, 77, 78, 80, 84, 88, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 104, 106, 108, 109, 110, 112, 115, 116, 117, 118, 119], "individu": [0, 10, 14, 17, 32, 41, 48, 53, 54, 61, 63, 64, 65, 73, 80, 89, 95, 104, 108, 117], "repres": [0, 4, 10, 12, 14, 32, 34, 41, 47, 58, 65, 69, 75, 76, 80, 84, 85, 92, 97, 99, 104], "its": [0, 4, 12, 25, 32, 48, 54, 60, 61, 62, 66, 72, 73, 75, 77, 79, 84, 88, 92, 95, 96, 100, 101, 102, 113, 116, 117, 118, 119], "offici": [0, 87, 100, 102], "e": [0, 1, 3, 6, 10, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 36, 37, 42, 44, 47, 48, 49, 52, 53, 54, 55, 58, 60, 61, 65, 66, 67, 68, 69, 71, 72, 73, 76, 77, 78, 79, 80, 84, 85, 87, 88, 89, 91, 92, 93, 94, 95, 96, 101, 102, 104, 108, 109, 110, 113, 118], "mail": 0, "post": [0, 47, 80, 82, 86, 100, 103], "via": [0, 1, 12, 37, 44, 47, 54, 72, 75, 76, 89, 92, 95, 101, 102, 103, 105, 106, 109, 110, 112, 118], "social": 0, "media": [0, 32], "account": [0, 52, 53, 55, 58, 61, 69, 90, 110, 116], "act": [0, 1, 35], "appoint": 0, "onlin": [0, 48, 73, 88], "offlin": 0, "event": [0, 41, 45], "represent": [0, 12, 40, 42, 43, 47, 50, 72, 75, 76, 84], "mai": [0, 1, 11, 12, 20, 34, 37, 38, 40, 42, 43, 45, 46, 47, 48, 49, 50, 52, 54, 60, 61, 65, 67, 69, 72, 73, 75, 88, 89, 92, 95, 96, 99, 100, 103, 104, 105, 107, 112, 113, 114, 116, 117, 119], "further": [0, 48, 88, 93, 113], "defin": [0, 10, 14, 27, 37, 38, 42, 43, 44, 47, 52, 53, 55, 58, 64, 68, 70, 72, 74, 75, 78, 84, 96, 97, 103, 104, 105, 106, 113], "abus": 0, "otherwis": [0, 1, 9, 10, 12, 14, 17, 32, 37, 41, 42, 54, 62, 64, 68, 72, 84, 89, 92, 96, 102, 103, 110, 116], "report": [0, 1, 12, 72, 86, 89, 100], "contact": [0, 89], "team": [0, 1], "talmo": [0, 1, 30, 86, 99, 100, 101], "salk": [0, 1, 99, 100, 101], "edu": [0, 1, 99, 100, 101], "all": [0, 1, 3, 4, 9, 10, 12, 13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 37, 38, 41, 44, 46, 47, 48, 49, 50, 53, 55, 58, 60, 61, 64, 65, 66, 67, 69, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 86, 88, 90, 92, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 110, 113, 115, 116, 117, 118, 119], "complaint": 0, "review": [0, 1, 12, 80, 95, 100, 101, 120], "investig": 0, "result": [0, 3, 4, 10, 12, 14, 17, 20, 27, 32, 37, 38, 42, 43, 44, 45, 47, 48, 57, 61, 67, 72, 73, 80, 81, 84, 85, 87, 88, 89, 90, 92, 95, 99, 103, 104, 105, 106, 108, 112], "necessari": [0, 12, 72, 81, 91, 96, 100, 102, 104, 106], "circumst": 0, "oblig": 0, "confidenti": 0, "regard": 0, "incid": 0, "detail": [0, 7, 12, 15, 37, 38, 40, 43, 69, 72, 75, 87, 88, 89, 91, 95, 100, 113, 115], "specif": [0, 10, 12, 13, 14, 25, 26, 44, 47, 49, 50, 62, 67, 72, 73, 78, 81, 84, 92, 98, 100, 105], "polici": [0, 77], "separ": [0, 1, 12, 23, 26, 49, 72, 88, 89, 94, 96, 103, 104, 105, 108, 110, 117], "who": [0, 41], "do": [0, 10, 12, 37, 41, 43, 44, 47, 49, 60, 72, 73, 78, 80, 92, 94, 95, 97, 102, 103, 104, 105, 106, 107, 108, 119], "follow": [0, 1, 12, 27, 32, 37, 41, 42, 47, 54, 61, 69, 84, 86, 87, 89, 97, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109], "good": [0, 1, 21, 25, 29, 35, 48, 69, 78, 79, 80, 88, 91, 93, 95, 99, 112, 117], "faith": 0, "face": [0, 14, 50, 99], "temporari": [0, 116], "repercuss": 0, "determin": [0, 6, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 32, 34, 38, 40, 43, 44, 46, 47, 49, 65, 66, 69, 70, 72, 78, 79, 80, 92, 95, 98, 109, 116], "": [0, 1, 10, 12, 14, 16, 17, 20, 23, 25, 28, 30, 32, 34, 35, 37, 39, 41, 42, 44, 46, 49, 53, 54, 55, 58, 60, 62, 64, 65, 66, 68, 69, 72, 74, 75, 78, 79, 80, 82, 84, 85, 86, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 112, 113, 116, 117, 119], "leadership": 0, "adapt": [0, 42], "from": [0, 1, 2, 3, 4, 6, 7, 9, 10, 12, 13, 14, 16, 17, 20, 23, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 58, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 88, 89, 91, 92, 93, 94, 95, 96, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119], "version": [0, 1, 12, 47, 50, 64, 68, 85, 89, 94, 96, 100, 101, 102, 104, 105, 106, 107, 108, 109, 110, 112], "1": [0, 3, 4, 9, 10, 11, 12, 26, 32, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 53, 54, 55, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 75, 76, 78, 79, 80, 82, 83, 84, 86, 89, 95, 98, 102, 107, 109, 110, 119], "4": [0, 3, 12, 32, 34, 38, 39, 41, 42, 43, 44, 47, 48, 50, 53, 55, 61, 69, 72, 76, 79, 82, 83, 86, 89, 92, 98, 100, 101, 102, 103, 104, 107, 109, 110], "avail": [0, 1, 9, 32, 33, 37, 48, 61, 67, 69, 72, 77, 88, 89, 90, 96, 102, 103, 104, 105, 106, 107, 108, 109], "http": [0, 15, 37, 39, 42, 72, 78, 82, 102, 103, 104, 105, 106, 107, 108, 109], "org": [0, 15, 27, 37, 39, 42, 72, 104, 107, 108], "As": [1, 73, 88, 92, 94, 95, 106, 109, 110, 116], "our": [1, 2, 79, 84, 90, 91, 96, 100, 101, 102, 103, 104, 105, 107, 109, 117, 118, 120], "grow": 1, "import": [1, 9, 12, 14, 17, 65, 69, 75, 87, 88, 92, 93, 95, 97, 100, 103, 104, 105, 106, 107, 108, 109, 113, 114, 118], "adher": 1, "guidelin": [1, 100], "These": [1, 12, 28, 35, 37, 38, 40, 41, 43, 44, 46, 47, 49, 50, 53, 54, 55, 60, 65, 67, 68, 69, 71, 72, 75, 86, 88, 90, 92, 95, 102, 103, 104, 105, 106, 107, 113, 119], "chang": [1, 12, 31, 38, 44, 45, 46, 47, 48, 61, 62, 65, 67, 72, 77, 84, 92, 95, 97, 102, 105, 106, 116, 119], "need": [1, 11, 12, 20, 25, 32, 34, 41, 43, 46, 47, 49, 60, 62, 65, 66, 69, 73, 75, 79, 80, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 97, 102, 103, 104, 105, 106, 107, 109, 110, 113, 114, 115, 116, 118, 119], "pleas": [1, 86, 87, 100, 101, 104, 107, 108], "feel": [1, 99, 100, 116], "propos": 1, "sourc": [1, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 87, 95, 97, 100, 101, 102, 104, 107], "govern": 1, "abid": 1, "github": [1, 99, 101, 102, 103, 108, 109], "ha": [1, 3, 9, 10, 11, 12, 25, 26, 32, 37, 38, 39, 42, 43, 46, 47, 49, 51, 54, 60, 64, 67, 68, 72, 74, 75, 77, 78, 80, 84, 87, 88, 89, 90, 92, 95, 96, 98, 102, 109, 115, 116, 117, 119], "made": [1, 41, 95, 101, 119], "easi": [1, 4, 47, 48, 69, 73, 74, 77, 91, 95, 96, 97, 101, 104, 107], "gener": [1, 4, 9, 12, 21, 26, 27, 29, 34, 37, 38, 40, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 58, 61, 63, 64, 65, 67, 68, 69, 72, 73, 75, 76, 78, 80, 81, 82, 83, 87, 88, 89, 92, 94, 95, 96, 97, 100, 101, 102, 104, 105, 106, 107, 108, 109, 110, 112, 113, 115, 116], "speak": 1, "someth": [1, 3, 25, 87, 92], "warrant": 1, "g": [1, 6, 10, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 36, 44, 47, 49, 52, 54, 61, 65, 66, 69, 71, 72, 73, 77, 78, 84, 85, 89, 90, 92, 95, 96, 101, 102, 103, 104, 108, 113], "bug": 1, "fix": [1, 3, 30, 32, 42, 45, 46, 47, 49, 62, 66, 68, 85, 95, 120], "todo": [1, 14, 42, 49], "should": [1, 10, 12, 23, 25, 32, 38, 42, 44, 45, 46, 47, 48, 49, 50, 52, 54, 60, 67, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 91, 92, 94, 95, 97, 98, 102, 103, 104, 105, 106, 108, 113, 115, 117], "submit": 1, "convers": [1, 32, 89], "question": [1, 93, 100], "about": [1, 4, 5, 12, 15, 47, 61, 72, 73, 89, 91, 92, 93, 94, 96, 97, 99, 100, 105, 106, 107, 108, 114, 115, 116, 117, 119], "usag": [1, 19, 25, 33, 48, 61, 72, 89, 101], "improv": [1, 38, 47, 48, 49, 54, 61, 72, 73, 80, 98, 99, 106, 109, 110], "idea": [1, 79, 91, 100, 115, 117], "go": [1, 33, 54, 79, 80, 95, 96, 105, 116, 117], "stage": [1, 61, 72, 99, 104, 116, 117], "area": [1, 69, 82, 92, 99], "befor": [1, 8, 9, 10, 12, 31, 32, 34, 37, 43, 44, 47, 48, 49, 54, 61, 66, 68, 72, 74, 76, 79, 80, 81, 84, 87, 89, 91, 92, 94, 96, 104, 105, 106, 109, 110, 115, 116], "ad": [1, 10, 12, 37, 38, 43, 48, 61, 62, 66, 68, 72, 73, 90, 92, 94, 95, 97, 107, 109, 115, 116], "item": [1, 4, 10, 12, 65, 85, 92, 102, 105], "roadmap": 1, "onc": [1, 47, 54, 77, 87, 90, 91, 94, 95, 96, 99, 100, 102, 104, 105, 106, 109, 110, 112, 113, 115, 117, 118, 119], "can": [1, 3, 4, 7, 10, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34, 37, 38, 41, 42, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 58, 61, 63, 64, 65, 68, 69, 72, 73, 75, 76, 77, 79, 80, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 119, 120], "given": [1, 3, 6, 9, 10, 12, 23, 25, 26, 31, 32, 47, 61, 69, 72, 74, 75, 79, 80, 83, 84, 88, 89, 107, 108], "prioriti": [1, 90], "statu": 1, "assigne": 1, "etc": [1, 4, 12, 32, 44, 85, 102, 104, 117], "check": [1, 10, 12, 14, 28, 31, 32, 33, 35, 49, 51, 64, 72, 77, 80, 84, 85, 89, 92, 95, 100, 101, 102, 104, 109, 110], "close": [1, 20, 32, 33, 47, 79, 105, 112, 116], "help": [1, 2, 37, 44, 47, 48, 65, 72, 73, 89, 95, 99, 101, 107, 108, 113], "page": [1, 2, 101, 102, 109, 110], "sure": [1, 10, 12, 46, 79, 82, 91, 96, 97, 102, 104, 105, 106, 107, 108], "doesn": [1, 3, 10, 12, 32, 54, 85, 91, 92, 96, 97, 98, 115], "t": [1, 3, 10, 11, 12, 20, 25, 28, 31, 32, 35, 44, 47, 54, 73, 78, 79, 80, 85, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 109, 110, 112, 113, 115, 116, 117, 118], "alreadi": [1, 8, 10, 12, 20, 30, 32, 46, 49, 62, 67, 68, 72, 77, 79, 80, 84, 89, 90, 91, 92, 95, 96, 97, 98, 102, 103, 106, 119], "exist": [1, 12, 25, 26, 31, 32, 37, 38, 45, 49, 52, 84, 85, 92, 96, 97, 102, 106, 108, 112], "been": [1, 8, 10, 12, 35, 74, 77, 79, 80, 84, 89, 92, 95, 102, 105, 115, 116], "solv": 1, "new": [1, 4, 10, 12, 13, 23, 25, 31, 32, 37, 39, 49, 54, 64, 66, 67, 72, 78, 80, 81, 84, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 106, 107, 110, 112, 113, 115, 116, 118, 119], "templat": [1, 25, 84, 96], "place": [1, 12, 54, 65, 69, 78, 85, 90, 92, 93, 95, 96, 110, 112, 113, 119], "ask": [1, 92, 101, 116, 118], "3": [1, 3, 10, 12, 26, 32, 37, 38, 40, 41, 42, 43, 47, 48, 53, 55, 60, 61, 62, 65, 69, 75, 76, 79, 80, 82, 85, 86, 89, 95, 100, 102, 103, 104, 107, 109, 110, 119], "categori": 1, "troubl": [1, 117], "softwar": [1, 41, 90, 100, 101], "user": [1, 10, 12, 24, 31, 46, 49, 50, 61, 65, 85, 89, 92, 100, 109, 113], "enhanc": 1, "thing": [1, 73, 84, 85, 89, 90, 92, 96, 103, 116], "would": [1, 25, 54, 61, 66, 67, 72, 76, 78, 79, 88, 92, 94, 100, 102, 104, 106, 107, 108, 110, 116], "nicer": 1, "necessarili": [1, 75], "problem": [1, 75, 89, 95, 99, 102, 115], "If": [1, 6, 7, 9, 10, 11, 12, 14, 16, 17, 23, 24, 25, 26, 28, 31, 32, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 58, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 72, 74, 75, 76, 77, 78, 79, 80, 81, 83, 84, 85, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 108, 109, 110, 111, 116, 117, 118, 119], "fall": 1, "goe": [1, 95, 119], "here": [1, 20, 32, 69, 72, 76, 79, 85, 86, 88, 92, 95, 96, 97, 100, 102, 103, 106, 107, 108, 110, 111, 112, 113, 114], "long": [1, 49, 54, 71, 90, 104, 105], "isn": [1, 32, 88, 91, 92, 96, 100], "instal": [1, 23, 27, 89, 90, 96, 98, 103, 104, 105, 106, 107, 112, 114, 118], "develop": [1, 50, 100, 101, 102, 105, 112], "branch": [1, 37, 47], "instruct": [1, 87, 96, 100, 101, 102, 104, 105, 106, 107, 109, 118], "conda": [1, 100, 101, 102, 103, 104, 105, 106, 108, 109, 110, 118], "env": [1, 102, 104, 107, 108, 109], "fork": 1, "either": [1, 9, 10, 17, 32, 34, 35, 49, 53, 58, 61, 66, 67, 69, 72, 76, 84, 89, 92, 94, 95, 96, 102, 116], "work": [1, 3, 11, 12, 25, 27, 31, 32, 41, 49, 54, 72, 73, 77, 85, 86, 88, 89, 90, 95, 96, 98, 99, 100, 101, 103, 110, 112, 113, 114, 116, 117], "recommend": [1, 49, 54, 72, 99, 100, 101, 104, 105, 106, 107, 108, 117, 118], "tackl": 1, "multipl": [1, 10, 12, 14, 17, 19, 20, 25, 32, 35, 37, 38, 46, 47, 49, 53, 55, 61, 64, 66, 67, 71, 75, 77, 78, 79, 84, 89, 91, 92, 94, 105, 106, 109, 116, 117], "time": [1, 10, 30, 34, 35, 37, 38, 47, 48, 49, 50, 54, 72, 80, 81, 84, 89, 90, 96, 98, 100, 102, 105, 106, 107, 108, 115, 116], "your": [1, 23, 25, 69, 88, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 113, 115, 116, 117, 118, 119, 120], "name": [1, 7, 9, 10, 12, 13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 26, 27, 28, 29, 32, 33, 36, 37, 38, 41, 42, 45, 46, 47, 48, 49, 50, 52, 56, 60, 61, 62, 66, 67, 69, 70, 72, 73, 75, 77, 81, 84, 85, 86, 89, 92, 96, 97, 100, 102, 103, 104, 105, 106, 107, 109, 110, 116, 118, 119], "relev": [1, 13, 14, 72, 92, 119], "keyword": [1, 34, 42, 65], "eg": 1, "git": [1, 102], "checkout": 1, "b": [1, 6, 61, 84, 85, 92, 102], "john": [1, 86, 100, 101], "some_issu": 1, "some": [1, 3, 7, 12, 20, 28, 30, 43, 54, 64, 72, 75, 77, 84, 86, 88, 92, 93, 94, 95, 96, 100, 102, 103, 104, 105, 106, 107, 108, 109, 110, 112, 115, 116, 117], "addit": [1, 12, 25, 37, 43, 44, 47, 48, 50, 61, 72, 78, 96, 99, 103, 107, 113, 117], "write": [1, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 33, 34, 45, 49, 72, 85], "test": [1, 12, 32, 46, 48, 49, 69, 72, 81, 86, 89, 104, 105, 106, 107, 109], "draft": 1, "pr": 1, "get": [1, 2, 3, 4, 7, 9, 10, 12, 16, 28, 32, 34, 35, 37, 41, 44, 61, 64, 75, 77, 78, 84, 85, 88, 89, 90, 92, 94, 95, 96, 98, 99, 103, 104, 105, 106, 108, 109, 110, 112, 115, 116, 117, 119], "coverag": 1, "statist": [1, 7, 12, 49, 73], "codecov": 1, "narrow": 1, "down": [1, 40, 43, 47, 48, 49, 71, 72, 75, 88, 89, 91, 95, 96, 100, 101, 104, 105, 109, 116, 117, 118], "error": [1, 32, 51, 69, 75, 77, 78, 98, 100, 102, 104, 105, 106, 107, 108, 109, 113, 115], "prone": 1, "line": [1, 3, 5, 9, 11, 34, 47, 72, 75, 91, 92, 93, 94, 95, 96, 98, 101, 109, 112, 115], "subtest": 1, "folder": [1, 12, 32, 45, 47, 49, 50, 69, 72, 81, 87, 89, 90, 91, 104, 105, 106, 107, 109, 118], "aim": 1, "hit": [1, 95, 110, 117, 118], "everi": [1, 3, 6, 12, 26, 37, 38, 42, 44, 47, 48, 49, 54, 69, 78, 89, 92, 95], "point": [1, 3, 6, 7, 9, 10, 12, 14, 34, 47, 52, 53, 55, 58, 60, 61, 63, 64, 65, 66, 69, 71, 72, 75, 76, 78, 80, 82, 85, 89, 91, 95, 98, 104, 105, 107, 116, 117], "cover": [1, 47, 91, 95, 100], "edg": [1, 3, 9, 34, 47, 48, 55, 70, 75, 83, 84, 89, 92, 95, 97, 104, 118], "case": [1, 8, 12, 25, 32, 42, 61, 72, 88, 89, 90, 91, 94, 95, 96, 99, 103, 106, 116, 119], "abil": 1, "try": [1, 12, 25, 32, 79, 80, 85, 88, 92, 95, 96, 97, 98, 99, 100, 102, 103, 105, 112, 116, 117, 120], "add": [1, 3, 4, 10, 12, 13, 25, 39, 43, 47, 48, 60, 61, 67, 73, 78, 84, 87, 92, 94, 97, 115, 116, 118], "file": [1, 5, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 41, 42, 46, 47, 49, 50, 65, 69, 72, 81, 84, 85, 86, 87, 90, 91, 94, 95, 96, 100, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118], "push": 1, "origin": [1, 9, 10, 12, 32, 34, 37, 38, 40, 43, 53, 55, 65, 66, 85, 88, 89, 93, 94, 96, 98, 102, 115], "pass": [1, 10, 11, 20, 32, 34, 37, 45, 59, 72, 75, 95], "fail": [1, 48, 49, 54, 69, 89, 95, 100, 102, 109, 110, 119], "repeat": [1, 37, 38, 47, 54, 66, 84, 113, 115, 118], "step": [1, 3, 12, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 53, 55, 58, 62, 66, 68, 72, 75, 79, 80, 88, 92, 95, 99, 100, 101, 102, 105, 106, 109, 113, 117], "5": [1, 4, 6, 12, 26, 36, 37, 41, 42, 47, 48, 52, 59, 61, 62, 69, 70, 72, 73, 75, 76, 80, 82, 85, 86, 89, 102, 103, 104, 105, 107, 108, 109, 110], "look": [1, 25, 32, 37, 55, 60, 69, 80, 85, 87, 88, 89, 90, 91, 92, 95, 107, 111, 116, 117], "convert": [1, 4, 10, 12, 20, 25, 32, 42, 46, 54, 61, 62, 65, 66, 68, 72, 75, 84, 85, 87, 92, 94, 100, 104, 105, 114, 115], "final": [1, 37, 39, 42, 44, 47, 54, 64, 95, 102, 104, 113, 116], "readi": [1, 72, 106, 112, 115, 117, 120], "button": [1, 87, 91, 98, 109, 110, 116, 117, 118], "onli": [1, 9, 10, 12, 32, 34, 38, 42, 43, 45, 46, 47, 48, 49, 51, 61, 64, 65, 67, 72, 75, 77, 78, 79, 80, 84, 87, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 105, 106, 107, 108, 109, 110, 113], "believ": 1, "merg": [1, 10, 12, 23, 41, 78, 80, 89, 92, 94, 96, 110, 119], "option": [1, 4, 6, 8, 9, 10, 11, 12, 13, 14, 16, 17, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 34, 35, 37, 38, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 55, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 88, 89, 92, 95, 96, 102, 105, 108, 113, 116, 119, 120], "assign": [1, 10, 12, 47, 65, 67, 71, 72, 75, 79, 80, 82, 92, 95, 119], "screen": 1, "self": [1, 80, 81, 86, 105, 110], "themselv": 1, "re": [1, 8, 11, 12, 25, 80, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 102, 103, 104, 105, 106, 107, 108, 109, 110, 112, 114, 115, 117, 119], "sign": 1, "off": [1, 45, 69, 72, 90, 95, 99, 104, 106, 107], "squash": 1, "feautur": 1, "main": [1, 9, 11, 12, 38, 47, 72, 74, 78, 81, 84, 92, 95, 103, 108, 115, 118, 119], "releas": [1, 101, 102, 109, 110], "lint": 1, "black": [1, 34, 89, 115], "21": [1, 33, 69, 80, 86, 89, 102, 104, 105, 106, 107, 108, 109], "6b0": 1, "see": [1, 7, 10, 12, 14, 15, 19, 20, 27, 32, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 53, 54, 58, 61, 62, 63, 66, 68, 69, 71, 72, 73, 75, 76, 77, 78, 82, 84, 86, 87, 88, 89, 91, 92, 94, 95, 96, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 112, 113, 114, 115, 116, 117, 118, 119], "dev_requir": 1, "pep8": 1, "type": [1, 4, 6, 9, 10, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 58, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 78, 80, 81, 84, 85, 89, 91, 93, 95, 96, 97, 99, 100, 101, 102, 104, 105, 106, 107, 109, 112, 113, 117, 118, 119], "hint": [1, 105, 106, 109, 110], "encourag": [1, 47, 48], "document": [1, 41, 42, 50, 75, 87, 89, 108], "googl": [1, 90, 102, 103, 106, 108, 109], "docstr": [1, 38, 40, 43], "heart": 1, "head": [2, 3, 12, 26, 37, 39, 42, 44, 47, 64, 72, 74, 75, 103, 104, 105, 106, 109], "discuss": [2, 95, 100, 101, 102], "sleap": [2, 86, 88, 90, 91, 92, 94, 95, 97, 98, 99, 102, 103, 107, 111, 113, 114, 115, 116, 117, 120], "function": [3, 6, 7, 9, 12, 13, 14, 23, 25, 32, 34, 37, 42, 45, 47, 50, 54, 56, 61, 64, 66, 68, 69, 70, 71, 72, 73, 75, 76, 77, 78, 80, 81, 82, 84, 85, 89, 92, 93, 95, 98, 105, 106, 107, 112], "usual": [3, 25, 32, 79, 88, 92, 94, 95, 96, 106], "you": [3, 8, 11, 12, 13, 23, 25, 32, 34, 35, 49, 69, 73, 79, 80, 84, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120], "ll": [3, 7, 10, 12, 13, 14, 17, 23, 25, 31, 35, 69, 80, 84, 85, 88, 90, 91, 92, 94, 95, 96, 97, 98, 100, 103, 104, 105, 106, 107, 108, 109, 110, 112, 114, 115, 116, 118, 119], "want": [3, 10, 11, 12, 25, 31, 32, 34, 35, 44, 69, 78, 80, 84, 88, 91, 92, 93, 94, 95, 96, 97, 100, 103, 105, 106, 107, 108, 110, 111, 112, 114, 115, 116, 117, 119], "find": [3, 6, 10, 12, 14, 17, 24, 31, 32, 44, 47, 48, 56, 59, 60, 69, 72, 75, 76, 78, 79, 84, 89, 90, 92, 95, 101, 105, 110, 117, 119], "out": [3, 10, 12, 27, 41, 46, 48, 49, 54, 64, 72, 75, 88, 90, 92, 95, 98, 99, 101, 102, 104, 105, 106, 107, 108], "skeleton": [3, 10, 12, 14, 26, 27, 28, 46, 47, 48, 52, 55, 60, 65, 72, 74, 75, 78, 79, 83, 86, 88, 92, 93, 95, 103, 104, 105, 108, 109, 113, 116, 120], "calcul": [3, 6, 7, 60, 61, 66, 68, 69, 73, 78, 82, 107], "mean": [3, 4, 7, 11, 12, 32, 33, 42, 46, 48, 53, 62, 69, 73, 78, 79, 89, 90, 92, 95, 100, 102, 103, 105, 107, 114, 117], "std": [3, 105], "node": [3, 6, 7, 9, 10, 11, 12, 14, 26, 27, 28, 34, 46, 47, 52, 53, 55, 60, 61, 69, 70, 71, 72, 75, 80, 84, 86, 88, 89, 92, 94, 95, 96, 97, 98, 103, 104, 105, 106, 107, 108, 109, 115, 116, 118], "locat": [3, 7, 9, 10, 12, 14, 28, 32, 34, 50, 63, 69, 72, 76, 88, 90, 92, 95, 97, 103, 107, 109, 110, 116, 117], "For": [3, 6, 10, 12, 23, 25, 27, 32, 37, 41, 49, 61, 69, 72, 75, 76, 78, 80, 84, 86, 87, 88, 89, 90, 91, 92, 96, 98, 99, 100, 101, 102, 103, 104, 105, 107, 109, 110, 113, 115, 116, 117, 118, 119, 120], "most": [3, 4, 8, 12, 33, 35, 37, 39, 44, 48, 71, 72, 73, 88, 90, 92, 96, 100, 102, 105, 106, 107, 113, 115, 119], "stabl": [3, 88, 95, 117], "smallest": [3, 31, 46, 66], "length": [3, 10, 41, 54, 61, 66, 67, 68, 69, 72, 75, 76, 78, 82, 89, 92, 95, 103, 104, 105, 109], "abov": [3, 11, 41, 48, 49, 72, 75, 86, 91, 92, 95, 100, 102, 104, 107, 108], "threshold": [3, 6, 58, 63, 69, 70, 75, 76, 78, 79, 80, 89, 92, 95, 107], "like": [3, 12, 32, 35, 37, 41, 44, 46, 49, 69, 73, 79, 80, 87, 88, 90, 92, 93, 94, 95, 96, 98, 100, 102, 103, 104, 105, 106, 107, 108, 109, 110, 114, 116, 118], "thorax": [3, 104, 105, 106, 109], "between": [3, 6, 7, 9, 10, 11, 12, 34, 35, 42, 46, 47, 55, 60, 66, 67, 69, 72, 75, 78, 80, 82, 84, 89, 92, 95, 97, 102, 107, 116, 119], "two": [3, 6, 10, 12, 37, 50, 53, 69, 72, 75, 78, 79, 82, 84, 85, 87, 88, 89, 92, 94, 95, 96, 103, 104, 109, 110, 115, 117, 118, 119], "part": [3, 31, 46, 47, 48, 52, 55, 60, 64, 69, 70, 72, 73, 75, 84, 88, 89, 92, 96, 97, 113, 116, 117, 118], "rel": [3, 10, 36, 37, 39, 41, 42, 44, 47, 48, 49, 53, 55, 58, 60, 61, 65, 72, 75, 76, 88, 95, 97, 98, 117], "each": [3, 4, 6, 7, 10, 12, 23, 26, 27, 31, 32, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 52, 53, 54, 55, 56, 58, 60, 61, 63, 64, 65, 67, 69, 70, 71, 72, 73, 75, 76, 77, 78, 80, 82, 84, 88, 89, 90, 91, 92, 95, 96, 97, 98, 102, 103, 104, 105, 108, 109, 110, 113, 117], "thu": 3, "well": [3, 12, 32, 38, 43, 44, 48, 49, 50, 53, 55, 58, 64, 69, 72, 73, 90, 92, 95, 98, 99, 102, 103, 104, 106, 107, 110, 112, 115], "axi": [3, 42, 53, 54, 55, 60, 61, 62, 63, 68, 72, 75, 76, 82, 103, 105], "2": [3, 6, 9, 10, 11, 12, 33, 36, 37, 38, 40, 42, 43, 44, 47, 48, 52, 53, 54, 55, 58, 59, 60, 61, 62, 63, 65, 66, 69, 70, 71, 72, 73, 75, 76, 79, 80, 82, 83, 84, 86, 89, 92, 95, 100, 102, 103, 107, 109, 119], "fairli": [3, 86, 91], "straightforward": [3, 97], "angl": [3, 48], "found": [3, 12, 24, 25, 32, 37, 54, 69, 72, 75, 80, 84, 85, 87, 95, 98, 102, 103, 105, 106, 109, 110, 117], "rotat": [3, 48, 88, 92, 103, 106, 109, 116], "accordingli": [3, 12, 48, 110], "standard": [3, 34, 37, 42, 44, 46, 47, 48, 53, 54, 55, 58, 62, 69, 76, 78, 79, 86, 89, 96, 104, 105], "deviat": [3, 46, 48, 53, 55, 58, 62, 69, 76], "matrix": [3, 6, 9, 10, 32, 53, 69, 78, 79, 80, 82, 103, 105, 106, 109], "note": [3, 4, 9, 11, 22, 23, 28, 32, 44, 48, 54, 73, 84, 85, 92, 94, 98, 100, 102, 103, 104, 105, 107, 108, 109, 111, 114, 116, 119], "vector": [3, 4, 47, 53, 55, 58, 63, 64, 68, 71, 72, 75, 76, 82], "matric": [3, 6, 9, 103, 113], "shape": [3, 9, 10, 11, 12, 32, 34, 42, 52, 53, 54, 55, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 82, 95, 103, 104, 105, 106, 107, 109, 114], "where": [3, 10, 12, 26, 32, 38, 42, 44, 48, 49, 50, 52, 53, 55, 56, 58, 60, 61, 63, 66, 69, 72, 73, 75, 76, 78, 79, 82, 84, 85, 88, 89, 91, 92, 95, 96, 98, 102, 106, 113, 115, 116], "correspond": [3, 4, 6, 7, 9, 10, 12, 31, 35, 37, 53, 55, 61, 62, 63, 69, 71, 72, 75, 76, 80, 82, 84, 88, 92, 95, 104, 108], "x": [3, 10, 12, 14, 37, 38, 42, 44, 48, 52, 53, 55, 61, 63, 68, 72, 75, 76, 82, 86, 92, 102, 104, 105, 106, 109], "y": [3, 10, 12, 14, 48, 52, 53, 55, 61, 63, 68, 72, 75, 76, 92, 100, 101, 102, 104, 105, 106, 107, 108, 109, 110], "after": [3, 12, 37, 38, 40, 42, 44, 46, 47, 48, 49, 54, 64, 66, 68, 70, 72, 76, 80, 89, 91, 92, 94, 95, 96, 97, 98, 99, 103, 104, 105, 107, 112, 113, 115, 116, 117, 118], "itself": [3, 10, 48, 74, 85, 89, 94, 95, 103, 104], "anoth": [3, 10, 12, 32, 49, 73, 79, 84, 89, 90, 92, 95, 96, 97, 98, 106, 107, 117, 119], "align_instance_point": 3, "so": [3, 9, 10, 11, 12, 20, 27, 30, 32, 34, 38, 41, 43, 46, 47, 49, 53, 61, 62, 63, 69, 73, 75, 77, 78, 80, 84, 86, 88, 90, 92, 93, 94, 95, 96, 100, 102, 103, 104, 105, 106, 107, 108, 109, 110, 114, 115, 117], "default": [3, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 33, 38, 40, 41, 42, 43, 47, 49, 50, 52, 60, 61, 69, 70, 72, 77, 78, 84, 85, 89, 91, 92, 93, 95, 96, 98, 102, 104, 106, 107, 108, 109, 117, 119], "yet": [3, 35, 80, 85, 98, 102, 115, 116, 118], "source_points_arrai": 3, "target_points_arrai": 3, "transform": [3, 4, 10, 47, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 64, 66, 67, 72], "fit": [3, 41, 92, 103], "target": [3, 34, 37, 42, 46, 66, 68, 78, 80, 89, 95], "align_inst": 3, "all_points_arrai": 3, "ndarrai": [3, 4, 6, 9, 10, 12, 32, 34, 35, 52, 65, 68, 69, 72, 75, 78, 79, 80, 82, 83, 84, 85, 105], "node_a": 3, "int": [3, 4, 6, 7, 8, 10, 12, 14, 22, 23, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 52, 53, 54, 55, 58, 59, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 82, 83, 84, 85, 105], "node_b": 3, "rotate_on_node_a": 3, "bool": [3, 4, 9, 10, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 64, 65, 66, 68, 69, 70, 72, 74, 77, 78, 79, 80, 81, 83, 84, 85], "fals": [3, 9, 10, 12, 15, 20, 22, 23, 26, 32, 34, 35, 37, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 51, 53, 54, 55, 58, 60, 61, 62, 64, 65, 66, 68, 69, 72, 74, 78, 80, 81, 83, 84, 85, 89, 92, 102, 103, 104, 105, 106, 107, 109], "align_instances_on_most_st": 3, "min_stable_dist": 3, "float": [3, 6, 7, 10, 12, 14, 32, 34, 36, 40, 42, 43, 44, 46, 47, 48, 49, 52, 53, 55, 58, 59, 61, 62, 63, 66, 67, 68, 69, 70, 72, 73, 75, 76, 78, 79, 80, 81, 82, 83, 84, 104], "0": [3, 4, 10, 12, 14, 26, 32, 34, 35, 36, 37, 42, 43, 44, 45, 46, 47, 48, 49, 52, 53, 54, 55, 56, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 75, 76, 78, 79, 80, 82, 83, 84, 85, 89, 92, 95, 102, 104, 105, 106, 107, 108, 109, 110], "pair": [3, 6, 47, 52, 69, 70, 72, 75, 78, 82, 83, 84, 86, 89, 95, 107, 110, 118, 119], "along": [3, 14, 23, 27, 47, 54, 55, 60, 72, 75, 76, 82, 99, 103, 109], "get_instances_point": 3, "list": [3, 4, 6, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 72, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85, 89, 92, 93, 95, 97, 102, 103, 104, 113, 116], "return": [3, 4, 6, 7, 9, 10, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 103, 104, 105, 106, 107, 108, 109, 110, 115], "singl": [3, 4, 7, 10, 12, 14, 17, 23, 32, 34, 35, 42, 46, 47, 48, 49, 50, 51, 53, 55, 60, 61, 62, 64, 65, 66, 70, 72, 75, 77, 78, 80, 81, 83, 84, 86, 88, 89, 90, 91, 92, 94, 95, 101, 104, 105, 110, 117], "get_mean_and_std_for_point": 3, "aligned_points_arrai": 3, "tupl": [3, 4, 6, 9, 10, 12, 31, 32, 34, 36, 37, 41, 42, 44, 47, 53, 55, 64, 65, 66, 67, 68, 69, 70, 71, 72, 74, 75, 76, 78, 80, 82, 83, 84], "get_most_stable_node_pair": 3, "min_dist": 3, "distanc": [3, 6, 7, 47, 55, 69, 72, 75, 78, 82, 89, 95, 107], "over": [3, 4, 6, 8, 10, 12, 48, 49, 50, 54, 65, 67, 68, 72, 75, 76, 78, 80, 82, 83, 88, 89, 90, 92, 95, 103, 105, 106, 107], "min": [3, 7, 101, 106, 107, 109], "get_stable_node_pair": 3, "node_nam": [3, 9, 11, 12, 84, 103], "sort": [3, 6, 48, 69, 79], "dev": [3, 101, 102], "get_template_points_arrai": 3, "modul": [4, 6, 7, 10, 30, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 50, 64, 65, 72, 74, 75, 76, 77, 79, 82, 84, 107], "frame": [4, 6, 7, 9, 10, 11, 12, 14, 16, 17, 23, 28, 32, 33, 34, 46, 47, 55, 57, 61, 65, 67, 69, 72, 75, 78, 79, 80, 83, 86, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 108, 109, 112, 113, 115, 117, 120], "featur": [4, 36, 37, 38, 41, 42, 44, 46, 47, 69, 70, 78, 88, 92, 100, 113, 116], "pca": 4, "kmean": [4, 103], "class": [4, 7, 10, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 64, 65, 66, 67, 70, 71, 72, 73, 74, 75, 78, 80, 81, 82, 84, 85, 105], "framegroupset": 4, "method": [4, 7, 12, 13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 26, 27, 28, 29, 32, 34, 35, 37, 38, 44, 45, 47, 51, 54, 61, 69, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 86, 89, 92, 96, 100, 101, 104, 107, 108, 115, 116, 118, 119], "str": [4, 7, 8, 9, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 41, 42, 43, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 72, 75, 76, 77, 78, 81, 83, 84, 85, 107], "item_group": 4, "dict": [4, 7, 9, 10, 12, 14, 21, 23, 30, 35, 45, 50, 54, 56, 64, 67, 68, 69, 72, 75, 78, 79, 80, 82, 84, 85, 107], "frameitem": 4, "_noth": [4, 10, 12, 32, 35, 42, 46, 47, 48, 49, 50, 56, 64, 72, 78, 80], "noth": [4, 10, 12, 32, 35, 42, 46, 47, 48, 49, 50, 56, 64, 72, 78, 80], "group_data": 4, "groupset_data": 4, "group": [4, 10, 47, 48, 71, 72, 73, 75, 80, 82, 84, 85, 88, 97, 100, 101, 105, 107, 116, 117], "object": [4, 6, 7, 10, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34, 50, 67, 69, 78, 80, 83, 84, 85, 102, 104, 105, 107, 108, 109], "one": [4, 10, 12, 32, 42, 47, 49, 50, 51, 52, 58, 64, 66, 67, 68, 69, 72, 74, 80, 81, 84, 89, 91, 92, 95, 97, 98, 101, 102, 104, 105, 106, 107, 108, 109, 117, 118, 119, 120], "label": [4, 6, 7, 9, 10, 12, 14, 15, 16, 17, 18, 22, 23, 25, 26, 28, 30, 32, 34, 42, 45, 46, 47, 48, 61, 65, 67, 69, 72, 80, 81, 82, 84, 86, 88, 90, 93, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 117, 118, 119, 120], "dictionari": [4, 7, 9, 10, 12, 14, 20, 23, 25, 35, 42, 49, 50, 54, 56, 57, 64, 65, 67, 68, 69, 72, 78, 80, 82, 84, 85, 107], "map": [4, 6, 27, 37, 42, 44, 47, 49, 53, 55, 56, 58, 61, 63, 64, 65, 67, 69, 70, 71, 72, 75, 76, 80, 81, 82, 83, 84, 88, 89, 92, 96, 104, 106, 107, 109, 113], "extra": [4, 46, 47, 102], "data": [4, 5, 6, 7, 9, 10, 12, 14, 15, 16, 17, 20, 23, 24, 25, 26, 27, 28, 31, 32, 34, 35, 42, 45, 47, 48, 49, 50, 69, 72, 80, 81, 84, 85, 86, 88, 89, 91, 92, 93, 94, 96, 97, 98, 99, 107, 113, 119, 120], "kei": [4, 7, 9, 10, 12, 14, 26, 42, 45, 49, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 72, 78, 79, 81, 82, 84, 85, 95, 103, 104, 105, 107, 116, 119], "id": [4, 20, 65, 75, 84, 89, 105, 106, 109, 112], "valu": [4, 7, 9, 10, 12, 13, 32, 33, 38, 42, 46, 47, 48, 49, 53, 54, 58, 61, 62, 63, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 82, 84, 85, 89, 92, 102, 104, 105, 106, 107, 108, 109], "entir": [4, 9, 12, 26, 32, 37, 48, 53, 65, 76, 89, 90, 92, 94, 96, 105, 106, 107, 115, 116, 120], "properti": [4, 10, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 32, 36, 37, 38, 39, 40, 41, 42, 43, 49, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 64, 65, 66, 67, 70, 72, 74, 78, 80, 81, 84], "all_item": 4, "append_to_group": 4, "extend_group_item": 4, "item_list": 4, "get_item_group": 4, "contain": [4, 10, 12, 14, 17, 23, 27, 28, 32, 37, 41, 42, 46, 47, 49, 50, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 65, 66, 67, 69, 71, 72, 75, 76, 79, 81, 82, 84, 85, 86, 89, 90, 91, 94, 95, 96, 104, 105, 106, 107, 110, 112], "iter": [4, 12, 32, 54, 57, 65, 67, 84, 85, 113, 117], "yield": [4, 12, 54, 57, 61, 72], "sampl": [4, 12, 42, 45, 46, 48, 53, 54, 55, 58, 63, 67, 68, 71, 72, 75, 76, 86, 88, 92, 98, 99, 103, 111, 112, 113, 116, 120], "per_group": 4, "unique_sampl": 4, "true": [4, 9, 10, 12, 23, 24, 26, 30, 32, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 64, 65, 66, 68, 69, 70, 72, 74, 76, 77, 78, 79, 80, 83, 84, 85, 89, 102, 103, 104, 105, 106, 107, 108, 109], "current": [4, 12, 14, 23, 26, 32, 37, 42, 44, 45, 47, 49, 53, 55, 74, 77, 79, 80, 81, 84, 85, 87, 88, 90, 92, 95, 98, 101, 102, 105, 106, 110, 116, 118], "order": [4, 10, 12, 32, 37, 42, 46, 47, 48, 52, 54, 60, 62, 65, 66, 67, 72, 73, 75, 76, 79, 80, 84, 85, 96, 97, 103, 104, 116, 117], "match": [4, 10, 11, 12, 23, 32, 34, 37, 44, 46, 47, 57, 60, 65, 69, 71, 72, 75, 78, 79, 80, 82, 84, 85, 89, 92, 95, 96, 108, 109, 114, 119], "drawn": [4, 88, 92, 95], "paramet": [4, 6, 7, 9, 10, 11, 12, 14, 16, 23, 25, 26, 28, 30, 31, 32, 34, 37, 38, 39, 40, 41, 42, 43, 44, 48, 50, 51, 52, 53, 54, 55, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 88, 89, 91, 95, 96, 98, 99, 100, 106, 108, 109, 110, 112, 113], "number": [4, 6, 7, 10, 12, 26, 32, 33, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 51, 53, 54, 58, 61, 62, 64, 66, 69, 70, 71, 72, 73, 75, 78, 79, 80, 85, 86, 88, 89, 92, 95, 98, 100, 101, 103, 106, 109, 110, 113, 119], "whether": [4, 10, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 34, 41, 42, 44, 47, 49, 53, 58, 69, 72, 78, 80, 81, 83, 84, 85, 89, 92, 95, 96, 100, 118], "ensur": [4, 12, 23, 43, 46, 49, 51, 61, 66, 67, 72, 75, 77, 79, 86, 96, 100, 102, 119], "share": [4, 77, 96, 100, 102, 104, 107, 108], "video": [4, 7, 9, 10, 11, 12, 14, 16, 17, 23, 24, 26, 27, 28, 30, 33, 34, 46, 65, 67, 69, 72, 86, 87, 88, 89, 90, 92, 94, 95, 96, 97, 98, 100, 104, 105, 108, 109, 111, 112, 113, 115, 116, 120], "frame_idx": [4, 10, 12, 69, 104, 105], "just": [4, 10, 12, 23, 32, 49, 61, 72, 79, 84, 85, 88, 92, 94, 95, 96, 97, 98, 103, 104, 105, 106, 108, 110, 111, 115, 116, 117, 119], "simpl": [4, 21, 25, 29, 35, 37, 38, 39, 40, 49, 50, 72, 80, 85, 89, 95, 96, 103, 110], "wrapper": [4, 12, 32, 33, 54, 66, 69, 74, 75, 78, 84, 85], "plu": [4, 10, 95], "imag": [4, 10, 12, 14, 17, 23, 32, 34, 38, 39, 41, 42, 45, 46, 47, 48, 49, 52, 53, 55, 58, 61, 62, 65, 66, 68, 72, 75, 76, 80, 81, 83, 84, 86, 88, 89, 90, 91, 92, 95, 96, 97, 98, 104, 105, 106, 107, 108, 110, 113, 116, 117], "itemstack": 4, "none": [4, 6, 7, 9, 10, 11, 12, 14, 16, 17, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 34, 35, 37, 38, 39, 42, 44, 45, 46, 47, 48, 49, 51, 52, 55, 59, 60, 61, 62, 64, 65, 66, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 89, 98, 102, 103, 104, 106, 108, 109], "ownership": 4, "meta": [4, 72, 84], "group_set": 4, "own": [4, 25, 54, 84, 90, 91, 92, 101, 102, 105, 106, 113, 116, 120], "more": [4, 8, 10, 12, 27, 37, 38, 40, 41, 42, 43, 44, 47, 48, 51, 58, 64, 67, 68, 72, 75, 77, 79, 80, 81, 84, 87, 88, 89, 90, 91, 92, 97, 99, 101, 102, 107, 108, 113, 114, 115, 117, 118, 119, 120], "row": [4, 9, 10, 52, 58, 61, 63, 66, 75, 78, 79, 82], "numpi": [4, 9, 10, 12, 26, 27, 32, 35, 52, 65, 68, 69, 72, 76, 78, 80, 82, 85, 102, 103, 104, 105, 106, 107, 108, 109], "specifi": [4, 7, 9, 10, 11, 12, 16, 25, 26, 28, 32, 34, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 60, 61, 62, 63, 65, 66, 67, 68, 70, 72, 74, 75, 76, 79, 80, 81, 82, 83, 84, 85, 87, 89, 92, 95, 96, 100, 106, 107, 109], "store": [4, 9, 10, 11, 12, 20, 23, 26, 32, 36, 46, 48, 49, 52, 54, 60, 61, 65, 66, 67, 72, 78, 84, 90, 96, 100, 103, 104, 106, 109, 114, 118], "metadata": [4, 10, 12, 14, 17, 20, 27, 28, 36, 49, 72, 104, 106, 107, 112], "oper": [4, 12, 37, 38, 40, 43, 46, 53, 54, 55, 61, 62, 64, 65, 66, 67, 68, 69, 72, 73, 75, 76, 100, 104, 105, 106, 107, 109], "stack": [4, 37, 38, 40, 41, 42, 43, 44, 47, 48, 54, 76, 106, 109], "groupset": 4, "brisk_bag_of_featur": 4, "brisk_threshold": 4, "40": [4, 86, 106, 109], "vocab_s": 4, "20": [4, 75, 80, 86, 103, 104, 105, 106, 107, 109, 116, 117], "bag": 4, "base": [4, 7, 10, 12, 13, 20, 32, 33, 35, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 49, 52, 62, 64, 69, 70, 72, 75, 76, 78, 80, 81, 83, 89, 92, 93, 94, 95, 98, 99, 100, 101, 102, 113], "brisk": 4, "current_groupset": 4, "recent": [4, 119], "extend_ownership": 4, "row_count": 4, "extend": [4, 10, 86], "next": [4, 12, 89, 92, 95, 102, 105, 106, 107, 108, 113, 116, 117, 119], "flatten": [4, 53, 55, 68, 70, 103, 107], "d": [4, 61, 72, 82, 84, 85, 86, 90, 92, 93, 94, 95, 100, 101, 102, 104, 105, 106, 107, 108, 109], "arrai": [4, 6, 9, 10, 12, 32, 52, 65, 68, 69, 72, 75, 76, 80, 82, 84, 103, 104, 105], "get_all_items_from_group": 4, "get_item_data": 4, "belong": [4, 10, 12, 61, 75, 76, 108], "get_item_data_idx": 4, "index": [4, 7, 9, 10, 11, 12, 26, 30, 32, 34, 45, 46, 55, 58, 60, 61, 65, 71, 72, 73, 75, 76, 77, 80, 82, 84, 85, 89, 96, 100, 104, 105, 106, 109], "get_raw_imag": 4, "scale": [4, 10, 34, 36, 37, 38, 39, 40, 42, 43, 44, 46, 47, 48, 52, 53, 55, 58, 61, 62, 63, 65, 66, 68, 69, 71, 72, 73, 75, 76, 80, 83, 88, 89, 98, 104, 105, 108, 109], "raw": [4, 20, 46, 48, 50, 52, 53, 55, 65, 72, 103, 105, 108], "hog_bag_of_featur": 4, "hog": 4, "descriptor": 4, "n_cluster": [4, 103], "k": [4, 73, 103], "cluster": [4, 72, 89], "make_sample_group": 4, "samples_per_video": 4, "sample_method": 4, "stride": [4, 10, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 53, 55, 58, 61, 63, 66, 70, 72, 74, 75, 83, 88, 92, 98, 106, 109], "n_compon": 4, "sample_group": 4, "samples_per_group": 4, "parallelfeaturepipelin": 4, "pipelin": [4, 12, 32, 48, 54, 56, 61, 65, 69, 72, 75, 80, 81, 89, 91, 95, 98, 103, 106, 109, 110, 117], "featuresuggestionpipelin": 4, "videos_as_dict": 4, "enabl": [4, 32, 41, 47, 48, 49, 53, 54, 72, 77, 89, 95, 100, 102, 104, 105, 106, 107, 109, 112, 113], "per": [4, 7, 32, 34, 40, 43, 47, 48, 72, 78, 79, 80, 83, 88, 89, 95], "parallel": [4, 47, 48, 49, 54], "suggest": [4, 12, 22, 23, 65, 80, 89, 93, 95, 98, 99, 100, 115, 116], "desir": [4, 12, 38, 40, 42, 43, 44, 47, 49, 52, 60, 61, 62, 66, 80, 91, 95, 108, 113, 117], "call": [4, 12, 13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 42, 45, 54, 69, 72, 73, 76, 78, 80, 85, 91, 96, 105, 106, 110, 113], "run": [4, 8, 12, 34, 45, 49, 50, 64, 65, 72, 75, 77, 80, 81, 82, 87, 88, 89, 91, 92, 94, 95, 98, 100, 102, 103, 105, 106, 108, 109, 112, 117, 119, 120], "process": [4, 12, 26, 32, 35, 47, 48, 54, 56, 61, 64, 65, 66, 68, 80, 85, 88, 90, 91, 95, 96, 98, 100, 102, 106, 112, 113, 115, 117], "care": [4, 43, 104, 105, 106, 107, 108], "serial": [4, 12, 32, 49, 50, 72, 84, 104], "pool": [4, 37, 38, 40, 43, 47, 66, 69], "deseri": [4, 12, 13, 14, 15, 17, 18, 21, 22, 23, 24, 26, 27, 28, 29, 32, 50, 84], "back": [4, 10, 32, 35, 54, 61, 75, 79, 80, 89, 92, 100, 110], "suggestionfram": [4, 12], "video_idx": [4, 12, 26, 34], "idx": [4, 6, 12, 32, 105], "classmethod": [4, 10, 12, 15, 16, 17, 18, 22, 23, 24, 27, 28, 32, 38, 40, 41, 42, 43, 44, 50, 52, 60, 61, 62, 64, 65, 66, 70, 72, 73, 74, 75, 78, 80, 81, 84], "tuples_to_suggest": 4, "command": [5, 11, 23, 25, 49, 87, 91, 92, 93, 94, 95, 96, 100, 102, 109, 112, 116, 117, 118, 119], "util": [5, 11, 31, 36, 53, 55, 58, 62, 63, 67, 69, 71, 72, 75, 77, 83, 95, 104], "print": [5, 12, 64, 68, 72, 77, 102, 103, 104, 105, 106, 107, 114], "produc": [6, 32, 47, 53, 54, 55, 62, 64, 65, 70, 72, 80, 88], "predict": [6, 8, 10, 12, 30, 46, 47, 49, 61, 64, 69, 70, 72, 73, 75, 78, 80, 87, 88, 89, 91, 93, 95, 96, 98, 101, 103, 104, 105, 106, 107, 108, 109, 111, 112, 113, 116, 117, 119, 120], "dataset": [6, 9, 11, 14, 15, 17, 18, 19, 22, 23, 25, 27, 28, 30, 32, 34, 45, 46, 48, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 72, 81, 84, 91, 92, 96, 101, 103, 104, 105, 106, 107, 111, 113, 114, 117, 118, 120], "calculate_pairwise_cost": 6, "instances_a": 6, "union": [6, 10, 12, 22, 23, 25, 28, 32, 37, 60, 64, 65, 69, 70, 72, 75, 78, 80, 81, 82, 83, 84], "predictedinst": [6, 10, 12, 26, 69, 72, 104, 105], "instances_b": 6, "cost_funct": 6, "callabl": [6, 12, 22, 23, 31, 34, 42, 45, 54, 56, 78, 79, 80, 81], "pairwis": [6, 55, 69, 80], "cost": [6, 38, 40, 43, 46, 47, 48, 54, 61, 72, 78, 79, 80, 82, 88, 95, 104, 107], "compare_instance_list": 6, "list_points_arrai": 6, "match_instance_list": 6, "overal": [6, 10, 47], "total": [6, 7, 12, 34, 48, 61, 67, 72, 75, 95, 104, 105, 106, 109], "match_instance_lists_nodewis": 6, "thresh": [6, 79, 107], "first": [6, 7, 9, 11, 12, 14, 16, 28, 32, 34, 37, 38, 40, 42, 43, 44, 48, 52, 53, 54, 55, 61, 62, 64, 65, 68, 72, 77, 78, 79, 80, 84, 85, 89, 91, 92, 94, 95, 97, 102, 103, 104, 105, 106, 107, 108, 109, 110, 113, 114, 115, 117, 118, 119, 120], "closest": [6, 7, 72, 82], "second": [6, 14, 32, 34, 49, 72, 79, 84, 89, 95, 98, 115], "matched_instance_dist": 6, "labels_gt": [6, 69, 107, 109], "io": [6, 65, 89, 114], "labels_pr": [6, 69, 106, 107, 109], "match_lists_funct": 6, "frame_rang": [6, 12], "rang": [6, 10, 12, 26, 32, 33, 41, 42, 48, 61, 62, 68, 69, 72, 75, 85, 88, 89, 92, 96, 98, 103, 107], "ground": [6, 59, 69, 72, 73, 83, 89, 92, 107, 109, 113], "truth": [6, 59, 69, 72, 73, 83, 89, 92, 107, 109, 113], "compar": [6, 12, 32, 84, 85, 89, 107], "indic": [6, 12, 32, 45, 46, 52, 53, 55, 58, 60, 61, 65, 67, 69, 71, 72, 75, 76, 78, 82, 84, 89, 92, 95, 115], "nodeless_point_dist": 6, "inst_a": 6, "inst_b": 6, "ignor": [6, 9, 10, 37, 46, 49, 60, 69, 75, 76, 84, 100, 104, 107, 108], "point_dist": 6, "point_match_count": 6, "dist_arrai": 6, "point_nonmatch_count": 6, "seri": [7, 103], "give": [7, 72, 84, 88, 89, 90, 92, 95, 96, 98, 110, 115, 116], "statisticseri": 7, "variou": [7, 11, 12, 32, 87, 89, 92], "numer": [7, 12, 14, 80, 85, 104], "get_instance_score_seri": 7, "reduct": [7, 48, 53, 55, 66], "sum": [7, 55, 95], "score": [7, 9, 10, 12, 27, 47, 69, 72, 75, 78, 80, 89, 92, 104, 105, 107], "doc": [7, 27, 87, 101, 102, 103], "get_point_count_seri": 7, "get_point_displacement_seri": 7, "displac": [7, 75, 80], "same": [7, 10, 12, 14, 27, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 49, 50, 52, 53, 54, 55, 58, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 75, 76, 78, 79, 83, 84, 85, 88, 90, 91, 92, 93, 94, 95, 96, 100, 102, 104, 108, 109, 110], "track": [7, 8, 9, 10, 11, 12, 26, 27, 28, 35, 46, 47, 58, 61, 65, 66, 67, 72, 74, 78, 79, 83, 86, 92, 93, 96, 97, 100, 101, 103, 104, 105, 109, 113, 114, 115, 116, 120], "earlier": [7, 80], "max": [7, 37, 38, 43, 46, 53, 55, 66, 72, 75, 78, 80, 88, 89, 98, 106, 109], "get_point_score_seri": 7, "get_primary_point_displacement_seri": 7, "primary_nod": 7, "get_tracking_score_seri": 7, "cli": [8, 11, 72, 81, 89, 100, 105, 106, 108, 112], "mostli": [8, 12, 49, 54, 77, 115], "deprec": [8, 23], "cleaner": [8, 80], "cull": [8, 78, 79, 80, 89, 95], "ii": 8, "connect": [8, 35, 36, 37, 38, 40, 41, 42, 43, 44, 47, 70, 72, 74, 75, 78, 84, 89, 90, 92, 95, 96, 97, 103, 104, 109, 113, 118], "break": [8, 78, 80, 89, 100, 102], "let": [8, 90, 91, 92, 94, 96, 98, 103, 104, 105, 107, 108, 109, 110, 116, 117, 119], "control": [8, 33, 44, 47, 49, 75, 83, 88, 91, 92, 98, 109, 110], "how": [8, 34, 38, 46, 47, 49, 66, 69, 78, 80, 85, 86, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 103, 104, 105, 106, 107, 108, 110, 112, 113, 115, 116, 117], "select": [8, 12, 32, 44, 46, 67, 78, 80, 86, 87, 89, 91, 94, 95, 96, 98, 99, 102, 109, 113, 117, 118, 119, 120], "better": [8, 23, 72, 75, 79, 88, 90, 94, 107, 115, 117], "fit_track": 8, "filenam": [8, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 45, 50, 65, 69, 84, 85, 87, 89, 90, 91, 96, 103, 104, 105, 109, 110], "instance_count": [8, 12, 78, 80, 103], "wrap": [8, 14, 17, 64, 72, 75, 77, 105], "easier": [8, 47, 50, 69, 73, 88, 95, 113], "api": [8, 25, 27, 72, 75, 81, 84, 100, 101, 104, 105, 107, 112], "hdf5": [9, 11, 12, 18, 20, 23, 25, 27, 28, 32, 84, 85, 89, 96, 103, 104, 111, 112, 114], "csv": [9, 11, 12, 17, 49, 89, 92, 96, 107, 109], "occup": [9, 12, 113], "empti": [9, 12, 32, 39, 65, 78, 89, 116, 118], "By": [9, 32, 92, 98, 105, 119], "also": [9, 12, 23, 25, 32, 41, 46, 47, 50, 53, 58, 60, 61, 62, 63, 65, 66, 68, 69, 71, 72, 75, 76, 77, 78, 80, 82, 87, 89, 90, 91, 92, 94, 95, 96, 98, 100, 102, 103, 104, 105, 106, 107, 110, 113, 115, 116, 117, 119], "begin": [9, 45, 48, 49, 90], "end": [9, 12, 37, 38, 43, 45, 48, 49, 50, 54, 62, 64, 85, 92, 95, 100, 103, 113], "although": [9, 10, 25, 47, 94, 95, 96, 102, 115, 117], "argument": [9, 11, 12, 23, 32, 34, 42, 44, 45, 60, 61, 65, 66, 72, 76, 79, 89, 96, 109], "track_occup": [9, 11, 12, 28, 103, 114], "track_nam": [9, 11, 12, 103], "edge_nam": [9, 11, 84], "edge_ind": [9, 11, 55, 72, 75, 84], "point_scor": [9, 11], "instance_scor": [9, 10, 11, 72, 105], "tracking_scor": [9, 10, 11, 104, 105], "labels_path": [9, 89, 109], "path": [9, 11, 12, 16, 26, 30, 31, 32, 33, 34, 38, 42, 45, 46, 47, 49, 50, 65, 69, 72, 81, 85, 87, 89, 90, 91, 92, 95, 96, 100, 102, 103, 106, 107, 108, 109, 110, 114], "slp": [9, 11, 12, 22, 32, 69, 86, 89, 91, 96, 103, 104, 105, 106, 107, 108, 109, 110, 111], "gui": [9, 10, 12, 24, 25, 34, 49, 90, 91, 93, 94, 95, 96, 100, 101, 106, 110, 111, 112, 113, 115, 118], "context": [9, 12, 35, 98], "video_path": [9, 18, 69, 89, 109], "video_ind": [9, 57, 65], "scalar": [9, 10, 12, 46, 47, 54, 61, 65, 66, 68, 69, 72, 75, 76, 78, 82, 83], "integ": [9, 12, 37, 41, 42, 44, 45, 46, 47, 48, 49, 58, 61, 62, 66, 68, 71, 72, 75, 76, 89], "proven": [9, 12, 67, 109], "denot": [9, 10, 12, 41, 61, 69, 71, 72, 75, 82, 107], "column": [9, 10, 11, 66, 72, 76, 78, 79, 89, 114], "major": [9, 11, 99, 104, 114], "matlab": [9, 11, 24, 30, 84, 89, 103, 113, 120], "get_edges_as_np_str": 9, "bytes_": 9, "np": [9, 12, 32, 72, 75, 76, 82, 85, 103, 105, 107], "string_": 9, "get_nodes_as_np_str": 9, "get_occupancy_and_points_matric": 9, "all_fram": [9, 12], "build": [9, 12, 32, 33, 36, 37, 39, 41, 51, 60, 61, 62, 64, 66, 72, 74, 101, 102, 103, 105, 106, 109, 113], "assum": [9, 12, 32, 37, 60, 62, 72, 83, 84, 85, 92, 102, 107, 110, 117], "zero": [9, 10, 32, 53, 58, 63, 66, 70, 89, 95, 103, 104, 105, 106, 107, 108, 109], "up": [9, 32, 35, 37, 43, 44, 47, 48, 49, 55, 60, 65, 67, 72, 78, 79, 81, 85, 86, 88, 89, 91, 92, 93, 95, 97, 101, 102, 103, 104, 106, 107, 108, 109, 110, 115, 116, 117], "output": [9, 10, 11, 12, 16, 26, 28, 32, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 47, 50, 52, 53, 55, 56, 58, 60, 61, 64, 65, 66, 67, 68, 70, 72, 73, 74, 75, 81, 84, 88, 89, 92, 96, 102, 104, 105, 106, 107, 109, 110], "last": [9, 12, 32, 35, 37, 41, 42, 53, 55, 61, 62, 63, 68, 72, 75, 76, 77, 80, 89, 92, 96, 100, 118], "source_object": [9, 13, 14, 16, 21, 22, 23, 25, 27, 28, 29], "get_tracks_as_np_str": 9, "output_path": [9, 12, 109], "coordin": [9, 10, 12, 14, 20, 47, 48, 52, 53, 55, 59, 61, 63, 65, 69, 71, 72, 75, 76, 82, 103, 104], "written": [9, 13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 26, 27, 28, 29, 34, 49, 110], "save": [9, 11, 12, 23, 25, 30, 32, 33, 34, 45, 46, 47, 48, 49, 50, 65, 69, 72, 80, 81, 84, 85, 86, 87, 89, 91, 92, 94, 96, 100, 103, 104, 106, 107, 109, 110, 117, 120], "analysi": [9, 11, 12, 16, 22, 25, 27, 28, 89, 93, 100, 107, 111, 113, 119, 120], "remove_empty_tracks_from_matric": 9, "occupancy_matrix": [9, 114], "locations_matrix": 9, "unoccupi": 9, "2d": [9, 53, 55, 58, 75, 76], "4d": [9, 32, 39], "3d": 9, "write_csv_fil": 9, "data_dict": 9, "write_occupancy_fil": 9, "transpos": [9, 11, 37, 39, 40, 43, 44, 47, 92, 95, 103, 114, 119], "format": [9, 10, 11, 12, 30, 32, 42, 50, 61, 62, 64, 72, 84, 85, 87, 89, 91, 92, 95, 96, 104, 105], "structur": [10, 12, 37, 38, 48, 50, 67, 72, 84, 86, 87, 105, 106], "relationship": [10, 47, 84], "A": [10, 11, 12, 14, 23, 26, 30, 32, 35, 37, 38, 39, 41, 42, 44, 45, 46, 47, 49, 50, 52, 53, 54, 55, 56, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 89, 92, 96, 100, 101, 104, 106, 107, 110], "labeledfram": [10, 12, 30, 32, 65, 69, 78, 80, 104], "pointarrai": 10, "predictedpointarrai": 10, "associ": [10, 12, 26, 38, 41, 47, 53, 60, 65, 69, 70, 72, 75, 80, 104, 108, 113], "predictedpoint": [10, 78, 104], "objectss": 10, "ideal": [10, 54, 97], "mani": [10, 12, 37, 47, 72, 80, 85, 89, 92, 95, 98, 100, 102, 113, 115, 117], "sync": [10, 90], "manipul": [10, 104], "from_predict": 10, "altern": [10, 77, 89, 96, 102, 118], "whose": [10, 39, 65, 84], "multi": [10, 37, 41, 42, 44, 47, 53, 54, 61, 66, 69, 70, 72, 75, 76, 77, 81, 88, 89, 96, 100, 101, 117], "allow": [10, 12, 20, 23, 25, 35, 47, 48, 49, 64, 72, 74, 84, 89, 92, 96, 100, 102, 104, 106, 110, 113, 119], "anim": [10, 14, 40, 47, 58, 84, 86, 88, 89, 91, 92, 93, 95, 99, 100, 103, 107, 109, 110, 112, 113, 115, 116, 117], "across": [10, 12, 32, 38, 46, 48, 49, 54, 55, 65, 67, 69, 72, 73, 75, 82, 84, 92, 93, 95, 96, 108, 113, 115, 120], "wa": [10, 12, 14, 17, 31, 32, 37, 38, 45, 49, 50, 53, 61, 62, 65, 72, 77, 79, 82, 84, 87, 89, 92, 94, 95, 100, 101, 104, 105, 106, 107, 109, 110], "copi": [10, 12, 14, 35, 41, 47, 48, 65, 72, 81, 82, 84, 85, 90, 92, 94, 96, 103, 110, 112, 116], "refer": [10, 12, 20, 32, 46, 69, 72, 75, 76, 78, 80, 82, 87, 92, 95, 100, 104, 105, 107], "field": [10, 38, 40, 42, 43, 47, 49, 51, 55, 64, 66, 70, 72, 74, 75, 86, 87, 88, 92, 96, 97, 98, 109, 110, 117], "bounding_box": 10, "bound": [10, 14, 46, 47, 48, 52, 60, 61, 68, 69, 70, 72, 76, 78, 82, 95], "box": [10, 14, 32, 46, 47, 52, 60, 61, 69, 70, 72, 76, 78, 82, 88, 95], "y1": [10, 52, 61, 76, 82], "x1": [10, 52, 61, 76, 82], "y2": [10, 52, 61, 76, 82], "x2": [10, 52, 61, 76, 82], "centroid": [10, 27, 46, 47, 53, 58, 59, 60, 61, 62, 64, 66, 70, 72, 76, 78, 81, 87, 88, 89, 91, 93, 95, 96, 98, 104, 105, 109, 110, 117], "comput": [10, 12, 32, 37, 44, 46, 47, 48, 49, 53, 55, 60, 61, 62, 66, 68, 69, 72, 73, 75, 76, 78, 80, 81, 82, 90, 91, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 112], "median": [10, 69], "visibl": [10, 12, 47, 65, 69, 73, 78, 86, 92, 94, 95, 97, 104, 107, 116], "fill_miss": [10, 103], "max_x": 10, "max_i": 10, "miss": [10, 12, 31, 32, 46, 53, 69, 71, 75, 80, 92, 95, 104, 107, 108], "modifi": [10, 12, 38, 39, 41, 52, 65, 77, 78, 79, 82, 92], "outsid": [10, 84], "valid": [10, 12, 32, 38, 41, 42, 45, 46, 47, 48, 49, 51, 62, 67, 72, 79, 81, 85, 86, 89, 92, 95, 98, 106, 107, 109, 110, 117], "from_numpi": [10, 32], "n_node": [10, 12, 52, 53, 55, 60, 61, 65, 69, 72, 75], "dtype": [10, 32, 42, 52, 53, 55, 58, 60, 61, 62, 63, 65, 66, 68, 71, 75, 76, 85, 104, 105, 106, 107, 109], "float32": [10, 42, 52, 53, 55, 58, 60, 61, 62, 63, 65, 68, 71, 72, 75, 76, 105, 106, 109], "nan": [10, 12, 53, 54, 60, 68, 69, 71, 72, 75, 76, 79, 80, 82, 89, 103, 104, 105], "alia": [10, 12, 45, 81], "from_pointsarrai": 10, "get_points_arrai": 10, "invisible_as_nan": 10, "full": [10, 12, 14, 17, 25, 28, 34, 42, 46, 47, 54, 61, 64, 65, 66, 68, 72, 75, 77, 84, 85, 86, 90, 96, 98, 101, 103], "recarrai": 10, "form": [10, 12, 37, 38, 42, 43, 44, 47, 49, 52, 54, 55, 56, 64, 67, 69, 70, 72, 75, 84, 97, 105, 108], "view": [10, 49, 84, 88, 89, 95, 98, 109], "underli": [10, 12, 20, 32, 50, 54, 72, 75, 81], "invis": 10, "mark": [10, 48, 92, 97, 115, 116, 117], "sinc": [10, 20, 23, 25, 32, 35, 46, 47, 48, 53, 54, 69, 72, 75, 78, 79, 80, 85, 88, 89, 91, 92, 95, 97, 98, 107, 108, 109, 110, 112, 113, 115, 116, 117], "don": [10, 11, 28, 32, 73, 85, 89, 90, 91, 99, 100, 102, 104, 105, 106, 109, 110, 112, 117], "present": [10, 12, 32, 37, 47, 50, 53, 55, 60, 61, 64, 72, 76, 80, 84, 89, 92], "access": [10, 12, 26, 32, 48, 54, 75, 89, 90, 92, 96, 100, 104, 110, 112], "midpoint": [10, 47, 60], "center": [10, 12, 46, 47, 48, 53, 59, 60, 61, 63, 64, 66, 68, 70, 72, 76, 81, 86, 87, 88, 91, 96, 98, 103, 104, 109, 117], "n_visible_point": 10, "nodes_point": 10, "points_arrai": 10, "replac": [10, 12, 23, 31, 32, 38, 53, 58, 63, 67, 68, 69, 70, 76, 79, 82, 84, 91, 92, 100, 102, 106, 108, 115], "were": [10, 12, 32, 46, 54, 58, 62, 67, 72, 77, 78, 80, 86, 87, 89, 92, 95, 102, 103, 104, 108, 110, 111, 113, 115], "transform_point": 10, "transformation_matrix": 10, "affin": [10, 47, 48, 55, 64, 70, 72, 75, 88, 92, 96, 97, 117], "instanceslist": 10, "arg": [10, 11, 12, 15, 17, 18, 21, 22, 23, 24, 25, 28, 29, 32, 34, 47, 72, 73, 80, 81, 107, 109], "labeled_fram": [10, 12, 104, 105, 108], "attribut": [10, 12, 32, 37, 41, 42, 44, 46, 47, 48, 49, 50, 51, 53, 54, 55, 58, 60, 61, 62, 64, 65, 66, 67, 70, 72, 81, 84, 105], "append": [10, 12, 22, 23, 26, 37, 45, 49, 62, 64, 69, 89, 105, 108], "clear": [10, 12, 79, 80, 86, 89, 92, 101], "shallow": [10, 12, 44, 97], "normal": [10, 37, 38, 46, 47, 48, 53, 61, 68, 69, 72, 75, 76, 78, 80, 95, 100, 106], "insert": [10, 12], "pop": [10, 92, 102, 116], "hold": [10, 20, 32, 74, 75, 92, 95, 116], "complex_frame_merg": 10, "base_fram": 10, "new_fram": [10, 12], "conflict": [10, 12, 37, 38, 49, 94, 102], "occur": [10, 12, 49, 54, 95, 113, 115, 116, 119], "perfectli": [10, 12, 14, 17, 53, 103], "those": [10, 12, 32, 46, 47, 72, 84, 89, 92, 94, 96, 102, 104, 107, 115, 117], "three": [10, 12, 14, 75, 95, 96, 102, 117], "complex_merge_between": [10, 12], "base_label": [10, 12], "everyth": [10, 80, 92, 117], "cleanli": [10, 12], "retriev": [10, 75, 107], "non": [10, 12, 25, 32, 48, 49, 66, 72, 76, 78, 80, 89, 92, 93, 97, 102, 103, 105], "has_predicted_inst": 10, "has_tracked_inst": 10, "has_user_inst": 10, "height": [10, 14, 32, 33, 34, 37, 38, 42, 43, 44, 46, 47, 48, 52, 53, 55, 61, 62, 65, 66, 68, 71, 72, 74, 75, 76, 80, 83, 89, 96], "width": [10, 14, 32, 33, 34, 37, 38, 42, 43, 44, 46, 47, 48, 52, 53, 55, 61, 62, 65, 66, 68, 71, 72, 74, 75, 76, 80, 83, 89, 96], "channel": [10, 32, 34, 37, 38, 39, 41, 42, 44, 46, 47, 53, 58, 61, 62, 65, 66, 70, 71, 72, 73, 74, 75, 76, 83, 96, 102, 104, 118], "instances_to_show": 10, "regular": [10, 80, 89, 92, 115], "static": [10, 12, 32, 33, 80, 84], "merge_fram": 10, "remove_redund": 10, "know": [10, 92, 102, 105, 119], "drop": [10, 35, 54, 64, 95, 117, 118], "perfect": [10, 48, 69], "n_predicted_inst": 10, "n_tracked_inst": 10, "n_user_inst": 10, "plot": [10, 83, 92, 103, 104, 105, 107, 108], "load": [10, 12, 20, 23, 30, 32, 41, 42, 47, 48, 50, 54, 65, 69, 72, 84, 102, 104, 105, 106, 107, 108, 109, 112], "figur": [10, 45, 81, 83, 103, 105, 107], "nn": [10, 89, 106, 107, 108, 109], "viz": [10, 45, 49, 96, 106, 109], "plot_img": [10, 83], "plot_inst": [10, 83], "plot_predict": 10, "predicted_inst": [10, 12, 59, 66, 75], "remove_empty_inst": [10, 12], "remove_untrack": 10, "tracked_inst": [10, 80], "training_inst": 10, "train": [10, 12, 23, 32, 42, 45, 46, 47, 48, 49, 50, 54, 55, 64, 65, 69, 72, 73, 74, 82, 86, 88, 92, 93, 94, 97, 99, 101, 103, 104, 105, 107, 111, 113, 115, 116, 119, 120], "unused_predict": 10, "unus": 10, "user_inst": [10, 12, 65], "complet": [10, 12, 14, 49, 75, 84, 87, 104, 113], "horizont": [10, 52], "pixel": [10, 32, 34, 46, 47, 48, 52, 53, 55, 58, 61, 66, 69, 72, 75, 76, 78, 89, 98], "vertic": [10, 52], "verifi": [10, 102, 113], "f8": 10, "isnan": [10, 103], "buf": 10, "offset": [10, 47, 53, 58, 63, 64, 66, 70, 72, 76, 81], "titl": [10, 100, 101, 103, 108], "byteord": 10, "c": [10, 39, 41, 61, 95, 100, 101, 102, 103, 104, 105, 106, 108], "sub": [10, 35, 49], "record": [10, 32, 86, 105, 106, 109, 110, 113], "from_arrai": 10, "child": 10, "make_default": 10, "alloc": [10, 12, 77, 104, 109], "element": [10, 12, 42, 44, 47, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 65, 66, 67, 72, 75, 76, 85], "infer": [10, 12, 32, 46, 47, 49, 50, 54, 57, 61, 64, 65, 66, 71, 74, 75, 76, 82, 88, 91, 92, 93, 94, 95, 97, 98, 101, 103, 106, 107, 113, 115, 116, 119, 120], "procedur": [10, 48, 69, 104, 107], "point_confid": 10, "confid": [10, 47, 53, 55, 58, 61, 63, 64, 70, 71, 72, 75, 76, 81, 83, 88, 89, 92, 96, 104], "paf": [10, 47, 48, 55, 64, 72, 73, 75, 81, 83, 89], "from_inst": 10, "manner": 10, "except": [10, 12, 25, 27, 37, 54, 72, 73, 97, 101], "points_and_scores_arrai": 10, "It": [10, 12, 32, 35, 42, 45, 46, 69, 72, 75, 79, 81, 89, 90, 91, 92, 95, 97, 101, 104, 105, 107, 116], "from_point": 10, "analog": 10, "to_arrai": 10, "spawned_on": [10, 105], "uniqu": [10, 12, 26, 47, 75, 80, 82, 84, 85, 104], "entiti": [10, 27], "spawn": [10, 80, 89, 92, 95, 119], "identifi": [10, 12, 26, 47, 75, 88, 92, 116], "purpos": [10, 37, 41, 44, 47, 50, 56, 72, 101, 113], "make_instance_cattr": 10, "cattr": [10, 32, 84], "requir": [10, 12, 23, 25, 32, 37, 46, 47, 48, 49, 50, 61, 62, 64, 66, 72, 74, 75, 87, 88, 89, 96, 102, 104, 107, 108], "becaus": [10, 23, 80, 84, 90, 92, 96, 97, 100, 102, 103, 106], "automat": [10, 11, 12, 24, 25, 41, 46, 48, 49, 54, 72, 75, 90, 98, 102, 110, 113], "detect": [10, 11, 12, 15, 25, 32, 46, 47, 48, 49, 72, 75, 80, 83, 87, 88, 89, 92, 97, 102, 104, 107, 108], "subset": [10, 12, 32, 65, 67, 82, 85, 89], "hook": [10, 84], "regist": [10, 13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 26, 27, 28, 29, 84, 104, 107, 108], "unstructur": [10, 69, 84], "read": [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34, 50, 65, 67, 69, 89, 91, 95, 96, 100, 101, 104, 105, 106, 107, 108, 109, 112, 114, 115, 120], "h5": [11, 12, 25, 32, 47, 49, 72, 89, 92, 95, 96, 103, 104, 106, 107, 109, 111, 114, 118], "json": [11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 49, 50, 72, 84, 85, 87, 89, 91, 92, 96, 104, 106, 107, 109, 110], "zip": [11, 23, 49, 81, 91, 96, 104, 105, 107, 109, 110], "leap": [11, 24, 30, 37, 44, 47, 84, 92, 109, 117], "mat": [11, 84, 92], "deeplabcut": [11, 92, 100], "yaml": [11, 17, 85, 92], "deepposekit": [11, 92], "coco": [11, 25, 69, 92], "keypoint": [11, 15, 25, 48, 69, 73, 78, 80, 88, 92, 95, 107], "extens": [11, 12, 13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32], "input": [11, 32, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 52, 53, 54, 55, 56, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 72, 73, 74, 75, 76, 80, 81, 82, 84, 85, 88, 89, 98, 100, 104, 105, 106, 107, 109], "export": [11, 12, 27, 46, 72, 90, 91, 92, 96, 100, 102, 103, 112, 113, 119, 120], "_": [11, 12, 26, 37, 69, 89, 103, 109], "python": [11, 12, 23, 27, 36, 54, 56, 68, 72, 78, 84, 85, 89, 90, 95, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 112, 113, 120], "describ": [11, 12, 37, 38, 42, 43, 49, 64, 72, 74, 75, 76, 81, 93, 97, 114, 120], "entrypoint": [11, 72], "collect": [12, 32, 49, 73, 100], "togeth": [12, 41, 47, 54, 64, 72, 79, 86, 95, 96, 104], "annot": [12, 14, 17, 27, 34, 92], "conveni": [12, 38, 50, 55, 61, 64, 65, 66, 75, 76, 77, 83, 84, 104, 105], "wai": [12, 38, 41, 64, 73, 75, 77, 90, 92, 95, 96, 97, 98, 102, 105, 107, 114, 115], "high": [12, 27, 32, 48, 49, 50, 54, 64, 72, 75, 80, 81, 104, 105, 113], "loader": 12, "load_fil": [12, 69, 104, 107, 108], "provid": [12, 14, 25, 32, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 50, 52, 60, 61, 64, 66, 67, 69, 70, 72, 74, 75, 76, 77, 80, 81, 84, 86, 87, 89, 90, 92, 93, 102, 105, 107, 113, 115], "To": [12, 13, 25, 26, 28, 49, 53, 55, 61, 65, 69, 72, 76, 84, 89, 92, 94, 95, 96, 98, 100, 102, 104, 105, 106, 107, 109, 110, 114, 115, 117, 118], "disk": [12, 32, 45, 49, 50], "ve": [12, 80, 91, 92, 93, 94, 95, 96, 97, 98, 103, 107, 110, 112, 115, 118], "move": [12, 46, 49, 56, 75, 86, 92, 94, 95, 97, 115, 116, 119], "directori": [12, 14, 25, 32, 45, 49, 50, 72, 85, 89, 90, 92, 96, 102, 104, 106, 107, 108, 109, 110], "aren": [12, 79, 80, 93, 94, 95, 99], "tell": [12, 88, 92, 99, 100, 117], "search": [12, 44, 46, 72, 85, 87, 101, 102, 118], "There": [12, 87, 89, 91, 92, 95, 98, 103, 116, 119], "single_path_to_search": 12, "path_a": 12, "path_b": 12, "callback_funct": 12, "video_search": [12, 22, 23, 32], "make_video_callback": 12, "callback": [12, 32, 81], "window": [12, 80, 89, 92, 94, 95, 96, 98, 101, 102, 103, 104, 105, 106, 108, 117, 118, 119], "save_fil": [12, 25], "support": [12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 35, 75, 84, 87, 88, 89, 100, 101, 112, 113, 118], "negative_anchor": 12, "front": 12, "interact": [12, 49, 72, 86, 102], "actual": [12, 32, 50, 67, 74, 80, 97, 104, 105, 106, 107, 108], "storag": [12, 46, 48, 49, 90, 104, 105, 106, 107], "backend": [12, 32, 104, 105, 106], "abstract": [12, 33, 70, 72, 80, 81], "awai": 12, "interfac": [12, 32, 72, 84, 92, 93, 96, 102, 104, 105, 109, 112, 113], "again": [12, 48, 106], "referenc": [12, 69, 84], "around": [12, 14, 34, 42, 46, 47, 48, 58, 63, 70, 72, 74, 76, 85, 92, 98, 103, 104, 105], "crop": [12, 34, 46, 47, 48, 52, 59, 60, 61, 65, 66, 72, 76, 88, 89, 92, 98, 104], "neg": [12, 69, 78, 104, 105, 106, 107, 108, 109], "add_inst": 12, "updat": [12, 32, 48, 49, 52, 66, 72, 73, 74, 78, 81, 88, 89, 92, 100, 101, 102, 106, 107], "add_suggest": 12, "add_track": 12, "add_video": 12, "all_inst": [12, 53, 61], "append_suggest": 12, "clear_suggest": 12, "delet": [12, 80, 81, 84, 92, 94, 104, 106, 109], "new_label": 12, "unifi": 12, "anyth": [12, 49, 89, 90, 102, 112], "redund": [12, 79, 80], "mayb": 12, "deep": [12, 14, 40, 84, 85, 100, 101, 104, 105, 106, 107, 109, 113], "admonit": 12, "slow": [12, 48, 49, 88, 92], "delete_suggest": 12, "basic": [12, 32, 38, 39, 60, 72, 85, 95, 99, 100, 105], "content": [12, 105, 109, 110], "mask": [12, 55, 58, 63, 72, 103], "export_csv": 12, "export_nwb": 12, "overwrit": [12, 26, 49, 81], "session_descript": [12, 26], "pose": [12, 26, 40, 47, 69, 75, 76, 80, 84, 87, 89, 93, 99, 105, 106, 107, 108, 109, 112, 113, 117], "session_start_tim": [12, 26], "datetim": [12, 26], "nwb": [12, 26], "pynwb": [12, 26], "nwbfile": [12, 26], "processingmodul": [12, 26], "sleap_video_": [12, 26], "03": [12, 26, 69, 103, 104, 105, 109], "video_fn": [12, 26], "stem": [12, 26, 37, 38, 39, 43, 47, 107], "isinst": [12, 26], "pathlib": [12, 26], "purepath": [12, 26], "ex": [12, 26, 72, 102], "path_to_video": [12, 26], "my_video": [12, 26], "mp4": [12, 23, 26, 32, 33, 86, 89, 96, 100, 104, 105, 108, 109, 110, 118], "003_my_video": [12, 26], "ndx_pose": 12, "poseestim": [12, 26], "under": [12, 26, 61, 79, 85, 101, 110, 116], "track_idx": [12, 26], "untrack": [12, 26, 78], "track001": [12, 26], "poseestimationseri": [12, 26], "covert": [12, 26], "boolean": [12, 26, 72, 83], "descript": [12, 26, 47, 50, 64, 68, 69, 84, 86, 104, 106, 109], "preexist": [12, 26], "guid": [12, 26, 72, 75, 89, 91, 96, 100, 101, 104, 107, 108, 117, 119], "THe": [12, 26], "extend_from": 12, "extract": [12, 37, 38, 41, 72, 85, 103], "ind": [12, 75], "param": [12, 24, 32, 39, 65], "slice": [12, 60, 82, 103], "__getitem__": 12, "preserv": [12, 46, 85], "even": [12, 37, 46, 47, 48, 53, 55, 60, 61, 67, 73, 78, 92, 95, 102, 116], "return_new": 12, "singleton": [12, 62, 68, 78], "criteria": [12, 46, 54, 66, 92, 107], "unless": [12, 25, 32, 85, 92, 115], "frame_index": [12, 32], "find_first": 12, "use_cach": 12, "occurr": 12, "instead": [12, 37, 39, 40, 43, 44, 47, 48, 52, 64, 68, 81, 89, 102, 107, 109, 110], "cach": [12, 32, 54, 78], "els": [12, 75, 110], "loop": [12, 47, 48, 49, 54, 75, 81, 101, 105, 106, 109, 112, 113, 117], "through": [12, 48, 50, 53, 54, 72, 75, 89, 90, 92, 95, 101, 104, 106, 107, 112, 113, 117, 120], "find_last": 12, "find_suggest": 12, "find_track_occup": 12, "pseudo": 12, "finish_complex_merg": 12, "resolved_fram": 12, "finish": [12, 49, 89, 94, 96, 98, 106, 109, 110, 115], "from_frame_idx": 12, "revers": [12, 42, 62], "start": [12, 41, 42, 43, 44, 45, 48, 49, 69, 75, 79, 80, 84, 85, 87, 88, 90, 91, 92, 93, 95, 99, 100, 102, 103, 104, 105, 106, 107, 109, 110, 112, 116, 120], "secondary_kei": 12, "raise_error": [12, 32], "safe": [12, 100], "rais": [12, 14, 32, 42, 49, 51, 60, 61, 64, 66, 67, 72, 77, 84, 85], "against": [12, 80, 85, 89, 95], "linear": [12, 37, 44, 47, 103], "supplement": 12, "keyerror": 12, "catch": [12, 72], "get_next_suggest": 12, "seek_direct": 12, "seek": [12, 100], "get_suggest": 12, "get_track_count": 12, "occupi": [12, 47], "get_track_occup": 12, "get_unlabeled_suggestion_ind": 12, "unlabel": [12, 65, 75, 89, 92, 113], "doe": [12, 25, 41, 43, 45, 47, 49, 52, 53, 55, 58, 60, 61, 64, 67, 84, 85, 89, 102, 104, 107, 108, 115], "remove_empty_fram": 12, "get_video_suggest": 12, "user_label": 12, "has_fram": 12, "lf": [12, 108], "must": [12, 14, 23, 32, 37, 42, 46, 47, 48, 49, 53, 55, 60, 66, 68, 69, 70, 72, 79, 80, 81, 82, 84, 85, 87, 94, 97, 100, 104, 105, 106, 107, 108, 109], "Not": [12, 37, 89, 102], "lookup": 12, "faster": [12, 40, 43, 72, 78, 89, 110, 115], "ones": [12, 43, 61, 67, 72, 75, 81, 102], "match_to": [12, 22, 23], "has_missing_video": 12, "filter": [12, 37, 38, 39, 40, 41, 42, 43, 44, 47, 54, 56, 65, 72, 75, 79, 80, 89, 103, 106, 108, 109], "is_multi_inst": 12, "kwarg": [12, 15, 17, 18, 21, 22, 23, 24, 25, 28, 29, 32, 34, 47, 65, 72, 73, 83], "search_path": 12, "use_gui": 12, "while": [12, 20, 25, 38, 47, 48, 54, 91, 92, 95, 98, 100, 102, 105, 115, 116, 117], "system": [12, 23, 32, 46, 49, 72, 89, 101, 102, 105, 106, 108, 109, 116], "signal": [12, 103], "abort": 12, "changed_on_load": 12, "extern": [12, 49, 69, 92, 100, 102], "merge_container_dict": 12, "dict_a": 12, "dict_b": 12, "merge_matching_fram": 12, "combin": [12, 27, 47, 54, 55], "merge_nod": 12, "base_nod": 12, "remain": [12, 46, 47, 68, 69, 72, 79, 95, 102], "might": [12, 78, 91, 94, 95, 102, 103, 105, 106, 108, 109, 110], "return_confid": 12, "arbitrari": [12, 32, 49, 56], "n_frame": 12, "n_track": [12, 58], "NOT": [12, 41], "intend": [12, 50, 81, 100, 101], "primarili": [12, 42, 66, 97], "remove_all_track": 12, "keep_empty_fram": 12, "remove_fram": 12, "update_cach": 12, "intern": [12, 80], "postpon": 12, "sequenc": [12, 37, 42, 44, 47, 64, 65, 67, 70, 92, 105, 110], "remove_inst": 12, "in_transact": 12, "remove_predict": 12, "prior": [12, 53, 54, 55, 70, 80, 92, 95, 106, 116], "prevent": [12, 37, 44, 47, 48, 49, 54, 72, 100, 104, 105], "overlap": [12, 78, 80, 89, 92, 95, 99], "remove_suggest": 12, "remove_track": 12, "remove_untracked_inst": 12, "remove_unused_track": 12, "remove_user_inst": 12, "remove_video": 12, "with_imag": [12, 104], "embed_all_label": [12, 104], "embed_suggest": 12, "embed": [12, 32, 38, 86, 104], "remot": [12, 89, 91, 101, 102, 117], "default_suffix": 12, "attempt": [12, 24, 32, 35, 49, 80], "suffix": [12, 49, 85, 89, 109], "valueerror": [12, 42, 49, 60, 61, 64, 66, 67, 77, 84, 85], "cannot": [12, 24, 25, 28, 32, 42, 47, 77, 84, 85, 97, 102, 104, 105, 106, 107, 108, 109, 110], "filetyp": 12, "save_frame_data_hdf5": 12, "png": [12, 22, 23, 32, 45, 49], "all_label": [12, 22, 23], "progress_callback": [12, 22, 23], "hdf5video": [12, 32], "progress": [12, 23, 27, 34, 40, 43, 72, 89, 115], "fn": [12, 69, 107], "n": [12, 64, 79, 82, 85, 89, 95, 101, 102, 103, 104, 105, 106, 107, 108, 109], "n_total": 12, "far": [12, 27, 75, 93, 95, 99, 107], "cancel": 12, "save_frame_data_imgstor": 12, "output_dir": 12, "imgstorevideo": [12, 32], "imgstor": [12, 23, 32], "lossless": [12, 32, 100], "jpg": [12, 23, 109], "lossi": [12, 33, 100], "probabl": [12, 47, 52, 55, 58, 71, 72, 76, 85, 88, 90, 103, 105, 107], "set_suggest": 12, "split": [12, 46, 49, 61, 65, 67, 69, 81, 85, 106, 107, 109], "randomli": [12, 41, 48, 92, 106], "fraction": [12, 46, 67, 72, 75, 89, 106, 109], "labels_a": 12, "labels_b": 12, "subsampl": [12, 68], "len": [12, 32, 105], "guarante": [12, 14, 17], "mutual": 12, "exclus": 12, "repeatedli": [12, 105], "py": [12, 25, 84, 89], "8": [12, 42, 47, 48, 54, 69, 80, 86, 89, 102, 103, 104, 105, 106, 107, 108, 109], "val": [12, 57, 69, 89, 106, 107, 109], "labels_train": [12, 67], "labels_val_test": 12, "labels_v": [12, 67], "labels_test": 12, "to_dict": [12, 84], "skip_label": 12, "underl": 12, "nest": [12, 67], "compos": [12, 52, 64], "primit": [12, 68, 72], "skip": [12, 36, 37, 38, 40, 41, 42, 43, 44, 47, 92, 102, 104, 107, 108], "anchor": [12, 47, 60, 70, 72, 76, 88, 117], "top": [12, 32, 37, 42, 47, 66, 71, 72, 73, 84, 88, 89, 91, 96, 98, 101, 104, 105, 109, 117], "to_json": [12, 50, 84], "string": [12, 13, 14, 25, 32, 37, 38, 42, 45, 46, 47, 49, 50, 54, 60, 62, 64, 66, 67, 68, 69, 70, 72, 75, 81, 83, 84, 85], "to_pipelin": [12, 32], "batch_siz": [12, 32, 48, 54, 72, 73, 89, 105, 109], "prefetch": [12, 32, 48, 54, 72, 109], "frame_indic": [12, 32], "user_labeled_onli": 12, "batch": [12, 32, 37, 38, 44, 45, 47, 48, 49, 54, 55, 71, 72, 73, 75, 76, 88, 98, 101, 105], "rank": [12, 32, 41, 53, 54, 55, 60, 62, 68, 72, 76], "tensor": [12, 32, 36, 37, 38, 39, 41, 42, 43, 44, 47, 52, 53, 54, 55, 56, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 75, 76, 77, 81, 82, 89], "limit": [12, 32, 35, 41, 47, 61, 76, 80, 89, 92], "reader": [12, 32, 34, 65, 81], "tf": [12, 32, 37, 39, 41, 42, 45, 46, 48, 52, 53, 54, 55, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 74, 75, 76, 77, 82, 102, 104, 106, 107, 109], "throughput": [12, 32], "o": [12, 32, 64, 65, 85, 89, 96, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110], "dure": [12, 32, 37, 45, 46, 47, 48, 49, 50, 54, 64, 70, 72, 73, 75, 89, 91, 95, 98, 102, 104, 105, 107, 109, 110, 115, 117], "labelsread": [12, 64, 65, 67, 69, 72, 81], "track_set_inst": 12, "new_track": 12, "track_swap": 12, "old_track": 12, "swap": [12, 48, 52, 80, 92, 95, 119], "unlabeled_suggest": 12, "user_labeled_frame_ind": 12, "user_labeled_fram": 12, "with_user_labels_onli": 12, "user_instances_onli": [12, 65], "with_track_onli": [12, 65, 81], "preprocess": [12, 41, 42, 46, 48, 62, 72, 74, 109], "warn": [12, 32, 49, 72, 104], "labelsdatacach": 12, "find_fancy_frame_idx": 12, "find_fram": 12, "get_filtered_frame_idx": 12, "get_frame_count": 12, "possibli": [12, 81, 91], "count": [12, 32, 44, 47, 48, 72, 75, 78, 79, 80, 89, 95, 103, 105], "rangelist": 12, "get_video_track_occup": 12, "rebuild": [12, 104, 105, 106, 107, 109], "update_counts_for_fram": 12, "find_path_using_path": 12, "missing_path": 12, "detect_video": 12, "direct": [12, 44, 47, 55, 70, 75, 76, 92], "reus": [12, 37], "handl": [13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 26, 27, 28, 29, 32, 45, 72, 75, 80, 84, 105, 106], "inherit": [13, 37], "implement": [13, 25, 32, 37, 38, 39, 40, 41, 42, 43, 45, 50, 62, 66, 69, 71, 72, 75, 79, 81, 84, 112], "all_ext": [13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 26, 27, 28, 29], "can_read_fil": [13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 26, 27, 28, 29], "filehandl": [13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 26, 27, 28, 29], "can_write_filenam": [13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 26, 27, 28, 29], "default_ext": [13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 26, 27, 28, 29], "does_match_ext": [13, 14], "does_read": [13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 26, 27, 28, 29], "does_writ": [13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 26, 27, 28, 29], "formatted_ext_opt": [13, 14], "qt": [13, 14, 34, 89], "dialog": [13, 14, 34, 88, 89, 91, 98, 110, 117, 119], "sleapobjecttyp": [13, 14, 26], "dispatch": [13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29], "human": [13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 26, 27, 28, 29, 50, 76, 101, 113, 117], "adaptor": [14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29], "manual": [14, 17, 48, 49, 92, 106, 110, 113, 115], "inspect": [14, 17, 64, 92, 93, 104, 105, 109, 110, 113], "especi": [14, 17, 47, 48, 49, 54, 61, 65, 88, 92], "alphatrackeradaptor": 14, "upper": 14, "third": 14, "fourth": [14, 92], "fifth": 14, "get_alpha_tracker_frame_dict": 14, "get_alpha_tracker_instance_dict": 14, "200": [14, 48, 103, 104, 109, 110], "coor": 14, "lower": [14, 33, 42, 47, 48, 69, 75, 79, 85, 88, 95, 100, 107], "left": [14, 46, 48, 52, 54, 66, 67, 69, 72, 84, 88, 92, 94, 105, 106, 107, 118], "hand": [14, 84, 91], "corner": [14, 82], "get_alpha_tracker_point_dict": 14, "make_video_for_image_list": [14, 17], "image_dir": [14, 17], "full_video": [14, 17], "being": [14, 33, 48, 55, 72, 73, 84, 100, 101], "souce_object": 14, "notimplementederror": [14, 25], "code": [14, 25, 40, 69, 73, 84, 90, 92, 95, 100, 102, 103, 110, 119], "seen": [14, 84], "cocodataset": [15, 69], "labelscocoadaptor": 15, "img_dir": 15, "use_missing_gui": 15, "csvadaptor": 16, "source_path": [16, 27, 28], "toget": [16, 28], "potenti": [17, 49, 54, 60, 72, 102, 106, 113], "labelsdeeplabcutcsvadaptor": 17, "labelsdeeplabcutyamladaptor": 17, "labelsdeepposekitadaptor": 18, "skeleton_path": 18, "dynam": [19, 72, 73, 102, 104, 107, 108], "u": [20, 35, 37, 89, 90, 98, 99, 100, 102], "keep": [20, 35, 46, 47, 48, 49, 54, 65, 66, 80, 85, 89, 92, 97, 115], "previou": [20, 49, 53, 55, 58, 80, 94, 95, 96, 102, 106, 119], "is_hdf5": 20, "is_json": 20, "is_open": 20, "text": [20, 45, 47, 50, 70, 72, 84, 89, 91, 96, 103, 106], "needn": [20, 31], "twice": 20, "format_id": 20, "distinguish": [20, 86], "common": [20, 25, 32, 33, 39, 41, 44, 56, 64, 75, 84, 92, 95, 100, 105], "labelsv1adaptor": [20, 22, 25], "gridlin": 20, "midpixel": 20, "veri": [21, 29, 48, 73, 92, 95, 100, 101], "genericjsonadaptor": [21, 25], "save_frame_data": [22, 23], "frame_data_format": [22, 23], "old": [23, 30, 31, 84, 86, 94], "kind": [23, 41, 99, 103], "now": [23, 62, 79, 87, 91, 95, 103, 105, 106, 109, 110, 115, 116], "labelsjsonadaptor": 23, "from_json_data": 23, "particular": [23, 41, 67, 92], "newli": [23, 30, 95, 117], "instanti": [23, 32, 37, 38, 41, 42, 43, 50, 64, 70, 73, 74, 80, 81, 84], "duplic": [23, 84, 85], "compress": [23, 33, 49, 100, 102], "shutil": 23, "make_arch": 23, "pkzip": 23, "forc": [23, 92, 105, 106, 109, 110], "archiv": [23, 109], "pgm": 23, "bmp": 23, "ppm": 23, "tif": 23, "npy": [23, 32], "mjpeg": [23, 32], "avi": [23, 32, 33, 96, 100, 118], "h264": [23, 100], "mkv": 23, "avc1": 23, "codec": 23, "exclud": [23, 47, 75, 78, 80, 85], "gpl": 23, "licens": [23, 41], "prompt": [24, 89, 91, 92, 102, 110, 118], "labelsleapmatlabadaptor": 24, "roughli": [25, 75, 86], "equival": [25, 36, 37, 54, 61, 68, 76], "principl": 25, "as_format": 25, "nice": 25, "virtual": [25, 90], "sleapanalysisadaptor": [25, 28], "typic": [25, 32, 37, 41, 44, 46, 47, 48, 50, 52, 64, 66, 69, 75, 77, 78, 88, 92, 96, 101, 106, 108, 113], "all_labels_adaptor": 25, "distinct": [25, 47, 79, 80, 88, 90, 92, 95, 96, 103, 111, 116, 117], "ext": 25, "foo": [25, 85], "exportanalysisfil": 25, "importanalysisfil": 25, "custom": [25, 72, 73, 78, 92, 93, 96, 101, 104, 105, 106, 112], "for_object": 25, "typeerror": 25, "shouldn": 25, "happen": [25, 77, 104], "relat": [25, 45, 46, 47, 48, 49, 50, 64, 67, 81, 84, 104], "thrown": 25, "privileg": 25, "ndx": 26, "ndxposeadaptor": 26, "nixadaptor": 27, "model": [27, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 55, 58, 59, 61, 62, 64, 65, 66, 69, 70, 71, 72, 73, 75, 81, 82, 86, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 103, 104, 105, 106, 113, 115, 116, 117, 119], "scientif": 27, "librari": [27, 41, 52, 102, 104, 105, 106, 107, 108, 109], "definit": [27, 38, 42, 70], "nixio": 27, "low": [27, 37, 44, 48, 72, 86, 92, 105, 106], "pip": [27, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110], "nixtrack": 27, "bendalab": 27, "addition": [27, 41, 47, 52, 107], "chunk": [27, 34], "approach": [27, 47, 69, 72, 75, 82, 88, 92, 105, 110, 113, 117], "avoid": [27, 53, 80, 116], "memori": [27, 40, 43, 46, 47, 48, 53, 54, 61, 72, 77, 88, 89, 98, 102, 104, 105, 106, 109], "larg": [27, 47, 48, 49, 53, 61, 88, 92, 95, 100, 101], "author": [27, 41, 100, 101, 110], "jan": 27, "grew": 27, "lack": 28, "textadaptor": 29, "load_labels_json_old": 30, "data_path": [30, 89, 109], "parsed_json": 30, "adjust_matlab_index": 30, "fix_rel_path": 30, "pars": [30, 50, 72, 85], "adjust": [30, 42, 45, 46, 48, 52, 53, 59, 63, 66, 72, 75, 110], "absolut": [30, 32, 36, 46, 48, 49, 61, 65, 75], "load_predicted_labels_json_old": 30, "filenames_prefix_chang": 31, "old_prefix": 31, "new_prefix": 31, "confirm_callback": 31, "initi": [31, 35, 37, 38, 39, 41, 42, 43, 47, 48, 49, 54, 55, 65, 72, 75, 77, 79, 80, 81, 89, 99, 101, 103, 105, 106, 109, 112, 113, 117, 118, 120], "known": 31, "confirm": [31, 35, 92, 102], "find_changed_subpath": 31, "old_path": 31, "new_path": [31, 69], "section": [31, 95, 113], "list_file_miss": 31, "dummyvideo": 32, "2000": [32, 86, 89], "10000": 32, "dummi": [32, 72], "fake": 32, "real": [32, 72, 75], "input_format": [32, 89, 96, 104, 109], "channels_last": [32, 42, 96, 104, 109], "convert_rang": 32, "file_h5": 32, "dataset_h5": 32, "equal": [32, 38, 39, 40, 43, 44, 48, 54, 61, 66, 78, 83, 89], "channels_first": [32, 42], "255": [32, 42, 46, 48, 62, 92, 109], "attr": [32, 51, 84, 104, 107], "embedded_frame_ind": 32, "enable_source_video": 32, "get_fram": 32, "has_embedded_imag": 32, "last_frame_idx": 32, "overrid": [32, 34, 45, 89], "reset": [32, 54, 82, 89, 102, 117], "reload": [32, 104, 105, 106, 108], "source_video": 32, "source_video_avail": 32, "uncach": 32, "index_by_origin": 32, "loopbio": 32, "lightweight": 32, "great": [32, 106, 107, 112], "larger": [32, 47, 48, 61, 72, 75, 88, 89, 98, 100], "directli": [32, 44, 46, 47, 54, 72, 75, 81, 89, 92, 102, 103, 105, 107, 110, 118], "frame_numb": 32, "That": 32, "comapar": 32, "mediavideo": [32, 104, 105], "grayscal": [32, 41, 42, 46, 62, 65, 72, 104, 118], "bgr": [32, 42, 46, 62, 104], "tradit": 32, "readabl": 32, "ffmpeg": [32, 33, 100], "bare": 32, "minimum": [32, 48, 53, 58, 62, 63, 69, 70, 72, 73, 75, 76, 79, 80, 89], "opencv": [32, 33, 34, 96, 104, 105, 106, 107, 108, 109, 110], "videocaptur": 32, "auto": [32, 49, 89, 92, 103, 109], "color": [32, 34, 83, 86, 89, 92, 115, 119], "blue": [32, 88, 98, 115, 116], "green": [32, 87, 115], "red": [32, 95, 115], "fp": [32, 33, 34, 69, 86, 89, 101, 107, 109], "numpyvideo": 32, "is_miss": 32, "come": [32, 37, 47, 52, 65, 96, 102, 107], "singleimagevideo": 32, "height_": 32, "width_": 32, "channels_": 32, "compon": [32, 44, 75, 80], "from_hdf5": 32, "from_media": 32, "Or": [32, 100, 102, 117], "from_filenam": [32, 65], "rgb": [32, 41, 42, 46, 62, 72], "serialiaz": 32, "fixup_path": 32, "raise_warn": 32, "portabl": [32, 81], "whatev": [32, 94, 96], "almost": [32, 119], "certainli": 32, "wrong": [32, 95], "transfer": [32, 42, 106], "prefer": [32, 47, 50, 79, 89, 92, 97, 99, 100, 102, 118], "asset": [32, 109], "filenotfounderror": [32, 85], "still": [32, 47, 92, 95, 97, 99, 106], "motif": 32, "helper": [32, 85], "invok": [32, 34, 73, 102, 110], "from_image_filenam": 32, "request": [32, 54, 103, 104, 109], "get_frames_saf": 32, "successfulli": [32, 80, 112, 115], "imgstore_from_filenam": 32, "output_filenam": 32, "num_fram": 32, "to_hdf5": 32, "encod": [32, 37, 38, 40, 41, 43, 44, 47, 50, 76, 83, 84, 85, 89, 92, 95, 100], "to_imgstor": 32, "facilit": [32, 75], "directoryimgstor": 32, "videoread": [32, 65], "available_video_ext": 32, "load_video": [32, 104, 105], "nonetyp": 32, "treat": 32, "effect": [32, 36, 37, 38, 39, 40, 42, 43, 44, 46, 47, 48, 53, 54, 55, 58, 60, 62, 72, 98, 119], "centered_pair_smal": 32, "1100": 32, "384": [32, 105], "img": [32, 33, 34, 72, 76, 80, 83, 104, 105, 108], "writer": [33, 34], "safe_build": 33, "add_fram": 33, "can_use_ffmpeg": 33, "depend": [33, 44, 49, 53, 58, 68, 88, 90, 92, 96, 100, 102, 104, 105, 106, 107, 108, 110, 113], "videowriterimageio": 33, "crf": [33, 100], "preset": [33, 100], "superfast": [33, 100], "imageio": 33, "movi": [33, 86], "playback": [33, 100], "framer": 33, "rate": [33, 42, 45, 46, 48, 49, 72, 91, 96, 106, 109], "factor": [33, 39, 40, 42, 43, 44, 46, 47, 48, 53, 61, 63, 65, 66, 69, 72, 73, 80, 83, 107], "32": [33, 37, 41, 42, 46, 47, 69, 86, 105, 106, 109], "18": [33, 39, 69, 86, 106, 109], "30": [33, 86, 100, 104, 105, 109], "less": [33, 47, 67, 100], "higher": [33, 37, 38, 39, 40, 43, 44, 46, 47, 48, 54, 58, 68, 72, 74, 88, 95, 107], "qualiti": [33, 100, 113], "libx264": [33, 100], "videowriteropencv": 33, "overlai": 34, "videomarkerthread": 34, "in_q": 34, "queue": [34, 80], "out_q": 34, "show_edg": [34, 89], "edge_is_wedg": [34, 89], "marker_s": [34, 89], "crop_size_xi": 34, "color_manag": 34, "colormanag": 34, "palett": [34, 89, 92], "distinctly_color": [34, 89], "draw": [34, 89], "send": [34, 35], "h": [34, 83, 86, 89, 100, 101], "w": [34, 83, 100, 101, 102, 104, 105, 107, 108, 113], "thread": [34, 102], "activ": [34, 37, 38, 41, 42, 44, 47, 70, 98, 101, 102, 113, 115, 118], "subclass": [34, 45, 72, 81], "constructor": [34, 65, 72], "sequenti": [34, 49, 100], "taken": 34, "img_to_cv": 34, "prepar": [34, 110], "background": [34, 86, 89, 95], "them": [34, 47, 48, 53, 54, 55, 66, 75, 81, 84, 90, 92, 93, 94, 95, 97, 99, 102, 104, 105, 106, 107, 109, 110, 112, 113, 117], "white": [34, 86, 89], "grei": [34, 89, 115, 119], "resize_imag": [34, 66], "resiz": [34, 46, 61, 65, 72], "save_labeled_video": 34, "15": [34, 47, 69, 70, 88, 98, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "gui_progress": 34, "wedg": [34, 89, 92, 95], "marker": [34, 89], "alphabet": [34, 89, 92, 95], "five": [34, 89, 92, 95], "solar": [34, 89], "progress_queu": 34, "receiv": [34, 35, 41, 49, 105, 106, 117], "elaps": [34, 80, 89], "done": [34, 54, 60, 61, 67, 72, 80, 87, 90, 112, 117, 119], "zmq": [35, 49, 89, 109], "pub": [35, 49], "socket": [35, 49], "pairedsend": 35, "pairedreceiv": 35, "handshak": 35, "chanc": 35, "earli": [35, 46, 48, 49, 106, 109, 110], "basemessageparticip": 35, "tcp": [35, 45, 49, 109], "127": [35, 42, 45, 49, 62, 109], "9001": [35, 45, 49, 109], "sender": 35, "message_queu": 35, "check_messag": 35, "timeout": [35, 49, 90], "10": [35, 40, 45, 48, 49, 69, 72, 75, 80, 83, 102, 103, 104, 105, 106, 107, 108, 109, 117], "fresh": [35, 102], "times_to_check": 35, "sent": [35, 103, 104, 109], "until": [35, 98, 104, 109, 110, 113, 117, 118], "reach": [35, 54, 99, 100, 101], "push_back_messag": 35, "didn": [35, 100, 103, 109, 116], "send_arrai": 35, "header_data": 35, "flag": [35, 83, 89, 104, 105, 106, 107, 109], "send_dict": 35, "intermediatefeatur": [36, 37, 38, 41, 42, 44], "intermedi": [36, 37, 38, 41, 42, 44, 47, 72, 92], "resolut": [36, 37, 38, 39, 41, 44, 46, 47, 48, 83, 86], "layer": [36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 66, 67, 70, 72, 82, 106, 109], "tensorflow": [36, 42, 54, 56, 61, 72, 76, 77, 81, 82, 89, 90, 100, 102, 104, 105, 106, 107, 108, 109, 117], "framework": [36, 54, 56, 101], "op": [36, 54, 56, 72, 73, 77, 104, 107], "reciproc": [36, 47, 53, 55, 58, 68], "decod": [37, 38, 40, 41, 43, 44, 47, 50, 84, 85, 103], "fulli": [37, 41, 42, 43, 47, 70], "convolut": [37, 38, 39, 40, 41, 42, 43, 44, 47], "backbon": [37, 38, 39, 41, 42, 44, 47, 74, 98, 106, 109, 117], "block": [37, 38, 39, 40, 41, 42, 43, 47, 64], "network": [37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 60, 72, 74, 75, 76, 92, 96, 98, 101, 104, 105, 106, 107, 109, 117], "respons": [37, 49, 89, 103, 104, 109], "upsampl": [37, 38, 39, 40, 41, 42, 43, 47, 66], "achiev": [37, 42, 47, 88, 113, 117], "pattern": [37, 44, 45, 49], "generaliz": 37, "rubric": 37, "cnn": [37, 40, 44], "www": [37, 72, 78, 104, 106, 107, 108], "natur": [37, 86, 100, 101], "com": [37, 78, 82, 102, 103, 104, 105, 106, 107, 108, 109], "articl": [37, 100, 101], "s41592": 37, "018": 37, "0234": 37, "net": [37, 98], "residu": [37, 38, 39, 42], "hourglass": [37, 44, 47, 76, 109], "arxiv": [37, 39, 42, 107], "pdf": [37, 39, 53, 68, 76, 105], "1603": 37, "06937": 37, "dens": [37, 54, 92], "fc": 37, "densenet": [37, 46, 62], "1611": 37, "09326": 37, "variant": [37, 39, 42, 47, 64], "encoderdecod": 37, "decoderblock": [37, 38], "upsampling_strid": [37, 38, 44], "doubl": [37, 44, 47, 92, 94, 97, 115, 116, 118, 119], "fewer": [37, 44, 47, 54, 67, 75, 80, 97], "make_block": [37, 38, 43], "current_strid": [37, 38, 42, 44], "skip_sourc": [37, 38, 44], "prefix": [37, 38, 39, 43, 45, 69, 85, 89, 109], "x_in": [37, 38, 39, 41, 42, 43, 70], "configur": [37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 60, 61, 62, 64, 66, 70, 72, 74, 80, 81, 89, 91, 92, 93, 96, 98, 99, 105, 106, 107, 110, 113, 117], "encoderblock": [37, 38], "pooling_strid": [37, 38, 43], "encoder_stack": [37, 38, 40, 43], "decoder_stack": [37, 38, 40, 43], "greater": [37, 44, 46, 47, 68, 72, 75, 89, 95], "than": [37, 38, 44, 46, 47, 48, 49, 51, 53, 54, 55, 58, 60, 66, 67, 68, 72, 75, 78, 79, 80, 84, 88, 89, 92, 95, 96, 103, 110, 115], "decoder_features_strid": 37, "encoder_features_strid": 37, "make_backbon": [37, 41, 42], "make_decod": 37, "skip_source_featur": 37, "dec": 37, "At": [37, 48, 98], "make_encod": 37, "enc": 37, "perform": [37, 38, 39, 44, 45, 46, 47, 48, 49, 50, 54, 59, 61, 69, 72, 73, 75, 77, 78, 80, 82, 88, 89, 99, 102, 104, 106, 107, 109, 113], "make_stem": 37, "unlik": 37, "rest": [37, 84, 105], "maximum_strid": [37, 41, 42, 61, 74], "maximum": [37, 40, 41, 42, 43, 48, 53, 58, 62, 65, 66, 68, 72, 73, 74, 75, 76, 78, 80, 89, 106], "divis": [37, 42, 46, 61, 66, 72], "output_strid": [37, 41, 42, 44, 47, 53, 55, 58, 68, 70, 72, 106, 109], "stem_features_strid": 37, "stem_stack": [37, 38, 43], "simpleconvblock": [37, 40, 43], "pool_before_conv": 37, "num_conv": 37, "kernel_s": [37, 38, 42, 43, 76, 106, 109], "use_bia": [37, 42], "batch_norm": [37, 47], "batch_norm_before_activ": 37, "relu": [37, 38, 44, 47], "block_prefix": 37, "flexibl": [37, 101, 105], "below": [37, 43, 46, 48, 53, 58, 61, 63, 69, 70, 73, 75, 76, 86, 92, 95, 100, 102, 106, 108, 110, 113], "kernel": [37, 38, 42, 43, 44, 47, 76], "bia": 37, "term": [37, 47, 70], "conv": [37, 38, 42, 43, 44, 47], "bn": 37, "mini": [37, 48, 54, 73], "creation": [37, 42, 50], "leapcnn": [37, 40], "unet": [37, 41, 44, 47, 106, 109, 117], "conv_block": [37, 43], "simpleupsamplingblock": [37, 40, 43], "transposed_conv": [37, 44, 47], "transposed_conv_filt": [37, 44], "64": [37, 39, 40, 42, 43, 44, 47, 54, 69, 70, 102, 103, 104, 107, 108], "transposed_conv_kernel_s": [37, 44, 47], "transposed_conv_use_bia": 37, "transposed_conv_batch_norm": 37, "transposed_conv_batch_norm_before_activ": 37, "transposed_conv_activ": 37, "interp_method": [37, 38], "bilinear": [37, 38, 39, 40, 43, 44, 47, 104, 107], "skip_connect": [37, 42, 47], "skip_add": [37, 44], "refine_conv": [37, 44, 47], "refine_convs_first_filt": 37, "refine_convs_filt": [37, 44], "refine_convs_use_bia": 37, "refine_convs_kernel_s": 37, "refine_convs_batch_norm": 37, "refine_convs_batch_norm_before_activ": 37, "refine_convs_activ": 37, "refin": [37, 38, 44, 47, 53, 61, 64, 70, 72, 76, 81, 99, 113], "learnabl": [37, 44, 47], "interpol": [37, 38, 40, 43, 47, 75, 95, 103], "transposed_conv_": 37, "nearest": [37, 38, 75, 92, 103], "kera": [37, 39, 41, 42, 45, 46, 48, 59, 62, 64, 68, 72, 74, 81, 82, 104, 106, 107, 109], "upsampling2d": 37, "1x1": [37, 44, 47], "similar": [37, 38, 44, 47, 48, 54, 69, 78, 80, 87, 89, 90, 92, 95, 96, 107, 108, 109, 113], "shortcut": [37, 42, 85, 92, 94, 95, 104], "concaten": [37, 44, 47, 54, 64], "channelwis": [37, 73, 76], "serv": [37, 38, 44, 47, 50, 61, 73, 76, 81, 97, 105], "mix": [37, 44, 46, 47], "fuse": [37, 44, 47], "alias": [37, 44, 47], "checkerboard": [37, 44, 47], "refine_convs_": 37, "prepend": [37, 38, 45, 49, 68, 89], "downsamplingblock": 38, "256": [38, 39, 41, 47, 48, 52, 105, 109], "downsampl": [38, 39, 41, 42, 43, 47, 66, 88], "simplifi": [38, 72], "paper": [38, 40, 69, 86, 100, 101], "simpler": [38, 44], "demonstr": [38, 107, 112], "simpli": [38, 48, 73, 100, 102, 105, 106, 107, 108, 118], "maxpool": 38, "down_block": [38, 39, 40, 41, 42, 43, 106, 109], "up_block": [38, 40, 41, 43, 106, 109], "stem_filt": [38, 39, 42, 47], "128": [38, 41, 42, 47, 48, 83, 103, 109], "stem_strid": [38, 47, 109], "filter_increas": [38, 47], "upon": [38, 102], "primari": 38, "x_out": [38, 42], "symmetr": [38, 48, 52, 76, 84], "reduc": [38, 43, 47, 48, 49, 53, 60, 73, 83, 84, 109], "fine": [38, 42, 48, 73, 88, 116], "increas": [38, 40, 43, 46, 47, 48, 49, 53, 55, 58, 61, 72, 80, 83, 88, 116], "spatial": [38, 40, 47], "recept": [38, 40, 42, 43, 47, 88, 98], "lose": [38, 89, 90, 116], "subsequ": [38, 43, 61, 92, 95, 102, 104, 105, 106, 108, 116, 119], "linearli": [38, 47], "increment": [38, 80], "multipli": [38, 53, 55, 61], "neighbor": [38, 75, 84], "supervis": [38, 65], "from_config": [38, 40, 41, 42, 43, 44, 52, 60, 61, 62, 66, 70, 73, 74, 75, 81, 106], "config": [38, 40, 41, 42, 43, 44, 52, 60, 61, 62, 64, 66, 70, 72, 73, 74, 75, 77, 81, 85, 87, 89, 96, 102, 106, 110], "hourglassconfig": [38, 47], "stemblock": 38, "output_filt": 38, "7": [38, 69, 86, 89, 102, 103, 104, 105, 106, 107, 108, 109], "much": [38, 39, 46, 90, 92, 93, 102, 105], "first_conv_strid": 38, "upsamplingblock": 38, "integr": [38, 59, 72, 75, 76, 101], "x_up": 38, "skip_in": 38, "x_middl": 38, "smaller": [38, 47, 53, 55, 58, 63, 66, 68, 69, 75, 98, 116], "sublay": 38, "pytorch": 39, "higherhrnet": 39, "deconvolut": 39, "ref": [39, 78], "1902": 39, "09212": 39, "1908": 39, "10357": 39, "initial_downsampling_step": 39, "n_deconv_modul": 39, "bottleneck": [39, 42, 43, 48, 54], "deconv_filt": 39, "bilinear_upsampl": 39, "hrnet32": 39, "30m": [39, 104, 105], "highest": [39, 48, 71, 89], "decreas": [39, 40, 43, 47, 48, 54, 80, 88], "introduc": [39, 43, 47], "too": [39, 48, 54, 79, 95, 113], "loss": [39, 40, 47, 48, 49, 70, 81, 88, 98, 106, 109, 110, 117], "deconv": 39, "n_output_channel": 39, "deconv_modul": 39, "higher_hrnet_model": 39, "output_scal": [39, 42, 83], "adjust_prefix": 39, "name_prefix": 39, "delimit": 39, "bottleneck_block": 39, "expansion_r": 39, "simple_block": 39, "downsampling_lay": 39, "filters_r": [40, 43, 47, 106, 109], "down_convs_per_block": 40, "up_interpol": [40, 43, 47, 106, 109], "up_convs_per_block": 40, "fast": [40, 42, 80, 101, 104, 105], "estim": [40, 47, 69, 75, 76, 80, 84, 107, 109, 112, 113, 117], "neural": [40, 41, 75, 98, 101, 104, 105, 106, 107, 109], "2019": [40, 86, 101], "style": [40, 41, 42, 92, 95, 107], "pereira": [40, 86, 100, 101], "et": [40, 43, 86, 95, 101, 117], "al": [40, 43, 86, 95, 101, 117], "8m": 40, "capac": [40, 42, 43, 47], "runtim": [40, 43, 50, 77, 90, 104, 105, 106, 108, 109], "incur": 40, "precis": [40, 47, 69, 92, 107, 113], "abl": [40, 43, 47, 87, 89, 90, 92, 101, 102, 105, 106, 109, 110, 112, 117, 118], "learn": [40, 42, 43, 45, 46, 47, 48, 49, 71, 76, 88, 91, 96, 98, 100, 106, 109, 113, 115, 116], "richer": [40, 43], "complex": [40, 43, 47, 100, 102], "recov": [40, 43, 47, 61, 105, 106, 109, 110], "leapconfig": [40, 47], "pretrain": [41, 42, 46, 47, 49, 62, 101, 106], "wide": [41, 69, 98, 107], "state": [41, 73, 77, 84, 89, 101, 102], "art": [41, 101], "advantag": [41, 47, 72, 88, 105], "imagenet": [41, 42, 46, 47, 62], "weight": [41, 42, 47, 48, 49, 55, 70, 72, 75, 76, 78, 84, 89, 96, 104, 106, 107], "possibl": [41, 72, 75, 79, 80, 88, 95, 96, 97, 100, 101, 106], "pavel": 41, "yakubovskii": 41, "gracious": 41, "put": [41, 75, 85, 95], "info": [41, 72, 87, 95, 100, 104, 106, 109], "repositori": [41, 86, 102, 109, 112], "qubvel": 41, "segmentation_model": 41, "classification_model": 41, "mit": [41, 101], "copyright": 41, "2018": [41, 95], "herebi": 41, "grant": [41, 100], "charg": 41, "obtain": [41, 69, 72], "deal": 41, "restrict": [41, 63, 85], "distribut": [41, 47, 48, 53, 55, 58, 68, 76, 92, 102, 107], "sublicens": 41, "sell": 41, "permit": 41, "whom": 41, "furnish": 41, "subject": 41, "condit": 41, "notic": 41, "shall": 41, "substanti": [41, 61], "portion": [41, 44], "THE": 41, "AS": 41, "warranti": 41, "OF": 41, "OR": 41, "impli": [41, 54], "BUT": [41, 104], "TO": 41, "merchant": 41, "FOR": 41, "AND": 41, "noninfring": 41, "IN": 41, "NO": 41, "holder": 41, "BE": 41, "liabl": 41, "claim": 41, "damag": 41, "liabil": 41, "contract": 41, "tort": 41, "aris": 41, "WITH": 41, "unetpretrainedencod": 41, "efficientnetb0": [41, 47], "decoder_filt": [41, 47], "varieti": [41, 96, 104, 105, 115], "popular": 41, "special": [41, 49, 72, 90], "tile": [41, 42], "vgg16": [41, 47], "vgg19": [41, 47], "resnet18": [41, 47], "resnet34": [41, 47], "resnet50": [41, 42, 47], "resnet101": [41, 42, 47], "resnet152": [41, 42, 47], "resnext50": [41, 47], "resnext101": [41, 47], "inceptionv3": [41, 47], "inceptionresnetv2": [41, 47], "densenet121": [41, 47], "densenet169": [41, 47], "densenet201": [41, 47], "seresnet18": [41, 47], "seresnet34": [41, 47], "seresnet50": [41, 47], "seresnet101": [41, 47], "seresnet152": [41, 47], "seresnext50": [41, 47], "seresnext101": [41, 47], "senet154": [41, 47], "mobilenet": [41, 47], "mobilenetv2": [41, 46, 47, 62], "efficientnetb1": [41, 47], "efficientnetb2": [41, 47], "efficientnetb3": [41, 47], "efficientnetb4": [41, 47], "efficientnetb5": [41, 47], "efficientnetb6": [41, 47], "efficientnetb7": [41, 47], "lowest": [41, 48, 73, 80, 92, 109, 110], "therefor": [41, 72], "pretrainedencoderconfig": [41, 47], "x_main": 41, "intermediate_activ": 41, "intermediateactiv": 41, "atrou": 42, "deeplabv2": 42, "ab": [42, 107], "1606": 42, "00915": 42, "applic": [42, 46, 47, 62, 65, 72, 76, 87, 89, 103, 104, 105, 106, 109, 112], "upsampling_stack": 42, "upsamplingstack": [42, 44], "features_output_strid": 42, "16": [42, 44, 46, 47, 69, 78, 104, 105, 106, 107, 108, 109], "frozen": [42, 47, 72, 89], "model_nam": [42, 72], "stack_config": 42, "23": [42, 69, 86, 100, 105, 106, 109], "canon": [42, 43, 44], "compens": [42, 43, 48], "dilat": [42, 47], "expans": [42, 54], "random": [42, 47, 48, 49, 52, 67, 98, 116, 117], "trainabl": [42, 47, 74, 88, 105], "tune": [42, 46, 48, 73, 99], "reli": [42, 47, 50, 72, 80], "suffici": [42, 47, 88], "resnetv1": [42, 46, 47, 62], "v2": [42, 105], "6": [42, 69, 83, 89, 100, 102, 103, 104, 105, 106, 107, 108, 109, 110], "stack_fn": 42, "consecut": [42, 47, 75], "expand": [42, 46, 62, 68], "stride1": 42, "resnetconfig": [42, 47], "block_v1": 42, "dilation_r": 42, "conv_shortcut": 42, "imagenet_preproc_v1": 42, "accord": [42, 62, 67, 106], "caff": [42, 46, 62], "subtract": [42, 46, 62], "103": [42, 62, 104, 107], "939": [42, 62, 105, 106, 109], "116": [42, 62], "779": [42, 62], "123": [42, 62, 96], "68": [42, 62, 69, 104, 105], "make_backbone_fn": 42, "signatur": [42, 72, 79, 109], "intermediate_feat": 42, "backbone_fn": 42, "make_resnet_model": 42, "preact": 42, "input_tensor": 42, "input_shap": [42, 74], "stem_stride1": 42, "stem_stride2": 42, "resnetv2": [42, 46, 62], "resnext": 42, "pre": [42, 47, 77, 80, 89, 90, 92, 105, 108, 109], "bias": 42, "include_top": 42, "224": [42, 62, 105], "exactli": [42, 61, 69, 76, 80, 88, 89, 95, 100, 103], "invalid": [42, 79], "stack_v1": 42, "tile_channel": 42, "functon": 42, "replic": [42, 61], "monochrom": 42, "poolingblock": 43, "stem_kernel_s": [43, 106, 109], "convs_per_block": [43, 106, 109], "stem_block": [43, 106, 109], "middle_block": [43, 47, 106, 109], "block_contract": [43, 106, 109], "ronneberg": 43, "2015": [43, 78], "34": [43, 69, 106, 109], "5m": [43, 104, 105], "middl": 43, "bear": 43, "particularli": [43, 65, 75, 77], "unetconfig": [43, 47, 106], "consist": [44, 47, 97, 110, 116], "3x3": [44, 47, 61, 76], "suffic": 44, "dlc": 44, "transposed_conv_filters_r": 44, "transposed_conv_batchnorm": 44, "make_skip_connect": 44, "refine_convs_filters_r": 44, "refine_convs_batchnorm": 44, "make_stack": 44, "No": [44, 46, 47, 48, 62, 72, 95, 102, 104, 107, 108], "won": [44, 47, 79, 80, 88, 92, 95, 98], "norm": [44, 47, 103], "incom": [44, 47, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 66, 67], "wise": [44, 47, 54, 58, 75, 78], "upsamplingconfig": [44, 47], "log": [44, 45, 49, 72, 89, 105, 106, 109, 110], "indirectli": 44, "matplotlibsav": 45, "save_fold": 45, "plot_fn": 45, "render": [45, 49, 72], "matplotlib": [45, 83, 103, 105, 107], "visual": [45, 48, 49, 61, 64, 72, 81, 83, 87, 89, 92, 93, 95, 97, 98, 105, 106, 107, 109, 115, 117], "epoch": [45, 48, 49, 54, 88, 98, 106, 109, 110, 117], "trainer": [45, 81, 106, 109], "visualize_predict": 45, "on_epoch_end": 45, "modelcheckpointonev": 45, "filepath": [45, 46, 102], "train_end": 45, "checkpoint": [45, 47, 49, 81, 89, 104, 109], "trigger": [45, 77], "train_start": 45, "on_train_begin": 45, "on_train_end": 45, "progressreporterzmq": 45, "not_set": 45, "on_batch_begin": 45, "backward": [45, 84, 92], "compat": [45, 61, 72, 84, 96, 100, 102], "on_train_batch_begin": 45, "on_batch_end": 45, "on_train_batch_end": 45, "on_epoch_begin": 45, "mode": [45, 46, 62, 72, 73, 88, 96, 102, 108, 110, 117], "futur": [45, 96, 115], "metric": [45, 46, 49, 69, 73, 81, 89, 92, 106, 107, 109, 112], "val_": 45, "tensorboardmatplotlibwrit": 45, "log_dir": 45, "tag": [45, 49, 109], "summari": [45, 49, 77, 89, 107], "logdir": 45, "tensorboard": [45, 49, 81, 89, 109], "trainingcontrollerzmq": 45, "9000": [45, 49, 109], "topic": 45, "poll_timeout": 45, "set_lr": [45, 49], "lr": [45, 49, 106, 109], "nativ": [45, 68, 89], "schedul": [45, 48, 49, 106, 109], "dataconfig": [46, 50, 64], "labelsconfig": [46, 81], "preprocessingconfig": [46, 62, 66], "instance_crop": [46, 106, 109], "instancecroppingconfig": [46, 60, 61], "topdown": [46, 47, 61, 72, 106, 109, 117], "center_on_part": [46, 60, 106, 109], "crop_siz": [46, 61, 72, 76, 109], "crop_size_detection_pad": [46, 109], "largest": [46, 47, 48, 54, 61], "pad": [46, 54, 61, 65, 66, 68, 72, 89], "training_label": [46, 81, 106, 109], "validation_label": [46, 81, 109], "validation_fract": [46, 67, 106, 109], "test_label": [46, 81, 89, 109], "split_by_ind": [46, 109], "training_ind": [46, 109], "validation_ind": [46, 109], "test_ind": [46, 109], "search_path_hint": [46, 109], "hyperparamet": [46, 48, 91, 93, 98, 99, 106], "stop": [46, 48, 49, 98, 106, 109, 110, 117], "held": 46, "never": [46, 54, 94], "benchmark": [46, 69, 86, 104, 105, 112], "optim": [46, 47, 49, 50, 54, 64, 70, 73, 75, 81, 82, 88, 100, 104, 105, 106, 107, 108, 109], "explicitli": [46, 48, 49, 50], "packag": [46, 81, 85, 89, 90, 91, 94, 96, 101, 103, 104, 105, 106, 107, 108, 109, 114], "pull": [46, 64, 75, 109], "ensure_rgb": [46, 62, 109], "ensure_grayscal": [46, 62, 72, 109], "imagenet_mod": [46, 62, 109], "input_sc": [46, 61, 109], "pad_to_strid": [46, 66, 72, 109], "resize_and_pad_to_target": [46, 66, 109], "target_height": [46, 66, 109], "target_width": [46, 66, 109], "commonli": [46, 62, 76], "mobilenetv1": [46, 62], "nasnet": [46, 62], "flip": [46, 48, 52, 62], "torch": [46, 62], "input_scal": [46, 72], "consider": [46, 47, 48, 49, 54, 79, 85, 88], "accuraci": [46, 47, 69, 80, 106, 107, 108, 113, 115, 117], "bottom": [46, 47, 66, 72, 84, 88, 89, 91, 92, 97, 101, 104, 110, 117], "meet": [46, 54, 64, 66, 92], "architectur": [46, 47, 49, 50, 61, 74, 91, 96, 98, 101, 104, 109], "dimens": [46, 47, 53, 55, 62, 65, 66, 68, 69, 70, 72, 75, 82, 103], "aspect": [46, 65, 103], "ratio": [46, 48, 65, 66, 72, 73, 82], "backboneconfig": 47, "resnet": [47, 109, 117], "centeredinstanceconfmapsheadconfig": [47, 70, 106], "anchor_part": [47, 70, 106, 109], "part_nam": [47, 70, 75, 81, 106, 109], "sigma": [47, 53, 55, 58, 68, 70, 76, 106, 109], "loss_weight": [47, 70, 106, 109], "offset_refin": [47, 109], "assumpt": 47, "reliabl": [47, 80, 100], "geometri": 47, "occlud": [47, 69, 92, 116], "strong": 47, "relianc": 47, "heavili": 47, "evalu": [47, 48, 61, 64, 69, 72, 75, 76, 81, 92, 106, 109], "poor": [47, 95, 107], "few": [47, 48, 73, 88, 90, 92, 98, 101, 102, 104, 113, 119], "small": [47, 49, 73, 79, 92, 95], "region": [47, 52, 88, 92], "significantli": [47, 78], "benefit": 47, "spread": [47, 53, 55, 58, 69, 70], "gaussian": [47, 53, 55, 58, 68, 76], "difficult": [47, 48, 95], "densiti": [47, 76], "peak": [47, 53, 54, 58, 59, 63, 71, 72, 75, 76, 83, 89, 105], "unit": [47, 48, 52, 53, 55, 58, 70, 75], "5x": 47, "speed": [47, 48, 49, 72, 89, 93, 105, 106, 115, 116], "weigh": [47, 58, 69, 78], "focu": [47, 48, 73], "subpixel": [47, 76], "local": [47, 48, 58, 59, 63, 69, 71, 72, 76, 91, 92, 96, 103, 104, 105, 106, 107, 108, 110, 112, 117], "hoc": 47, "determinist": 47, "resourc": [47, 48, 73], "centroidsheadconfig": [47, 70], "classmapsheadconfig": [47, 70], "classifi": [47, 71, 72, 75, 107], "semant": 47, "segment": [47, 75], "howev": [47, 92, 100, 106, 113], "neighborhood": [47, 58, 63, 76], "landmark": [47, 75, 76, 84, 92, 97, 104, 107], "nonzero": 47, "classvectorsheadconfig": [47, 70], "num_fc_lay": [47, 70], "num_fc_unit": [47, 70], "global_pool": [47, 70], "classif": [47, 70, 71, 72], "task": [47, 56, 72, 105, 106, 109], "headsconfig": 47, "single_inst": [47, 91, 109, 110], "singleinstanceconfmapsheadconfig": [47, 70], "centered_inst": [47, 89, 91, 104, 105, 106, 107, 109, 110], "multi_inst": [47, 75, 91, 104, 109, 110], "multiinstanceconfig": [47, 75], "multi_class_bottomup": [47, 109], "multiclassbottomupconfig": 47, "multi_class_topdown": [47, 105, 109], "multiclasstopdownconfig": 47, "max_strid": [47, 66, 109], "retain": [47, 78], "filters_increas": 47, "constant": 47, "modelconfig": [47, 50, 74], "base_checkpoint": [47, 89, 109], "confmap": [47, 53, 58, 63, 72, 83], "multiinstanceconfmapsheadconfig": [47, 70], "class_map": [47, 58, 71, 72], "fashion": 47, "beyond": [47, 48, 72, 80, 92], "class_vector": [47, 72], "partaffinityfieldsheadconfig": [47, 70], "alon": 47, "contrast": [47, 48, 86, 88, 109], "benefici": [47, 48, 88], "graph": [47, 55, 70, 72, 73, 75, 84, 89, 92, 97, 105, 117], "averag": [47, 48, 69, 75, 76, 88, 92, 105, 106, 107], "underneath": 47, "candid": [47, 69, 72, 75, 78, 80, 89, 95, 116], "coher": 47, "source_nod": [47, 70], "destination_nod": [47, 70], "disambigu": 47, "nearbi": [47, 79, 92], "decoder_filters_r": 47, "decoder_batchnorm": 47, "tunabl": 47, "global": [47, 48, 59, 72, 76], "block_strid": 47, "conv_batchnorm": 47, "augmentationconfig": [48, 52], "rotation_min_angl": [48, 109], "180": [48, 88], "rotation_max_angl": [48, 109], "translat": [48, 109], "translate_min": [48, 109], "translate_max": [48, 109], "scale_min": [48, 109], "9": [48, 69, 86, 103, 104, 105, 106, 109, 119], "scale_max": [48, 109], "uniform_nois": [48, 109], "uniform_noise_min_v": [48, 109], "uniform_noise_max_v": [48, 109], "gaussian_nois": [48, 109], "gaussian_noise_mean": [48, 109], "gaussian_noise_stddev": [48, 109], "contrast_min_gamma": [48, 109], "contrast_max_gamma": [48, 109], "bright": [48, 88, 109], "brightness_min_v": [48, 109], "brightness_max_v": [48, 109], "random_crop": [48, 109], "random_crop_height": [48, 109], "random_crop_width": [48, 109], "random_flip": [48, 109], "flip_horizont": [48, 109], "augment": [48, 88, 91, 96], "imgaug": 48, "geometr": 48, "degre": 48, "independ": [48, 61, 103], "uniformli": [48, 54], "nois": 48, "simul": [48, 72, 105], "shot": 48, "arithmet": 48, "addelementwis": 48, "uniform": [48, 66], "tigher": 48, "magnitud": 48, "additivegaussiannois": 48, "gamma": 48, "constrast": 48, "gammacontrast": 48, "broadfield": 48, "illumin": 48, "effici": [48, 53, 77], "reflect": [48, 52, 69], "correctli": [48, 49, 102, 105, 106, 112, 117], "earlystoppingconfig": [48, 106, 109], "stop_training_on_plateau": [48, 106, 109], "plateau_min_delta": [48, 106, 109], "1e": [48, 106, 109], "06": [48, 69, 106, 109], "plateau_pati": [48, 106, 109], "termin": [48, 102, 118], "plateau": 48, "minim": [48, 49, 54, 95, 102], "gain": 48, "overfit": [48, 88], "regim": 48, "least": [48, 67, 96, 104, 105, 106, 107, 108, 109], "hardkeypointminingconfig": [48, 73], "online_min": [48, 109], "hard_to_easy_ratio": [48, 73, 109], "min_hard_keypoint": [48, 73, 109], "max_hard_keypoint": [48, 73, 109], "loss_scal": [48, 73, 109], "hard": [48, 69, 73, 88, 92, 95], "mine": [48, 73, 88], "ohkm": [48, 73], "tricki": [48, 96], "switch": [48, 73, 92, 95], "skew": [48, 73], "impact": [48, 49, 72, 73, 100], "altogeth": [48, 73, 104, 108], "learningratescheduleconfig": [48, 106, 109], "reduce_on_plateau": [48, 106, 109], "reduction_factor": [48, 106, 109], "plateau_cooldown": [48, 106, 109], "min_learning_r": [48, 106, 109], "08": [48, 69, 104, 106, 109], "later": [48, 92, 95, 110], "finer": [48, 75, 80], "balanc": 48, "practic": 48, "optimizationconfig": [48, 50, 64, 81], "preload_data": [48, 109], "augmentation_config": [48, 106, 109], "online_shuffl": [48, 109], "shuffle_buffer_s": [48, 109], "batches_per_epoch": [48, 109], "min_batches_per_epoch": [48, 109], "val_batches_per_epoch": [48, 109], "min_val_batches_per_epoch": [48, 109], "100": [48, 80, 86, 92, 103, 104, 105, 106, 108, 109], "adam": [48, 109], "initial_learning_r": [48, 109], "0001": [48, 109], "learning_rate_schedul": [48, 109], "hard_keypoint_min": [48, 109], "early_stop": [48, 109, 110], "preload": [48, 54], "shuffl": [48, 54], "buffer": [48, 54], "vari": [48, 88, 105], "composit": [48, 52, 85], "turn": [48, 88, 92, 95, 104, 117], "promot": [48, 54], "minibatch": [48, 88], "gradient": [48, 72, 76, 88], "gpu": [48, 54, 72, 77, 88, 89, 90, 98, 101, 104, 105, 106, 107, 108, 109, 112, 117], "lead": [48, 54, 77, 88, 103, 104], "whichev": [48, 94], "sever": [48, 89, 107, 112, 113], "execut": [48, 73, 75, 81], "longer": [48, 61, 72, 75, 89, 90, 92, 94, 108], "heurist": [48, 89, 95, 115], "400": [48, 105], "short": [48, 49, 75, 85], "amsgrad": 48, "minima": 48, "descend": [48, 69], "converg": 48, "checkpointingconfig": [49, 81], "initial_model": [49, 109], "best_model": [49, 72, 89, 96, 104, 106, 107, 109], "every_epoch": [49, 109], "latest_model": [49, 109], "final_model": [49, 96, 109], "comparison": [49, 82, 107, 112], "baselin": [49, 91, 109], "run_fold": 49, "04d": 49, "latest": [49, 101, 102, 109, 110], "outputsconfig": [49, 50, 81], "save_output": [49, 109], "run_nam": [49, 89, 96, 106, 109], "run_name_prefix": [49, 109], "run_name_suffix": [49, 109], "runs_fold": [49, 109], "save_visu": [49, 109], "keep_viz_imag": [49, 109], "zip_output": [49, 109], "log_to_csv": [49, 109], "tensorboardconfig": [49, 81], "zmqconfig": [49, 81], "job": [49, 50, 72, 81, 89, 90, 91, 96, 105, 107, 109, 113], "timestamp": 49, "rather": [49, 53, 54, 58, 60, 66, 90, 96, 103], "exact": [49, 68, 100, 107], "_1": 49, "counter": 49, "delai": 49, "client": 49, "subdirectori": [49, 81, 85, 96], "organ": 49, "uncheck": [49, 95], "training_log": [49, 96, 107, 109], "zeromq": [49, 81], "monitor": [49, 72, 73, 86, 98, 115], "run_path": [49, 81], "write_log": [49, 109], "loss_frequ": [49, 109], "architecture_graph": [49, 109], "profile_graph": [49, 109], "parent": [49, 97], "displai": [49, 72, 89, 103, 108, 115], "dashboard": 49, "often": [49, 69, 73, 76, 95, 96, 100], "frequenc": [49, 104, 107], "affect": [49, 92, 100], "graphic": [49, 115], "consum": 49, "lot": [49, 92], "freez": [49, 72], "browser": [49, 109], "tab": [49, 88, 91, 98, 109, 119], "profil": [49, 50, 89, 93, 96, 109], "subscribe_to_control": [49, 109], "controller_address": [49, 109], "controller_polling_timeout": [49, 109], "publish_upd": [49, 109], "publish_address": [49, 109], "listen": 49, "broadcast": [49, 55, 68], "messag": [49, 72, 89, 100, 115], "endpoint": 49, "protocol": 49, "asynchron": 49, "program": [49, 87], "poll": 49, "ip": 49, "hostnam": 49, "port": [49, 104], "ip_address": 49, "port_numb": 49, "microsecond": 49, "poller": 49, "wait": [49, 80, 102], "serializ": 50, "parametr": 50, "easili": [50, 89], "decoupl": 50, "design": [50, 93], "logic": [50, 71, 72, 77, 78, 105], "aggreg": 50, "oppos": 50, "trainingjobconfig": [50, 69, 72, 81, 104, 106], "sleap_vers": [50, 109], "from_json": [50, 84], "json_data": 50, "from_json_dict": 50, "json_data_dict": 50, "load_json": [50, 84], "load_training_config": 50, "initial_config": [50, 81, 96, 106, 107, 109], "save_json": [50, 84], "load_config": [50, 106, 107], "oneof": 51, "attrs_cl": 51, "must_be_set": 51, "decor": 51, "inspir": 51, "protobuff": 51, "__init__": [51, 105], "albumentationsaugment": 52, "image_kei": [52, 61, 62, 66], "instances_kei": [52, 60, 61], "albument": 52, "core": [52, 72, 104, 105, 106, 107, 108, 109, 112], "input_kei": [52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 66, 67, 81], "output_kei": [52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 64, 65, 66, 67, 81], "outgo": [52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 66, 67], "transform_dataset": [52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 66, 67], "input_d": [52, 53, 55, 56, 58, 59, 61, 66], "datasetv2": [52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 64, 65, 66, 67, 72], "randomcropp": 52, "crop_height": [52, 61, 76], "crop_width": [52, 61, 76], "crop_bbox": [52, 61, 76], "randomflipp": 52, "symmetric_ind": [52, 84], "n_symmetri": 52, "mirror": 52, "v": [52, 64, 69, 100, 107], "matter": [52, 96, 97], "from_skeleton": 52, "flip_instances_lr": 52, "img_width": 52, "n_instanc": [52, 53, 55, 58, 60, 61, 65, 72, 75], "int32": [52, 55, 58, 60, 61, 65, 71, 75, 76, 82, 105], "flip_instances_ud": 52, "img_height": 52, "instanceconfidencemapgener": 53, "with_offset": 53, "offsets_threshold": 53, "flatten_offset": 53, "grid": [53, 55, 58, 63, 65, 68, 72, 76, 105], "instance_imag": [53, 59, 61], "center_inst": [53, 61], "instance_confidence_map": [53, 59], "all_instance_confidence_map": 53, "importantli": [53, 55], "proport": [53, 55], "multiconfidencemapgener": 53, "centroid_confidence_map": [53, 59], "singleinstanceconfidencemapgener": 53, "make_confmap": [53, 58, 63], "xv": [53, 55, 63, 68, 76], "yv": [53, 55, 63, 68, 76], "grid_width": [53, 55, 58, 63, 68], "make_grid_vector": [53, 55, 63, 68], "grid_height": [53, 55, 58, 63, 68], "unnorm": [53, 68, 76], "diagon": 53, "covari": [53, 76], "make_multi_confmap": 53, "elementwis": 53, "immedi": [53, 95], "make_multi_confmaps_with_offset": 53, "divid": [53, 62, 63, 72, 75, 76, 95], "batcher": 54, "drop_remaind": 54, "unrag": 54, "variabl": [54, 66, 68, 72, 73, 84, 102, 104], "rag": [54, 68, 72, 89], "remaind": 54, "raggedtensor": [54, 68, 72, 75], "leav": [54, 68], "downstream": [54, 65], "continu": [54, 86, 105, 115, 116, 117, 118], "ds_input": [54, 60, 61, 62, 66, 67], "had": [54, 80, 90, 102, 104, 105, 106, 107, 108, 109], "lambdafilt": 54, "filter_fn": 54, "elimin": 54, "kept": [54, 61], "buffer_s": 54, "unmodifi": 54, "experiment": [54, 95], "autotun": 54, "latenc": [54, 101, 105], "consumpt": 54, "infinit": 54, "indefinit": 54, "boundari": [54, 70], "shuffler": 54, "reshuffle_each_iter": 54, "though": 54, "latter": [54, 72, 89, 99], "technic": [54, 61, 76, 101], "alwai": [54, 65, 72, 84, 95, 102, 116], "fill": [54, 72, 105, 116], "realli": [54, 85], "unbatch": [54, 61], "partaffinityfieldsgener": 55, "flatten_channel": 55, "n_edg": [55, 75], "ax": [55, 72, 103], "skeleton_ind": [55, 60, 65], "part_affinity_field": [55, 72], "distance_to_edg": 55, "edge_sourc": 55, "edge_destin": 55, "undirect": 55, "d_0": 55, "d_n": 55, "get_edge_point": 55, "destin": [55, 70, 75, 84, 95, 97], "make_edge_map": 55, "make_multi_paf": 55, "make_paf": 55, "keydevicemov": 56, "device_nam": [56, 59], "cpu": [56, 72, 77, 85, 89, 102, 104, 105, 106, 107, 109], "devic": [56, 77, 102, 104, 105, 106, 107, 108, 109], "keyfilt": 56, "keep_kei": 56, "keyrenam": 56, "old_key_nam": 56, "new_key_nam": 56, "drop_old": 56, "renam": [56, 84, 118], "lambdamap": 56, "func": 56, "input_key_nam": 56, "output_key_nam": 56, "group_exampl": 57, "frame_ind": [57, 65], "group_examples_it": 57, "vid": 57, "classmapgener": 58, "class_map_threshold": 58, "track_ind": [58, 61, 65], "classvectorgener": 58, "make_class_map": 58, "class_ind": [58, 71], "n_class": [58, 71, 72], "confidence_map": [58, 63], "binari": [58, 104, 105, 106, 107, 109], "make_class_vector": 58, "interpret": [58, 75, 112], "globalpeakfind": 59, "confmaps_kei": 59, "predicted_instance_confidence_map": 59, "confmaps_strid": 59, "peak_threshold": [59, 72, 89, 109], "peaks_kei": 59, "predicted_center_instance_point": 59, "peak_vals_kei": 59, "predicted_center_instance_confid": 59, "keep_confmap": 59, "integral_patch_s": [59, 72, 76], "kerasmodelpredictor": 59, "keras_model": [59, 64, 72, 74, 81, 82, 106], "model_input_kei": 59, "model_output_kei": 59, "localpeakfind": 59, "predicted_centroid": 59, "predicted_centroid_confid": 59, "peak_sample_inds_kei": 59, "predicted_centroid_sample_ind": 59, "peak_channel_inds_kei": 59, "predicted_centroid_channel_ind": 59, "mockglobalpeakfind": 59, "all_peaks_in_kei": 59, "peaks_out_kei": 59, "confmaps_in_kei": 59, "confmaps_out_kei": 59, "mimic": 59, "predictedcenterinstancenorm": 59, "centroid_kei": 59, "centroid_confidence_kei": 59, "centroid_confid": [59, 61], "peak_confidences_kei": 59, "new_centroid_kei": 59, "new_centroid_confidence_kei": 59, "new_peaks_kei": 59, "new_peak_confidences_kei": 59, "predicted_instance_confid": 59, "instancecentroidfind": [60, 72], "center_on_anchor_part": 60, "anchor_part_nam": 60, "stream": [60, 62, 66, 103, 104, 109], "find_points_bbox_midpoint": 60, "n_point": [60, 63, 75], "xy_mid": 60, "xy_min": 60, "xy_max": 60, "get_instance_anchor": 60, "anchor_ind": 60, "gather": 60, "instancecropp": 61, "keep_full_imag": [61, 66], "mock_centroid_confid": 61, "centroids_kei": 61, "knowledg": 61, "bbox": [61, 76, 83], "center_instance_ind": 61, "th": [61, 76, 89], "full_image_height": 61, "full_image_width": 61, "crop_and_res": [61, 76], "becom": 61, "n_bbox": [61, 76], "make_centered_bbox": [61, 76], "span": [61, 68, 71, 76], "patch": [61, 72, 76], "find_instance_crop_s": 61, "min_crop_s": 61, "margin": 61, "truncat": 61, "side": [61, 88, 92, 109, 118, 119], "box_height": 61, "box_width": 61, "n_centroid": [61, 72], "onto": [61, 67, 105], "diagram": 61, "normalize_bbox": 61, "image_height": [61, 66, 68], "image_width": [61, 66, 68], "unnormalize_bbox": 61, "normalized_bbox": 61, "ensure_float": [62, 72], "constraint": [62, 66], "convert_rgb_to_bgr": 62, "convert_image_dtyp": 62, "rgb_to_grayscal": 62, "ensure_int": 62, "uint8": [62, 72, 104, 105], "ensure_min_image_rank": 62, "expand_to_rank": [62, 68], "grayscale_to_rgb": 62, "scale_image_rang": 62, "min_val": 62, "max_val": 62, "scale_to_imagenet_caffe_mod": 62, "approxim": [62, 88, 113], "scale_to_imagenet_tf_mod": 62, "scale_to_imagenet_torch_mod": 62, "485": 62, "456": [62, 96, 105], "406": [62, 104, 105], "229": [62, 105], "225": [62, 105], "regress": [63, 72, 76], "make_offset": 63, "mask_offset": 63, "capabl": [64, 105, 106, 109], "bottomupmulticlasspipelin": 64, "data_config": 64, "optimization_config": 64, "confmaps_head": 64, "multiinstanceconfmapshead": [64, 70, 72], "class_maps_head": 64, "classmapshead": [64, 70, 72], "offsets_head": 64, "offsetrefinementhead": [64, 70, 72], "builder": [64, 81, 106, 109], "make_base_pipelin": 64, "data_provid": [64, 72], "make_training_pipelin": 64, "remap": 64, "keymapp": [64, 67], "make_viz_pipelin": 64, "fetch": 64, "bottomuppipelin": 64, "pafs_head": 64, "partaffinityfieldshead": [64, 70, 72], "centroidconfmapspipelin": 64, "centroid_confmap_head": 64, "centroidconfmapshead": [64, 70, 72, 109], "return_descript": [64, 68], "from_block": 64, "chain": [64, 72], "from_pipelin": 64, "make_dataset": [64, 65], "peek": [64, 103], "quickli": [64, 92, 95, 115], "validate_pipelin": 64, "singleinstanceconfmapspipelin": 64, "single_instance_confmap_head": 64, "singleinstanceconfmapshead": [64, 70, 72], "topdownmulticlasspipelin": 64, "instance_confmap_head": 64, "centeredinstanceconfmapshead": [64, 70, 72, 106, 109], "class_vectors_head": 64, "classvectorshead": [64, 70, 72], "topdownconfmapspipelin": 64, "example_indic": [65, 67], "handi": [65, 92], "from_unlabeled_suggest": 65, "from_user_inst": 65, "from_user_labeled_fram": 65, "is_from_multi_size_video": 65, "ds_index": 65, "raw_image_s": 65, "example_ind": 65, "int64": [65, 85], "x_scale": 65, "y_scale": 65, "properli": [65, 104, 107, 108], "max_height_and_width": [65, 66], "from_filepath": 65, "pointsrescal": 66, "points_kei": 66, "scale_kei": 66, "invert": [66, 84], "full_image_kei": 66, "full_imag": 66, "sizematch": 66, "max_image_height": 66, "max_image_width": 66, "center_pad": 66, "offset_x": 66, "offset_i": 66, "update_config": [66, 74, 81], "find_padding_for_strid": 66, "pad_bottom": 66, "pad_right": 66, "mismatch": 66, "n_down_block": 66, "rescal": 66, "scale_x": 66, "scale_i": 66, "key_map": 67, "split_label": 67, "split_fract": 67, "One": [67, 72, 78, 84, 95], "round": [67, 104, 106], "split_labels_read": 67, "labels_read": 67, "split_labels_train_v": 67, "idx_train": 67, "idx_val": 67, "Their": 67, "miscellan": [68, 85], "describe_tensor": [68, 72], "ensure_list": 68, "target_rank": 68, "gaussian_pdf": 68, "meshgrid": 68, "thought": 68, "induc": 68, "unrag_exampl": 68, "sync_to_numpy_or_python_typ": 68, "unrag_tensor": 68, "max_siz": 68, "measur": [69, 75, 95], "understand": [69, 92, 100], "oks_voc": [69, 107], "vi": [69, 107], "recal": [69, 92, 107, 117], "dist": [69, 107], "p95": [69, 107], "compute_dist_metr": 69, "dists_dict": 69, "euclidean": [69, 75, 82], "percentil": [69, 107], "n_positive_pair": 69, "compute_dist": 69, "positive_pair": 69, "instance_gt": 69, "instance_pr": 69, "compute_generalized_voc_metr": 69, "false_neg": 69, "match_scor": [69, 107], "match_score_threshold": [69, 107], "55": [69, 109], "65": 69, "75": 69, "85": 69, "95": [69, 78, 80, 104, 105, 107], "recall_threshold": [69, 107], "01": [69, 103, 104, 105, 106, 107, 108, 109], "02": [69, 78, 105, 106], "04": [69, 103, 104, 105, 106, 107, 109], "05": [69, 103, 105, 109], "07": [69, 107, 109], "09": [69, 105, 106, 107, 108, 109], "11": [69, 86, 102, 103, 104, 105, 106, 107, 108, 109], "12": [69, 90, 102, 103, 104, 105, 106, 107, 108, 109], "13": [69, 86, 103, 105, 106, 107, 109], "14": [69, 86, 104, 105, 106, 107, 108, 109], "17": [69, 72, 106, 108, 109], "19": [69, 100, 101, 109], "22": [69, 109], "24": [69, 90, 103, 106, 109], "25": [69, 72, 75, 76, 86, 89, 103, 105, 108, 109], "26": [69, 92, 95, 104, 109], "27": [69, 104, 107, 109], "28": [69, 107, 109], "29": [69, 104, 107, 108, 109], "31": [69, 104, 105, 106, 109], "33": [69, 109], "35": [69, 86, 105, 109], "36": [69, 109], "37": [69, 105, 109], "38": [69, 104, 109], "39": [69, 104, 105, 106, 109], "41": [69, 109], "42": [69, 105, 106, 107, 109], "43": [69, 105, 106, 107, 109], "44": [69, 105, 106, 107, 109], "45": [69, 86, 104, 109], "46": [69, 104, 109], "47": [69, 104], "48": [69, 104, 107], "49": [69, 104, 105, 107, 109], "51": 69, "52": [69, 104, 105], "53": [69, 104, 105], "54": [69, 104, 109], "56": [69, 104, 105], "57": [69, 104, 105, 109], "58": [69, 104, 106], "59": [69, 86, 104], "61": [69, 109], "62": 69, "63": [69, 105, 109], "66": 69, "67": [69, 109], "69": [69, 104], "71": [69, 104], "72": [69, 83, 104, 109], "73": [69, 109], "74": [69, 105, 109], "76": 69, "77": [69, 104], "78": [69, 104, 105, 106, 107, 108, 109], "79": [69, 109], "81": [69, 104, 105], "82": [69, 103, 109], "83": [69, 104, 105], "84": [69, 104, 105], "86": [69, 105], "87": [69, 105], "88": [69, 104, 105, 109], "89": [69, 104, 105], "91": [69, 104, 105], "92": [69, 104, 105], "93": 69, "94": [69, 104, 105], "96": [69, 105], "97": [69, 86, 105], "98": [69, 104], "99": [69, 104, 105], "gvoc": 69, "voc": [69, 107], "unmatch": [69, 82], "ok": [69, 103, 104, 106, 107, 109], "compute_instance_area": 69, "compute_ok": 69, "points_gt": 69, "points_pr": 69, "stddev": 69, "025": 69, "use_cocoev": 69, "n_gt": 69, "n_ed": 69, "n_pr": 69, "cocoev": 69, "cocoapi": 69, "difficulti": [69, 107], "072": 69, "easiest": [69, 90, 96, 114], "ey": 69, "hardest": 69, "hip": 69, "107": 69, "bone": 69, "anatom": 69, "cloth": 69, "ronch": 69, "perona": 69, "diagnosi": 69, "iccv": 69, "2017": [69, 75, 117], "compute_pck_metr": 69, "pck": [69, 107], "compute_visibility_conf": 69, "confus": 69, "oks_stddev": 69, "oks_scal": 69, "match_threshold": 69, "user_labels_onli": 69, "evaluate_model": 69, "cfg": [69, 75, 106], "split_nam": 69, "find_frame_pair": 69, "frame_gt": 69, "frame_pr": 69, "load_metr": [69, 107], "model_path": [69, 72, 107, 109], "npz": [69, 106, 107, 109], "tp": [69, 107], "tn": [69, 107], "avg": [69, 107], "p50": [69, 107], "50th": [69, 107], "p75": [69, 107], "75th": [69, 107], "p90": [69, 107], "90th": [69, 107], "95th": [69, 107], "p99": [69, 107], "99th": [69, 107], "mpck": [69, 107], "percentag": [69, 89, 107], "mok": [69, 107], "mar": [69, 107], "pck_voc": [69, 107], "match_frame_pair": 69, "frame_pair": 69, "match_inst": 69, "pascal": 69, "briefli": 69, "greedili": 69, "replace_path": 69, "video_list": 69, "loss_funct": 70, "make_head": 70, "sigma_threshold": 70, "confmapconfig": 70, "classify_peaks_from_map": 71, "peak_point": [71, 76], "peak_val": [71, 72, 75, 76], "peak_sample_ind": [71, 76], "peak_channel_ind": [71, 72, 75, 76], "n_channel": 71, "n_sampl": [71, 75], "n_peak": [71, 75, 76], "point_val": 71, "class_prob": 71, "group_class_peak": 71, "classify_peaks_from_vector": 71, "peak_class_prob": 71, "crop_sample_ind": 71, "peak_ind": [71, 75], "Will": 71, "hungarian": [71, 78, 82, 89, 95], "algorithm": [71, 75, 76, 78, 79, 82, 92, 109, 113, 115], "inferencemodel": [72, 89], "surround": 72, "routin": 72, "predictor": [72, 104, 105, 107, 109], "postprocess": 72, "load_model": [72, 104, 105, 107], "bottomupinferencelay": 72, "encapsul": [72, 78], "forward": [72, 92, 103], "paf_scor": 72, "paf_group": 72, "pafscor": [72, 75], "cm_output_strid": 72, "paf_output_strid": 72, "quarter": [72, 76], "rough": [72, 76], "return_confmap": 72, "slower": [72, 78, 88, 95, 105], "return_paf": 72, "return_paf_graph": 72, "confmaps_ind": 72, "pafs_ind": 72, "offsets_ind": 72, "instance_peak": [72, 105], "instance_peak_v": [72, 105], "edge_peak_ind": [72, 75], "line_scor": [72, 75], "find_peak": 72, "cm": [72, 76, 86], "forward_pass": 72, "bottomupinferencemodel": 72, "bottomup_lay": 72, "bottomupmulticlassinferencelay": 72, "class_maps_output_strid": 72, "return_class_map": 72, "class_maps_ind": 72, "inference_lay": 72, "bottomupmulticlassinferencemodel": 72, "bottomupmulticlasspredictor": 72, "inference_model": [72, 105], "integral_refin": 72, "verbos": [72, 89, 109], "rich": [72, 89, 109], "report_r": 72, "from_trained_model": 72, "training_job": [72, 81, 110], "resize_input_lay": 72, "insid": [72, 85, 87, 88, 89, 92, 96, 114], "training_config": [72, 89, 96, 104, 106, 107, 109], "num_color_channel": 72, "bottomuppredictor": 72, "is_grayscal": 72, "bottomup_config": 72, "bottomup_model": 72, "max_edge_length_ratio": [72, 75, 89, 109], "dist_penalty_weight": [72, 75, 89, 109], "paf_line_point": 72, "min_line_scor": [72, 75], "max_inst": [72, 89, 109], "bottomup": [72, 96, 110], "tracker": [72, 80, 89, 92, 95, 96, 108, 109, 110, 112, 119], "penal": [72, 75, 89], "coeffici": [72, 75, 89], "penalti": [72, 75, 89], "enforc": [72, 75, 89], "strictli": [72, 75, 89, 102], "spuriou": [72, 75], "discard": [72, 75], "extran": 72, "centroidcrop": 72, "pade": 72, "return_crop": 72, "findinstancepeak": 72, "centroid_v": [72, 105], "centroid_confmap": 72, "output_height": 72, "output_width": 72, "crop_offset": 72, "former": 72, "centroidcropgroundtruth": 72, "squar": [72, 76, 83], "example_gt": 72, "centroidinferencemodel": 72, "centroid_crop": 72, "instance_confmap": 72, "findinstancepeaksgroundtruth": 72, "crop_output": 72, "n_instances_gt": 72, "greedi": [72, 75, 78, 79, 80, 89, 95, 108], "inferencelay": 72, "overload": 72, "previous": [72, 84], "export_model": [72, 89], "save_path": 72, "serving_default": 72, "save_trac": 72, "unrag_output": 72, "savedmodel": 72, "trace": 72, "frozen_graph": [72, 87], "pb": [72, 87], "n_valid": [72, 105], "predict_on_batch": [72, 105], "movenetinferencelay": 72, "movenet": 72, "lightn": 72, "thunder": 72, "movenetinferencemodel": 72, "joint": [72, 88, 103, 118], "reappli": 72, "meant": [72, 75], "overridden": 72, "__call__": 72, "masking_and_pad": 72, "movenetpredictor": 72, "from_model_path": 72, "singleinstancepredictor": 72, "topdownpredictor": [72, 109], "topdownmulticlasspredictor": 72, "make_pipelin": 72, "make_label": 72, "report_period": 72, "ratecolumn": 72, "table_column": 72, "singleinstanceinferencelay": 72, "singleinstanceinferencemodel": 72, "detector": 72, "single_instance_lay": 72, "confmap_config": [72, 87], "confmap_model": 72, "topdowninferencemodel": 72, "cropper": 72, "topdownmulticlassfindpeak": 72, "return_class_vector": 72, "associt": 72, "class_vectors_ind": 72, "optimal_group": 72, "topdownmulticlassinferencemodel": 72, "centroid_config": [72, 87], "centroid_model": [72, 105], "centroid_model_path": 72, "confmap_model_path": 72, "visualpredictor": 72, "safely_gener": 72, "export_cli": 72, "exported_model": [72, 89], "find_head": 72, "get_keras_model_path": 72, "get_model_output_strid": 72, "input_ind": 72, "output_ind": 72, "evenli": [72, 92, 116], "tracker_window": 72, "tracker_max_inst": 72, "disable_gpu_prealloc": [72, 77], "progress_report": 72, "flow": [72, 80, 89, 95, 96, 108], "histori": 72, "prealloc": [72, 77], "neglig": 72, "bar": [72, 89, 116], "consol": [72, 89, 102], "notebook": [72, 89, 90, 93, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110, 111, 113], "captur": [72, 105], "programmat": 72, "headless": 72, "machin": [72, 89, 91, 93, 96, 98, 100, 102, 103, 104, 107, 108, 110, 112, 113, 117], "make_model_movenet": 72, "ohkmloss": 73, "reweight": 73, "mse": 73, "worst": [73, 88], "y_gt": 73, "y_pr": 73, "sample_weight": 73, "y_true": 73, "d0": 73, "dn": 73, "spars": 73, "categor": 73, "crossentropi": 73, "y_pred": 73, "get_config": 73, "partloss": 73, "channel_ind": 73, "idempot": 73, "update_st": 73, "accumul": [73, 75], "textual": 73, "worri": [73, 90, 95], "eager": 73, "compute_ohkm_loss": 73, "queri": [74, 77, 78, 84, 95], "engin": 74, "built": [74, 96, 101, 113, 116], "make_model": 74, "resolv": [75, 94, 103, 104, 109], "agreement": 75, "connected": 75, "amen": 75, "zhe": 75, "cao": [75, 117], "toma": 75, "simon": 75, "shih": 75, "en": 75, "wei": 75, "yaser": 75, "sheikh": 75, "realtim": [75, 100, 101], "_cvpr_": 75, "edgeconnect": 75, "src_peak_ind": 75, "dst_peak_ind": 75, "edgetyp": [75, 84], "src_node_ind": [75, 84], "dst_node_ind": [75, 84], "pafs_strid": 75, "min_instance_peak": 75, "src_node": [75, 84], "dst_node": [75, 84], "subscript": [75, 84], "edge_typ": 75, "sorted_edge_ind": 75, "topolog": 75, "assembli": 75, "assign_connections_to_inst": 75, "finder": 75, "scorer": 75, "min_edge_scor": 75, "group_inst": 75, "match_edge_ind": 75, "match_src_peak_ind": 75, "match_dst_peak_ind": 75, "match_line_scor": 75, "n_connect": 75, "match_candid": 75, "whole": [75, 88, 92, 105, 110], "predicted_peak_scor": 75, "predicted_instance_scor": 75, "standalon": [75, 104], "group_instances_batch": 75, "n_candid": 75, "score_paf_lin": 75, "match_candidates_batch": 75, "score_paf_lines_batch": 75, "peakid": 75, "node_ind": 75, "partit": 75, "filter_connection_candid": 75, "node_type_ind": 75, "instance_assign": 75, "compute_distance_penalti": 75, "spatial_vec_length": 75, "max_edge_length": 75, "peaks_sampl": 75, "apart": 75, "infin": 75, "get_connection_candid": 75, "peak_channel_inds_sampl": 75, "skeleton_edg": 75, "get_paf_lin": 75, "pafs_sampl": 75, "n_line_point": 75, "pretti": [75, 105, 107], "gather_nd": 75, "col": [75, 82], "make_line_sub": 75, "group_instances_sampl": 75, "peak_scores_sampl": 75, "match_edge_inds_sampl": 75, "match_src_peak_inds_sampl": 75, "match_dst_peak_inds_sampl": 75, "match_line_scores_sampl": 75, "match_candidates_sampl": 75, "py_funct": 75, "make_predicted_inst": 75, "peak_scor": 75, "munkr": 75, "scipi": [75, 78, 103], "linear_sum_assign": [75, 82], "tf_linear_sum_assign": [75, 82], "edge_inds_sampl": 75, "edge_peak_inds_sampl": 75, "line_scores_sampl": 75, "paf_lines_sampl": 75, "conncet": 75, "dot": [75, 83], "product": [75, 109], "due": [75, 104], "toposort_edg": 75, "assembl": [75, 116], "root": [75, 107, 109, 110], "sometim": [76, 80, 95, 99, 108], "heatmap": 76, "entail": 76, "maxima": 76, "sample_ind": 76, "find_global_peak": 76, "xy": 76, "find_global_peaks_integr": 76, "find_global_peaks_rough": 76, "find_global_peaks_with_offset": 76, "find_local_peak": 76, "find_local_peaks_integr": 76, "find_local_peaks_rough": 76, "suppres": 76, "find_local_peaks_with_offset": 76, "find_offsets_local_direct": 76, "centered_patch": 76, "delta": 76, "dx_i": 76, "dy_i": 76, "reshap": [76, 103], "float64": [76, 85, 105], "alejandro": 76, "newel": 76, "kaiyu": 76, "yang": 76, "jia": 76, "deng": 76, "_european": 76, "confer": 76, "vision_": 76, "2016": 76, "integral_regress": 76, "x_hat": 76, "y_hat": 76, "make_gaussian_kernel": 76, "odd": 76, "pi": 76, "smooth_img": 76, "smooth": [76, 103], "convolv": 76, "best_logical_device_nam": 77, "placement": [77, 92, 97, 116], "disable_prealloc": [77, 104, 105], "growth": [77, 102, 105, 106, 109], "cuda": [77, 102, 104, 105, 106, 107, 108, 109], "startup": 77, "session": [77, 90, 105, 117], "nix": [77, 89], "enable_gpu_prealloc": 77, "enable_prealloc": 77, "get_all_gpu": 77, "physicaldevic": [77, 102], "unavail": 77, "get_available_gpu": 77, "get_current_gpu": 77, "get_gpu_memori": 77, "mib": [77, 109], "initialize_devic": 77, "is_gpu_system": 77, "discover": 77, "is_initi": 77, "hidden": 77, "logicaldevic": 77, "use_cpu_onli": [77, 104], "hide": [77, 92, 104], "use_first_gpu": 77, "use_gpu": 77, "device_ind": 77, "use_last_gpu": 77, "popul": 78, "pick": [78, 91, 92, 95, 106, 116], "clean": [78, 80, 89], "framematch": [78, 80], "cost_matrix": [78, 79, 82], "unmatched_inst": 78, "instancetyp": [78, 79, 80], "choic": [78, 79, 117], "got": [78, 117], "weren": 78, "from_candidate_inst": 78, "untracked_inst": [78, 80], "candidate_inst": 78, "similarity_funct": [78, 80], "matching_funct": [78, 80], "robust_best_inst": [78, 80], "from_cost_matrix": 78, "robust": [78, 80, 88, 89, 92, 109], "quantil": [78, 80, 89], "has_only_first_choice_match": 78, "is_first_choic": 78, "centroid_dist": 78, "ref_inst": [78, 80], "query_inst": [78, 80], "persist": 78, "connect_single_track_break": 78, "lost": [78, 88, 89, 95, 119], "cull_frame_inst": 78, "instances_list": 78, "iou_threshold": [78, 80], "intersect": [78, 80, 82, 95], "iou": [78, 80, 89, 95], "cull_inst": 78, "factory_object_keypoint_similar": 78, "keypoint_error": 78, "score_weight": 78, "normalization_keypoint": 78, "factori": 78, "first_choice_match": 78, "greedy_match": [78, 80], "bipartit": [78, 80], "hungarian_match": [78, 80], "instance_i": [78, 80], "instance_similar": [78, 80], "nms_fast": 78, "target_count": 78, "pyimagesearch": 78, "suppress": 78, "normalized_instance_similar": 78, "img_hw": [78, 80], "Then": [79, 91, 94, 97, 102, 105, 110, 120], "fragment": 79, "mess": 79, "get_track_instance_match": 79, "are_too_close_funct": 79, "ascend": 79, "whenev": 79, "wasn": [79, 107], "upshot": 79, "compet": 79, "looser": 79, "match_dict_from_match_funct": 79, "row_item": 79, "column_item": 79, "match_funct": 79, "key_by_column": 79, "remove_second_bests_from_cost_matrix": 79, "invalid_v": 79, "unclear": 79, "inf": [79, 82], "tool": [80, 93, 95, 100, 102, 115, 119], "link": [80, 104], "basetrack": 80, "flowcandidatemak": 80, "min_point": 80, "img_scal": [80, 89, 108, 109], "of_window_s": [80, 89, 108, 109], "of_max_level": [80, 89, 108, 109], "save_shifted_inst": [80, 89, 109], "track_window": [80, 89, 108, 109], "shifted_inst": 80, "shiftedinst": 80, "optic": [80, 89, 95, 96, 108], "shift": [80, 89, 92, 95], "movement": [80, 92, 113], "pyramid": [80, 89], "flow_shift_inst": 80, "ref_img": 80, "new_img": 80, "min_shifted_point": 80, "window_s": 80, "max_level": 80, "luca": 80, "kanad": 80, "get_shifted_inst": 80, "ref_t": 80, "get_shifted_instances_from_earlier_tim": 80, "prune_shifted_inst": 80, "prune": 80, "older": [80, 102], "flowmaxtrack": [80, 89], "max_track": [80, 89], "candidate_mak": 80, "target_instance_count": [80, 89, 108, 109], "pre_cull_funct": 80, "post_connect_single_break": [80, 89, 108, 109], "min_new_track_point": [80, 89, 108, 109], "track_matching_queu": 80, "dequ": 80, "matchedframeinst": 80, "track_matching_queue_dict": 80, "spawned_track": 80, "save_tracked_inst": 80, "last_match": 80, "flowmaxtrackscandidatemak": 80, "get_ref_inst": 80, "flowtrack": 80, "kalmantrack": 80, "init_track": 80, "init_set": 80, "kalmaninitset": 80, "kalman_track": 80, "barekalmantrack": 80, "cull_funct": 80, "init_frame_count": 80, "re_init_cooldown": 80, "re_init_aft": 80, "init_don": 80, "pre_track": 80, "last_t": 80, "last_init_t": 80, "kalman": [80, 89], "certain": [80, 84, 95, 98, 99], "init": [80, 102, 105, 106, 109], "enough": [80, 88, 93, 95, 99, 117], "gap": 80, "cooldown": 80, "period": 80, "is_valid": 80, "make_track": 80, "node_indic": 80, "instance_iou_threshold": 80, "simplecandidatemak": 80, "simplemaxtrack": [80, 89], "simplemaxtrackscandidatemak": 80, "simpletrack": 80, "trackclean": [80, 95], "veloc": [80, 92, 95], "get_candid": 80, "incorpor": [80, 107], "final_pass": 80, "timestep": 80, "unique_tracks_in_queu": 80, "run_track": 80, "bottomupmodeltrain": 81, "data_read": 81, "dataread": 81, "has_offset": 81, "bottomupmulticlassmodeltrain": 81, "centroidconfmapsmodeltrain": 81, "training_labels_read": 81, "validation_labels_read": 81, "test_labels_read": 81, "labels_config": 81, "video_search_path": 81, "incomplet": 81, "from_label": 81, "singleinstancemodeltrain": 81, "topdownmulticlassmodeltrain": 81, "topdownconfmapsmodeltrain": 81, "pipeline_build": 81, "pipelinebuild": 81, "training_pipelin": 81, "validation_pipelin": 81, "training_viz_pipelin": 81, "validation_viz_pipelin": 81, "optimization_callback": 81, "output_callback": 81, "visualization_callback": 81, "cleanup": 81, "teset": 81, "setup": [81, 86, 107], "create_trainer_using_cli": 81, "get_timestamp": 81, "date": [81, 96, 102, 109], "sanitize_scope_nam": 81, "sanit": 81, "scope": [81, 85], "setup_checkpoint": 81, "setup_loss": 81, "setup_metr": 81, "setup_new_run_fold": 81, "base_run_nam": 81, "setup_optimization_callback": 81, "setup_optim": 81, "optimizerv2": 81, "setup_output_callback": 81, "setup_tensorboard": 81, "setup_visu": 81, "viz_fn": 81, "setup_zmq_callback": 81, "zmq_config": 81, "compute_i": 82, "bbox1": 82, "bbox2": 82, "group_arrai": 82, "blog": [82, 100], "arang": [82, 103], "match_point": 82, "points1": 82, "points2": 82, "m": [82, 83, 85, 87, 89, 95, 96, 100, 101, 105, 108, 109, 110], "inds1": 82, "inds2": 82, "reset_input_lay": 82, "new_shap": 82, "stackoverflow": 82, "58485055": 82, "n_src": 82, "n_dst": 82, "generate_skeleton_preview_imag": 83, "square_bb": 83, "thumbnail_s": 83, "byte": [83, 84, 85], "preview": [83, 84, 88, 98], "thumbnail": 83, "imgfig": 83, "dpi": [83, 105, 107], "tight": 83, "inch": 83, "plot_confmap": 83, "cmap": [83, 103], "color_by_nod": 83, "lw": 83, "color_by_track": 83, "plot_paf": 83, "quiver": 83, "plot_peak": 83, "pts_gt": 83, "pts_pr": 83, "goal": [84, 115, 117], "symmetri": [84, 104], "arm": 84, "as_nod": 84, "from_nam": 84, "name_list": 84, "constitu": 84, "_skeleton_idx": 84, "preview_imag": 84, "_is_templ": 84, "add_edg": 84, "add_nod": 84, "add_symmetri": 84, "node1": 84, "node2": 84, "clear_edg": 84, "delete_edg": 84, "delete_nod": 84, "delete_symmetri": 84, "establish": 84, "edge_to_index": 84, "edges_ful": 84, "find_neighbor": 84, "predecessor": 84, "successor": [84, 101], "find_nod": 84, "find_unique_nod": 84, "from_dict": 84, "node_to_idx": 84, "sto": 84, "json_str": [84, 85], "idx_to_nod": 84, "from_names_and_edge_ind": 84, "get_symmetri": 84, "get_symmetry_nam": 84, "subgraph": 84, "graph_symmetri": 84, "has_edg": 84, "source_nam": 84, "dest_nam": 84, "ye": [84, 97, 100], "has_nod": 84, "is_arboresc": 84, "arboresc": 84, "is_templ": 84, "load_all_hdf5": 84, "return_dict": 84, "h5py": [84, 103, 114], "load_hdf5": 84, "load_mat": 84, "make_cattr": 84, "isomorph": 84, "node_to_index": 84, "relabel_nod": 84, "old_nam": 84, "new_nam": 84, "relabel": 84, "partial": [84, 86, 113], "rename_skeleton": 84, "immut": 84, "hash": 84, "new_skeleton": 84, "old_skeleton": 84, "save_all_hdf5": 84, "save_hdf5": 84, "symmetries_ful": 84, "symmetry_nam": 84, "obj": 84, "skeletondecod": 84, "jsonpickl": 84, "thorax1": 84, "b64": 84, "avzc": 84, "ivbo": 84, "reconstruct": [84, 100], "decode_preview_imag": 84, "img_b64": 84, "return_byt": 84, "pil": 84, "skeletonencod": 84, "neck": 84, "enum": 84, "attr_to_dtyp": 85, "cl": 85, "dict_cut": 85, "subdictionari": 85, "find_files_by_suffix": 85, "root_dir": 85, "depth": [85, 102], "direntri": 85, "subdir": 85, "frame_list": 85, "frame_str": 85, "get_config_fil": 85, "shortnam": 85, "ignore_file_not_found": 85, "get_default": 85, "get_package_fil": 85, "json_dump": 85, "json_load": 85, "make_scoped_dictionari": 85, "flat_dict": 85, "exclude_non": 85, "exclude_nod": 85, "parse_uri_path": 85, "uri": [85, 102], "posix": 85, "save_dict_to_hdf5": 85, "h5file": 85, "dic": 85, "recurs": 85, "uniquifi": 85, "seq": 85, "hashabl": 85, "usable_cpu_count": 85, "usabl": [85, 117], "cpuset": 85, "weak_filename_match": 85, "filename_a": 85, "filename_b": 85, "pkg": [86, 91, 96, 104, 105, 106, 107, 110], "2022": [86, 100, 101], "osf": 86, "quick": [86, 89, 92, 102, 104], "clip": [86, 89, 92, 99, 103, 107, 113, 115], "mice": 86, "home": [86, 92, 101, 102, 104, 107, 108, 109], "cage": 86, "fruit": 86, "fly": 86, "drosophila": [86, 103, 109, 111], "melanogast": [86, 103, 109, 111], "freeli": 86, "enclos": 86, "circular": 86, "arena": 86, "backlight": 86, "camera": [86, 88, 105], "192": [86, 109], "px": [86, 107], "mm": 86, "num": 86, "1500": 86, "download": [86, 87, 89, 90, 100, 102, 103, 104, 105, 106, 107, 108, 110, 111, 112], "credit": 86, "berman": 86, "2014": 86, "gordon": 86, "joshua": [86, 100, 101], "shaevitz": [86, 100, 101], "virgin": 86, "male": [86, 105, 116], "femal": [86, 105, 116], "fli": [86, 103], "nm91": 86, "strain": 86, "dai": 86, "eclos": 86, "frequent": 86, "engag": 86, "courtship": [86, 103, 109, 111], "1024": [86, 103, 104, 105, 107], "150": [86, 107], "4000": 86, "junyu": [86, 100, 101], "li": [86, 100, 101], "shruthi": [86, 100, 101], "ravindranath": [86, 100, 101], "mala": [86, 100, 101], "murthi": [86, 100, 101], "c57bl": 86, "6j": 86, "mu": 86, "musculu": 86, "acryl": 86, "floor": 86, "paw": 86, "1280": 86, "80": [86, 104], "1000": [86, 89, 105], "2950": 86, "uva": [86, 100, 101], "mikhail": [86, 100, 101], "kislin": [86, 100, 101], "samuel": [86, 100, 101], "wang": [86, 100, 101], "swiss": 86, "webster": 86, "musuculu": 86, "lightli": 86, "bed": 86, "1474": 86, "2948": 86, "eleni": [86, 100, 101], "papadoyanni": [86, 100, 101], "annegret": [86, 100, 101], "falkner": [86, 100, 101], "worker": 86, "bumblebe": 86, "bombu": 86, "impatien": 86, "petri": 86, "dish": 86, "hexagon": 86, "beeswax": 86, "minut": [86, 117], "1536": 86, "2048": 86, "804": 86, "1604": 86, "grace": [86, 100, 101], "mckenzi": [86, 100, 101], "smith": [86, 100, 101], "z": [86, 100, 101], "yan": [86, 100, 101], "sarah": [86, 100, 101], "kocher": [86, 100, 101], "pup": 86, "adult": 86, "merion": 86, "unguiculatu": 86, "p15": 86, "month": 86, "shave": 86, "425": [86, 104, 105], "1588": 86, "catalin": [86, 100, 101], "mitelut": [86, 100, 101], "marielisa": [86, 100, 101], "diez": [86, 100, 101], "castro": [86, 100, 101], "dan": [86, 100, 101], "sane": [86, 100, 101], "reactiv": 87, "top_down_id": 87, "workflow": [87, 93, 101, 105, 106, 112, 113, 116, 120], "filecaptur": 87, "toolbox": 87, "editor": [87, 91, 96, 106], "predictcentroid": 87, "predictpos": 87, "modelfilenam": 87, "trainingconfig": 87, "predictposeident": 87, "predictsinglepos": 87, "click": [87, 88, 91, 92, 94, 97, 98, 104, 105, 106, 108, 109, 110, 115, 116, 117, 118, 119], "analyz": [87, 93], "suppli": [88, 96], "wish": [88, 95], "hover": 88, "explan": [88, 114], "worth": 88, "On": [88, 92, 102, 118], "zoom": [88, 92, 98, 116], "pan": 88, "drag": [88, 92, 98, 116, 118], "press": [88, 102, 118], "alt": [88, 92, 102, 116, 118], "rule": [88, 97], "thumb": [88, 97], "accur": [88, 101, 113, 115, 117], "likewis": [88, 109], "unaug": 88, "choos": [88, 92, 94, 95, 96, 97, 114, 116, 117, 119], "nonn": 89, "exit": 89, "incorrectli": [89, 92], "colab": [89, 91, 93, 102, 103, 104, 105, 106, 108, 112, 117], "val_label": [89, 109], "save_viz": [89, 109], "keep_viz": 89, "training_job_path": [89, 109], "resum": 89, "export_path": 89, "preced": 89, "r": [89, 92, 103, 104, 105, 106, 109, 113, 114], "ommit": 89, "hpc": 89, "clean_instance_count": [89, 108, 109], "proofread": [89, 92, 93, 96, 101, 113, 116, 120], "pre_cull_to_target": [89, 108, 109], "pre_cull_iou_threshold": [89, 108, 109], "clean_iou_threshold": [89, 108, 109], "min_match_point": [89, 108, 109], "kf_node_indic": [89, 109], "kf_init_frame_count": [89, 109], "comma": 89, "hyphen": 89, "did": 89, "cap": 89, "normalized_inst": [89, 95], "object_keypoint": [89, 95], "my_model": 89, "output_predict": 89, "input_video": 89, "labels_with_predict": 89, "v005": 89, "retrack": [89, 105, 108], "input_predict": 89, "amongst": [89, 96], "input_path": 89, "convent": 89, "preceed": 89, "analysis_video_0": 89, "001_second": 89, "session1": 89, "f": [89, 95, 102, 103, 104, 105, 107, 114], "video_index": 89, "script": [89, 91, 105, 106, 112], "widget": 89, "walk": [90, 112, 120], "colaboratori": [90, 112], "host": [90, 109], "servic": 90, "server": [90, 102], "think": [90, 98, 100], "hour": 90, "sooner": 90, "idl": 90, "demand": 90, "pai": 90, "pro": 90, "hardwar": 90, "sai": 90, "lenient": 90, "drive": [90, 92, 96, 103, 106, 108], "univers": [90, 101], "suit": 90, "educ": 90, "unlimit": 90, "dropbox": [90, 106], "microsoft": 90, "onedr": 90, "appl": [90, 101, 102], "icloud": 90, "elsewher": [90, 92], "perhap": 90, "plan": 90, "tri": [90, 95, 100], "explain": [91, 95, 96], "decid": [91, 92, 94], "hyperpamet": 91, "But": [91, 95, 96, 104, 105, 106, 108], "sound": 91, "intimid": 91, "menu": [91, 94, 95, 98, 100, 102, 109, 110, 114, 116, 117, 118, 119], "advic": 91, "wherev": 91, "sh": [91, 102], "unzip": [91, 96, 107, 109, 110], "sleap_label": 92, "keyboard": [92, 94, 95], "suppos": [92, 94, 95, 96, 116], "realiz": 92, "join": [92, 95, 107], "clipboard": 92, "toggl": [92, 94, 116], "shown": [92, 94, 95, 116], "yellow": [92, 115, 119], "cycl": [92, 95, 117], "sixth": 92, "orang": [92, 95, 116], "thin": [92, 95, 115], "trail": [92, 95, 103], "250": [92, 104], "500": 92, "signific": 92, "lag": 92, "header": 92, "dock": 92, "outlin": 92, "highlight": 92, "propag": [92, 95], "entireti": 92, "deselect": 92, "withheld": 92, "why": 92, "preform": 92, "ever": 92, "rectangular": 92, "rectangl": 92, "tabl": [92, 109, 116], "wheel": [92, 116], "mac": [92, 102, 116, 118], "substitut": 92, "arrow": 92, "medium": 92, "legend": [92, 95, 103, 107], "escap": 92, "throughout": 92, "variat": 92, "jump": [92, 95], "comprehens": 93, "troubleshoot": 93, "answer": 93, "tip": [93, 100, 119], "happi": [93, 95], "scratch": [94, 106, 109, 115], "uncorrect": 94, "guess": 94, "tutori": [94, 95, 100, 101, 108, 113, 117], "familiar": 94, "neither": 94, "haven": [95, 98, 102, 118], "obvious": 95, "big": 95, "chosen": [95, 110], "xiao": 95, "exp": 95, "maxim": [95, 100, 117], "navig": 95, "cross": [95, 96], "checkbox": 95, "caus": 95, "mistaken": [95, 119], "harder": 95, "techniqu": 95, "seekbar": [95, 115, 116, 117, 119], "mistak": [95, 119], "strategi": [95, 101], "mous": [95, 116], "misidentifi": [95, 119], "knew": 95, "wouldn": 95, "gotten": 95, "50": [95, 103, 104, 107], "hotkei": 95, "downsid": 95, "panel": [95, 109, 116, 118, 119], "appendag": 95, "fact": 95, "adjac": [95, 100], "submenu": [95, 119], "bundl": 96, "linux": [96, 101, 102, 104, 105, 106, 107, 108, 109, 118], "mount": [96, 106, 108], "training_profil": [96, 109], "baseline_medium_rf": [96, 109], "191205_162402": 96, "191205_163413": 96, "essenti": 97, "With": 97, "my": [97, 110], "tree": [97, 103, 107, 109], "children": 97, "littl": [97, 99], "complic": 97, "ran": 98, "amount": [98, 113], "tweak": [99, 108], "adopt": 99, "weird": 99, "squeez": 99, "email": 99, "bit": [99, 108, 117], "screenshot": 99, "stuck": 100, "crash": 100, "toolkit": [100, 102], "v11": [100, 102], "cudnn": [100, 102, 105, 106, 109], "v8": [100, 102], "neurosci": [100, 101], "overview": [100, 101, 104, 120], "hang": 100, "acquisit": [100, 105], "suitabl": 100, "vision": 100, "seekabl": 100, "consequ": [100, 113], "pix_fmt": 100, "yuv420p": 100, "nearli": 100, "highli": 100, "websit": [100, 102], "soon": [100, 109, 110], "situat": 100, "friend": 100, "love": 100, "hear": 100, "stori": 100, "came": 100, "cite": [100, 101], "bibtex": [100, 101], "citat": 100, "manag": 100, "pereira2022sleap": [100, 101], "tabri": [100, 101], "nathaniel": [100, 101], "matsliah": [100, 101], "ari": [100, 101], "turner": [100, 101], "david": [100, 101], "normand": [100, 101], "edna": [100, 101], "deutsch": [100, 101], "l": [100, 101, 104, 105, 106, 110], "journal": [100, 101], "volum": [100, 101], "year": [100, 101], "forum": 100, "anonym": 100, "transmit": 100, "broadest": 100, "userbas": 100, "sens": 100, "fund": [100, 101], "agenc": 100, "opt": 100, "launch": [100, 102, 118], "os": 101, "rapidli": 101, "customiz": [101, 112], "deliv": 101, "60": 101, "600": 101, "10m": 101, "app": [101, 102, 110, 118], "strongli": [101, 102], "miniconda": [101, 118], "forg": [101, 102, 104, 105, 106, 108], "nvidia": [101, 102, 104, 105, 106, 108, 109], "anaconda": [101, 102, 118], "silicon": [101, 102], "pypi": [101, 102, 104, 105, 106, 107, 108, 109, 110], "watch": 101, "aoc": 101, "2023": [101, 104, 105, 106, 107, 108, 109], "workshop": 101, "cbmm": 101, "quantif": 101, "2020": 101, "research": 101, "j": 101, "talmop": 101, "twitter": 101, "inquiri": 101, "institut": 101, "biolog": 101, "studi": 101, "liezl": 101, "mare": 101, "arlo": 101, "sheridan": 101, "princeton": 101, "nat": 101, "lewi": 101, "sigler": 101, "lab": [101, 102], "collabor": 101, "nih": 101, "brain": 101, "r01": 101, "ns104899": 101, "innov": 101, "acceler": [101, 102, 105, 106, 109, 110, 113], "bsd": 101, "academ": 101, "commerci": 101, "lauri": 101, "tzodikov": 101, "assist": [101, 113, 117, 120], "director": 101, "offic": 101, "technologi": 101, "609": 101, "258": 101, "7256": 101, "newest": 102, "enter": [102, 117, 118], "cmder": [102, 118], "ctrl": [102, 118], "cmd": [102, 118], "isol": 102, "solver": 102, "libmamba": 102, "mamba": 102, "wider": 102, "intel": 102, "powershel": 102, "admin": 102, "webrequest": 102, "miniforge3": 102, "x86_64": [102, 104, 105, 106, 107, 108, 109], "outfil": 102, "userprofil": 102, "argumentlist": 102, "installationtyp": 102, "justm": 102, "registerpython": 102, "curl": [102, 105, 106], "fssl": 102, "chmod": 102, "p": 102, "rm": [102, 104, 109], "bin": [102, 105, 109], "basenam": 102, "shell": 102, "rc": 102, "macosx": 102, "arm64": 102, "compani": 102, "repo": 102, "miniconda3": 102, "del": 102, "mkdir": [102, 109], "wget": [102, 103, 104, 107, 108, 109], "bash": 102, "driver": 102, "recogn": 102, "clone": 102, "talmolab": [102, 103, 104, 105, 106, 107, 108, 109], "cd": 102, "yml": 102, "environment_no_cuda": 102, "environment_mac": 102, "sleap_develop": 102, "venv": 102, "cudatoolkit": 102, "refrain": 102, "ship": 102, "jupyt": [102, 112], "conda_jupyt": 102, "conda_dev": 102, "moment": 102, "\u03bb": 102, "19041": 102, "sp0": 102, "system_summari": [102, 104, 105, 106, 108], "physical_devic": [102, 105, 106, 109], "list_physical_devic": 102, "device_typ": 102, "interfer": 102, "downgrad": 102, "stream_executor": [102, 104, 105, 106, 107, 108, 109], "platform": [102, 104, 105, 106, 107, 108, 109], "dso_load": [102, 104, 107, 108], "cc": [102, 104, 105, 106, 107, 108, 109], "libcudart": [102, 104, 107, 108], "dlerror": [102, 104, 107, 108], "conda_prefix": 102, "echo": 102, "sleap_activ": 102, "sleap_old_ld_library_path": 102, "ld_library_path": [102, 104, 107, 108], "lib": [102, 104, 107, 108, 109], "deactiv": 102, "sleap_deactiv": 102, "de": 102, "diagnost": 102, "saw": 102, "advis": 103, "3000": 103, "analysis_exampl": [103, 104, 105, 106], "2021": [103, 104, 105], "140": 103, "113": [103, 109], "443": [103, 104, 105, 109], "await": [103, 104, 109], "302": [103, 109], "githubusercont": [103, 109], "151": [103, 105, 106, 107, 109], "101": [103, 106, 109], "133": [103, 109], "551501": 103, "539k": 103, "octet": [103, 104, 109], "538": 103, "58k": 103, "kb": [103, 104], "mb": [103, 104, 105, 106, 109], "seaborn": [103, 107], "dset_nam": 103, "enumer": 103, "abdomen": [103, 104, 105, 106, 109], "wingl": [103, 104, 105, 106, 109], "wingr": [103, 104, 105, 106, 109], "forelegl4": [103, 104, 105, 106, 109], "forelegr4": [103, 104, 105, 106, 109], "midlegl4": [103, 104, 105, 106, 109], "midlegr4": [103, 104, 105, 106, 109], "hindlegl4": [103, 104, 105, 106, 109], "hindlegr4": [103, 104, 105, 106, 109], "eyel": [103, 104, 105, 106, 109], "eyer": [103, 104, 105, 106, 109], "frame_count": [103, 105], "node_count": 103, "interp1d": 103, "def": [103, 105], "initial_shap": 103, "dim": [103, 104, 107], "flatnonzero": 103, "fill_valu": 103, "bounds_error": 103, "xq": 103, "interp": 103, "restor": 103, "head_index": 103, "thorax_index": 103, "abdo_index": 103, "head_loc": 103, "thorax_loc": 103, "abdo_loc": 103, "sn": [103, 107], "mpl": [103, 107], "pyplot": [103, 105, 107], "plt": [103, 105, 107], "tick": 103, "font_scal": 103, "rcparam": 103, "figsiz": [103, 105, 107], "loc": [103, 107], "xlim": 103, "xtick": 103, "ylim": 103, "ytick": 103, "differenti": 103, "savitzki": 103, "golai": 103, "savgol_filt": 103, "smooth_diff": 103, "node_loc": 103, "win": 103, "poli": 103, "polynomi": 103, "node_loc_vel": 103, "zeros_lik": 103, "deriv": 103, "node_vel": 103, "linalg": 103, "thx_vel_fly0": 103, "thx_vel_fly1": 103, "fig": 103, "ax1": 103, "add_subplot": 103, "211": 103, "set_xtick": 103, "set_titl": 103, "ax2": 103, "212": [103, 105], "sharex": 103, "imshow": 103, "newaxi": 103, "vmin": 103, "vmax": 103, "set_ytick": 103, "121": 103, "set_xlim": 103, "set_ylim": 103, "kp": 103, "122": 103, "scatter": 103, "panda": [103, 107], "pd": [103, 107], "corr_rol": 103, "datax": 103, "datai": 103, "timeseri": 103, "correl": 103, "s1": 103, "s2": 103, "roll": 103, "corr": 103, "cov_vel": 103, "subplot": 103, "markers": 103, "tight_layout": 103, "instance_node_veloc": 103, "instance_idx": 103, "fly_node_loc": 103, "fly_node_veloc": 103, "plot_instance_node_veloc": 103, "node_veloc": 103, "xlabel": [103, 105, 107], "ylabel": [103, 105, 107], "fly_id": 103, "sklearn": 103, "nstate": 103, "km": 103, "fit_predict": 103, "set_xlabel": 103, "set_ylabel": 103, "set_yticklabel": 103, "tab10": 103, "ethogram": 103, "explor": [104, 105, 106, 108], "tail": 104, "plai": 104, "cell": [104, 105, 106, 108], "restart": [104, 105, 106, 108], "uninstal": [104, 105, 106, 107, 108, 109, 110], "qqq": [104, 105, 106, 107, 108, 109, 110], "contrib": [104, 105, 106, 107, 108, 109, 110], "googleapi": [104, 105, 106, 107], "flies13": [104, 105, 107], "190719_090330_wt_18159206_rig1": [104, 105], "4015000": [104, 105], "17560": [104, 105], "bu": [104, 105, 106, 109], "210506_230852": 104, "3d1800": [104, 105, 107], "210504_182918": [104, 105], "td_fast": [104, 105, 107], "210505_012601": [104, 105, 107], "142": 104, "176": 104, "144": [104, 109], "172": 104, "217": 104, "85343812": 104, "81m": 104, "15000": [104, 105], "190719_090330_wt_18": 104, "39m": 104, "7mb": 104, "188": 104, "240": [104, 105], "1581400": 104, "51m": 104, "99mb": 104, "189": 104, "6372537": 104, "1m": [104, 105, 109], "1800": [104, 105, 107], "21050": 104, "08m": 104, "112": 104, "30775963": 104, "29m": 104, "210505_0126": 104, "35m": [104, 109], "3mb": 104, "lah": [104, 105, 106], "239m": 104, "drwxrwxr": [104, 105, 106], "0k": [104, 105, 106], "aug": [104, 105, 106], "rw": [104, 105, 106], "82m": [104, 105], "6m": [104, 105], "jun": [104, 105, 106], "00": [104, 105, 106, 109], "713k": [104, 105, 106], "ipynb": [104, 105, 106], "486k": 104, "data_structur": [104, 105, 106], "1k": [104, 105, 106], "rst": [104, 105, 106], "197k": [104, 105], "interactive_and_realtime_infer": [104, 105, 106], "398k": 104, "interactive_and_resumable_train": [104, 105, 106], "149k": 104, "model_evalu": [104, 105, 106], "150k": 104, "post_inference_track": [104, 105, 106], "5k": 104, "training_and_inference_on_an_example_dataset": [104, 105, 106], "12k": [104, 105, 106], "training_and_inference_using_google_dr": [104, 105, 106], "989133": 104, "cpu_feature_guard": [104, 105, 106, 107, 109], "193": 104, "oneapi": [104, 105, 106, 107, 109], "onednn": [104, 105, 106, 107, 109], "avx2": [104, 105, 106, 107, 109], "avx512f": [104, 105, 106, 107, 109], "avx512_vnni": 104, "fma": [104, 105, 106, 107, 109], "compil": [104, 105, 106, 107, 109], "058048": 104, "104": 104, "slightli": 104, "tf_enable_onednn_opt": 104, "060007": 104, "xla": 104, "micromamba": [104, 107, 108, 109], "sleap_jupyt": [104, 107, 108], "python3": [104, 107, 108], "site": [104, 107, 108], "cv2": [104, 107, 108], "lib64": [104, 107, 108], "060013": 104, "cudart_stub": [104, 107, 108], "cudart": [104, 107, 108], "445179": 104, "libnvinf": 104, "445232": 104, "libnvinfer_plugin": 104, "445236": 104, "tf2tensorrt": 104, "py_util": 104, "trt": 104, "dlopen": [104, 107, 108], "tensorrt": 104, "mention": [104, 107, 108], "debian": [104, 105, 106, 107, 108, 109], "bookworm": [104, 105, 106, 107, 108, 109], "sid": [104, 105, 106, 107, 108, 109], "223182": 104, "cuda_gpu_executor": [104, 105, 106, 107, 108, 109], "981": 104, "success": [104, 105, 106, 107, 108, 109, 117], "numa": [104, 105, 106, 107, 108, 109], "sysf": [104, 105, 106, 107, 108, 109], "223923": 104, "223968": 104, "libcubla": [104, 107, 108], "223999": 104, "libcublaslt": [104, 107, 108], "224028": 104, "libcufft": [104, 107, 108], "224057": 104, "libcurand": [104, 107, 108], "224084": 104, "libcusolv": [104, 107, 108], "224111": 104, "libcuspars": [104, 107, 108], "224140": 104, "libcudnn": [104, 107, 108], "224144": 104, "common_runtim": [104, 105, 106, 107, 108, 109], "gpu_devic": [104, 105, 106, 107, 108, 109], "1934": 104, "blow": 104, "agnost": 104, "And": [104, 109], "2560": [104, 105], "498908": 104, "923466": 104, "grappler": [104, 107], "op_level_cost_estim": [104, 107], "690": [104, 107], "predictcost": [104, 107], "cropandres": [104, 107], "dt_float": [104, 107], "extrapolation_valu": [104, 107], "dt_int32": [104, 107], "vendor": [104, 107], "genuineintel": [104, 107], "3600": [104, 107], "num_cor": [104, 107], "cpu_instruction_set": [104, 107], "avx": [104, 107], "sse": [104, 107], "sse2": [104, 107], "sse3": [104, 107], "ssse3": [104, 107], "sse4": [104, 107], "eigen": [104, 107], "90": [104, 105, 107], "l1_cache_s": [104, 107], "49152": [104, 107], "l2_cache_s": [104, 107], "524288": [104, 107], "l3_cache_s": [104, 107], "16777216": [104, 107], "memory_s": [104, 107], "268435456": [104, 107], "923717": 104, "dt_uint8": [104, 107], "926044": 104, "234": [104, 105], "430": [104, 105], "271": [104, 105], "436": [104, 105], "308": [104, 105], "438": [104, 105], "321": [104, 105], "440": [104, 105], "322": [104, 105], "246": [104, 105], "450": [104, 105], "242": [104, 105], "413": [104, 105], "285": [104, 105], "459": [104, 105], "272": [104, 105], "317": [104, 105], "441": [104, 105], "245": [104, 105], "420": [104, 105], "319": [104, 105], "435": [104, 105], "354": [104, 105], "368": 104, "433": [104, 105], "393": [104, 105, 109], "480": 104, "398": [104, 105], "307": [104, 105], "445": [104, 105], "305": [104, 105], "421": [104, 105], "325": [104, 105], "475": [104, 105], "331": [104, 105], "385": [104, 105], "363": [104, 105], "474": [104, 105], "376": 104, "329": [104, 105], "327": [104, 105], "24440002441406": 104, "52008056640625": 104, "9790770411491394": 104, "58941650390625": 104, "1461486816406": 104, "9358043670654297": 104, "02960205078125": 104, "57135009765625": 104, "5861632227897644": 104, "81768798828125": 104, "08721923828125": 104, "39127233624458313": 104, "0193176269531": 104, "7702941894531": 104, "48629727959632874": 104, "14295959472656": 104, "5621643066406": 104, "9176925420761108": 104, "2632598876953": 104, "9497375488281": 104, "780803382396698": 104, "78155517578125": 104, "91552734375": 104, "47393468022346497": 104, "280029296875": 104, "71759033203125": 104, "7721256017684937": 104, "598876953125": 104, "6053466796875": 104, "296230286359787": 104, "10415649414062": 104, "9450378417969": 104, "8855596780776978": 104, "32009887695312": 104, "9360656738281": 104, "9200019240379333": 104, "concret": 104, "pt": 104, "24440002": 104, "52008057": 104, "5894165": 104, "14614868": 104, "02960205": 104, "5713501": 104, "81768799": 104, "08721924": 104, "01931763": 104, "77029419": 104, "14295959": 104, "56216431": 104, "26325989": 104, "94973755": 104, "78155518": 104, "91552734": 104, "2800293": 104, "71759033": 104, "59887695": 104, "60534668": 104, "10415649": 104, "94503784": 104, "32009888": 104, "93606567": 104, "labels_with_imag": [104, 105], "pure": 105, "forget": [105, 106], "31merror": [105, 106, 109, 110], "0m": [105, 106, 107, 109, 110], "31m": [105, 106, 109, 110], "shiboken2": [105, 106, 109, 110], "reinstal": [105, 106, 109, 110], "dep": [105, 106, 109, 110], "731425": 105, "735933": 105, "736867": 105, "centered_instance_id_model": 105, "td_id": 105, "210519_111253": 105, "xferd": [105, 106], "dload": [105, 106], "upload": [105, 106, 108], "spent": [105, 106], "3m": 105, "7m": 105, "6223k": 105, "2m": 105, "1g": 105, "sep": [105, 106], "33m": 105, "481k": [105, 106], "661k": 105, "fly_clip": [105, 108], "120k": [105, 106], "620m": [105, 106], "158k": 105, "157k": [105, 106], "412k": 105, "422k": 105, "78m": 105, "89m": 105, "trained_model": [105, 109], "94k": [105, 106], "806004": 105, "807011": 105, "807970": 105, "808962": 105, "103658": 105, "104377": 105, "105059": 105, "106019": 105, "1525": [105, 106, 109], "localhost": [105, 106, 109], "replica": [105, 106, 109], "21129": 105, "rtx": [105, 106, 109], "a5000": [105, 106, 109], "pci": [105, 106, 109], "0000": [105, 106, 109], "455046": 105, "cuda_dnn": [105, 106, 109], "366": [105, 106, 109], "8201": [105, 106, 109], "358483": 105, "cuda_bla": [105, 106, 109], "1774": [105, 106, 109], "tensorfloat": [105, 106, 109], "427": 105, "252": 105, "288": 105, "439": 105, "304": 105, "306": 105, "216": 105, "410": 105, "244": 105, "471": 105, "408": 105, "275": 105, "292": 105, "412": 105, "220": 105, "223": 105, "417": 105, "313": 105, "432": 105, "348": 105, "378": 105, "397": 105, "428": 105, "394": 105, "446": 105, "422": 105, "341": 105, "332": 105, "386": 105, "458": 105, "387": 105, "323": 105, "442": 105, "320": 105, "rec": 105, "51400757": 105, "426": 105, "97024536": 105, "251": 105, "97747803": 105, "08648682": 105, "64355469": 105, "3086853": 105, "53396606": 105, "33477783": 105, "20336914": 105, "77227783": 105, "24688721": 105, "47549438": 105, "14550781": 105, "409": 105, "98342896": 105, "39497375": 105, "31561279": 105, "61740112": 105, "89056396": 105, "274": 105, "97470093": 105, "1831665": 105, "2600708": 105, "411": 105, "95904541": 105, "219": 105, "98565674": 105, "437": 105, "97906494": 105, "75566101": 105, "5496521": 105, "176m": 105, "2224": 105, "62598": 105, "5043": 105, "13202": 105, "309": 105, "87125": 105, "64966": 105, "324": 105, "12512": 105, "3908": 105, "3458": 105, "9504": 105, "42352": 105, "67786": 105, "37636": 105, "81458": 105, "5624": 105, "460": 105, "22766": 105, "273": 105, "45117": 105, "51895": 105, "241": 105, "9716": 105, "32303": 105, "46788": 105, "90228": 105, "80017": 105, "48407": 105, "351": 105, "93695": 105, "434": 105, "0301": 105, "369": 105, "43228": 105, "431": 105, "78564": 105, "89014": 105, "481": 105, "0584": 105, "4241": 105, "429": 105, "79565": 105, "42896": 105, "419": 105, "3896": 105, "67926": 105, "0098": 105, "97974": 105, "30814": 105, "66406": 105, "473": 105, "9354": 105, "377": 105, "3852": 105, "13065": 105, "328": 105, "40244": 105, "51434": 105, "1667": 105, "423": 105, "94733": 105, "36913": 105, "38037": 105, "65576": 105, "0479": 105, "311": [105, 109], "6751": 105, "00995": 105, "48315": 105, "1421": 105, "20544": 105, "06784": 105, "43257": 105, "61487": 105, "3986": 105, "8269": 105, "565": 105, "00977": 105, "78204": 105, "46442": 105, "11816": 105, "0634": 105, "55441": 105, "7281": 105, "03793": 105, "2389": 105, "353": 105, "87274": 105, "77695": 105, "370": 105, "67218": 105, "9711": 105, "91922": 105, "09735": 105, "399": 105, "77133": 105, "25983": 105, "48993": 105, "82016": 105, "90115": 105, "94632": 105, "0652": 105, "65408": 105, "70728": 105, "68225": 105, "30194": 105, "72806": 105, "15356": 105, "48532": 105, "624": 105, "5559": 105, "06238": 105, "8775": 105, "9898": 105, "312": 105, "13086": 105, "16318": 105, "77222": 105, "65994": 105, "40115": 105, "7244": 105, "44681": 105, "51874": 105, "45566": 105, "7617": 105, "8958": 105, "56442": 105, "66855": 105, "2377": 105, "26588": 105, "80545": 105, "77664": 105, "7662": 105, "46994": 105, "2546": 105, "89484": 105, "93176": 105, "372": 105, "25574": 105, "46127": 105, "40717": 105, "479": 105, "5797": 105, "30173": 105, "96054": 105, "9821": 105, "449": 105, "3157": 105, "8817": 105, "52148": 105, "98843": 105, "9167": 105, "17917": 105, "04684": 105, "0318": 105, "50616": 105, "391": 105, "05493": 105, "396": 105, "85666": 105, "16904": 105, "04953": 105, "89996": 105, "52533": 105, "65547": 105, "6946": 105, "38303": 105, "68842": 105, "04352": 105, "86963": 105, "80847": 105, "3792": 105, "84747": 105, "93973": 105, "71852": 105, "451": 105, "2873": 105, "57388": 105, "58414": 105, "286": 105, "164": 105, "461": 105, "83655": 105, "8726": 105, "21753": 105, "43861": 105, "46246": 105, "25829": 105, "48416": 105, "7713": 105, "55927": 105, "356": 105, "25912": 105, "81424": 105, "98462": 105, "9266": 105, "402": 105, "0365": 105, "465": 105, "8439": 105, "7685": 105, "310": 105, "4258": 105, "7895": 105, "16397": 105, "86514": 105, "16724": 105, "9967": 105, "362": 105, "87766": 105, "12836": 105, "390": 105, "43555": 105, "69998": 105, "330": 105, "20596": 105, "4066": 105, "0497": 105, "68896": 105, "51591": 105, "5735": 105, "3791": 105, "4755": 105, "74457": 105, "20264": 105, "24997": 105, "69904": 105, "1339": 105, "8241": 105, "75269": 105, "22192": 105, "58466": 105, "53275": 105, "0668": 105, "6229": 105, "87787": 105, "2068": 105, "3858": 105, "31342": 105, "15892": 105, "27942": 105, "91632": 105, "5178": 105, "588": 105, "3604": 105, "374": 105, "51236": 105, "42508": 105, "405": 105, "0515": 105, "2759": 105, "401": 105, "2467": 105, "2713": 105, "314": 105, "74677": 105, "78735": 105, "76758": 105, "29553": 105, "20752": 105, "6215": 105, "86606": 105, "8446": 105, "472": 105, "95822": 105, "388": 105, "92188": 105, "203": 105, "54233": 105, "43842": 105, "1192": 105, "79416": 105, "54964": 105, "56854": 105, "30457": 105, "13345": 105, "08594": 105, "02444": 105, "13245": 105, "11148": 105, "71674": 105, "81714": 105, "79828": 105, "9629": 105, "6766": 105, "53745": 105, "09372": 105, "14362": 105, "87155": 105, "23718": 105, "4111": 105, "2425": 105, "13495": 105, "83694": 105, "7404": 105, "43884": 105, "4725": 105, "68488": 105, "375": 105, "05853": 105, "87177": 105, "404": 105, "3775": 105, "92688": 105, "39508": 105, "9776": 105, "77365": 105, "6409": 105, "17343": 105, "26575": 105, "44904": 105, "56747": 105, "05463": 105, "54587": 105, "72284": 105, "13287": 105, "25458": 105, "28958": 105, "9332": 105, "74493": 105, "15704": 105, "3947": 105, "1558": 105, "1859": 105, "46423": 105, "5753": 105, "42407": 105, "18854": 105, "80786": 105, "41486": 105, "72241": 105, "9671": 105, "64005": 105, "65726": 105, "9537": 105, "01648": 105, "73447": 105, "31635": 105, "89285": 105, "9849": 105, "21112": 105, "0713": 105, "77327": 105, "9886": 105, "03162": 105, "8643": 105, "5856": 105, "9501": 105, "2166": 105, "29108": 105, "09204": 105, "2633": 105, "97113": 105, "12497": 105, "74753": 105, "16742": 105, "3774": 105, "73508": 105, "5342": 105, "97403": 105, "56894": 105, "469": 105, "3632": 105, "81372": 105, "89886": 105, "641": 105, "67194": 105, "04425": 105, "418": 105, "99023": 105, "232": 105, "79128": 105, "2476": 105, "7884": 105, "45706": 105, "26096": 105, "58252": 105, "67697": 105, "28253": 105, "35138": 105, "4916": 105, "49533": 105, "1817": 105, "4297": 105, "56104": 105, "01126": 105, "4526": 105, "72516": 105, "3869": 105, "284": 105, "4912": 105, "79095": 105, "58961": 105, "1936": 105, "4464": 105, "00543": 105, "69318": 105, "96207": 105, "358": 105, "88284": 105, "98035": 105, "379": 105, "26816": 105, "0259": 105, "7312": 105, "5473": 105, "13306": 105, "02057": 105, "64542": 105, "59024": 105, "46237": 105, "79062": 105, "63318": 105, "9981": 105, "9735": 105, "466": 105, "93915": 105, "87518": 105, "89645": 105, "4858": 105, "98822": 105, "72357": 105, "30713": 105, "9138": 105, "26993": 105, "89908": 105, "6341": 105, "36536": 105, "9696": 105, "63763": 105, "87323": 105, "4065": 105, "7932": 105, "48575": 105, "27322": 105, "48721": 105, "6446": 105, "74454": 105, "08987": 105, "75647": 105, "338": 105, "82465": 105, "17297": 105, "64159": 105, "22705": 105, "54178": 105, "04788": 105, "2764": 105, "7331": 105, "359": 105, "43756": 105, "0462": 105, "8793": 105, "56253": 105, "407": 105, "32346": 105, "448": 105, "95087": 105, "74594": 105, "27792": 105, "315": 105, "46356": 105, "38046": 105, "48642": 105, "8147": 105, "63016": 105, "81934": 105, "73767": 105, "03244": 105, "19778": 105, "1395": 105, "32227": 105, "00305": 105, "94138": 105, "76627": 105, "20728": 105, "03998": 105, "59984": 105, "94275": 105, "68756": 105, "925": [105, 106], "74356": 105, "45367": 105, "3493": 105, "94934": 105, "39355": 105, "09885": 105, "09349": 105, "45755": 105, "8041": 105, "40057": 105, "55066": 105, "6091": 105, "43307": 105, "35394": 105, "9949": 105, "04814": 105, "10544": 105, "36105": 105, "95673": 105, "50397": 105, "86414": 105, "65952": 105, "01282": 105, "381": 105, "80063": 105, "2879": 105, "9239": 105, "02728": 105, "27682": 105, "24774": 105, "42343": 105, "444": 105, "4193": 105, "38232": 105, "35754": 105, "6553": 105, "45853": 105, "8156": 105, "7812": 105, "62988": 105, "58368": 105, "52002": 105, "27118": 105, "3299": 105, "78006": 105, "43085": 105, "03174": 105, "25208": 105, "7414": 105, "57523": 105, "99503": 105, "347": 105, "97897": 105, "64392": 105, "52814": 105, "16394": 105, "4637": 105, "9819": 105, "81857": 105, "35481": 105, "535": 105, "59384": 105, "70065": 105, "50806": 105, "95544": 105, "72635": 105, "96436": 105, "3465": 105, "5469": 105, "239": 105, "56883": 105, "8733": 105, "04318": 105, "60315": 105, "36966": 105, "4342": 105, "360": [105, 106], "08127": 105, "41803": 105, "283": 105, "4751": 105, "8785": 105, "59448": 105, "36377": 105, "55792": 105, "316": 105, "73703": 105, "6411": 105, "78436": 105, "899": 105, "92154": 105, "19464": 105, "91168": 105, "32022": 105, "73245": 105, "457": 105, "32578": 105, "57062": 105, "18298": 105, "334": 105, "3139": 105, "40005": 105, "89133": 105, "64728": 105, "70679": 105, "36255": 105, "08994": 105, "64023": 105, "14267": 105, "50543": 105, "68262": 105, "5147": 105, "82147": 105, "87054": 105, "32256": 105, "4768": 105, "57848": 105, "34476": 105, "7278": 105, "26282": 105, "8772": 105, "77335": 105, "55972": 105, "77054": 105, "95602": 105, "7761": 105, "31602": 105, "2043": 105, "92737": 105, "62262": 105, "1631": 105, "82898": 105, "76257": 105, "35846": 105, "0152": 105, "79132": 105, "68118": 105, "318": 105, "88504": 105, "35867": 105, "8374": 105, "72562": 105, "326": [105, 109], "25244": 105, "88055": 105, "2403": 105, "27567": 105, "44467": 105, "21188": 105, "84778": 105, "12372": 105, "335": 105, "4058": 105, "62274": 105, "9344": 105, "79385": 105, "12885": 105, "08496": 105, "77728": 105, "3099": 105, "81348": 105, "31982": 105, "3584": 105, "60254": 105, "39813": 105, "222": 105, "91586": 105, "43195": 105, "6026": 105, "74078": 105, "7489": 105, "09384": 105, "8778": 105, "4865": 105, "287": 105, "56982": 105, "68353": 105, "8655": 105, "80096": 105, "19046": 105, "23196": 105, "46782": 105, "99805": 105, "60196": 105, "36603": 105, "8261": 105, "19696": 105, "17218": 105, "47867": 105, "81366": 105, "09143": 105, "99658": 105, "15668": 105, "84363": 105, "00012": 105, "57254": 105, "2615": 105, "333": 105, "60617": 105, "467": 105, "9318": 105, "6039": 105, "32465": 105, "44635": 105, "16357": 105, "92133": 105, "11078": 105, "336": 105, "72043": 105, "8229": 105, "6642": 105, "31372": 105, "83435": 105, "26373": 105, "11572": 105, "61078": 105, "17926": 105, "66278": 105, "83746": 105, "15924": 105, "40552": 105, "6441": 105, "87045": 105, "41144": 105, "64131": 105, "59937": 105, "06647": 105, "35507": 105, "84183": 105, "3719": 105, "41534": 105, "61237": 105, "42723": 105, "2208": 105, "4097": 105, "95218": 105, "3499": 105, "52005": 105, "361": 105, "36267": 105, "389": 105, "47607": 105, "60114": 105, "6601": 105, "50894": 105, "51843": 105, "6943": 105, "90283": 105, "82428": 105, "70898": 105, "5036": 105, "345": 105, "66882": 105, "1757": 105, "79486": 105, "46274": 105, "46533": 105, "10553": 105, "24854": 105, "009": 105, "337": 105, "8076": 105, "06436": 105, "29004": 105, "49707": 105, "41422": 105, "4673": 105, "8141": 105, "7682": 105, "01324": 105, "98956": 105, "19714": 105, "71683": 105, "71207": 105, "39133": 105, "85786": 105, "4593": 105, "5914": 105, "65207": 105, "67142": 105, "77646": 105, "7307": 105, "5118": 105, "71594": 105, "21155": 105, "99216": 105, "57278": 105, "243": 105, "82819": 105, "339": 105, "47983": 105, "74188": 105, "93173": 105, "2397": 105, "49423": 105, "05255": 105, "68115": 105, "6671": 105, "5454": 105, "09042": 105, "30078": 105, "80396": 105, "82977": 105, "7456": 105, "64886": 105, "89554": 105, "84995": 105, "1559": 105, "78146": 105, "11206": 105, "5744": 105, "94125": 105, "9305": 105, "99496": 105, "5468": 105, "42017": 105, "05379": 105, "01157": 105, "71146": 105, "17175": 105, "08688": 105, "66077": 105, "65015": 105, "097": 105, "3269": 105, "45065": 105, "67744": 105, "92798": 105, "56874": 105, "94662": 105, "72803": 105, "462": 105, "40347": 105, "67886": 105, "66385": 105, "6862": 105, "8137": 105, "559": 105, "416": 105, "42374": 105, "62582": 105, "11035": 105, "73026": 105, "8417": 105, "30188": 105, "77295": 105, "364": 105, "57666": 105, "20844": 105, "32507": 105, "96838": 105, "414": 105, "35016": 105, "2262": 105, "04324": 105, "17578": 105, "63538": 105, "82654": 105, "36795": 105, "21204": 105, "9988": 105, "7216": 105, "20065": 105, "24988": 105, "20847": 105, "9794": 105, "04962": 105, "340": 105, "75934": 105, "0198": 105, "4428": 105, "33124": 105, "9914025": 105, "9798533": 105, "7552497": 105, "45417705": 105, "49756864": 105, "8265212": 105, "89824754": 105, "7941327": 105, "81785023": 105, "05611448": 105, "06403984": 105, "88647026": 105, "96359974": 105, "9033977": 105, "25969282": 105, "6343123": 105, "8396003": 105, "7613073": 105, "04938014": 105, "84057474": 105, "8820076": 105, "8816869": 105, "8243384": 105, "33521563": 105, "8434063": 105, "8127704": 105, "9598888": 105, "97341204": 105, "6766811": 105, "35414153": 105, "49778372": 105, "883279": 105, "9271338": 105, "7989652": 105, "7574282": 105, "04437362": 105, "06203796": 105, "8609162": 105, "89723104": 105, "8814398": 105, "43337214": 105, "6627722": 105, "8388201": 105, "71751094": 105, "08318384": 105, "7553143": 105, "8750135": 105, "8972577": 105, "85390973": 105, "87049603": 105, "84071857": 105, "8853136": 105, "9277581": 105, "9876475": 105, "71884066": 105, "36052382": 105, "53324103": 105, "89681005": 105, "92098916": 105, "8180281": 105, "6177351": 105, "0311976": 105, "07055778": 105, "83666444": 105, "8608399": 105, "8386477": 105, "58817774": 105, "72051835": 105, "7902795": 105, "7041355": 105, "2181147": 105, "76299024": 105, "8507803": 105, "8824023": 105, "8892915": 105, "8559173": 105, "83882904": 105, "9163557": 105, "9318335": 105, "0054291": 105, "7037247": 105, "44776785": 105, "55141157": 105, "8751741": 105, "8788193": 105, "7378067": 105, "6061791": 105, "06516132": 105, "145283": 105, "81688696": 105, "88854957": 105, "85625255": 105, "86021763": 105, "82891417": 105, "5004723": 105, "8896506": 105, "15082283": 105, "57127994": 105, "86683005": 105, "94244254": 105, "8910252": 105, "9375356": 105, "92730576": 105, "8518939": 105, "9335175": 105, "98755246": 105, "66180676": 105, "5590857": 105, "5017098": 105, "89124495": 105, "8839093": 105, "77439654": 105, "5733776": 105, "0646795": 105, "12731166": 105, "816599": 105, "90029544": 105, "9238624": 105, "8279644": 105, "7274184": 105, "8509916": 105, "9116395": 105, "21640316": 105, "4109717": 105, "92344654": 105, "8912647": 105, "8676515": 105, "91081876": 105, "9236755": 105, "9313457": 105, "9660537": 105, "97779256": 105, "6795893": 105, "5347014": 105, "49429995": 105, "89868015": 105, "88998085": 105, "82294524": 105, "49898362": 105, "14230077": 105, "13475017": 105, "8461558": 105, "89860517": 105, "8971772": 105, "85703963": 105, "743163": 105, "87278444": 105, "90552235": 105, "19766915": 105, "33566353": 105, "89383173": 105, "87157995": 105, "83140534": 105, "92693084": 105, "9499294": 105, "85782766": 105, "9214447": 105, "9804845": 105, "6575725": 105, "46105212": 105, "5740245": 105, "88368326": 105, "89460224": 105, "81119704": 105, "50101817": 105, "24979575": 105, "16411652": 105, "83694774": 105, "9241573": 105, "8916": 105, "87129986": 105, "7239725": 105, "8828186": 105, "7020806": 105, "16116264": 105, "36204475": 105, "8973187": 105, "8997571": 105, "51675177": 105, "89034307": 105, "98887885": 105, "88438815": 105, "8979453": 105, "97743154": 105, "5481076": 105, "523632": 105, "570176": 105, "8288708": 105, "9113763": 105, "9194614": 105, "575856": 105, "07603623": 105, "21255928": 105, "9018014": 105, "9266098": 105, "91993105": 105, "8616991": 105, "781426": 105, "7750215": 105, "85324234": 105, "14189687": 105, "5463986": 105, "8761287": 105, "93542594": 105, "50916994": 105, "87139845": 105, "8620718": 105, "9169966": 105, "90489644": 105, "9633726": 105, "6176859": 105, "6120859": 105, "53412354": 105, "8082982": 105, "9141492": 105, "8100913": 105, "7064677": 105, "07797408": 105, "28660768": 105, "9255538": 105, "9081669": 105, "9197768": 105, "89081717": 105, "7697851": 105, "850639": 105, "8240589": 105, "2276387": 105, "7375747": 105, "9573141": 105, "95667875": 105, "7197965": 105, "8762751": 105, "8575352": 105, "8765895": 105, "9522048": 105, "96551245": 105, "72864616": 105, "5890152": 105, "561211": 105, "7051566": 105, "9421855": 105, "39786857": 105, "7715297": 105, "6171893": 105, "06328589": 105, "0118455": 105, "886791": 105, "9031525": 105, "9011465": 105, "7290425": 105, "84665924": 105, "85558087": 105, "35440978": 105, "8101312": 105, "931835": 105, "91998947": 105, "9771716": 105, "88361436": 105, "8611444": 105, "88294595": 105, "93872": 105, "97103214": 105, "63806784": 105, "89063996": 105, "68062663": 105, "9067393": 105, "89928836": 105, "40190646": 105, "75169766": 105, "5388288": 105, "30325472": 105, "86616135": 105, "864786": 105, "9355017": 105, "93469065": 105, "73501164": 105, "89369905": 105, "794787": 105, "29464462": 105, "91743165": 105, "88107586": 105, "89442694": 105, "97276276": 105, "9208387": 105, "8436978": 105, "9492276": 105, "91440874": 105, "97273135": 105, "64372706": 105, "85304886": 105, "6125536": 105, "89858156": 105, "89086473": 105, "33406225": 105, "7624657": 105, "64882857": 105, "18051867": 105, "93381244": 105, "90368915": 105, "9286875": 105, "93761605": 105, "7948513": 105, "81816167": 105, "7628807": 105, "30384466": 105, "83553046": 105, "83106405": 105, "9189269": 105, "93762034": 105, "94770956": 105, "8512343": 105, "9446315": 105, "9450149": 105, "9582136": 105, "78555703": 105, "7544447": 105, "58366936": 105, "85938": 105, "94498163": 105, "6194322": 105, "7035529": 105, "22808443": 105, "24900974": 105, "981288": 105, "92618316": 105, "93841267": 105, "9422818": 105, "80968696": 105, "8445456": 105, "7991047": 105, "4916717": 105, "77814513": 105, "6231525": 105, "93198806": 105, "9570074": 105, "95540506": 105, "9207018": 105, "8778759": 105, "9381855": 105, "94920886": 105, "77673894": 105, "87591183": 105, "3847992": 105, "88775337": 105, "92982674": 105, "8082221": 105, "6930795": 105, "16653292": 105, "26732486": 105, "9830136": 105, "93462956": 105, "9093149": 105, "96090955": 105, "8409559": 105, "83797425": 105, "8743328": 105, "82546026": 105, "32881752": 105, "5494046": 105, "9653242": 105, "9882784": 105, "85375595": 105, "95603913": 105, "9316707": 105, "9048104": 105, "92460406": 105, "75584614": 105, "8082359": 105, "47512543": 105, "8684657": 105, "9260271": 105, "8822638": 105, "71269846": 105, "1508674": 105, "22018598": 105, "9016738": 105, "90536344": 105, "918121": 105, "96696764": 105, "78534484": 105, "883681": 105, "798996": 105, "69723856": 105, "5170047": 105, "8321578": 105, "9426196": 105, "9527973": 105, "91900206": 105, "9706679": 105, "90770215": 105, "9391487": 105, "9352003": 105, "85189575": 105, "72796327": 105, "6884535": 105, "8768972": 105, "9508924": 105, "6879568": 105, "71122557": 105, "7012927": 105, "6031595": 105, "87616193": 105, "91429555": 105, "8932258": 105, "97501004": 105, "78940654": 105, "8651793": 105, "72244436": 105, "82689875": 105, "4597148": 105, "93260366": 105, "9202296": 105, "94214964": 105, "8834407": 105, "98030627": 105, "8976605": 105, "9953135": 105, "99476504": 105, "99593395": 105, "99526805": 105, "9959078": 105, "9945123": 105, "99573624": 105, "993386": 105, "99603134": 105, "99172956": 105, "99564207": 105, "9916197": 105, "9947187": 105, "9915406": 105, "9940315": 105, "98916876": 105, "99394447": 105, "98962784": 105, "9944642": 105, "9910501": 105, "99155337": 105, "9933716": 105, "9916019": 105, "9933976": 105, "9932473": 105, "9932013": 105, "9920751": 105, "9946308": 105, "991653": 105, "99465877": 105, "99162734": 105, "99486005": 105, "8735": 105, "4811": 105, "355": 105, "93707": 105, "63477": 105, "0215": 105, "42197": 105, "2099": 105, "4682": 105, "23578": 105, "31976": 105, "61108": 105, "4756": 105, "57007": 105, "15857": 105, "7147": 105, "9847": 105, "93347": 105, "7111": 105, "8055": 105, "86227": 105, "03918": 105, "64484": 105, "49347": 105, "357": 105, "0275": 105, "29968": 105, "49817": 105, "54977": 105, "29578": 105, "42874": 105, "1338": 105, "81354": 105, "7555": 105, "4507": 105, "2437": 105, "95605": 105, "9807": 105, "4453": 105, "04776": 105, "2247": 105, "3565": 105, "81192": 105, "30673": 105, "8997": 105, "5365": 105, "4532": 105, "9694": 105, "10843": 105, "52646": 105, "42938": 105, "09125": 105, "59042": 105, "5916": 105, "44873": 105, "94284": 105, "18994": 105, "5058": 105, "18735": 105, "0978": 105, "8356": 105, "49683": 105, "1019": 105, "49136": 105, "94554764": 105, "83948356": 105, "9591119": 105, "8525362": 105, "95961505": 105, "86304706": 105, "9252076": 105, "97578657": 105, "974096": 105, "9668305": 105, "9845507": 105, "9572475": 105, "9105379": 105, "97522974": 105, "880064": 105, "9943127": 105, "911333": 105, "0001038": 105, "9698766": 105, "9948527": 105, "96454924": 105, "9799493": 105, "96142364": 105, "0046191": 105, "95354944": 105, "9987816": 105, "94746464": 105, "98374254": 105, "97818244": 105, "98671097": 105, "9833999": 105, "98425347": 105, "grabber": 105, "perf_count": 105, "simulatedcamera": 105, "grab": 105, "grab_fram": 105, "recording_dur": 105, "512": [105, 109], "inference_tim": 105, "frames_record": 105, "took": 105, "t0": 105, "frame_predict": 105, "expand_dim": 105, "dt": 105, "millisecond": 105, "first_inference_tim": 105, "1f": 105, "886": 105, "120": 105, "facecolor": [105, 107], "hist": 105, "training_slp_fil": 106, "b990gxjt3d3j3jh": 106, "210205": 106, "sleap_wt_gold": 106, "13pt": [106, 107], "dl": 106, "wt_gold": [106, 107], "tracking_split2": [106, 107], "619m": 106, "9m": 106, "4m": 106, "622m": 106, "179k": 106, "132k": 106, "reproduc": 106, "preprocesss": 106, "baseline_model": 106, "nitti": 106, "gritti": 106, "mechan": 106, "1440": 106, "160": 106, "775633": 106, "776555": 106, "777493": 106, "778196": 106, "055738": 106, "056597": 106, "057389": 106, "058046": 106, "21261": 106, "799": 106, "501": 106, "kerastensor": [106, 109], "type_spec": [106, 109], "tensorspec": [106, 109], "biasadd": [106, 109], "586040": 106, "104556": 106, "0037": [106, 109], "0030": [106, 109], "0036": [106, 109], "0040": [106, 109], "0038": [106, 109], "0041": [106, 109], "0039": [106, 109], "0035": [106, 109], "val_loss": [106, 109], "0033": [106, 109], "val_head": [106, 109], "0020": [106, 109], "val_thorax": [106, 109], "0029": [106, 109], "val_abdomen": [106, 109], "val_wingl": [106, 109], "val_wingr": [106, 109], "0034": [106, 109], "val_forelegl4": [106, 109], "val_forelegr4": [106, 109], "val_midlegl4": [106, 109], "val_midlegr4": [106, 109], "val_hindlegl4": [106, 109], "val_hindlegr4": [106, 109], "val_eyel": [106, 109], "val_ey": [106, 109], "0027": [106, 109], "0000e": [106, 109], "32m": [106, 109], "0028": [106, 109], "0013": [106, 109], "0018": [106, 109], "0026": [106, 109], "0032": [106, 109], "0015": [106, 109], "0025": [106, 109], "7323e": 106, "0011": [106, 109], "0024": [106, 109], "0012": [106, 109], "21m": 106, "0022": [106, 109], "0630e": 106, "7199e": 106, "0021": [106, 109], "7345e": 106, "4145e": 106, "6439e": 106, "9914e": [106, 109], "0019": [106, 109], "0031": [106, 109], "9466e": 106, "5174e": 106, "20m": 106, "7854e": 106, "6945e": [106, 109], "0017": [106, 109], "0023": [106, 109], "4546e": 106, "9585e": 106, "7640e": 106, "3180e": 106, "2650e": 106, "0064e": 106, "8714e": 106, "0531e": [106, 109], "7827e": 106, "2254e": 106, "5523e": 106, "4019e": 106, "0016": [106, 109], "9871e": [106, 109], "8608e": 106, "3215e": 106, "5232e": 106, "0014": [106, 109], "9826e": 106, "6906e": 106, "3776e": 106, "7946e": 106, "6378e": 106, "5611e": 106, "19m": [106, 109], "8557e": 106, "1089e": 106, "6096e": 106, "3123e": 106, "2092e": 106, "4376e": 106, "4288e": 106, "0581e": 106, "3752e": 106, "7513e": [106, 109], "1807e": 106, "9554e": 106, "6743e": 106, "5883e": 106, "2925e": 106, "5965e": 106, "2635e": 106, "4829e": 106, "0010": [106, 109], "0197e": 106, "8384e": 106, "8699e": 106, "5631e": 106, "1692e": 106, "8370e": 106, "8454e": 106, "9611e": 106, "2278e": 106, "4893e": 106, "5555e": 106, "7396e": 106, "4770e": 106, "9330e": 106, "9460e": 106, "5190e": [106, 109], "9289e": 106, "5512e": 106, "3737e": 106, "eval": [106, 107, 109], "508754": 106, "477220": 106, "3201e": 106, "7118e": 106, "0303e": 106, "9319e": 106, "0134e": 106, "4919e": 106, "2012e": [106, 109], "4680e": 106, "9131e": 106, "4191e": 106, "9155e": 106, "9295e": 106, "3658e": 106, "0085e": 106, "8906e": 106, "6015e": 106, "9128e": 106, "5054e": 106, "5352e": 106, "3093e": 106, "0690e": 106, "9501e": 106, "1907e": 106, "3487e": 106, "6145e": 106, "4151e": 106, "2130e": 106, "9293e": 106, "5396e": 106, "4440e": [106, 109], "7180e": 106, "9867e": 106, "1743e": 106, "2288e": 106, "7110e": 106, "1497e": 106, "9294e": 106, "8076e": 106, "7130e": 106, "4712e": 106, "2889e": 106, "5931e": 106, "9400e": 106, "9486e": 106, "6961e": 106, "559100": 106, "529680": 106, "new_fold": 106, "load_weight": 106, "3664e": 106, "7037e": 106, "8467e": 106, "9929e": 106, "0385e": 106, "5228e": [106, 109], "8510e": 106, "0772e": 106, "9413e": 106, "7351e": 106, "0943e": 106, "7453e": 106, "4413e": 106, "3617e": [106, 109], "4860e": 106, "4441e": 106, "4847e": 106, "4179e": 106, "24m": 106, "0541e": 106, "4627e": 106, "6070e": 106, "4325e": 106, "7257e": 106, "7434e": 106, "9573e": 106, "3483e": 106, "0939e": 106, "8417e": 106, "2339e": 106, "9561e": 106, "2637e": 106, "6513e": 106, "1751e": 106, "5540e": 106, "5588e": 106, "8189e": [106, 109], "2402e": 106, "7741e": [106, 109], "2087e": 106, "4398e": 106, "1826e": 106, "4005e": 106, "5282e": 106, "6551e": 106, "9726e": 106, "8423e": [106, 109], "7468e": [106, 109], "4657e": 106, "5649e": 106, "2162e": [106, 109], "9171e": 106, "9007e": [106, 109], "2471e": [106, 109], "1375e": 106, "8217e": 106, "7370e": 106, "2098e": 106, "585451": 106, "574921": 106, "apt": [107, 109], "qq": 107, "q": [107, 108], "31me": 107, "0mcould": 107, "lock": [107, 109], "var": [107, 109], "dpkg": [107, 109], "frontend": [107, 109], "deni": [107, 109], "0munabl": 107, "acquir": [107, 109], "34mtd_fast": 107, "00m": [107, 109], "with_centroid": 107, "model_info": 107, "982109": 107, "982120": 107, "mpck_part": 107, "ap": 107, "9010142093245521": 107, "0545800141197903": 107, "0166608700891056": 107, "histplot": 107, "binrang": 107, "kde": 107, "kde_kw": 107, "stat": 107, "intuit": 107, "holist": 107, "1707": 107, "05388": 107, "seem": 107, "summar": 107, "curv": 107, "stringent": 107, "2f": 107, "literatur": 107, "8150621709973537": 107, "8885": 107, "newer": 107, "gt": 107, "208933": 107, "936": [107, 108], "209734": 107, "209771": 107, "209801": 107, "209829": 107, "209859": 107, "209886": 107, "209912": 107, "209939": 107, "209945": 107, "1850": [107, 108], "245745": 107, "317060": 107, "320224": 107, "8984147543126978": 107, "197896466395166": 107, "1484228079076315": 107, "797836431061851": 107, "8782499999999999": 107, "hassl": 108, "250591": 108, "250602": 108, "389239": 108, "390139": 108, "390188": 108, "390230": 108, "390267": 108, "390306": 108, "390345": 108, "390383": 108, "390421": 108, "390425": 108, "uo": 108, "blob": 108, "predictions_fil": 108, "1350": 108, "make_tracker_by_nam": 108, "tracked_lf": 108, "tracked_label": 108, "dm": 109, "v1": 109, "unabl": 109, "2e65b": 109, "263375180": 109, "16df8d00": 109, "94f1": 109, "11ea": 109, "98d1": 109, "6c03a2f89e1c": 109, "amz": 109, "aws4": 109, "hmac": 109, "sha256": 109, "credenti": 109, "akiaiwnjyax4csveh53a": 109, "2f20230901": 109, "2fu": 109, "east": 109, "2fs3": 109, "2faws4_request": 109, "20230901t203033z": 109, "expir": 109, "300": 109, "b9b0638744af3144affdc46668c749128bd6c4f23ca2a1313821c7bbcd54ccdd": 109, "signedhead": 109, "actor_id": 109, "key_id": 109, "repo_id": 109, "disposit": 109, "attach": 109, "3b": 109, "20filenam": 109, "3ddrosophila": 109, "2foctet": 109, "185": 109, "199": 109, "108": 109, "109": 109, "110": 109, "111973079": 109, "107m": 109, "106": 109, "79m": 109, "0mb": 109, "inflat": 109, "ds_store": 109, "__macosx": 109, "20190128_113421": 109, "_20190128_113421": 109, "courtship_label": 109, "_courtship_label": 109, "_exampl": 109, "34mdataset": 109, "34mdrosophila": 109, "32m20190128_113421": 109, "32mcourtship_label": 109, "35mexampl": 109, "34m__macosx": 109, "satisfi": [109, 110, 119], "null": 109, "first_gpu": 109, "last_gpu": 109, "pretrained_encod": 109, "827290": 109, "831845": 109, "832633": 109, "22980": 109, "134": 109, "755154": 109, "756024": 109, "757213": 109, "758315": 109, "089801": 109, "090652": 109, "091464": 109, "092164": 109, "21084": 109, "953": 109, "814560": 109, "940585": 109, "5945e": 109, "99m": 109, "2513e": 109, "5694e": 109, "57m": 109, "6987e": 109, "8224e": 109, "1486e": 109, "0657e": 109, "58m": 109, "2174e": 109, "3859e": 109, "55m": 109, "9181e": 109, "0259e": 109, "9353e": 109, "9832e": 109, "8997e": 109, "4787e": 109, "5596e": 109, "5150e": 109, "9256e": 109, "8968e": 109, "8572e": 109, "5451e": 109, "2156e": 109, "8602e": 109, "53m": 109, "7656e": 109, "1905e": 109, "6440e": 109, "6607e": 109, "4415e": 109, "1699e": 109, "3589e": 109, "5362e": 109, "56m": 109, "0888e": 109, "1600e": 109, "0426e": 109, "6782e": 109, "9092e": 109, "8284e": 109, "0018e": 109, "9439e": 109, "7977e": 109, "8703e": 109, "00022": 109, "reducelronplateau": 109, "999999873689376e": 109, "5981e": 109, "6030e": 109, "6479e": 109, "8081e": 109, "2579e": 109, "7954e": 109, "9628e": 109, "6399e": 109, "6915e": 109, "9973e": 109, "4726e": 109, "5831e": 109, "2110e": 109, "7290e": 109, "3421e": 109, "1827e": 109, "3472e": 109, "4653e": 109, "00031": 109, "499999936844688e": 109, "1221e": 109, "5739e": 109, "2486e": 109, "5000e": 109, "5589e": 109, "3135e": 109, "4215e": 109, "8923e": 109, "4033e": 109, "8776e": 109, "3358e": 109, "5874e": 109, "2922e": 109, "6051e": 109, "00038": 109, "249999968422344e": 109, "1278e": 109, "4898e": 109, "0474e": 109, "8901e": 109, "2500e": 109, "0612e": 109, "7469e": 109, "8414e": 109, "8496e": 109, "0196e": 109, "5206e": 109, "8551e": 109, "6483e": 109, "9705e": 109, "4643e": 109, "00045": 109, "24999984211172e": 109, "9136e": 109, "8379e": 109, "7911e": 109, "0055e": 109, "00046": 109, "2kpredict": 109, "114": 109, "156": 109, "35m100": 109, "eta": 109, "36m0": 109, "31m33": 109, "0m31m51": 109, "0m31m52": 109, "0mfp": 109, "25hinfo": 109, "725241": 109, "31m7": 109, "0m0": 109, "31m184": 109, "0mm": 109, "870526": 109, "topdown_confmap": 109, "324520": 109, "329181": 109, "329961": 109, "23056": 109, "254912": 109, "255468": 109, "256291": 109, "257158": 109, "546117": 109, "546866": 109, "547533": 109, "548184": 109, "21151": 109, "684": 109, "877": 109, "940083": 109, "337645": 109, "0108": 109, "0073": 109, "0067": 109, "0111": 109, "0125": 109, "0126": 109, "0127": 109, "0128": 109, "0131": 109, "0082": 109, "0083": 109, "0087": 109, "0089": 109, "0105": 109, "0106": 109, "0091": 109, "0123": 109, "0116": 109, "0045": 109, "38m": 109, "0064": 109, "0057": 109, "0061": 109, "0075": 109, "0078": 109, "0092": 109, "0099": 109, "0102": 109, "0049": 109, "0056": 109, "0079": 109, "0086": 109, "0093": 109, "0081": 109, "0048": 109, "9048e": 109, "0051": 109, "0063": 109, "0066": 109, "0076": 109, "0080": 109, "0058": 109, "0044": 109, "0070": 109, "0072": 109, "0088": 109, "0085": 109, "0097": 109, "16m": 109, "6417e": 109, "0060": 109, "6555e": 109, "0042": 109, "0065": 109, "0069": 109, "0071": 109, "0062": 109, "15m": 109, "1233e": 109, "0052": 109, "0054": 109, "3809e": 109, "0053": 109, "0068": 109, "5957e": 109, "3519e": 109, "0047": 109, "7287e": 109, "6837e": 109, "9723e": 109, "0046": 109, "7941e": 109, "5772e": 109, "3055e": 109, "9191e": 109, "1078e": 109, "4425e": 109, "8283e": 109, "7111e": 109, "2022e": 109, "1555e": 109, "1508e": 109, "8990e": 109, "4963e": 109, "9041e": 109, "7679e": 109, "6666e": 109, "9156e": 109, "0043": 109, "6281e": 109, "0986e": 109, "9581e": 109, "8376e": 109, "2502e": 109, "1183e": 109, "7891e": 109, "4567e": 109, "6811e": 109, "7635e": 109, "3648e": 109, "2940e": 109, "6554e": 109, "8863e": 109, "2604e": 109, "0488e": 109, "1238e": 109, "5798e": 109, "1007e": 109, "5654e": 109, "1802e": 109, "9789e": 109, "0050": 109, "14m": 109, "8818e": 109, "1018e": 109, "8027e": 109, "8017e": 109, "4529e": 109, "6272e": 109, "3265e": 109, "5806e": 109, "6352e": 109, "4029e": 109, "8339e": 109, "6739e": 109, "0118e": 109, "4831e": 109, "1158e": 109, "2793e": 109, "1400e": 109, "4292e": 109, "1119e": 109, "8295e": 109, "3028e": 109, "3006e": 109, "9391e": 109, "8825e": 109, "0989e": 109, "3611e": 109, "4493e": 109, "1164e": 109, "4152e": 109, "4500e": 109, "3208e": 109, "3573e": 109, "0631e": 109, "5007e": 109, "3431e": 109, "9773e": 109, "1004e": 109, "7803e": 109, "3279e": 109, "9841e": 109, "5381e": 109, "0128e": 109, "3161e": 109, "0100e": 109, "8088e": 109, "9153e": 109, "7586e": 109, "9866e": 109, "6100e": 109, "0266e": 109, "9697e": 109, "9149e": 109, "7208e": 109, "8070e": 109, "1903e": 109, "8509e": 109, "7838e": 109, "7844e": 109, "9896e": 109, "9112e": 109, "7495e": 109, "5591e": 109, "5877e": 109, "9042e": 109, "6195e": 109, "9452e": 109, "6819e": 109, "5989e": 109, "4763e": 109, "1925e": 109, "0394e": 109, "0835e": 109, "1323e": 109, "8346e": 109, "5475e": 109, "2159e": 109, "3027e": 109, "9814e": 109, "5814e": 109, "9765e": 109, "9968e": 109, "7869e": 109, "9121e": 109, "4343e": 109, "3077e": 109, "3346e": 109, "4254e": 109, "7991e": 109, "7328e": 109, "2397e": 109, "2417e": 109, "9313e": 109, "8547e": 109, "9704e": 109, "3515e": 109, "8294e": 109, "5212e": 109, "2828e": 109, "2438e": 109, "7034e": 109, "7978e": 109, "7903e": 109, "6477e": 109, "9423e": 109, "4541e": 109, "4100e": 109, "6076e": 109, "4080e": 109, "8343e": 109, "6759e": 109, "7489e": 109, "1060e": 109, "7288e": 109, "2695e": 109, "6401e": 109, "9033e": 109, "8954e": 109, "5764e": 109, "8718e": 109, "6939e": 109, "7738e": 109, "4725e": 109, "0905e": 109, "2447e": 109, "2224e": 109, "0585e": 109, "2169e": 109, "7379e": 109, "5061e": 109, "3931e": 109, "1129e": 109, "2449e": 109, "9372e": 109, "8213e": 109, "2947e": 109, "4640e": 109, "8293e": 109, "6663e": 109, "6084e": 109, "0277e": 109, "0561e": 109, "0192e": 109, "8845e": 109, "3221e": 109, "7722e": 109, "9143e": 109, "3545e": 109, "1985e": 109, "5058e": 109, "7636e": 109, "6468e": 109, "9639e": 109, "6412e": 109, "0466e": 109, "7357e": 109, "0067e": 109, "4886e": 109, "4382e": 109, "9157e": 109, "2551e": 109, "0634e": 109, "0727e": 109, "3863e": 109, "0904e": 109, "5949e": 109, "1201e": 109, "2893e": 109, "8121e": 109, "6669e": 109, "6464e": 109, "2743e": 109, "00025": 109, "0444e": 109, "2563e": 109, "7247e": 109, "6934e": 109, "5754e": 109, "4728e": 109, "8390e": 109, "3959e": 109, "3003e": 109, "6432e": 109, "0270e": 109, "5518e": 109, "5609e": 109, "5365e": 109, "5420e": 109, "5809e": 109, "6708e": 109, "0263e": 109, "3368e": 109, "1149e": 109, "5177e": 109, "1763e": 109, "9396e": 109, "8234e": 109, "8248e": 109, "7555e": 109, "8653e": 109, "7842e": 109, "8074e": 109, "3157e": 109, "2374e": 109, "1815e": 109, "0063e": 109, "2248e": 109, "8071e": 109, "0711e": 109, "4018e": 109, "0210e": 109, "8693e": 109, "7399e": 109, "1753e": 109, "7613e": 109, "2838e": 109, "4471e": 109, "4706e": 109, "1696e": 109, "1452e": 109, "7855e": 109, "7885e": 109, "0074e": 109, "4821e": 109, "8941e": 109, "0606e": 109, "9539e": 109, "4716e": 109, "8173e": 109, "6716e": 109, "2783e": 109, "2172e": 109, "2648e": 109, "3846e": 109, "2823e": 109, "1204e": 109, "0944e": 109, "9505e": 109, "8105e": 109, "7888e": 109, "8985e": 109, "1223e": 109, "0778e": 109, "8262e": 109, "2364e": 109, "3126e": 109, "7625e": 109, "7494e": 109, "5998e": 109, "0159e": 109, "9470e": 109, "0446e": 109, "0576e": 109, "1560e": 109, "1218e": 109, "0720e": 109, "2535e": 109, "8031e": 109, "5428e": 109, "6936e": 109, "7461e": 109, "9617e": 109, "2428e": 109, "7234e": 109, "6780e": 109, "5580e": 109, "7324e": 109, "8042e": 109, "9090e": 109, "0420e": 109, "0318e": 109, "0518e": 109, "0386e": 109, "9058e": 109, "9603e": 109, "7566e": 109, "9699e": 109, "3721e": 109, "7064e": 109, "7373e": 109, "2365e": 109, "6765e": 109, "5656e": 109, "4505e": 109, "7352e": 109, "6274e": 109, "0323e": 109, "9917e": 109, "0639e": 109, "0032e": 109, "7938e": 109, "6727e": 109, "7820e": 109, "4437e": 109, "0607e": 109, "6172e": 109, "00032": 109, "6547e": 109, "6407e": 109, "1578e": 109, "6160e": 109, "5752e": 109, "4326e": 109, "5855e": 109, "8317e": 109, "7880e": 109, "8021e": 109, "9743e": 109, "8831e": 109, "9381e": 109, "9257e": 109, "7361e": 109, "0451e": 109, "8240e": 109, "9328e": 109, "3886e": 109, "18m": 109, "4767e": 109, "0575e": 109, "1097e": 109, "4927e": 109, "4112e": 109, "3113e": 109, "1913e": 109, "1998e": 109, "6045e": 109, "6535e": 109, "8091e": 109, "7343e": 109, "5387e": 109, "2035e": 109, "9046e": 109, "6921e": 109, "4087e": 109, "5647e": 109, "4506e": 109, "9790e": 109, "0771e": 109, "5052e": 109, "4143e": 109, "2485e": 109, "1619e": 109, "6584e": 109, "6250e": 109, "6521e": 109, "6717e": 109, "1550e": 109, "8112e": 109, "8689e": 109, "7203e": 109, "3770e": 109, "0190e": 109, "0213e": 109, "5036e": 109, "3911e": 109, "9674e": 109, "0668e": 109, "4330e": 109, "3906e": 109, "2752e": 109, "9657e": 109, "9577e": 109, "5642e": 109, "6610e": 109, "6394e": 109, "1523e": 109, "9620e": 109, "7511e": 109, "5009e": 109, "7908e": 109, "3697e": 109, "5207e": 109, "0507e": 109, "3913e": 109, "3497e": 109, "2511e": 109, "9152e": 109, "0264e": 109, "5519e": 109, "6368e": 109, "5869e": 109, "0233e": 109, "7055e": 109, "8066e": 109, "6591e": 109, "9582e": 109, "2600e": 109, "6224e": 109, "3638e": 109, "6822e": 109, "4107e": 109, "4047e": 109, "2177e": 109, "9564e": 109, "7970e": 109, "5364e": 109, "5089e": 109, "6647e": 109, "6322e": 109, "0198e": 109, "3218e": 109, "3881e": 109, "00037": 109, "31m39": 109, "0m31m48": 109, "0m31m49": 109, "899237": 109, "31m14": 109, "31m270": 109, "691378": 109, "34mmodel": 109, "34mcourtship": 109, "066840": 109, "only_labeled_fram": 109, "91mfals": 109, "only_suggested_fram": 109, "35mnone": 109, "no_empty_fram": 109, "36m1": 109, "36m4": 109, "open_in_gui": 109, "098811": 109, "103255": 109, "103982": 109, "23050": 109, "157392": 109, "158019": 109, "158864": 109, "159656": 109, "455402": 109, "456138": 109, "456803": 109, "457464": 109, "21145": 109, "237m": 109, "36m": 109, "0m2023": 109, "038687": 109, "31m51": 109, "31m126": 109, "25hfinish": 109, "842469": 109, "775644779205322": 109, "sec": 109, "s0": 109, "total_elaps": 109, "36m7": 109, "start_timestamp": 109, "finish_timestamp": 109, "chrome": 109, "deflat": 109, "safari": 109, "icon": 109, "fron": 110, "pckage": 110, "somewher": 110, "unpack": 110, "inter": 110, "chdir": 110, "chose": 110, "anywher": 110, "colab_demo": 110, "predicted_suggest": 110, "demo": 110, "illustr": 112, "recomput": 112, "nutshel": 113, "quantit": 113, "yourself": 113, "footag": 113, "labori": 113, "involv": 113, "among": 113, "satisfactori": 113, "h5read": 114, "tracks_matrix": 114, "feedback": 115, "poorli": 115, "alert": 115, "told": 115, "thicker": 115, "dark": 115, "lighter": 115, "regularli": 115, "proof": 115, "assess": 115, "prev": 116, "scroll": 116, "undo": 116, "cloud": 117, "slowli": 117, "dropdown": 119}, "objects": {"sleap.info": [[3, 0, 0, "-", "align"], [4, 0, 0, "-", "feature_suggestions"], [5, 0, 0, "-", "labels"], [6, 0, 0, "-", "metrics"], [7, 0, 0, "-", "summary"], [8, 0, 0, "-", "trackcleaner"], [9, 0, 0, "-", "write_tracking_h5"]], "sleap.info.align": [[3, 1, 1, "", "align_instance_points"], [3, 1, 1, "", "align_instances"], [3, 1, 1, "", "align_instances_on_most_stable"], [3, 1, 1, "", "get_instances_points"], [3, 1, 1, "", "get_mean_and_std_for_points"], [3, 1, 1, "", "get_most_stable_node_pair"], [3, 1, 1, "", "get_stable_node_pairs"], [3, 1, 1, "", "get_template_points_array"]], "sleap.info.feature_suggestions": [[4, 2, 1, "", "FrameGroupSet"], [4, 2, 1, "", "FrameItem"], [4, 2, 1, "", "ItemStack"], [4, 2, 1, "", "ParallelFeaturePipeline"]], "sleap.info.feature_suggestions.FrameGroupSet": [[4, 3, 1, "", "all_items"], [4, 4, 1, "", "append_to_group"], [4, 4, 1, "", "extend_group_items"], [4, 4, 1, "", "get_item_group"], [4, 5, 1, "", "group_data"], [4, 3, 1, "", "groups"], [4, 5, 1, "", "groupset_data"], [4, 5, 1, "", "item_group"], [4, 5, 1, "", "method"], [4, 4, 1, "", "sample"]], "sleap.info.feature_suggestions.ItemStack": [[4, 4, 1, "", "brisk_bag_of_features"], [4, 3, 1, "", "current_groupset"], [4, 5, 1, "", "data"], [4, 4, 1, "", "extend_ownership"], [4, 4, 1, "", "flatten"], [4, 4, 1, "", "get_all_items_from_group"], [4, 4, 1, "", "get_item_data"], [4, 4, 1, "", "get_item_data_idxs"], [4, 4, 1, "", "get_raw_images"], [4, 5, 1, "", "group_sets"], [4, 4, 1, "", "hog_bag_of_features"], [4, 5, 1, "", "items"], [4, 4, 1, "", "kmeans"], [4, 4, 1, "", "make_sample_group"], [4, 5, 1, "", "meta"], [4, 5, 1, "", "ownership"], [4, 4, 1, "", "pca"], [4, 4, 1, "", "sample_groups"]], "sleap.info.feature_suggestions.ParallelFeaturePipeline": [[4, 4, 1, "", "get"], [4, 4, 1, "", "make"], [4, 4, 1, "", "run"], [4, 4, 1, "", "tuples_to_suggestions"]], "sleap.info.metrics": [[6, 1, 1, "", "calculate_pairwise_cost"], [6, 1, 1, "", "compare_instance_lists"], [6, 1, 1, "", "list_points_array"], [6, 1, 1, "", "match_instance_lists"], [6, 1, 1, "", "match_instance_lists_nodewise"], [6, 1, 1, "", "matched_instance_distances"], [6, 1, 1, "", "nodeless_point_dist"], [6, 1, 1, "", "point_dist"], [6, 1, 1, "", "point_match_count"], [6, 1, 1, "", "point_nonmatch_count"]], "sleap.info.summary": [[7, 2, 1, "", "StatisticSeries"]], "sleap.info.summary.StatisticSeries": [[7, 4, 1, "", "get_instance_score_series"], [7, 4, 1, "", "get_point_count_series"], [7, 4, 1, "", "get_point_displacement_series"], [7, 4, 1, "", "get_point_score_series"], [7, 4, 1, "", "get_primary_point_displacement_series"], [7, 4, 1, "", "get_tracking_score_series"]], "sleap.info.trackcleaner": [[8, 1, 1, "", "fit_tracks"]], "sleap.info.write_tracking_h5": [[9, 1, 1, "", "get_edges_as_np_strings"], [9, 1, 1, "", "get_nodes_as_np_strings"], [9, 1, 1, "", "get_occupancy_and_points_matrices"], [9, 1, 1, "", "get_tracks_as_np_strings"], [9, 1, 1, "", "main"], [9, 1, 1, "", "remove_empty_tracks_from_matrices"], [9, 1, 1, "", "write_csv_file"], [9, 1, 1, "", "write_occupancy_file"]], "sleap": [[10, 0, 0, "-", "instance"], [35, 0, 0, "-", "message"], [84, 0, 0, "-", "skeleton"], [85, 0, 0, "-", "util"]], "sleap.instance": [[10, 2, 1, "", "Instance"], [10, 2, 1, "", "InstancesList"], [10, 2, 1, "", "LabeledFrame"], [10, 2, 1, "", "Point"], [10, 2, 1, "", "PointArray"], [10, 2, 1, "", "PredictedInstance"], [10, 2, 1, "", "PredictedPoint"], [10, 2, 1, "", "PredictedPointArray"], [10, 2, 1, "", "Track"], [10, 1, 1, "", "make_instance_cattr"]], "sleap.instance.Instance": [[10, 3, 1, "", "bounding_box"], [10, 3, 1, "", "centroid"], [10, 4, 1, "", "fill_missing"], [10, 3, 1, "", "frame_idx"], [10, 4, 1, "", "from_numpy"], [10, 4, 1, "", "from_pointsarray"], [10, 4, 1, "", "get_points_array"], [10, 4, 1, "", "matches"], [10, 3, 1, "", "midpoint"], [10, 3, 1, "", "n_visible_points"], [10, 3, 1, "", "nodes"], [10, 3, 1, "", "nodes_points"], [10, 4, 1, "", "numpy"], [10, 3, 1, "", "points"], [10, 3, 1, "", "points_array"], [10, 4, 1, "", "transform_points"], [10, 3, 1, "", "video"]], "sleap.instance.InstancesList": [[10, 4, 1, "", "append"], [10, 4, 1, "", "clear"], [10, 4, 1, "", "copy"], [10, 4, 1, "", "extend"], [10, 4, 1, "", "insert"], [10, 3, 1, "", "labeled_frame"], [10, 4, 1, "", "pop"], [10, 4, 1, "", "remove"]], "sleap.instance.LabeledFrame": [[10, 4, 1, "", "complex_frame_merge"], [10, 4, 1, "", "complex_merge_between"], [10, 4, 1, "", "find"], [10, 3, 1, "", "has_predicted_instances"], [10, 3, 1, "", "has_tracked_instances"], [10, 3, 1, "", "has_user_instances"], [10, 3, 1, "", "image"], [10, 4, 1, "", "index"], [10, 4, 1, "", "insert"], [10, 3, 1, "", "instances"], [10, 3, 1, "", "instances_to_show"], [10, 4, 1, "", "merge_frames"], [10, 3, 1, "", "n_predicted_instances"], [10, 3, 1, "", "n_tracked_instances"], [10, 3, 1, "", "n_user_instances"], [10, 4, 1, "", "numpy"], [10, 4, 1, "", "plot"], [10, 4, 1, "", "plot_predicted"], [10, 3, 1, "", "predicted_instances"], [10, 4, 1, "", "remove_empty_instances"], [10, 4, 1, "", "remove_untracked"], [10, 3, 1, "", "tracked_instances"], [10, 3, 1, "", "training_instances"], [10, 3, 1, "", "unused_predictions"], [10, 3, 1, "", "user_instances"]], "sleap.instance.Point": [[10, 5, 1, "", "dtype"], [10, 4, 1, "", "isnan"], [10, 4, 1, "", "numpy"]], "sleap.instance.PointArray": [[10, 4, 1, "", "from_array"], [10, 4, 1, "", "make_default"]], "sleap.instance.PredictedInstance": [[10, 4, 1, "", "from_arrays"], [10, 4, 1, "", "from_instance"], [10, 4, 1, "", "from_numpy"], [10, 4, 1, "", "from_pointsarray"], [10, 3, 1, "", "points_and_scores_array"], [10, 3, 1, "", "scores"]], "sleap.instance.PredictedPoint": [[10, 5, 1, "", "dtype"], [10, 4, 1, "", "from_point"]], "sleap.instance.PredictedPointArray": [[10, 4, 1, "", "to_array"]], "sleap.instance.Track": [[10, 4, 1, "", "matches"]], "sleap.io": [[11, 0, 0, "-", "convert"], [12, 0, 0, "-", "dataset"], [30, 0, 0, "-", "legacy"], [31, 0, 0, "-", "pathutils"], [32, 0, 0, "-", "video"], [33, 0, 0, "-", "videowriter"], [34, 0, 0, "-", "visuals"]], "sleap.io.convert": [[11, 1, 1, "", "main"]], "sleap.io.dataset": [[12, 2, 1, "", "Labels"], [12, 2, 1, "", "LabelsDataCache"], [12, 1, 1, "", "find_path_using_paths"], [12, 1, 1, "", "load_file"]], "sleap.io.dataset.Labels": [[12, 4, 1, "", "add_instance"], [12, 4, 1, "", "add_suggestion"], [12, 4, 1, "", "add_track"], [12, 4, 1, "", "add_video"], [12, 3, 1, "", "all_instances"], [12, 4, 1, "", "append"], [12, 4, 1, "", "append_suggestions"], [12, 4, 1, "", "clear_suggestions"], [12, 4, 1, "", "complex_merge_between"], [12, 4, 1, "", "copy"], [12, 4, 1, "", "delete_suggestions"], [12, 4, 1, "", "describe"], [12, 4, 1, "", "export"], [12, 4, 1, "", "export_csv"], [12, 4, 1, "", "export_nwb"], [12, 4, 1, "", "extend_from"], [12, 4, 1, "", "extract"], [12, 4, 1, "", "find"], [12, 4, 1, "", "find_first"], [12, 4, 1, "", "find_last"], [12, 4, 1, "", "find_suggestion"], [12, 4, 1, "", "find_track_occupancy"], [12, 4, 1, "", "finish_complex_merge"], [12, 4, 1, "", "frames"], [12, 4, 1, "", "get"], [12, 4, 1, "", "get_next_suggestion"], [12, 4, 1, "", "get_suggestions"], [12, 4, 1, "", "get_track_count"], [12, 4, 1, "", "get_track_occupancy"], [12, 4, 1, "", "get_unlabeled_suggestion_inds"], [12, 4, 1, "", "get_video_suggestions"], [12, 4, 1, "", "has_frame"], [12, 3, 1, "", "has_missing_videos"], [12, 4, 1, "", "index"], [12, 4, 1, "", "insert"], [12, 4, 1, "", "instance_count"], [12, 4, 1, "", "instances"], [12, 3, 1, "", "is_multi_instance"], [12, 5, 1, "", "labeled_frames"], [12, 3, 1, "", "labels"], [12, 4, 1, "", "load_file"], [12, 4, 1, "", "make_video_callback"], [12, 4, 1, "", "merge_container_dicts"], [12, 4, 1, "", "merge_matching_frames"], [12, 4, 1, "", "merge_nodes"], [12, 5, 1, "", "negative_anchors"], [12, 4, 1, "", "numpy"], [12, 3, 1, "", "predicted_instances"], [12, 5, 1, "", "provenance"], [12, 4, 1, "", "remove"], [12, 4, 1, "", "remove_all_tracks"], [12, 4, 1, "", "remove_empty_frames"], [12, 4, 1, "", "remove_empty_instances"], [12, 4, 1, "", "remove_frame"], [12, 4, 1, "", "remove_frames"], [12, 4, 1, "", "remove_instance"], [12, 4, 1, "", "remove_predictions"], [12, 4, 1, "", "remove_suggestion"], [12, 4, 1, "", "remove_track"], [12, 4, 1, "", "remove_untracked_instances"], [12, 4, 1, "", "remove_unused_tracks"], [12, 4, 1, "", "remove_user_instances"], [12, 4, 1, "", "remove_video"], [12, 4, 1, "", "save"], [12, 4, 1, "", "save_file"], [12, 4, 1, "", "save_frame_data_hdf5"], [12, 4, 1, "", "save_frame_data_imgstore"], [12, 4, 1, "", "set_suggestions"], [12, 3, 1, "", "skeleton"], [12, 5, 1, "", "skeletons"], [12, 4, 1, "", "split"], [12, 5, 1, "", "suggestions"], [12, 4, 1, "", "to_dict"], [12, 4, 1, "", "to_json"], [12, 4, 1, "", "to_pipeline"], [12, 4, 1, "", "track_set_instance"], [12, 4, 1, "", "track_swap"], [12, 5, 1, "", "tracks"], [12, 3, 1, "", "unlabeled_suggestions"], [12, 3, 1, "", "user_instances"], [12, 3, 1, "", "user_labeled_frame_inds"], [12, 3, 1, "", "user_labeled_frames"], [12, 3, 1, "", "video"], [12, 5, 1, "", "videos"], [12, 4, 1, "", "with_user_labels_only"]], "sleap.io.dataset.LabelsDataCache": [[12, 4, 1, "", "add_instance"], [12, 4, 1, "", "add_track"], [12, 4, 1, "", "find_fancy_frame_idxs"], [12, 4, 1, "", "find_frames"], [12, 4, 1, "", "get_filtered_frame_idxs"], [12, 4, 1, "", "get_frame_count"], [12, 4, 1, "", "get_track_occupancy"], [12, 4, 1, "", "get_video_track_occupancy"], [12, 4, 1, "", "remove_frame"], [12, 4, 1, "", "remove_instance"], [12, 4, 1, "", "remove_video"], [12, 4, 1, "", "track_swap"], [12, 4, 1, "", "update"], [12, 4, 1, "", "update_counts_for_frame"]], "sleap.io.format": [[13, 0, 0, "-", "adaptor"], [14, 0, 0, "-", "alphatracker"], [15, 0, 0, "-", "coco"], [16, 0, 0, "-", "csv"], [17, 0, 0, "-", "deeplabcut"], [18, 0, 0, "-", "deepposekit"], [19, 0, 0, "-", "dispatch"], [20, 0, 0, "-", "filehandle"], [21, 0, 0, "-", "genericjson"], [22, 0, 0, "-", "hdf5"], [23, 0, 0, "-", "labels_json"], [24, 0, 0, "-", "leap_matlab"], [25, 0, 0, "-", "main"], [26, 0, 0, "-", "ndx_pose"], [27, 0, 0, "-", "nix"], [28, 0, 0, "-", "sleap_analysis"], [29, 0, 0, "-", "text"]], "sleap.io.format.adaptor": [[13, 2, 1, "", "Adaptor"], [13, 2, 1, "", "SleapObjectType"]], "sleap.io.format.adaptor.Adaptor": [[13, 3, 1, "", "all_exts"], [13, 4, 1, "", "can_read_file"], [13, 4, 1, "", "can_write_filename"], [13, 3, 1, "", "default_ext"], [13, 4, 1, "", "does_match_ext"], [13, 4, 1, "", "does_read"], [13, 4, 1, "", "does_write"], [13, 3, 1, "", "formatted_ext_options"], [13, 3, 1, "", "handles"], [13, 3, 1, "", "name"], [13, 4, 1, "", "read"], [13, 4, 1, "", "write"]], "sleap.io.format.alphatracker": [[14, 2, 1, "", "AlphaTrackerAdaptor"]], "sleap.io.format.alphatracker.AlphaTrackerAdaptor": [[14, 3, 1, "", "all_exts"], [14, 4, 1, "", "can_read_file"], [14, 4, 1, "", "can_write_filename"], [14, 3, 1, "", "default_ext"], [14, 4, 1, "", "does_match_ext"], [14, 4, 1, "", "does_read"], [14, 4, 1, "", "does_write"], [14, 3, 1, "", "formatted_ext_options"], [14, 4, 1, "", "get_alpha_tracker_frame_dict"], [14, 4, 1, "", "get_alpha_tracker_instance_dict"], [14, 4, 1, "", "get_alpha_tracker_point_dict"], [14, 3, 1, "", "handles"], [14, 4, 1, "", "make_video_for_image_list"], [14, 3, 1, "", "name"], [14, 4, 1, "", "read"], [14, 4, 1, "", "write"]], "sleap.io.format.coco": [[15, 2, 1, "", "LabelsCocoAdaptor"]], "sleap.io.format.coco.LabelsCocoAdaptor": [[15, 3, 1, "", "all_exts"], [15, 4, 1, "", "can_read_file"], [15, 4, 1, "", "can_write_filename"], [15, 3, 1, "", "default_ext"], [15, 4, 1, "", "does_read"], [15, 4, 1, "", "does_write"], [15, 3, 1, "", "handles"], [15, 3, 1, "", "name"], [15, 4, 1, "", "read"]], "sleap.io.format.csv": [[16, 2, 1, "", "CSVAdaptor"]], "sleap.io.format.csv.CSVAdaptor": [[16, 3, 1, "", "all_exts"], [16, 4, 1, "", "can_read_file"], [16, 4, 1, "", "can_write_filename"], [16, 3, 1, "", "default_ext"], [16, 4, 1, "", "does_read"], [16, 4, 1, "", "does_write"], [16, 3, 1, "", "handles"], [16, 3, 1, "", "name"], [16, 4, 1, "", "write"]], "sleap.io.format.deeplabcut": [[17, 2, 1, "", "LabelsDeepLabCutCsvAdaptor"], [17, 2, 1, "", "LabelsDeepLabCutYamlAdaptor"]], "sleap.io.format.deeplabcut.LabelsDeepLabCutCsvAdaptor": [[17, 3, 1, "", "all_exts"], [17, 4, 1, "", "can_read_file"], [17, 4, 1, "", "can_write_filename"], [17, 3, 1, "", "default_ext"], [17, 4, 1, "", "does_read"], [17, 4, 1, "", "does_write"], [17, 3, 1, "", "handles"], [17, 4, 1, "", "make_video_for_image_list"], [17, 3, 1, "", "name"], [17, 4, 1, "", "read"]], "sleap.io.format.deeplabcut.LabelsDeepLabCutYamlAdaptor": [[17, 3, 1, "", "all_exts"], [17, 4, 1, "", "can_read_file"], [17, 4, 1, "", "can_write_filename"], [17, 3, 1, "", "default_ext"], [17, 4, 1, "", "does_read"], [17, 4, 1, "", "does_write"], [17, 3, 1, "", "handles"], [17, 3, 1, "", "name"], [17, 4, 1, "", "read"]], "sleap.io.format.deepposekit": [[18, 2, 1, "", "LabelsDeepPoseKitAdaptor"]], "sleap.io.format.deepposekit.LabelsDeepPoseKitAdaptor": [[18, 3, 1, "", "all_exts"], [18, 4, 1, "", "can_read_file"], [18, 4, 1, "", "can_write_filename"], [18, 3, 1, "", "default_ext"], [18, 4, 1, "", "does_read"], [18, 4, 1, "", "does_write"], [18, 3, 1, "", "handles"], [18, 3, 1, "", "name"], [18, 4, 1, "", "read"]], "sleap.io.format.filehandle": [[20, 2, 1, "", "FileHandle"]], "sleap.io.format.filehandle.FileHandle": [[20, 4, 1, "", "close"], [20, 3, 1, "", "file"], [20, 3, 1, "", "format_id"], [20, 3, 1, "", "is_hdf5"], [20, 3, 1, "", "is_json"], [20, 3, 1, "", "json"], [20, 4, 1, "", "open"], [20, 3, 1, "", "text"]], "sleap.io.format.genericjson": [[21, 2, 1, "", "GenericJsonAdaptor"]], "sleap.io.format.genericjson.GenericJsonAdaptor": [[21, 3, 1, "", "all_exts"], [21, 4, 1, "", "can_read_file"], [21, 4, 1, "", "can_write_filename"], [21, 3, 1, "", "default_ext"], [21, 4, 1, "", "does_read"], [21, 4, 1, "", "does_write"], [21, 3, 1, "", "handles"], [21, 3, 1, "", "name"], [21, 4, 1, "", "read"], [21, 4, 1, "", "write"]], "sleap.io.format.hdf5": [[22, 2, 1, "", "LabelsV1Adaptor"]], "sleap.io.format.hdf5.LabelsV1Adaptor": [[22, 3, 1, "", "all_exts"], [22, 4, 1, "", "can_read_file"], [22, 4, 1, "", "can_write_filename"], [22, 3, 1, "", "default_ext"], [22, 4, 1, "", "does_read"], [22, 4, 1, "", "does_write"], [22, 3, 1, "", "handles"], [22, 3, 1, "", "name"], [22, 4, 1, "", "read"], [22, 4, 1, "", "write"]], "sleap.io.format.labels_json": [[23, 2, 1, "", "LabelsJsonAdaptor"]], "sleap.io.format.labels_json.LabelsJsonAdaptor": [[23, 3, 1, "", "all_exts"], [23, 4, 1, "", "can_read_file"], [23, 4, 1, "", "can_write_filename"], [23, 3, 1, "", "default_ext"], [23, 4, 1, "", "does_read"], [23, 4, 1, "", "does_write"], [23, 4, 1, "", "from_json_data"], [23, 3, 1, "", "handles"], [23, 3, 1, "", "name"], [23, 4, 1, "", "read"], [23, 4, 1, "", "write"]], "sleap.io.format.leap_matlab": [[24, 2, 1, "", "LabelsLeapMatlabAdaptor"]], "sleap.io.format.leap_matlab.LabelsLeapMatlabAdaptor": [[24, 3, 1, "", "all_exts"], [24, 4, 1, "", "can_read_file"], [24, 4, 1, "", "can_write_filename"], [24, 3, 1, "", "default_ext"], [24, 4, 1, "", "does_read"], [24, 4, 1, "", "does_write"], [24, 3, 1, "", "handles"], [24, 3, 1, "", "name"], [24, 4, 1, "", "read"]], "sleap.io.format.main": [[25, 1, 1, "", "read"], [25, 1, 1, "", "write"]], "sleap.io.format.ndx_pose": [[26, 2, 1, "", "NDXPoseAdaptor"]], "sleap.io.format.ndx_pose.NDXPoseAdaptor": [[26, 3, 1, "", "all_exts"], [26, 4, 1, "", "can_read_file"], [26, 4, 1, "", "can_write_filename"], [26, 3, 1, "", "default_ext"], [26, 4, 1, "", "does_read"], [26, 4, 1, "", "does_write"], [26, 3, 1, "", "handles"], [26, 3, 1, "", "name"], [26, 4, 1, "", "read"], [26, 4, 1, "", "write"]], "sleap.io.format.nix": [[27, 2, 1, "", "NixAdaptor"]], "sleap.io.format.nix.NixAdaptor": [[27, 3, 1, "", "all_exts"], [27, 4, 1, "", "can_read_file"], [27, 4, 1, "", "can_write_filename"], [27, 3, 1, "", "default_ext"], [27, 4, 1, "", "does_read"], [27, 4, 1, "", "does_write"], [27, 3, 1, "", "handles"], [27, 3, 1, "", "name"], [27, 4, 1, "", "read"], [27, 4, 1, "", "write"]], "sleap.io.format.sleap_analysis": [[28, 2, 1, "", "SleapAnalysisAdaptor"]], "sleap.io.format.sleap_analysis.SleapAnalysisAdaptor": [[28, 3, 1, "", "all_exts"], [28, 4, 1, "", "can_read_file"], [28, 4, 1, "", "can_write_filename"], [28, 3, 1, "", "default_ext"], [28, 4, 1, "", "does_read"], [28, 4, 1, "", "does_write"], [28, 3, 1, "", "handles"], [28, 3, 1, "", "name"], [28, 4, 1, "", "read"], [28, 4, 1, "", "write"]], "sleap.io.format.text": [[29, 2, 1, "", "TextAdaptor"]], "sleap.io.format.text.TextAdaptor": [[29, 3, 1, "", "all_exts"], [29, 4, 1, "", "can_read_file"], [29, 4, 1, "", "can_write_filename"], [29, 3, 1, "", "default_ext"], [29, 4, 1, "", "does_read"], [29, 4, 1, "", "does_write"], [29, 3, 1, "", "handles"], [29, 3, 1, "", "name"], [29, 4, 1, "", "read"], [29, 4, 1, "", "write"]], "sleap.io.legacy": [[30, 1, 1, "", "load_labels_json_old"], [30, 1, 1, "", "load_predicted_labels_json_old"]], "sleap.io.pathutils": [[31, 1, 1, "", "filenames_prefix_change"], [31, 1, 1, "", "find_changed_subpath"], [31, 1, 1, "", "list_file_missing"]], "sleap.io.video": [[32, 2, 1, "", "DummyVideo"], [32, 2, 1, "", "HDF5Video"], [32, 2, 1, "", "ImgStoreVideo"], [32, 2, 1, "", "MediaVideo"], [32, 2, 1, "", "NumpyVideo"], [32, 2, 1, "", "SingleImageVideo"], [32, 2, 1, "", "Video"], [32, 1, 1, "", "available_video_exts"], [32, 1, 1, "", "load_video"]], "sleap.io.video.HDF5Video": [[32, 3, 1, "", "channels"], [32, 4, 1, "", "check"], [32, 4, 1, "", "close"], [32, 3, 1, "", "dtype"], [32, 3, 1, "", "embedded_frame_inds"], [32, 3, 1, "", "enable_source_video"], [32, 3, 1, "", "frames"], [32, 4, 1, "", "get_frame"], [32, 3, 1, "", "has_embedded_images"], [32, 3, 1, "", "height"], [32, 3, 1, "", "last_frame_idx"], [32, 4, 1, "", "matches"], [32, 4, 1, "", "reset"], [32, 3, 1, "", "source_video"], [32, 3, 1, "", "source_video_available"], [32, 3, 1, "", "width"]], "sleap.io.video.ImgStoreVideo": [[32, 3, 1, "", "channels"], [32, 4, 1, "", "close"], [32, 3, 1, "", "dtype"], [32, 3, 1, "", "frames"], [32, 4, 1, "", "get_frame"], [32, 3, 1, "", "height"], [32, 3, 1, "", "imgstore"], [32, 3, 1, "", "last_frame_idx"], [32, 4, 1, "", "matches"], [32, 4, 1, "", "open"], [32, 4, 1, "", "reset"], [32, 3, 1, "", "width"]], "sleap.io.video.MediaVideo": [[32, 3, 1, "", "channels"], [32, 3, 1, "", "dtype"], [32, 3, 1, "", "fps"], [32, 3, 1, "", "frames"], [32, 4, 1, "", "get_frame"], [32, 3, 1, "", "height"], [32, 4, 1, "", "matches"], [32, 4, 1, "", "reset"], [32, 3, 1, "", "width"]], "sleap.io.video.NumpyVideo": [[32, 3, 1, "", "channels"], [32, 3, 1, "", "dtype"], [32, 3, 1, "", "frames"], [32, 4, 1, "", "get_frame"], [32, 3, 1, "", "height"], [32, 3, 1, "", "is_missing"], [32, 4, 1, "", "matches"], [32, 4, 1, "", "reset"], [32, 3, 1, "", "width"]], "sleap.io.video.SingleImageVideo": [[32, 3, 1, "", "channels"], [32, 3, 1, "", "dtype"], [32, 3, 1, "", "frames"], [32, 4, 1, "", "get_frame"], [32, 3, 1, "", "height"], [32, 4, 1, "", "matches"], [32, 4, 1, "", "reset"], [32, 3, 1, "", "width"]], "sleap.io.video.Video": [[32, 4, 1, "", "cattr"], [32, 4, 1, "", "fixup_path"], [32, 4, 1, "", "from_filename"], [32, 4, 1, "", "from_hdf5"], [32, 4, 1, "", "from_image_filenames"], [32, 4, 1, "", "from_media"], [32, 4, 1, "", "from_numpy"], [32, 4, 1, "", "get_frame"], [32, 4, 1, "", "get_frames"], [32, 4, 1, "", "get_frames_safely"], [32, 4, 1, "", "imgstore_from_filenames"], [32, 3, 1, "", "is_missing"], [32, 3, 1, "", "last_frame_idx"], [32, 3, 1, "", "num_frames"], [32, 3, 1, "", "shape"], [32, 4, 1, "", "to_hdf5"], [32, 4, 1, "", "to_imgstore"], [32, 4, 1, "", "to_pipeline"]], "sleap.io.videowriter": [[33, 2, 1, "", "VideoWriter"], [33, 2, 1, "", "VideoWriterImageio"], [33, 2, 1, "", "VideoWriterOpenCV"]], "sleap.io.videowriter.VideoWriter": [[33, 4, 1, "", "can_use_ffmpeg"], [33, 4, 1, "", "safe_builder"]], "sleap.io.videowriter.VideoWriterImageio": [[33, 5, 1, "", "crf"], [33, 5, 1, "", "filename"], [33, 5, 1, "", "fps"], [33, 5, 1, "", "height"], [33, 5, 1, "", "preset"], [33, 5, 1, "", "width"]], "sleap.io.visuals": [[34, 2, 1, "", "VideoMarkerThread"], [34, 1, 1, "", "img_to_cv"], [34, 1, 1, "", "reader"], [34, 1, 1, "", "resize_image"], [34, 1, 1, "", "save_labeled_video"], [34, 1, 1, "", "writer"]], "sleap.io.visuals.VideoMarkerThread": [[34, 4, 1, "", "run"]], "sleap.message": [[35, 2, 1, "", "BaseMessageParticipant"], [35, 2, 1, "", "Receiver"], [35, 2, 1, "", "Sender"]], "sleap.message.Receiver": [[35, 4, 1, "", "check_message"], [35, 4, 1, "", "check_messages"], [35, 4, 1, "", "push_back_message"]], "sleap.message.Sender": [[35, 4, 1, "", "send_array"], [35, 4, 1, "", "send_dict"]], "sleap.nn.architectures": [[36, 0, 0, "-", "common"], [37, 0, 0, "-", "encoder_decoder"], [38, 0, 0, "-", "hourglass"], [39, 0, 0, "-", "hrnet"], [40, 0, 0, "-", "leap"], [41, 0, 0, "-", "pretrained_encoders"], [42, 0, 0, "-", "resnet"], [43, 0, 0, "-", "unet"], [44, 0, 0, "-", "upsampling"]], "sleap.nn.architectures.common": [[36, 2, 1, "", "IntermediateFeature"]], "sleap.nn.architectures.common.IntermediateFeature": [[36, 3, 1, "", "scale"], [36, 5, 1, "", "stride"], [36, 5, 1, "", "tensor"]], "sleap.nn.architectures.encoder_decoder": [[37, 2, 1, "", "DecoderBlock"], [37, 2, 1, "", "EncoderBlock"], [37, 2, 1, "", "EncoderDecoder"], [37, 2, 1, "", "SimpleConvBlock"], [37, 2, 1, "", "SimpleUpsamplingBlock"]], "sleap.nn.architectures.encoder_decoder.DecoderBlock": [[37, 4, 1, "", "make_block"], [37, 5, 1, "", "upsampling_stride"]], "sleap.nn.architectures.encoder_decoder.EncoderBlock": [[37, 4, 1, "", "make_block"], [37, 5, 1, "", "pool"], [37, 5, 1, "", "pooling_stride"]], "sleap.nn.architectures.encoder_decoder.EncoderDecoder": [[37, 3, 1, "", "decoder_features_stride"], [37, 3, 1, "", "decoder_stack"], [37, 3, 1, "", "encoder_features_stride"], [37, 3, 1, "", "encoder_stack"], [37, 4, 1, "", "make_backbone"], [37, 4, 1, "", "make_decoder"], [37, 4, 1, "", "make_encoder"], [37, 4, 1, "", "make_stem"], [37, 3, 1, "", "maximum_stride"], [37, 3, 1, "", "output_stride"], [37, 5, 1, "", "stacks"], [37, 3, 1, "", "stem_features_stride"], [37, 3, 1, "", "stem_stack"]], "sleap.nn.architectures.encoder_decoder.SimpleConvBlock": [[37, 5, 1, "", "activation"], [37, 5, 1, "", "batch_norm"], [37, 5, 1, "", "batch_norm_before_activation"], [37, 5, 1, "", "block_prefix"], [37, 5, 1, "", "filters"], [37, 5, 1, "", "kernel_size"], [37, 4, 1, "", "make_block"], [37, 5, 1, "", "num_convs"], [37, 5, 1, "", "pool"], [37, 5, 1, "", "pool_before_convs"], [37, 5, 1, "", "pooling_stride"], [37, 5, 1, "", "use_bias"]], "sleap.nn.architectures.encoder_decoder.SimpleUpsamplingBlock": [[37, 5, 1, "", "interp_method"], [37, 4, 1, "", "make_block"], [37, 5, 1, "", "refine_convs"], [37, 5, 1, "", "refine_convs_activation"], [37, 5, 1, "", "refine_convs_batch_norm"], [37, 5, 1, "", "refine_convs_batch_norm_before_activation"], [37, 5, 1, "", "refine_convs_filters"], [37, 5, 1, "", "refine_convs_first_filters"], [37, 5, 1, "", "refine_convs_kernel_size"], [37, 5, 1, "", "refine_convs_use_bias"], [37, 5, 1, "", "skip_add"], [37, 5, 1, "", "skip_connection"], [37, 5, 1, "", "transposed_conv"], [37, 5, 1, "", "transposed_conv_activation"], [37, 5, 1, "", "transposed_conv_batch_norm"], [37, 5, 1, "", "transposed_conv_batch_norm_before_activation"], [37, 5, 1, "", "transposed_conv_filters"], [37, 5, 1, "", "transposed_conv_kernel_size"], [37, 5, 1, "", "transposed_conv_use_bias"], [37, 5, 1, "", "upsampling_stride"]], "sleap.nn.architectures.hourglass": [[38, 2, 1, "", "DownsamplingBlock"], [38, 2, 1, "", "Hourglass"], [38, 2, 1, "", "StemBlock"], [38, 2, 1, "", "UpsamplingBlock"], [38, 1, 1, "", "conv"]], "sleap.nn.architectures.hourglass.DownsamplingBlock": [[38, 5, 1, "", "filters"], [38, 4, 1, "", "make_block"]], "sleap.nn.architectures.hourglass.Hourglass": [[38, 3, 1, "", "decoder_stack"], [38, 5, 1, "", "down_blocks"], [38, 3, 1, "", "encoder_stack"], [38, 5, 1, "", "filter_increase"], [38, 5, 1, "", "filters"], [38, 4, 1, "", "from_config"], [38, 5, 1, "", "interp_method"], [38, 5, 1, "", "stacks"], [38, 5, 1, "", "stem_filters"], [38, 3, 1, "", "stem_stack"], [38, 5, 1, "", "stem_stride"], [38, 5, 1, "", "up_blocks"]], "sleap.nn.architectures.hourglass.StemBlock": [[38, 5, 1, "", "filters"], [38, 5, 1, "", "first_conv_stride"], [38, 4, 1, "", "make_block"], [38, 5, 1, "", "output_filters"], [38, 5, 1, "", "pool"], [38, 5, 1, "", "pooling_stride"]], "sleap.nn.architectures.hourglass.UpsamplingBlock": [[38, 5, 1, "", "filters"], [38, 5, 1, "", "interp_method"], [38, 4, 1, "", "make_block"]], "sleap.nn.architectures.hrnet": [[39, 2, 1, "", "HigherHRNet"], [39, 1, 1, "", "adjust_prefix"], [39, 1, 1, "", "bottleneck_block"], [39, 1, 1, "", "simple_block"]], "sleap.nn.architectures.hrnet.HigherHRNet": [[39, 5, 1, "", "C"], [39, 5, 1, "", "bilinear_upsampling"], [39, 5, 1, "", "bottleneck"], [39, 5, 1, "", "deconv_filters"], [39, 3, 1, "", "down_blocks"], [39, 5, 1, "", "initial_downsampling_steps"], [39, 5, 1, "", "n_deconv_modules"], [39, 4, 1, "", "output"], [39, 3, 1, "", "output_scale"]], "sleap.nn.architectures.leap": [[40, 2, 1, "", "LeapCNN"]], "sleap.nn.architectures.leap.LeapCNN": [[40, 3, 1, "", "decoder_stack"], [40, 5, 1, "", "down_blocks"], [40, 5, 1, "", "down_convs_per_block"], [40, 3, 1, "", "encoder_stack"], [40, 5, 1, "", "filters"], [40, 5, 1, "", "filters_rate"], [40, 4, 1, "", "from_config"], [40, 5, 1, "", "up_blocks"], [40, 5, 1, "", "up_convs_per_block"], [40, 5, 1, "", "up_interpolate"]], "sleap.nn.architectures.pretrained_encoders": [[41, 2, 1, "", "UnetPretrainedEncoder"]], "sleap.nn.architectures.pretrained_encoders.UnetPretrainedEncoder": [[41, 5, 1, "", "decoder_filters"], [41, 3, 1, "", "down_blocks"], [41, 5, 1, "", "encoder"], [41, 4, 1, "", "from_config"], [41, 4, 1, "", "make_backbone"], [41, 3, 1, "", "maximum_stride"], [41, 3, 1, "", "output_stride"], [41, 5, 1, "", "pretrained"], [41, 3, 1, "", "up_blocks"]], "sleap.nn.architectures.resnet": [[42, 2, 1, "", "ResNet101"], [42, 2, 1, "", "ResNet152"], [42, 2, 1, "", "ResNet50"], [42, 2, 1, "", "ResNetv1"], [42, 1, 1, "", "block_v1"], [42, 1, 1, "", "imagenet_preproc_v1"], [42, 1, 1, "", "make_backbone_fn"], [42, 1, 1, "", "make_resnet_model"], [42, 1, 1, "", "stack_v1"], [42, 1, 1, "", "tile_channels"]], "sleap.nn.architectures.resnet.ResNet101": [[42, 5, 1, "", "features_output_stride"], [42, 5, 1, "", "frozen"], [42, 5, 1, "", "pretrained"], [42, 5, 1, "", "skip_connections"], [42, 5, 1, "", "upsampling_stack"]], "sleap.nn.architectures.resnet.ResNet152": [[42, 5, 1, "", "features_output_stride"], [42, 5, 1, "", "frozen"], [42, 5, 1, "", "pretrained"], [42, 5, 1, "", "skip_connections"], [42, 5, 1, "", "upsampling_stack"]], "sleap.nn.architectures.resnet.ResNet50": [[42, 5, 1, "", "features_output_stride"], [42, 5, 1, "", "frozen"], [42, 5, 1, "", "pretrained"], [42, 5, 1, "", "skip_connections"], [42, 5, 1, "", "upsampling_stack"]], "sleap.nn.architectures.resnet.ResNetv1": [[42, 3, 1, "", "down_blocks"], [42, 5, 1, "", "features_output_stride"], [42, 4, 1, "", "from_config"], [42, 5, 1, "", "frozen"], [42, 4, 1, "", "make_backbone"], [42, 3, 1, "", "maximum_stride"], [42, 5, 1, "", "model_name"], [42, 3, 1, "", "output_scale"], [42, 3, 1, "", "output_stride"], [42, 5, 1, "", "pretrained"], [42, 5, 1, "", "skip_connections"], [42, 5, 1, "", "stack_configs"], [42, 5, 1, "", "upsampling_stack"]], "sleap.nn.architectures.unet": [[43, 2, 1, "", "PoolingBlock"], [43, 2, 1, "", "UNet"]], "sleap.nn.architectures.unet.PoolingBlock": [[43, 4, 1, "", "make_block"], [43, 5, 1, "", "pool"], [43, 5, 1, "", "pooling_stride"]], "sleap.nn.architectures.unet.UNet": [[43, 5, 1, "", "block_contraction"], [43, 5, 1, "", "convs_per_block"], [43, 3, 1, "", "decoder_stack"], [43, 5, 1, "", "down_blocks"], [43, 3, 1, "", "encoder_stack"], [43, 5, 1, "", "filters"], [43, 5, 1, "", "filters_rate"], [43, 4, 1, "", "from_config"], [43, 5, 1, "", "kernel_size"], [43, 5, 1, "", "middle_block"], [43, 5, 1, "", "stem_blocks"], [43, 5, 1, "", "stem_kernel_size"], [43, 3, 1, "", "stem_stack"], [43, 5, 1, "", "up_blocks"], [43, 5, 1, "", "up_interpolate"]], "sleap.nn.architectures.upsampling": [[44, 2, 1, "", "UpsamplingStack"]], "sleap.nn.architectures.upsampling.UpsamplingStack": [[44, 4, 1, "", "from_config"], [44, 5, 1, "", "make_skip_connection"], [44, 4, 1, "", "make_stack"], [44, 5, 1, "", "output_stride"], [44, 5, 1, "", "refine_convs"], [44, 5, 1, "", "refine_convs_batchnorm"], [44, 5, 1, "", "refine_convs_filters"], [44, 5, 1, "", "refine_convs_filters_rate"], [44, 5, 1, "", "skip_add"], [44, 5, 1, "", "transposed_conv"], [44, 5, 1, "", "transposed_conv_batchnorm"], [44, 5, 1, "", "transposed_conv_filters"], [44, 5, 1, "", "transposed_conv_filters_rate"], [44, 5, 1, "", "transposed_conv_kernel_size"], [44, 5, 1, "", "upsampling_stride"]], "sleap.nn": [[45, 0, 0, "-", "callbacks"], [69, 0, 0, "-", "evals"], [70, 0, 0, "-", "heads"], [71, 0, 0, "-", "identity"], [72, 0, 0, "-", "inference"], [73, 0, 0, "-", "losses"], [74, 0, 0, "-", "model"], [75, 0, 0, "-", "paf_grouping"], [76, 0, 0, "-", "peak_finding"], [77, 0, 0, "-", "system"], [80, 0, 0, "-", "tracking"], [81, 0, 0, "-", "training"], [82, 0, 0, "-", "utils"], [83, 0, 0, "-", "viz"]], "sleap.nn.callbacks": [[45, 2, 1, "", "MatplotlibSaver"], [45, 2, 1, "", "ModelCheckpointOnEvent"], [45, 2, 1, "", "ProgressReporterZMQ"], [45, 2, 1, "", "TensorBoardMatplotlibWriter"], [45, 2, 1, "", "TrainingControllerZMQ"]], "sleap.nn.callbacks.MatplotlibSaver": [[45, 4, 1, "", "on_epoch_end"], [45, 5, 1, "", "plot_fn"], [45, 5, 1, "", "prefix"], [45, 5, 1, "", "save_folder"]], "sleap.nn.callbacks.ModelCheckpointOnEvent": [[45, 5, 1, "", "event"], [45, 5, 1, "", "filepath"], [45, 4, 1, "", "on_epoch_end"], [45, 4, 1, "", "on_train_begin"], [45, 4, 1, "", "on_train_end"]], "sleap.nn.callbacks.ProgressReporterZMQ": [[45, 4, 1, "", "on_batch_begin"], [45, 4, 1, "", "on_batch_end"], [45, 4, 1, "", "on_epoch_begin"], [45, 4, 1, "", "on_epoch_end"], [45, 4, 1, "", "on_train_begin"], [45, 4, 1, "", "on_train_end"]], "sleap.nn.callbacks.TensorBoardMatplotlibWriter": [[45, 5, 1, "", "logdir"], [45, 4, 1, "", "on_epoch_end"], [45, 5, 1, "", "plot_fn"], [45, 5, 1, "", "tag"]], "sleap.nn.callbacks.TrainingControllerZMQ": [[45, 4, 1, "", "on_batch_end"], [45, 4, 1, "", "set_lr"]], "sleap.nn.config": [[46, 0, 0, "-", "data"], [47, 0, 0, "-", "model"], [48, 0, 0, "-", "optimization"], [49, 0, 0, "-", "outputs"], [50, 0, 0, "-", "training_job"], [51, 0, 0, "-", "utils"]], "sleap.nn.config.data": [[46, 2, 1, "", "DataConfig"], [46, 2, 1, "", "InstanceCroppingConfig"], [46, 2, 1, "", "LabelsConfig"], [46, 2, 1, "", "PreprocessingConfig"]], "sleap.nn.config.data.InstanceCroppingConfig": [[46, 5, 1, "", "center_on_part"], [46, 5, 1, "", "crop_size"], [46, 5, 1, "", "crop_size_detection_padding"]], "sleap.nn.config.data.LabelsConfig": [[46, 5, 1, "", "search_path_hints"], [46, 5, 1, "", "skeletons"], [46, 5, 1, "", "split_by_inds"], [46, 5, 1, "", "test_inds"], [46, 5, 1, "", "test_labels"], [46, 5, 1, "", "training_inds"], [46, 5, 1, "", "training_labels"], [46, 5, 1, "", "validation_fraction"], [46, 5, 1, "", "validation_inds"], [46, 5, 1, "", "validation_labels"]], "sleap.nn.config.data.PreprocessingConfig": [[46, 5, 1, "", "ensure_grayscale"], [46, 5, 1, "", "ensure_rgb"], [46, 5, 1, "", "imagenet_mode"], [46, 5, 1, "", "input_scale"], [46, 5, 1, "", "pad_to_stride"], [46, 5, 1, "", "resize_and_pad_to_target"], [46, 5, 1, "", "target_height"], [46, 5, 1, "", "target_width"]], "sleap.nn.config.model": [[47, 2, 1, "", "BackboneConfig"], [47, 2, 1, "", "CenteredInstanceConfmapsHeadConfig"], [47, 2, 1, "", "CentroidsHeadConfig"], [47, 2, 1, "", "ClassMapsHeadConfig"], [47, 2, 1, "", "ClassVectorsHeadConfig"], [47, 2, 1, "", "HeadsConfig"], [47, 2, 1, "", "HourglassConfig"], [47, 2, 1, "", "LEAPConfig"], [47, 2, 1, "", "ModelConfig"], [47, 2, 1, "", "MultiClassBottomUpConfig"], [47, 2, 1, "", "MultiClassTopDownConfig"], [47, 2, 1, "", "MultiInstanceConfig"], [47, 2, 1, "", "MultiInstanceConfmapsHeadConfig"], [47, 2, 1, "", "PartAffinityFieldsHeadConfig"], [47, 2, 1, "", "PretrainedEncoderConfig"], [47, 2, 1, "", "ResNetConfig"], [47, 2, 1, "", "SingleInstanceConfmapsHeadConfig"], [47, 2, 1, "", "UNetConfig"], [47, 2, 1, "", "UpsamplingConfig"]], "sleap.nn.config.model.BackboneConfig": [[47, 5, 1, "", "hourglass"], [47, 5, 1, "", "leap"], [47, 5, 1, "", "resnet"], [47, 5, 1, "", "unet"]], "sleap.nn.config.model.CenteredInstanceConfmapsHeadConfig": [[47, 5, 1, "", "anchor_part"], [47, 5, 1, "", "loss_weight"], [47, 5, 1, "", "offset_refinement"], [47, 5, 1, "", "output_stride"], [47, 5, 1, "", "part_names"], [47, 5, 1, "", "sigma"]], "sleap.nn.config.model.CentroidsHeadConfig": [[47, 5, 1, "", "anchor_part"], [47, 5, 1, "", "loss_weight"], [47, 5, 1, "", "offset_refinement"], [47, 5, 1, "", "output_stride"], [47, 5, 1, "", "sigma"]], "sleap.nn.config.model.ClassMapsHeadConfig": [[47, 5, 1, "", "classes"], [47, 5, 1, "", "loss_weight"], [47, 5, 1, "", "output_stride"], [47, 5, 1, "", "sigma"]], "sleap.nn.config.model.ClassVectorsHeadConfig": [[47, 5, 1, "", "classes"], [47, 5, 1, "", "loss_weight"], [47, 5, 1, "", "num_fc_layers"], [47, 5, 1, "", "num_fc_units"], [47, 5, 1, "", "output_stride"]], "sleap.nn.config.model.HeadsConfig": [[47, 5, 1, "", "centered_instance"], [47, 5, 1, "", "centroid"], [47, 5, 1, "", "multi_class_bottomup"], [47, 5, 1, "", "multi_class_topdown"], [47, 5, 1, "", "multi_instance"], [47, 5, 1, "", "single_instance"]], "sleap.nn.config.model.HourglassConfig": [[47, 5, 1, "", "filters"], [47, 5, 1, "", "filters_increase"], [47, 5, 1, "", "max_stride"], [47, 5, 1, "", "output_stride"], [47, 5, 1, "", "stacks"], [47, 5, 1, "", "stem_stride"]], "sleap.nn.config.model.LEAPConfig": [[47, 5, 1, "", "filters"], [47, 5, 1, "", "filters_rate"], [47, 5, 1, "", "max_stride"], [47, 5, 1, "", "output_stride"], [47, 5, 1, "", "stacks"], [47, 5, 1, "", "up_interpolate"]], "sleap.nn.config.model.ModelConfig": [[47, 5, 1, "", "backbone"], [47, 5, 1, "", "base_checkpoint"], [47, 5, 1, "", "heads"]], "sleap.nn.config.model.MultiClassBottomUpConfig": [[47, 5, 1, "", "class_maps"], [47, 5, 1, "", "confmaps"]], "sleap.nn.config.model.MultiClassTopDownConfig": [[47, 5, 1, "", "class_vectors"], [47, 5, 1, "", "confmaps"]], "sleap.nn.config.model.MultiInstanceConfig": [[47, 5, 1, "", "confmaps"], [47, 5, 1, "", "pafs"]], "sleap.nn.config.model.MultiInstanceConfmapsHeadConfig": [[47, 5, 1, "", "loss_weight"], [47, 5, 1, "", "offset_refinement"], [47, 5, 1, "", "output_stride"], [47, 5, 1, "", "part_names"], [47, 5, 1, "", "sigma"]], "sleap.nn.config.model.PartAffinityFieldsHeadConfig": [[47, 5, 1, "", "edges"], [47, 5, 1, "", "loss_weight"], [47, 5, 1, "", "output_stride"], [47, 5, 1, "", "sigma"]], "sleap.nn.config.model.PretrainedEncoderConfig": [[47, 5, 1, "", "decoder_batchnorm"], [47, 5, 1, "", "decoder_filters"], [47, 5, 1, "", "decoder_filters_rate"], [47, 5, 1, "", "encoder"], [47, 5, 1, "", "output_stride"], [47, 5, 1, "", "pretrained"]], "sleap.nn.config.model.ResNetConfig": [[47, 5, 1, "", "max_stride"], [47, 5, 1, "", "output_stride"], [47, 5, 1, "", "upsampling"], [47, 5, 1, "", "version"], [47, 5, 1, "", "weights"]], "sleap.nn.config.model.SingleInstanceConfmapsHeadConfig": [[47, 5, 1, "", "loss_weight"], [47, 5, 1, "", "offset_refinement"], [47, 5, 1, "", "output_stride"], [47, 5, 1, "", "part_names"], [47, 5, 1, "", "sigma"]], "sleap.nn.config.model.UNetConfig": [[47, 5, 1, "", "filters"], [47, 5, 1, "", "filters_rate"], [47, 5, 1, "", "max_stride"], [47, 5, 1, "", "middle_block"], [47, 5, 1, "", "output_stride"], [47, 5, 1, "", "stacks"], [47, 5, 1, "", "stem_stride"], [47, 5, 1, "", "up_interpolate"]], "sleap.nn.config.model.UpsamplingConfig": [[47, 5, 1, "", "block_stride"], [47, 5, 1, "", "conv_batchnorm"], [47, 5, 1, "", "filters"], [47, 5, 1, "", "filters_rate"], [47, 5, 1, "", "method"], [47, 5, 1, "", "refine_convs"], [47, 5, 1, "", "skip_connections"], [47, 5, 1, "", "transposed_conv_kernel_size"]], "sleap.nn.config.optimization": [[48, 2, 1, "", "AugmentationConfig"], [48, 2, 1, "", "EarlyStoppingConfig"], [48, 2, 1, "", "HardKeypointMiningConfig"], [48, 2, 1, "", "LearningRateScheduleConfig"], [48, 2, 1, "", "OptimizationConfig"]], "sleap.nn.config.optimization.AugmentationConfig": [[48, 5, 1, "", "brightness"], [48, 5, 1, "", "brightness_max_val"], [48, 5, 1, "", "brightness_min_val"], [48, 5, 1, "", "contrast"], [48, 5, 1, "", "contrast_max_gamma"], [48, 5, 1, "", "contrast_min_gamma"], [48, 5, 1, "", "flip_horizontal"], [48, 5, 1, "", "gaussian_noise"], [48, 5, 1, "", "gaussian_noise_mean"], [48, 5, 1, "", "gaussian_noise_stddev"], [48, 5, 1, "", "random_crop"], [48, 5, 1, "", "random_crop_height"], [48, 5, 1, "", "random_crop_width"], [48, 5, 1, "", "random_flip"], [48, 5, 1, "", "rotate"], [48, 5, 1, "", "rotation_max_angle"], [48, 5, 1, "", "rotation_min_angle"], [48, 5, 1, "", "scale"], [48, 5, 1, "", "scale_max"], [48, 5, 1, "", "scale_min"], [48, 5, 1, "", "translate"], [48, 5, 1, "", "translate_max"], [48, 5, 1, "", "translate_min"], [48, 5, 1, "", "uniform_noise"], [48, 5, 1, "", "uniform_noise_max_val"], [48, 5, 1, "", "uniform_noise_min_val"]], "sleap.nn.config.optimization.EarlyStoppingConfig": [[48, 5, 1, "", "plateau_min_delta"], [48, 5, 1, "", "plateau_patience"], [48, 5, 1, "", "stop_training_on_plateau"]], "sleap.nn.config.optimization.HardKeypointMiningConfig": [[48, 5, 1, "", "hard_to_easy_ratio"], [48, 5, 1, "", "loss_scale"], [48, 5, 1, "", "max_hard_keypoints"], [48, 5, 1, "", "min_hard_keypoints"], [48, 5, 1, "", "online_mining"]], "sleap.nn.config.optimization.LearningRateScheduleConfig": [[48, 5, 1, "", "min_learning_rate"], [48, 5, 1, "", "plateau_cooldown"], [48, 5, 1, "", "plateau_min_delta"], [48, 5, 1, "", "plateau_patience"], [48, 5, 1, "", "reduce_on_plateau"], [48, 5, 1, "", "reduction_factor"]], "sleap.nn.config.optimization.OptimizationConfig": [[48, 5, 1, "", "augmentation_config"], [48, 5, 1, "", "batch_size"], [48, 5, 1, "", "batches_per_epoch"], [48, 5, 1, "", "early_stopping"], [48, 5, 1, "", "epochs"], [48, 5, 1, "", "hard_keypoint_mining"], [48, 5, 1, "", "initial_learning_rate"], [48, 5, 1, "", "learning_rate_schedule"], [48, 5, 1, "", "min_batches_per_epoch"], [48, 5, 1, "", "min_val_batches_per_epoch"], [48, 5, 1, "", "online_shuffling"], [48, 5, 1, "", "optimizer"], [48, 5, 1, "", "prefetch"], [48, 5, 1, "", "preload_data"], [48, 5, 1, "", "shuffle_buffer_size"], [48, 5, 1, "", "val_batches_per_epoch"]], "sleap.nn.config.outputs": [[49, 2, 1, "", "CheckpointingConfig"], [49, 2, 1, "", "OutputsConfig"], [49, 2, 1, "", "TensorBoardConfig"], [49, 2, 1, "", "ZMQConfig"]], "sleap.nn.config.outputs.CheckpointingConfig": [[49, 5, 1, "", "best_model"], [49, 5, 1, "", "every_epoch"], [49, 5, 1, "", "final_model"], [49, 5, 1, "", "initial_model"], [49, 5, 1, "", "latest_model"]], "sleap.nn.config.outputs.OutputsConfig": [[49, 5, 1, "", "checkpointing"], [49, 5, 1, "", "keep_viz_images"], [49, 5, 1, "", "log_to_csv"], [49, 5, 1, "", "run_name"], [49, 5, 1, "", "run_name_prefix"], [49, 5, 1, "", "run_name_suffix"], [49, 3, 1, "", "run_path"], [49, 5, 1, "", "runs_folder"], [49, 5, 1, "", "save_outputs"], [49, 5, 1, "", "save_visualizations"], [49, 5, 1, "", "tags"], [49, 5, 1, "", "tensorboard"], [49, 5, 1, "", "zip_outputs"], [49, 5, 1, "", "zmq"]], "sleap.nn.config.outputs.TensorBoardConfig": [[49, 5, 1, "", "architecture_graph"], [49, 5, 1, "", "loss_frequency"], [49, 5, 1, "", "profile_graph"], [49, 5, 1, "", "visualizations"], [49, 5, 1, "", "write_logs"]], "sleap.nn.config.outputs.ZMQConfig": [[49, 5, 1, "", "controller_address"], [49, 5, 1, "", "controller_polling_timeout"], [49, 5, 1, "", "publish_address"], [49, 5, 1, "", "publish_updates"], [49, 5, 1, "", "subscribe_to_controller"]], "sleap.nn.config.training_job": [[50, 2, 1, "", "TrainingJobConfig"], [50, 1, 1, "", "load_config"]], "sleap.nn.config.training_job.TrainingJobConfig": [[50, 5, 1, "", "data"], [50, 5, 1, "", "description"], [50, 5, 1, "", "filename"], [50, 4, 1, "", "from_json"], [50, 4, 1, "", "from_json_dicts"], [50, 4, 1, "", "load_json"], [50, 5, 1, "", "model"], [50, 5, 1, "", "name"], [50, 5, 1, "", "optimization"], [50, 5, 1, "", "outputs"], [50, 4, 1, "", "save_json"], [50, 5, 1, "", "sleap_version"], [50, 4, 1, "", "to_json"]], "sleap.nn.config.utils": [[51, 1, 1, "", "oneof"]], "sleap.nn.data": [[52, 0, 0, "-", "augmentation"], [53, 0, 0, "-", "confidence_maps"], [54, 0, 0, "-", "dataset_ops"], [55, 0, 0, "-", "edge_maps"], [56, 0, 0, "-", "general"], [57, 0, 0, "-", "grouping"], [58, 0, 0, "-", "identity"], [59, 0, 0, "-", "inference"], [60, 0, 0, "-", "instance_centroids"], [61, 0, 0, "-", "instance_cropping"], [62, 0, 0, "-", "normalization"], [63, 0, 0, "-", "offset_regression"], [64, 0, 0, "-", "pipelines"], [65, 0, 0, "-", "providers"], [66, 0, 0, "-", "resizing"], [67, 0, 0, "-", "training"], [68, 0, 0, "-", "utils"]], "sleap.nn.data.augmentation": [[52, 2, 1, "", "AlbumentationsAugmenter"], [52, 2, 1, "", "RandomCropper"], [52, 2, 1, "", "RandomFlipper"], [52, 1, 1, "", "flip_instances_lr"], [52, 1, 1, "", "flip_instances_ud"]], "sleap.nn.data.augmentation.AlbumentationsAugmenter": [[52, 5, 1, "", "augmenter"], [52, 4, 1, "", "from_config"], [52, 5, 1, "", "image_key"], [52, 3, 1, "", "input_keys"], [52, 5, 1, "", "instances_key"], [52, 3, 1, "", "output_keys"], [52, 4, 1, "", "transform_dataset"]], "sleap.nn.data.augmentation.RandomCropper": [[52, 5, 1, "", "crop_height"], [52, 5, 1, "", "crop_width"], [52, 4, 1, "", "transform_dataset"]], "sleap.nn.data.augmentation.RandomFlipper": [[52, 4, 1, "", "from_skeleton"], [52, 5, 1, "", "horizontal"], [52, 5, 1, "", "probability"], [52, 5, 1, "", "symmetric_inds"], [52, 4, 1, "", "transform_dataset"]], "sleap.nn.data.confidence_maps": [[53, 2, 1, "", "InstanceConfidenceMapGenerator"], [53, 2, 1, "", "MultiConfidenceMapGenerator"], [53, 2, 1, "", "SingleInstanceConfidenceMapGenerator"], [53, 1, 1, "", "make_confmaps"], [53, 1, 1, "", "make_multi_confmaps"], [53, 1, 1, "", "make_multi_confmaps_with_offsets"]], "sleap.nn.data.confidence_maps.InstanceConfidenceMapGenerator": [[53, 5, 1, "", "all_instances"], [53, 5, 1, "", "flatten_offsets"], [53, 3, 1, "", "input_keys"], [53, 5, 1, "", "offsets_threshold"], [53, 3, 1, "", "output_keys"], [53, 5, 1, "", "output_stride"], [53, 5, 1, "", "sigma"], [53, 4, 1, "", "transform_dataset"], [53, 5, 1, "", "with_offsets"]], "sleap.nn.data.confidence_maps.MultiConfidenceMapGenerator": [[53, 5, 1, "", "centroids"], [53, 5, 1, "", "flatten_offsets"], [53, 3, 1, "", "input_keys"], [53, 5, 1, "", "offsets_threshold"], [53, 3, 1, "", "output_keys"], [53, 5, 1, "", "output_stride"], [53, 5, 1, "", "sigma"], [53, 4, 1, "", "transform_dataset"], [53, 5, 1, "", "with_offsets"]], "sleap.nn.data.confidence_maps.SingleInstanceConfidenceMapGenerator": [[53, 5, 1, "", "flatten_offsets"], [53, 3, 1, "", "input_keys"], [53, 5, 1, "", "offsets_threshold"], [53, 3, 1, "", "output_keys"], [53, 5, 1, "", "output_stride"], [53, 5, 1, "", "sigma"], [53, 4, 1, "", "transform_dataset"], [53, 5, 1, "", "with_offsets"]], "sleap.nn.data.dataset_ops": [[54, 2, 1, "", "Batcher"], [54, 2, 1, "", "LambdaFilter"], [54, 2, 1, "", "Prefetcher"], [54, 2, 1, "", "Preloader"], [54, 2, 1, "", "Repeater"], [54, 2, 1, "", "Shuffler"], [54, 2, 1, "", "Unbatcher"]], "sleap.nn.data.dataset_ops.Batcher": [[54, 5, 1, "", "batch_size"], [54, 5, 1, "", "drop_remainder"], [54, 3, 1, "", "input_keys"], [54, 3, 1, "", "output_keys"], [54, 4, 1, "", "transform_dataset"], [54, 5, 1, "", "unrag"]], "sleap.nn.data.dataset_ops.LambdaFilter": [[54, 5, 1, "", "filter_fn"], [54, 3, 1, "", "input_keys"], [54, 3, 1, "", "output_keys"], [54, 4, 1, "", "transform_dataset"]], "sleap.nn.data.dataset_ops.Prefetcher": [[54, 5, 1, "", "buffer_size"], [54, 3, 1, "", "input_keys"], [54, 3, 1, "", "output_keys"], [54, 5, 1, "", "prefetch"], [54, 4, 1, "", "transform_dataset"]], "sleap.nn.data.dataset_ops.Preloader": [[54, 5, 1, "", "examples"], [54, 3, 1, "", "input_keys"], [54, 3, 1, "", "output_keys"], [54, 4, 1, "", "transform_dataset"]], "sleap.nn.data.dataset_ops.Repeater": [[54, 5, 1, "", "epochs"], [54, 3, 1, "", "input_keys"], [54, 3, 1, "", "output_keys"], [54, 5, 1, "", "repeat"], [54, 4, 1, "", "transform_dataset"]], "sleap.nn.data.dataset_ops.Shuffler": [[54, 5, 1, "", "buffer_size"], [54, 3, 1, "", "input_keys"], [54, 3, 1, "", "output_keys"], [54, 5, 1, "", "reshuffle_each_iteration"], [54, 5, 1, "", "shuffle"], [54, 4, 1, "", "transform_dataset"]], "sleap.nn.data.dataset_ops.Unbatcher": [[54, 3, 1, "", "input_keys"], [54, 3, 1, "", "output_keys"], [54, 4, 1, "", "transform_dataset"]], "sleap.nn.data.edge_maps": [[55, 2, 1, "", "PartAffinityFieldsGenerator"], [55, 1, 1, "", "distance_to_edge"], [55, 1, 1, "", "get_edge_points"], [55, 1, 1, "", "make_edge_maps"], [55, 1, 1, "", "make_multi_pafs"], [55, 1, 1, "", "make_pafs"]], "sleap.nn.data.edge_maps.PartAffinityFieldsGenerator": [[55, 5, 1, "", "flatten_channels"], [55, 3, 1, "", "input_keys"], [55, 3, 1, "", "output_keys"], [55, 5, 1, "", "output_stride"], [55, 5, 1, "", "sigma"], [55, 5, 1, "", "skeletons"], [55, 4, 1, "", "transform_dataset"]], "sleap.nn.data.general": [[56, 2, 1, "", "KeyDeviceMover"], [56, 2, 1, "", "KeyFilter"], [56, 2, 1, "", "KeyRenamer"], [56, 2, 1, "", "LambdaMap"]], "sleap.nn.data.general.KeyDeviceMover": [[56, 3, 1, "", "input_keys"], [56, 3, 1, "", "output_keys"], [56, 4, 1, "", "transform_dataset"]], "sleap.nn.data.general.KeyFilter": [[56, 3, 1, "", "input_keys"], [56, 3, 1, "", "output_keys"], [56, 4, 1, "", "transform_dataset"]], "sleap.nn.data.general.KeyRenamer": [[56, 3, 1, "", "input_keys"], [56, 3, 1, "", "output_keys"], [56, 4, 1, "", "transform_dataset"]], "sleap.nn.data.general.LambdaMap": [[56, 5, 1, "", "func"], [56, 5, 1, "", "input_key_names"], [56, 3, 1, "", "input_keys"], [56, 5, 1, "", "output_key_names"], [56, 3, 1, "", "output_keys"], [56, 4, 1, "", "transform_dataset"]], "sleap.nn.data.grouping": [[57, 1, 1, "", "group_examples"], [57, 1, 1, "", "group_examples_iter"]], "sleap.nn.data.identity": [[58, 2, 1, "", "ClassMapGenerator"], [58, 2, 1, "", "ClassVectorGenerator"], [58, 1, 1, "", "make_class_maps"], [58, 1, 1, "", "make_class_vectors"]], "sleap.nn.data.identity.ClassMapGenerator": [[58, 5, 1, "", "centroids"], [58, 5, 1, "", "class_map_threshold"], [58, 3, 1, "", "input_keys"], [58, 3, 1, "", "output_keys"], [58, 5, 1, "", "output_stride"], [58, 5, 1, "", "sigma"], [58, 4, 1, "", "transform_dataset"]], "sleap.nn.data.identity.ClassVectorGenerator": [[58, 3, 1, "", "input_keys"], [58, 3, 1, "", "output_keys"], [58, 4, 1, "", "transform_dataset"]], "sleap.nn.data.inference": [[59, 2, 1, "", "GlobalPeakFinder"], [59, 2, 1, "", "KerasModelPredictor"], [59, 2, 1, "", "LocalPeakFinder"], [59, 2, 1, "", "MockGlobalPeakFinder"], [59, 2, 1, "", "PredictedCenterInstanceNormalizer"]], "sleap.nn.data.inference.PredictedCenterInstanceNormalizer": [[59, 3, 1, "", "input_keys"], [59, 3, 1, "", "output_keys"], [59, 4, 1, "", "transform_dataset"]], "sleap.nn.data.instance_centroids": [[60, 2, 1, "", "InstanceCentroidFinder"], [60, 1, 1, "", "find_points_bbox_midpoint"], [60, 1, 1, "", "get_instance_anchors"]], "sleap.nn.data.instance_centroids.InstanceCentroidFinder": [[60, 5, 1, "", "anchor_part_names"], [60, 5, 1, "", "center_on_anchor_part"], [60, 4, 1, "", "from_config"], [60, 3, 1, "", "input_keys"], [60, 5, 1, "", "instances_key"], [60, 3, 1, "", "output_keys"], [60, 5, 1, "", "skeletons"], [60, 4, 1, "", "transform_dataset"]], "sleap.nn.data.instance_cropping": [[61, 2, 1, "", "InstanceCropper"], [61, 1, 1, "", "crop_bboxes"], [61, 1, 1, "", "find_instance_crop_size"], [61, 1, 1, "", "make_centered_bboxes"], [61, 1, 1, "", "normalize_bboxes"], [61, 1, 1, "", "unnormalize_bboxes"]], "sleap.nn.data.instance_cropping.InstanceCropper": [[61, 5, 1, "", "centroids_key"], [61, 5, 1, "", "crop_height"], [61, 5, 1, "", "crop_width"], [61, 4, 1, "", "from_config"], [61, 5, 1, "", "image_key"], [61, 3, 1, "", "input_keys"], [61, 5, 1, "", "instances_key"], [61, 5, 1, "", "keep_full_image"], [61, 5, 1, "", "mock_centroid_confidence"], [61, 3, 1, "", "output_keys"], [61, 4, 1, "", "transform_dataset"], [61, 5, 1, "", "unbatch"]], "sleap.nn.data.normalization": [[62, 2, 1, "", "Normalizer"], [62, 1, 1, "", "convert_rgb_to_bgr"], [62, 1, 1, "", "ensure_float"], [62, 1, 1, "", "ensure_grayscale"], [62, 1, 1, "", "ensure_int"], [62, 1, 1, "", "ensure_min_image_rank"], [62, 1, 1, "", "ensure_rgb"], [62, 1, 1, "", "scale_image_range"], [62, 1, 1, "", "scale_to_imagenet_caffe_mode"], [62, 1, 1, "", "scale_to_imagenet_tf_mode"], [62, 1, 1, "", "scale_to_imagenet_torch_mode"]], "sleap.nn.data.normalization.Normalizer": [[62, 5, 1, "", "ensure_float"], [62, 5, 1, "", "ensure_grayscale"], [62, 5, 1, "", "ensure_rgb"], [62, 4, 1, "", "from_config"], [62, 5, 1, "", "image_key"], [62, 5, 1, "", "imagenet_mode"], [62, 3, 1, "", "input_keys"], [62, 3, 1, "", "output_keys"], [62, 4, 1, "", "transform_dataset"]], "sleap.nn.data.offset_regression": [[63, 1, 1, "", "make_offsets"], [63, 1, 1, "", "mask_offsets"]], "sleap.nn.data.pipelines": [[64, 2, 1, "", "BottomUpMultiClassPipeline"], [64, 2, 1, "", "BottomUpPipeline"], [64, 2, 1, "", "CentroidConfmapsPipeline"], [64, 2, 1, "", "Pipeline"], [64, 2, 1, "", "SingleInstanceConfmapsPipeline"], [64, 2, 1, "", "TopDownMultiClassPipeline"], [64, 2, 1, "", "TopdownConfmapsPipeline"]], "sleap.nn.data.pipelines.BottomUpMultiClassPipeline": [[64, 5, 1, "", "class_maps_head"], [64, 5, 1, "", "confmaps_head"], [64, 5, 1, "", "data_config"], [64, 4, 1, "", "make_base_pipeline"], [64, 4, 1, "", "make_training_pipeline"], [64, 4, 1, "", "make_viz_pipeline"], [64, 5, 1, "", "offsets_head"], [64, 5, 1, "", "optimization_config"]], "sleap.nn.data.pipelines.BottomUpPipeline": [[64, 5, 1, "", "confmaps_head"], [64, 5, 1, "", "data_config"], [64, 4, 1, "", "make_base_pipeline"], [64, 4, 1, "", "make_training_pipeline"], [64, 4, 1, "", "make_viz_pipeline"], [64, 5, 1, "", "offsets_head"], [64, 5, 1, "", "optimization_config"], [64, 5, 1, "", "pafs_head"]], "sleap.nn.data.pipelines.CentroidConfmapsPipeline": [[64, 5, 1, "", "centroid_confmap_head"], [64, 5, 1, "", "data_config"], [64, 4, 1, "", "make_base_pipeline"], [64, 4, 1, "", "make_training_pipeline"], [64, 4, 1, "", "make_viz_pipeline"], [64, 5, 1, "", "offsets_head"], [64, 5, 1, "", "optimization_config"]], "sleap.nn.data.pipelines.Pipeline": [[64, 4, 1, "", "append"], [64, 4, 1, "", "describe"], [64, 4, 1, "", "from_blocks"], [64, 4, 1, "", "from_pipelines"], [64, 4, 1, "", "make_dataset"], [64, 3, 1, "", "output_keys"], [64, 4, 1, "", "peek"], [64, 5, 1, "", "providers"], [64, 4, 1, "", "run"], [64, 5, 1, "", "transformers"], [64, 4, 1, "", "validate_pipeline"]], "sleap.nn.data.pipelines.SingleInstanceConfmapsPipeline": [[64, 5, 1, "", "data_config"], [64, 4, 1, "", "make_base_pipeline"], [64, 4, 1, "", "make_training_pipeline"], [64, 4, 1, "", "make_viz_pipeline"], [64, 5, 1, "", "offsets_head"], [64, 5, 1, "", "optimization_config"], [64, 5, 1, "", "single_instance_confmap_head"]], "sleap.nn.data.pipelines.TopDownMultiClassPipeline": [[64, 5, 1, "", "class_vectors_head"], [64, 5, 1, "", "confmaps_head"], [64, 5, 1, "", "data_config"], [64, 4, 1, "", "make_base_pipeline"], [64, 4, 1, "", "make_training_pipeline"], [64, 4, 1, "", "make_viz_pipeline"], [64, 5, 1, "", "offsets_head"], [64, 5, 1, "", "optimization_config"]], "sleap.nn.data.pipelines.TopdownConfmapsPipeline": [[64, 5, 1, "", "data_config"], [64, 5, 1, "", "instance_confmap_head"], [64, 4, 1, "", "make_base_pipeline"], [64, 4, 1, "", "make_training_pipeline"], [64, 4, 1, "", "make_viz_pipeline"], [64, 5, 1, "", "offsets_head"], [64, 5, 1, "", "optimization_config"]], "sleap.nn.data.providers": [[65, 2, 1, "", "LabelsReader"], [65, 2, 1, "", "VideoReader"]], "sleap.nn.data.providers.LabelsReader": [[65, 5, 1, "", "example_indices"], [65, 4, 1, "", "from_filename"], [65, 4, 1, "", "from_unlabeled_suggestions"], [65, 4, 1, "", "from_user_instances"], [65, 4, 1, "", "from_user_labeled_frames"], [65, 3, 1, "", "is_from_multi_size_videos"], [65, 5, 1, "", "labels"], [65, 4, 1, "", "make_dataset"], [65, 3, 1, "", "max_height_and_width"], [65, 3, 1, "", "output_keys"], [65, 3, 1, "", "tracks"], [65, 5, 1, "", "user_instances_only"], [65, 3, 1, "", "videos"], [65, 5, 1, "", "with_track_only"]], "sleap.nn.data.providers.VideoReader": [[65, 5, 1, "", "example_indices"], [65, 4, 1, "", "from_filepath"], [65, 4, 1, "", "make_dataset"], [65, 3, 1, "", "max_height_and_width"], [65, 3, 1, "", "output_keys"], [65, 5, 1, "", "video"], [65, 5, 1, "", "video_ind"], [65, 3, 1, "", "videos"]], "sleap.nn.data.resizing": [[66, 2, 1, "", "PointsRescaler"], [66, 2, 1, "", "Resizer"], [66, 2, 1, "", "SizeMatcher"], [66, 1, 1, "", "find_padding_for_stride"], [66, 1, 1, "", "pad_to_stride"], [66, 1, 1, "", "resize_image"]], "sleap.nn.data.resizing.PointsRescaler": [[66, 3, 1, "", "input_keys"], [66, 3, 1, "", "output_keys"], [66, 4, 1, "", "transform_dataset"]], "sleap.nn.data.resizing.Resizer": [[66, 4, 1, "", "from_config"], [66, 5, 1, "", "full_image_key"], [66, 5, 1, "", "image_key"], [66, 3, 1, "", "input_keys"], [66, 5, 1, "", "keep_full_image"], [66, 3, 1, "", "output_keys"], [66, 5, 1, "", "pad_to_stride"], [66, 5, 1, "", "points_key"], [66, 5, 1, "", "scale"], [66, 5, 1, "", "scale_key"], [66, 4, 1, "", "transform_dataset"]], "sleap.nn.data.resizing.SizeMatcher": [[66, 5, 1, "", "center_pad"], [66, 4, 1, "", "from_config"], [66, 5, 1, "", "full_image_key"], [66, 5, 1, "", "image_key"], [66, 3, 1, "", "input_keys"], [66, 5, 1, "", "keep_full_image"], [66, 5, 1, "", "max_image_height"], [66, 5, 1, "", "max_image_width"], [66, 3, 1, "", "output_keys"], [66, 5, 1, "", "points_key"], [66, 5, 1, "", "scale_key"], [66, 4, 1, "", "transform_dataset"]], "sleap.nn.data.training": [[67, 2, 1, "", "KeyMapper"], [67, 1, 1, "", "split_labels"], [67, 1, 1, "", "split_labels_reader"], [67, 1, 1, "", "split_labels_train_val"]], "sleap.nn.data.training.KeyMapper": [[67, 3, 1, "", "input_keys"], [67, 5, 1, "", "key_maps"], [67, 3, 1, "", "output_keys"], [67, 4, 1, "", "transform_dataset"]], "sleap.nn.data.utils": [[68, 1, 1, "", "describe_tensors"], [68, 1, 1, "", "ensure_list"], [68, 1, 1, "", "expand_to_rank"], [68, 1, 1, "", "gaussian_pdf"], [68, 1, 1, "", "make_grid_vectors"], [68, 1, 1, "", "unrag_example"], [68, 1, 1, "", "unrag_tensor"]], "sleap.nn.evals": [[69, 1, 1, "", "compute_dist_metrics"], [69, 1, 1, "", "compute_dists"], [69, 1, 1, "", "compute_generalized_voc_metrics"], [69, 1, 1, "", "compute_instance_area"], [69, 1, 1, "", "compute_oks"], [69, 1, 1, "", "compute_pck_metrics"], [69, 1, 1, "", "compute_visibility_conf"], [69, 1, 1, "", "evaluate"], [69, 1, 1, "", "evaluate_model"], [69, 1, 1, "", "find_frame_pairs"], [69, 1, 1, "", "load_metrics"], [69, 1, 1, "", "match_frame_pairs"], [69, 1, 1, "", "match_instances"], [69, 1, 1, "", "replace_path"]], "sleap.nn.heads": [[70, 2, 1, "", "CenteredInstanceConfmapsHead"], [70, 2, 1, "", "CentroidConfmapsHead"], [70, 2, 1, "", "ClassMapsHead"], [70, 2, 1, "", "ClassVectorsHead"], [70, 2, 1, "", "Head"], [70, 2, 1, "", "MultiInstanceConfmapsHead"], [70, 2, 1, "", "OffsetRefinementHead"], [70, 2, 1, "", "PartAffinityFieldsHead"], [70, 2, 1, "", "SingleInstanceConfmapsHead"]], "sleap.nn.heads.CenteredInstanceConfmapsHead": [[70, 5, 1, "", "anchor_part"], [70, 3, 1, "", "channels"], [70, 5, 1, "", "config"], [70, 4, 1, "", "from_config"], [70, 5, 1, "", "loss_weight"], [70, 5, 1, "", "output_stride"], [70, 5, 1, "id0", "part_names"], [70, 5, 1, "", "sigma"]], "sleap.nn.heads.CentroidConfmapsHead": [[70, 5, 1, "", "anchor_part"], [70, 3, 1, "", "channels"], [70, 5, 1, "", "config"], [70, 4, 1, "", "from_config"], [70, 5, 1, "", "loss_weight"], [70, 5, 1, "", "output_stride"], [70, 5, 1, "", "sigma"]], "sleap.nn.heads.ClassMapsHead": [[70, 3, 1, "", "activation"], [70, 3, 1, "", "channels"], [70, 5, 1, "id1", "classes"], [70, 5, 1, "", "config"], [70, 4, 1, "", "from_config"], [70, 5, 1, "", "loss_weight"], [70, 5, 1, "", "output_stride"], [70, 5, 1, "", "sigma"]], "sleap.nn.heads.ClassVectorsHead": [[70, 3, 1, "", "activation"], [70, 3, 1, "", "channels"], [70, 5, 1, "id2", "classes"], [70, 5, 1, "", "config"], [70, 4, 1, "", "from_config"], [70, 3, 1, "", "loss_function"], [70, 5, 1, "", "loss_weight"], [70, 4, 1, "", "make_head"], [70, 5, 1, "", "num_fc_layers"], [70, 5, 1, "", "num_fc_units"], [70, 5, 1, "", "output_stride"]], "sleap.nn.heads.Head": [[70, 3, 1, "", "activation"], [70, 3, 1, "", "channels"], [70, 3, 1, "", "loss_function"], [70, 4, 1, "", "make_head"]], "sleap.nn.heads.MultiInstanceConfmapsHead": [[70, 3, 1, "", "channels"], [70, 5, 1, "", "config"], [70, 4, 1, "", "from_config"], [70, 5, 1, "", "loss_weight"], [70, 5, 1, "", "output_stride"], [70, 5, 1, "id3", "part_names"], [70, 5, 1, "", "sigma"]], "sleap.nn.heads.OffsetRefinementHead": [[70, 3, 1, "", "channels"], [70, 5, 1, "", "config"], [70, 4, 1, "", "from_config"], [70, 5, 1, "id6", "loss_weight"], [70, 5, 1, "", "output_stride"], [70, 5, 1, "id4", "part_names"], [70, 5, 1, "id5", "sigma_threshold"]], "sleap.nn.heads.PartAffinityFieldsHead": [[70, 3, 1, "", "channels"], [70, 5, 1, "", "config"], [70, 5, 1, "id7", "edges"], [70, 4, 1, "", "from_config"], [70, 5, 1, "", "loss_weight"], [70, 5, 1, "", "output_stride"], [70, 5, 1, "", "sigma"]], "sleap.nn.heads.SingleInstanceConfmapsHead": [[70, 3, 1, "", "channels"], [70, 5, 1, "", "config"], [70, 4, 1, "", "from_config"], [70, 5, 1, "", "loss_weight"], [70, 5, 1, "", "output_stride"], [70, 5, 1, "id8", "part_names"], [70, 5, 1, "", "sigma"]], "sleap.nn.identity": [[71, 1, 1, "", "classify_peaks_from_maps"], [71, 1, 1, "", "classify_peaks_from_vectors"], [71, 1, 1, "", "group_class_peaks"]], "sleap.nn.inference": [[72, 2, 1, "", "BottomUpInferenceLayer"], [72, 2, 1, "", "BottomUpInferenceModel"], [72, 2, 1, "", "BottomUpMultiClassInferenceLayer"], [72, 2, 1, "", "BottomUpMultiClassInferenceModel"], [72, 2, 1, "", "BottomUpMultiClassPredictor"], [72, 2, 1, "", "BottomUpPredictor"], [72, 2, 1, "", "CentroidCrop"], [72, 2, 1, "", "CentroidCropGroundTruth"], [72, 2, 1, "", "CentroidInferenceModel"], [72, 2, 1, "", "FindInstancePeaks"], [72, 2, 1, "", "FindInstancePeaksGroundTruth"], [72, 2, 1, "", "InferenceLayer"], [72, 2, 1, "", "InferenceModel"], [72, 2, 1, "", "MoveNetInferenceLayer"], [72, 2, 1, "", "MoveNetInferenceModel"], [72, 2, 1, "", "MoveNetPredictor"], [72, 2, 1, "", "Predictor"], [72, 2, 1, "", "RateColumn"], [72, 2, 1, "", "SingleInstanceInferenceLayer"], [72, 2, 1, "", "SingleInstanceInferenceModel"], [72, 2, 1, "", "SingleInstancePredictor"], [72, 2, 1, "", "TopDownInferenceModel"], [72, 2, 1, "", "TopDownMultiClassFindPeaks"], [72, 2, 1, "", "TopDownMultiClassInferenceModel"], [72, 2, 1, "", "TopDownMultiClassPredictor"], [72, 2, 1, "", "TopDownPredictor"], [72, 2, 1, "", "VisualPredictor"], [72, 1, 1, "", "export_cli"], [72, 1, 1, "", "export_model"], [72, 1, 1, "", "find_head"], [72, 1, 1, "", "get_keras_model_path"], [72, 1, 1, "", "get_model_output_stride"], [72, 1, 1, "", "load_model"], [72, 1, 1, "", "main"], [72, 1, 1, "", "make_model_movenet"]], "sleap.nn.inference.BottomUpInferenceLayer": [[72, 4, 1, "", "call"], [72, 5, 1, "", "cm_output_stride"], [72, 5, 1, "", "confmaps_ind"], [72, 4, 1, "", "find_peaks"], [72, 4, 1, "", "forward_pass"], [72, 5, 1, "", "input_scale"], [72, 5, 1, "", "integral_patch_size"], [72, 5, 1, "", "keras_model"], [72, 5, 1, "", "offsets_ind"], [72, 5, 1, "", "paf_output_stride"], [72, 5, 1, "", "paf_scorer"], [72, 5, 1, "", "pafs_ind"], [72, 5, 1, "", "peak_threshold"], [72, 5, 1, "", "refinement"], [72, 5, 1, "", "return_confmaps"], [72, 5, 1, "", "return_paf_graph"], [72, 5, 1, "", "return_pafs"]], "sleap.nn.inference.BottomUpInferenceModel": [[72, 5, 1, "", "bottomup_layer"], [72, 4, 1, "", "call"]], "sleap.nn.inference.BottomUpMultiClassInferenceLayer": [[72, 4, 1, "", "call"], [72, 5, 1, "", "class_maps_ind"], [72, 5, 1, "", "class_maps_output_stride"], [72, 5, 1, "", "cm_output_stride"], [72, 5, 1, "", "confmaps_ind"], [72, 4, 1, "", "find_peaks"], [72, 4, 1, "", "forward_pass"], [72, 5, 1, "", "input_scale"], [72, 5, 1, "", "integral_patch_size"], [72, 5, 1, "", "keras_model"], [72, 5, 1, "", "offsets_ind"], [72, 5, 1, "", "peak_threshold"], [72, 5, 1, "", "refinement"], [72, 5, 1, "", "return_class_maps"], [72, 5, 1, "", "return_confmaps"]], "sleap.nn.inference.BottomUpMultiClassInferenceModel": [[72, 4, 1, "", "call"], [72, 5, 1, "", "inference_layer"]], "sleap.nn.inference.BottomUpMultiClassPredictor": [[72, 5, 1, "", "batch_size"], [72, 5, 1, "", "config"], [72, 4, 1, "", "from_trained_models"], [72, 5, 1, "", "inference_model"], [72, 5, 1, "", "integral_patch_size"], [72, 5, 1, "", "integral_refinement"], [72, 3, 1, "", "is_grayscale"], [72, 5, 1, "", "model"], [72, 5, 1, "", "peak_threshold"], [72, 5, 1, "", "pipeline"], [72, 5, 1, "", "tracks"]], "sleap.nn.inference.BottomUpPredictor": [[72, 5, 1, "", "batch_size"], [72, 5, 1, "", "bottomup_config"], [72, 5, 1, "", "bottomup_model"], [72, 5, 1, "", "dist_penalty_weight"], [72, 4, 1, "", "from_trained_models"], [72, 5, 1, "", "inference_model"], [72, 5, 1, "", "integral_patch_size"], [72, 5, 1, "", "integral_refinement"], [72, 3, 1, "", "is_grayscale"], [72, 5, 1, "", "max_edge_length_ratio"], [72, 5, 1, "", "max_instances"], [72, 5, 1, "", "min_line_scores"], [72, 5, 1, "", "paf_line_points"], [72, 5, 1, "", "peak_threshold"], [72, 5, 1, "", "pipeline"], [72, 5, 1, "", "tracker"]], "sleap.nn.inference.CentroidCrop": [[72, 4, 1, "", "call"], [72, 5, 1, "", "confmaps_ind"], [72, 5, 1, "", "crop_size"], [72, 5, 1, "", "input_scale"], [72, 5, 1, "", "integral_patch_size"], [72, 5, 1, "", "keras_model"], [72, 5, 1, "", "max_instances"], [72, 5, 1, "", "offsets_ind"], [72, 5, 1, "", "output_stride"], [72, 5, 1, "", "pad_to_stride"], [72, 5, 1, "", "peak_threshold"], [72, 5, 1, "", "refinement"], [72, 5, 1, "", "return_confmaps"], [72, 5, 1, "", "return_crops"]], "sleap.nn.inference.CentroidCropGroundTruth": [[72, 4, 1, "", "call"], [72, 5, 1, "", "crop_size"]], "sleap.nn.inference.CentroidInferenceModel": [[72, 4, 1, "", "call"], [72, 5, 1, "", "centroid_crop"]], "sleap.nn.inference.FindInstancePeaks": [[72, 4, 1, "", "call"], [72, 5, 1, "", "confmaps_ind"], [72, 5, 1, "", "input_scale"], [72, 5, 1, "", "integral_patch_size"], [72, 5, 1, "", "keras_model"], [72, 5, 1, "", "offsets_ind"], [72, 5, 1, "", "output_stride"], [72, 5, 1, "", "peak_threshold"], [72, 5, 1, "", "refinement"], [72, 5, 1, "", "return_confmaps"]], "sleap.nn.inference.FindInstancePeaksGroundTruth": [[72, 4, 1, "", "call"]], "sleap.nn.inference.InferenceLayer": [[72, 4, 1, "", "call"], [72, 5, 1, "", "ensure_float"], [72, 5, 1, "", "ensure_grayscale"], [72, 5, 1, "", "input_scale"], [72, 5, 1, "", "keras_model"], [72, 5, 1, "", "pad_to_stride"], [72, 4, 1, "", "preprocess"]], "sleap.nn.inference.InferenceModel": [[72, 4, 1, "", "export_model"], [72, 4, 1, "", "predict"], [72, 4, 1, "", "predict_on_batch"]], "sleap.nn.inference.MoveNetInferenceLayer": [[72, 4, 1, "", "call"], [72, 5, 1, "", "ensure_float"], [72, 5, 1, "", "ensure_grayscale"], [72, 5, 1, "", "input_scale"], [72, 5, 1, "", "keras_model"], [72, 5, 1, "", "model_name"], [72, 5, 1, "", "pad_to_stride"]], "sleap.nn.inference.MoveNetInferenceModel": [[72, 4, 1, "", "call"], [72, 5, 1, "", "inference_layer"]], "sleap.nn.inference.MoveNetPredictor": [[72, 5, 1, "", "batch_size"], [72, 4, 1, "", "from_trained_models"], [72, 5, 1, "", "inference_model"], [72, 3, 1, "", "is_grayscale"], [72, 5, 1, "", "model_name"], [72, 5, 1, "", "peak_threshold"], [72, 5, 1, "", "pipeline"]], "sleap.nn.inference.Predictor": [[72, 4, 1, "", "export_model"], [72, 4, 1, "", "from_model_paths"], [72, 3, 1, "", "is_grayscale"], [72, 4, 1, "", "make_pipeline"], [72, 4, 1, "", "predict"], [72, 3, 1, "", "report_period"]], "sleap.nn.inference.RateColumn": [[72, 4, 1, "", "render"]], "sleap.nn.inference.SingleInstanceInferenceLayer": [[72, 4, 1, "", "call"], [72, 5, 1, "", "confmaps_ind"], [72, 5, 1, "", "input_scale"], [72, 5, 1, "", "integral_patch_size"], [72, 5, 1, "", "keras_model"], [72, 5, 1, "", "offsets_ind"], [72, 5, 1, "", "output_stride"], [72, 5, 1, "", "pad_to_stride"], [72, 5, 1, "", "peak_threshold"], [72, 5, 1, "", "refinement"], [72, 5, 1, "", "return_confmaps"]], "sleap.nn.inference.SingleInstanceInferenceModel": [[72, 4, 1, "", "call"], [72, 5, 1, "", "single_instance_layer"]], "sleap.nn.inference.SingleInstancePredictor": [[72, 5, 1, "", "batch_size"], [72, 5, 1, "", "confmap_config"], [72, 5, 1, "", "confmap_model"], [72, 4, 1, "", "export_model"], [72, 4, 1, "", "from_trained_models"], [72, 5, 1, "", "inference_model"], [72, 5, 1, "", "integral_patch_size"], [72, 5, 1, "", "integral_refinement"], [72, 3, 1, "", "is_grayscale"], [72, 5, 1, "", "peak_threshold"], [72, 5, 1, "", "pipeline"]], "sleap.nn.inference.TopDownInferenceModel": [[72, 4, 1, "", "call"], [72, 5, 1, "", "centroid_crop"], [72, 5, 1, "", "instance_peaks"]], "sleap.nn.inference.TopDownMultiClassFindPeaks": [[72, 4, 1, "", "call"], [72, 5, 1, "", "class_vectors_ind"], [72, 5, 1, "", "confmaps_ind"], [72, 5, 1, "", "input_scale"], [72, 5, 1, "", "integral_patch_size"], [72, 5, 1, "", "keras_model"], [72, 5, 1, "", "offsets_ind"], [72, 5, 1, "", "optimal_grouping"], [72, 5, 1, "", "output_stride"], [72, 5, 1, "", "peak_threshold"], [72, 5, 1, "", "refinement"], [72, 5, 1, "", "return_class_vectors"], [72, 5, 1, "", "return_confmaps"]], "sleap.nn.inference.TopDownMultiClassInferenceModel": [[72, 4, 1, "", "call"], [72, 5, 1, "", "centroid_crop"], [72, 4, 1, "", "export_model"], [72, 5, 1, "", "instance_peaks"]], "sleap.nn.inference.TopDownMultiClassPredictor": [[72, 5, 1, "", "batch_size"], [72, 5, 1, "", "centroid_config"], [72, 5, 1, "", "centroid_model"], [72, 5, 1, "", "confmap_config"], [72, 5, 1, "", "confmap_model"], [72, 4, 1, "", "export_model"], [72, 4, 1, "", "from_trained_models"], [72, 5, 1, "", "inference_model"], [72, 5, 1, "", "integral_patch_size"], [72, 5, 1, "", "integral_refinement"], [72, 3, 1, "", "is_grayscale"], [72, 4, 1, "", "make_pipeline"], [72, 5, 1, "", "peak_threshold"], [72, 5, 1, "", "pipeline"], [72, 5, 1, "", "tracker"], [72, 5, 1, "", "tracks"]], "sleap.nn.inference.TopDownPredictor": [[72, 5, 1, "", "batch_size"], [72, 5, 1, "", "centroid_config"], [72, 5, 1, "", "centroid_model"], [72, 5, 1, "", "confmap_config"], [72, 5, 1, "", "confmap_model"], [72, 4, 1, "", "export_model"], [72, 4, 1, "", "from_trained_models"], [72, 5, 1, "", "inference_model"], [72, 5, 1, "", "integral_patch_size"], [72, 5, 1, "", "integral_refinement"], [72, 3, 1, "", "is_grayscale"], [72, 4, 1, "", "make_pipeline"], [72, 5, 1, "", "max_instances"], [72, 5, 1, "", "peak_threshold"], [72, 5, 1, "", "pipeline"], [72, 5, 1, "", "tracker"]], "sleap.nn.inference.VisualPredictor": [[72, 4, 1, "", "make_pipeline"], [72, 4, 1, "", "predict"], [72, 4, 1, "", "safely_generate"]], "sleap.nn.losses": [[73, 2, 1, "", "OHKMLoss"], [73, 2, 1, "", "PartLoss"], [73, 1, 1, "", "compute_ohkm_loss"]], "sleap.nn.losses.OHKMLoss": [[73, 4, 1, "", "call"], [73, 4, 1, "", "from_config"], [73, 5, 1, "", "hard_to_easy_ratio"], [73, 5, 1, "", "loss_scale"], [73, 5, 1, "", "max_hard_keypoints"], [73, 5, 1, "", "min_hard_keypoints"]], "sleap.nn.losses.PartLoss": [[73, 5, 1, "", "channel_ind"], [73, 5, 1, "", "name"], [73, 4, 1, "", "result"], [73, 4, 1, "", "update_state"]], "sleap.nn.model": [[74, 2, 1, "", "Model"]], "sleap.nn.model.Model": [[74, 5, 1, "", "backbone"], [74, 4, 1, "", "from_config"], [74, 5, 1, "", "heads"], [74, 5, 1, "", "keras_model"], [74, 4, 1, "", "make_model"], [74, 3, 1, "", "maximum_stride"]], "sleap.nn.paf_grouping": [[75, 2, 1, "", "EdgeConnection"], [75, 2, 1, "", "EdgeType"], [75, 2, 1, "", "PAFScorer"], [75, 2, 1, "", "PeakID"], [75, 1, 1, "", "assign_connections_to_instances"], [75, 1, 1, "", "compute_distance_penalty"], [75, 1, 1, "", "get_connection_candidates"], [75, 1, 1, "", "get_paf_lines"], [75, 1, 1, "", "group_instances_batch"], [75, 1, 1, "", "group_instances_sample"], [75, 1, 1, "", "make_line_subs"], [75, 1, 1, "", "make_predicted_instances"], [75, 1, 1, "", "match_candidates_batch"], [75, 1, 1, "", "match_candidates_sample"], [75, 1, 1, "", "score_paf_lines"], [75, 1, 1, "", "score_paf_lines_batch"], [75, 1, 1, "", "toposort_edges"]], "sleap.nn.paf_grouping.EdgeConnection": [[75, 5, 1, "", "dst_peak_ind"], [75, 5, 1, "", "score"], [75, 5, 1, "", "src_peak_ind"]], "sleap.nn.paf_grouping.EdgeType": [[75, 5, 1, "", "dst_node_ind"], [75, 5, 1, "", "src_node_ind"]], "sleap.nn.paf_grouping.PAFScorer": [[75, 5, 1, "", "dist_penalty_weight"], [75, 5, 1, "", "edge_inds"], [75, 5, 1, "", "edge_types"], [75, 5, 1, "", "edges"], [75, 4, 1, "", "from_config"], [75, 4, 1, "", "group_instances"], [75, 4, 1, "", "match_candidates"], [75, 5, 1, "", "max_edge_length_ratio"], [75, 5, 1, "", "min_instance_peaks"], [75, 5, 1, "", "min_line_scores"], [75, 5, 1, "", "n_edges"], [75, 5, 1, "", "n_nodes"], [75, 5, 1, "", "n_points"], [75, 5, 1, "", "pafs_stride"], [75, 5, 1, "", "part_names"], [75, 4, 1, "", "predict"], [75, 4, 1, "", "score_paf_lines"], [75, 5, 1, "", "sorted_edge_inds"]], "sleap.nn.paf_grouping.PeakID": [[75, 5, 1, "", "node_ind"], [75, 5, 1, "", "peak_ind"]], "sleap.nn.peak_finding": [[76, 1, 1, "", "crop_bboxes"], [76, 1, 1, "", "find_global_peaks"], [76, 1, 1, "", "find_global_peaks_integral"], [76, 1, 1, "", "find_global_peaks_rough"], [76, 1, 1, "", "find_global_peaks_with_offsets"], [76, 1, 1, "", "find_local_peaks"], [76, 1, 1, "", "find_local_peaks_integral"], [76, 1, 1, "", "find_local_peaks_rough"], [76, 1, 1, "", "find_local_peaks_with_offsets"], [76, 1, 1, "", "find_offsets_local_direction"], [76, 1, 1, "", "integral_regression"], [76, 1, 1, "", "make_gaussian_kernel"], [76, 1, 1, "", "smooth_imgs"]], "sleap.nn.system": [[77, 1, 1, "", "best_logical_device_name"], [77, 1, 1, "", "disable_preallocation"], [77, 1, 1, "", "enable_preallocation"], [77, 1, 1, "", "get_all_gpus"], [77, 1, 1, "", "get_available_gpus"], [77, 1, 1, "", "get_current_gpu"], [77, 1, 1, "", "get_gpu_memory"], [77, 1, 1, "", "initialize_devices"], [77, 1, 1, "", "is_gpu_system"], [77, 1, 1, "", "is_initialized"], [77, 1, 1, "", "summary"], [77, 1, 1, "", "use_cpu_only"], [77, 1, 1, "", "use_first_gpu"], [77, 1, 1, "", "use_gpu"], [77, 1, 1, "", "use_last_gpu"]], "sleap.nn.tracker": [[78, 0, 0, "-", "components"], [79, 0, 0, "-", "kalman"]], "sleap.nn.tracker.components": [[78, 2, 1, "", "FrameMatches"], [78, 2, 1, "", "Match"], [78, 1, 1, "", "centroid_distance"], [78, 1, 1, "", "connect_single_track_breaks"], [78, 1, 1, "", "cull_frame_instances"], [78, 1, 1, "", "cull_instances"], [78, 1, 1, "", "factory_object_keypoint_similarity"], [78, 1, 1, "", "first_choice_matching"], [78, 1, 1, "", "greedy_matching"], [78, 1, 1, "", "hungarian_matching"], [78, 1, 1, "", "instance_iou"], [78, 1, 1, "", "instance_similarity"], [78, 1, 1, "", "nms_fast"], [78, 1, 1, "", "normalized_instance_similarity"]], "sleap.nn.tracker.components.FrameMatches": [[78, 5, 1, "", "cost_matrix"], [78, 4, 1, "", "from_candidate_instances"], [78, 3, 1, "", "has_only_first_choice_matches"], [78, 5, 1, "", "matches"], [78, 5, 1, "", "unmatched_instances"]], "sleap.nn.tracker.kalman": [[79, 1, 1, "", "get_track_instance_matches"], [79, 1, 1, "", "match_dict_from_match_function"], [79, 1, 1, "", "remove_second_bests_from_cost_matrix"]], "sleap.nn.tracking": [[80, 2, 1, "", "BaseTracker"], [80, 2, 1, "", "FlowCandidateMaker"], [80, 2, 1, "", "FlowMaxTracker"], [80, 2, 1, "", "FlowMaxTracksCandidateMaker"], [80, 2, 1, "", "FlowTracker"], [80, 2, 1, "", "KalmanTracker"], [80, 2, 1, "", "SimpleCandidateMaker"], [80, 2, 1, "", "SimpleMaxTracker"], [80, 2, 1, "", "SimpleMaxTracksCandidateMaker"], [80, 2, 1, "", "SimpleTracker"], [80, 2, 1, "", "TrackCleaner"], [80, 2, 1, "", "Tracker"], [80, 1, 1, "", "run_tracker"]], "sleap.nn.tracking.FlowCandidateMaker": [[80, 4, 1, "", "flow_shift_instances"], [80, 4, 1, "", "get_shifted_instances"], [80, 4, 1, "", "get_shifted_instances_from_earlier_time"], [80, 5, 1, "", "img_scale"], [80, 5, 1, "", "min_points"], [80, 5, 1, "", "of_max_levels"], [80, 5, 1, "", "of_window_size"], [80, 4, 1, "", "prune_shifted_instances"], [80, 5, 1, "", "save_shifted_instances"], [80, 5, 1, "", "track_window"]], "sleap.nn.tracking.FlowMaxTracker": [[80, 4, 1, "", "matching_function"], [80, 4, 1, "", "similarity_function"]], "sleap.nn.tracking.FlowMaxTracksCandidateMaker": [[80, 4, 1, "", "get_ref_instances"], [80, 5, 1, "", "max_tracks"]], "sleap.nn.tracking.KalmanTracker": [[80, 3, 1, "", "is_valid"], [80, 4, 1, "", "make_tracker"], [80, 4, 1, "", "track"]], "sleap.nn.tracking.TrackCleaner": [[80, 5, 1, "", "instance_count"], [80, 5, 1, "", "iou_threshold"]], "sleap.nn.tracking.Tracker": [[80, 5, 1, "", "candidate_maker"], [80, 5, 1, "", "cleaner"], [80, 4, 1, "", "final_pass"], [80, 5, 1, "", "matching_function"], [80, 5, 1, "", "max_tracking"], [80, 5, 1, "", "min_new_track_points"], [80, 5, 1, "", "robust_best_instance"], [80, 5, 1, "", "similarity_function"], [80, 4, 1, "", "track"], [80, 5, 1, "", "track_window"], [80, 3, 1, "", "unique_tracks_in_queue"]], "sleap.nn.training": [[81, 2, 1, "", "BottomUpModelTrainer"], [81, 2, 1, "", "BottomUpMultiClassModelTrainer"], [81, 2, 1, "", "CentroidConfmapsModelTrainer"], [81, 2, 1, "", "DataReaders"], [81, 2, 1, "", "SingleInstanceModelTrainer"], [81, 2, 1, "", "TopDownMultiClassModelTrainer"], [81, 2, 1, "", "TopdownConfmapsModelTrainer"], [81, 2, 1, "", "Trainer"], [81, 1, 1, "", "create_trainer_using_cli"], [81, 1, 1, "", "get_timestamp"], [81, 1, 1, "", "main"], [81, 1, 1, "", "sanitize_scope_name"], [81, 1, 1, "", "setup_checkpointing"], [81, 1, 1, "", "setup_losses"], [81, 1, 1, "", "setup_metrics"], [81, 1, 1, "", "setup_new_run_folder"], [81, 1, 1, "", "setup_optimization_callbacks"], [81, 1, 1, "", "setup_optimizer"], [81, 1, 1, "", "setup_output_callbacks"], [81, 1, 1, "", "setup_tensorboard"], [81, 1, 1, "", "setup_visualization"], [81, 1, 1, "", "setup_zmq_callbacks"]], "sleap.nn.training.BottomUpModelTrainer": [[81, 3, 1, "", "has_offsets"], [81, 3, 1, "", "input_keys"], [81, 3, 1, "", "output_keys"]], "sleap.nn.training.BottomUpMultiClassModelTrainer": [[81, 3, 1, "", "has_offsets"], [81, 3, 1, "", "input_keys"], [81, 3, 1, "", "output_keys"]], "sleap.nn.training.CentroidConfmapsModelTrainer": [[81, 3, 1, "", "has_offsets"], [81, 3, 1, "", "input_keys"], [81, 3, 1, "", "output_keys"]], "sleap.nn.training.DataReaders": [[81, 4, 1, "", "from_config"], [81, 4, 1, "", "from_labels"], [81, 3, 1, "", "test_labels"], [81, 5, 1, "", "test_labels_reader"], [81, 3, 1, "", "training_labels"], [81, 5, 1, "", "training_labels_reader"], [81, 3, 1, "", "validation_labels"], [81, 5, 1, "", "validation_labels_reader"]], "sleap.nn.training.SingleInstanceModelTrainer": [[81, 3, 1, "", "has_offsets"], [81, 3, 1, "", "input_keys"], [81, 3, 1, "", "output_keys"]], "sleap.nn.training.TopDownMultiClassModelTrainer": [[81, 3, 1, "", "has_offsets"], [81, 3, 1, "", "input_keys"], [81, 3, 1, "", "output_keys"]], "sleap.nn.training.TopdownConfmapsModelTrainer": [[81, 3, 1, "", "has_offsets"], [81, 3, 1, "", "input_keys"], [81, 3, 1, "", "output_keys"]], "sleap.nn.training.Trainer": [[81, 3, 1, "", "callbacks"], [81, 4, 1, "", "cleanup"], [81, 5, 1, "", "config"], [81, 5, 1, "", "data_readers"], [81, 4, 1, "", "evaluate"], [81, 4, 1, "", "from_config"], [81, 5, 1, "", "initial_config"], [81, 3, 1, "", "input_keys"], [81, 3, 1, "", "keras_model"], [81, 5, 1, "", "model"], [81, 5, 1, "", "optimization_callbacks"], [81, 5, 1, "", "output_callbacks"], [81, 3, 1, "", "output_keys"], [81, 4, 1, "", "package"], [81, 5, 1, "", "pipeline_builder"], [81, 5, 1, "", "run_path"], [81, 4, 1, "", "setup"], [81, 4, 1, "", "train"], [81, 5, 1, "", "training_pipeline"], [81, 5, 1, "", "training_viz_pipeline"], [81, 5, 1, "", "validation_pipeline"], [81, 5, 1, "", "validation_viz_pipeline"], [81, 5, 1, "", "visualization_callbacks"]], "sleap.nn.utils": [[82, 1, 1, "", "compute_iou"], [82, 1, 1, "", "group_array"], [82, 1, 1, "", "match_points"], [82, 1, 1, "", "reset_input_layer"], [82, 1, 1, "", "tf_linear_sum_assignment"]], "sleap.nn.viz": [[83, 1, 1, "", "generate_skeleton_preview_image"], [83, 1, 1, "", "imgfig"], [83, 1, 1, "", "plot_confmaps"], [83, 1, 1, "", "plot_img"], [83, 1, 1, "", "plot_instance"], [83, 1, 1, "", "plot_instances"], [83, 1, 1, "", "plot_pafs"], [83, 1, 1, "", "plot_peaks"]], "sleap.skeleton": [[84, 2, 1, "", "EdgeType"], [84, 2, 1, "", "Node"], [84, 2, 1, "", "Skeleton"], [84, 2, 1, "", "SkeletonDecoder"], [84, 2, 1, "", "SkeletonEncoder"]], "sleap.skeleton.Node": [[84, 4, 1, "", "as_node"], [84, 4, 1, "", "from_names"], [84, 4, 1, "", "matches"], [84, 5, 1, "", "name"], [84, 5, 1, "", "weight"]], "sleap.skeleton.Skeleton": [[84, 5, 1, "", "_is_template"], [84, 5, 1, "", "_skeleton_idx"], [84, 4, 1, "", "add_edge"], [84, 4, 1, "", "add_node"], [84, 4, 1, "", "add_nodes"], [84, 4, 1, "", "add_symmetry"], [84, 4, 1, "", "clear_edges"], [84, 4, 1, "", "delete_edge"], [84, 4, 1, "", "delete_node"], [84, 4, 1, "", "delete_symmetry"], [84, 5, 1, "", "description"], [84, 3, 1, "", "edge_inds"], [84, 3, 1, "", "edge_names"], [84, 4, 1, "", "edge_to_index"], [84, 3, 1, "", "edges"], [84, 3, 1, "", "edges_full"], [84, 4, 1, "", "find_neighbors"], [84, 4, 1, "", "find_node"], [84, 4, 1, "", "find_unique_nodes"], [84, 4, 1, "", "from_dict"], [84, 4, 1, "", "from_json"], [84, 4, 1, "", "from_names_and_edge_inds"], [84, 4, 1, "", "get_symmetry"], [84, 4, 1, "", "get_symmetry_name"], [84, 3, 1, "", "graph"], [84, 3, 1, "", "graph_symmetry"], [84, 4, 1, "", "has_edge"], [84, 4, 1, "", "has_node"], [84, 4, 1, "", "has_nodes"], [84, 3, 1, "", "is_arborescence"], [84, 3, 1, "", "is_template"], [84, 4, 1, "", "load_all_hdf5"], [84, 4, 1, "", "load_hdf5"], [84, 4, 1, "", "load_json"], [84, 4, 1, "", "load_mat"], [84, 4, 1, "", "make_cattr"], [84, 4, 1, "", "matches"], [84, 3, 1, "", "name"], [84, 3, 1, "", "node_names"], [84, 4, 1, "", "node_to_index"], [84, 3, 1, "", "nodes"], [84, 5, 1, "", "preview_image"], [84, 4, 1, "", "relabel_node"], [84, 4, 1, "", "relabel_nodes"], [84, 4, 1, "", "rename_skeleton"], [84, 4, 1, "", "save_all_hdf5"], [84, 4, 1, "", "save_hdf5"], [84, 4, 1, "", "save_json"], [84, 3, 1, "", "symmetric_inds"], [84, 3, 1, "", "symmetries"], [84, 3, 1, "", "symmetries_full"], [84, 3, 1, "", "symmetry_names"], [84, 4, 1, "", "to_dict"], [84, 4, 1, "", "to_json"]], "sleap.skeleton.SkeletonDecoder": [[84, 4, 1, "", "decode"], [84, 4, 1, "", "decode_preview_image"]], "sleap.skeleton.SkeletonEncoder": [[84, 4, 1, "", "encode"]], "sleap.util": [[85, 1, 1, "", "attr_to_dtype"], [85, 1, 1, "", "dict_cut"], [85, 1, 1, "", "find_files_by_suffix"], [85, 1, 1, "", "frame_list"], [85, 1, 1, "", "get_config_file"], [85, 1, 1, "", "get_package_file"], [85, 1, 1, "", "json_dumps"], [85, 1, 1, "", "json_loads"], [85, 1, 1, "", "make_scoped_dictionary"], [85, 1, 1, "", "parse_uri_path"], [85, 1, 1, "", "save_dict_to_hdf5"], [85, 1, 1, "", "uniquify"], [85, 1, 1, "", "usable_cpu_count"], [85, 1, 1, "", "weak_filename_match"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:property", "4": "py:method", "5": "py:attribute"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "property", "Python property"], "4": ["py", "method", "Python method"], "5": ["py", "attribute", "Python attribute"]}, "titleterms": {"contributor": [0, 101], "coven": 0, "code": [0, 1], "conduct": [0, 1], "our": 0, "pledg": 0, "standard": 0, "respons": 0, "scope": 0, "enforc": 0, "attribut": 0, "contribut": 1, "sleap": [1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 87, 89, 93, 96, 100, 101, 104, 105, 106, 108, 109, 110, 112, 118], "tabl": 1, "Of": 1, "content": [1, 102], "issu": 1, "discuss": 1, "pull": 1, "request": 1, "style": 1, "guid": [1, 93], "thank": 1, "you": 1, "develop": 2, "api": 2, "info": [3, 4, 5, 6, 7, 8, 9], "align": 3, "feature_suggest": 4, "label": [5, 89, 92, 94, 115, 116], "metric": 6, "summari": 7, "trackclean": 8, "write_tracking_h5": 9, "instanc": [10, 87, 110, 119], "note": [10, 12, 45, 49, 52, 53, 55, 58, 60, 61, 62, 64, 65, 69, 71, 72, 75, 76, 77, 80, 82, 110], "io": [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34], "convert": [11, 89], "dataset": [12, 86, 89, 109, 112], "format": [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 100], "adaptor": 13, "alphatrack": 14, "coco": 15, "csv": 16, "deeplabcut": 17, "deepposekit": 18, "dispatch": 19, "filehandl": 20, "genericjson": 21, "hdf5": 22, "labels_json": 23, "leap_matlab": 24, "main": 25, "ndx_pose": 26, "nix": 27, "sleap_analysi": 28, "text": 29, "legaci": 30, "pathutil": 31, "video": [32, 103, 110, 118], "videowrit": 33, "visual": [34, 103], "messag": 35, "nn": [36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83], "architectur": [36, 37, 38, 39, 40, 41, 42, 43, 44], "common": 36, "encoder_decod": 37, "hourglass": 38, "hrnet": 39, "leap": [40, 101], "pretrained_encod": 41, "resnet": 42, "unet": 43, "upsampl": 44, "callback": 45, "config": [46, 47, 48, 49, 50, 51], "data": [46, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 90, 95, 100, 103, 104, 105, 106, 108, 109, 110, 112, 114], "model": [47, 74, 87, 88, 107, 109, 110, 112], "optim": 48, "output": [49, 100], "training_job": 50, "util": [51, 68, 82, 85], "augment": 52, "confidence_map": 53, "dataset_op": 54, "edge_map": 55, "gener": [56, 93], "group": 57, "ident": [58, 71], "infer": [59, 72, 89, 90, 96, 104, 105, 108, 109, 110, 112, 117], "instance_centroid": 60, "instance_crop": 61, "normal": 62, "offset_regress": 63, "pipelin": 64, "provid": 65, "resiz": 66, "train": [67, 81, 87, 89, 90, 91, 95, 96, 98, 106, 109, 110, 112, 117], "eval": 69, "head": 70, "loss": 73, "paf_group": 75, "peak_find": 76, "system": [77, 100], "tracker": [78, 79], "compon": 78, "kalman": 79, "track": [80, 89, 95, 108, 110, 112, 119], "viz": 83, "skeleton": [84, 97, 118], "fly32": 86, "flies13": 86, "mice_of": 86, "mice_hc": 86, "bee": 86, "gerbil": 86, "us": [87, 100, 110, 112], "bonsai": [87, 93], "export": [87, 89, 110, 114], "instal": [87, 100, 101, 102, 108, 109, 110], "necessari": 87, "packag": [87, 102, 110], "modul": 87, "top": [87, 110], "down": [87, 110], "id": 87, "singl": 87, "connect": 87, "configur": 88, "type": 88, "hyperparamet": 88, "command": 89, "line": 89, "interfac": 89, "gui": [89, 92, 98, 102], "exampl": [89, 103, 109, 112], "file": [89, 92], "inspect": [89, 108], "render": 89, "debug": 89, "diagnost": 89, "run": [90, 93, 96, 110], "colab": [90, 109, 110], "about": 90, "move": 90, "from": 90, "creat": [91, 110, 118], "custom": 91, "profil": [91, 110], "menu": 92, "go": 92, "view": 92, "predict": [92, 94, 100, 110, 115], "help": [92, 100, 102], "applic": 92, "mous": 92, "navig": 92, "kei": 92, "select": [92, 116], "seekbar": 92, "suggest": [92, 110], "get": [93, 100, 101, 102], "better": 93, "result": [93, 100], "remot": [93, 96], "import": [94, 102, 110], "proofread": [95, 119], "method": [95, 102], "more": [95, 100, 103, 116], "The": 95, "clean": 95, "script": 95, "color": [95, 103], "palett": 95, "orient": 95, "design": 97, "tip": 97, "troubleshoot": 99, "workflow": 99, "i": 100, "can": 100, "t": 100, "comput": 100, "without": 100, "gpu": [100, 102], "what": 100, "alreadi": 100, "have": 100, "cuda": 100, "set": 100, "up": 100, "my": 100, "usag": [100, 112], "how": 100, "do": 100, "doe": 100, "need": 100, "particular": 100, "strang": 100, "where": 100, "pose": [100, 101], "appear": 100, "correct": 100, "shift": 100, "rel": 100, "imag": 100, "out": 100, "ve": 100, "found": 100, "bug": 100, "anoth": 100, "problem": 100, "just": 100, "talk": 100, "someon": 100, "improv": 100, "social": 101, "estim": 101, "anim": 101, "featur": 101, "some": 101, "quick": 101, "learn": 101, "refer": 101, "contact": 101, "licens": 101, "document": 101, "manag": 102, "miniforg": 102, "recommend": 102, "miniconda": 102, "test": [102, 108], "thing": 102, "ar": 102, "work": 102, "support": 102, "upgrad": 102, "uninstal": 102, "analysi": [103, 112, 114], "load": 103, "fill": 103, "miss": 103, "valu": 103, "thorax": 103, "movement": 103, "across": [103, 119], "advanc": [103, 112], "x": 103, "y": 103, "dynam": 103, "veloc": 103, "fly": 103, "0": 103, "magnitud": 103, "speed": 103, "find": 103, "covari": 103, "between": 103, "1": [103, 104, 105, 106, 108], "cluster": 103, "structur": [104, 112], "setup": [104, 105, 106, 108], "2": [104, 105, 106, 108], "interact": [105, 106, 112], "realtim": [105, 112], "3": [105, 106, 108], "4": [105, 106, 108], "perform": 105, "resum": [106, 112], "job": [106, 110], "5": 106, "continu": 106, "evalu": [107, 112], "post": [108, 112], "save": [108, 116], "an": [109, 112], "download": 109, "sampl": 109, "your": [110, 112], "own": [110, 112], "googl": [110, 112], "drive": [110, 112], "upload": 110, "mount": 110, "process": 110, "frame": [110, 116, 119], "notebook": 112, "basic": 112, "overview": 113, "For": 114, "matlab": 114, "python": 114, "assist": 115, "review": 115, "fix": 115, "initi": 116, "first": 116, "option": 117, "start": [117, 118], "project": 118, "open": 118, "tutori": 120}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 8, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx": 57}, "alltitles": {"Contributor Covenant Code of Conduct": [[0, "contributor-covenant-code-of-conduct"]], "Our Pledge": [[0, "our-pledge"]], "Our Standards": [[0, "our-standards"]], "Our Responsibilities": [[0, "our-responsibilities"]], "Scope": [[0, "scope"]], "Enforcement": [[0, "enforcement"]], "Attribution": [[0, "attribution"]], "Contributing to SLEAP": [[1, "contributing-to-sleap"]], "Table Of Contents": [[1, "table-of-contents"]], "Code of Conduct": [[1, "code-of-conduct"]], "Contributing": [[1, "contributing"]], "Issues": [[1, "issues"]], "Discussions": [[1, "discussions"]], "Pull Requests": [[1, "pull-requests"]], "Style Guides": [[1, "style-guides"]], "Thank you for contributing to SLEAP!": [[1, "thank-you-for-contributing-to-sleap"]], "Developer API": [[2, "developer-api"]], "sleap.info.align": [[3, "module-sleap.info.align"]], "sleap.info.feature_suggestions": [[4, "module-sleap.info.feature_suggestions"]], "sleap.info.labels": [[5, "module-sleap.info.labels"]], "sleap.info.metrics": [[6, "module-sleap.info.metrics"]], "sleap.info.summary": [[7, "module-sleap.info.summary"]], "sleap.info.trackcleaner": [[8, "module-sleap.info.trackcleaner"]], "sleap.info.write_tracking_h5": [[9, "module-sleap.info.write_tracking_h5"]], "sleap.instance": [[10, "module-sleap.instance"]], "Notes": [[10, null], [10, null], [10, null], [10, null], [12, null], [12, null], [12, null], [12, null], [12, null], [12, null], [12, null], [12, null], [12, null], [12, null], [12, null], [45, null], [49, null], [52, null], [53, null], [53, null], [53, null], [53, null], [53, null], [55, null], [58, null], [60, null], [61, null], [61, null], [62, null], [62, null], [62, null], [64, null], [64, null], [64, null], [64, null], [64, null], [64, null], [65, null], [69, null], [69, null], [71, null], [72, null], [72, null], [72, null], [72, null], [72, null], [72, null], [72, null], [75, null], [75, null], [75, null], [75, null], [75, null], [75, null], [75, null], [75, null], [75, null], [75, null], [75, null], [75, null], [75, null], [76, null], [76, null], [77, null], [77, null], [80, null], [82, null]], "sleap.io.convert": [[11, "module-sleap.io.convert"]], "sleap.io.dataset": [[12, "module-sleap.io.dataset"]], "sleap.io.format.adaptor": [[13, "module-sleap.io.format.adaptor"]], "sleap.io.format.alphatracker": [[14, "module-sleap.io.format.alphatracker"]], "sleap.io.format.coco": [[15, "module-sleap.io.format.coco"]], "sleap.io.format.csv": [[16, "module-sleap.io.format.csv"]], "sleap.io.format.deeplabcut": [[17, "module-sleap.io.format.deeplabcut"]], "sleap.io.format.deepposekit": [[18, "module-sleap.io.format.deepposekit"]], "sleap.io.format.dispatch": [[19, "module-sleap.io.format.dispatch"]], "sleap.io.format.filehandle": [[20, "module-sleap.io.format.filehandle"]], "sleap.io.format.genericjson": [[21, "module-sleap.io.format.genericjson"]], "sleap.io.format.hdf5": [[22, "module-sleap.io.format.hdf5"]], "sleap.io.format.labels_json": [[23, "module-sleap.io.format.labels_json"]], "sleap.io.format.leap_matlab": [[24, "module-sleap.io.format.leap_matlab"]], "sleap.io.format.main": [[25, "module-sleap.io.format.main"]], "sleap.io.format.ndx_pose": [[26, "module-sleap.io.format.ndx_pose"]], "sleap.io.format.nix": [[27, "module-sleap.io.format.nix"]], "sleap.io.format.sleap_analysis": [[28, "module-sleap.io.format.sleap_analysis"]], "sleap.io.format.text": [[29, "module-sleap.io.format.text"]], "sleap.io.legacy": [[30, "module-sleap.io.legacy"]], "sleap.io.pathutils": [[31, "module-sleap.io.pathutils"]], "sleap.io.video": [[32, "module-sleap.io.video"]], "sleap.io.videowriter": [[33, "module-sleap.io.videowriter"]], "sleap.io.visuals": [[34, "module-sleap.io.visuals"]], "sleap.message": [[35, "module-sleap.message"]], "sleap.nn.architectures.common": [[36, "module-sleap.nn.architectures.common"]], "sleap.nn.architectures.encoder_decoder": [[37, "module-sleap.nn.architectures.encoder_decoder"]], "sleap.nn.architectures.hourglass": [[38, "module-sleap.nn.architectures.hourglass"]], "sleap.nn.architectures.hrnet": [[39, "module-sleap.nn.architectures.hrnet"]], "sleap.nn.architectures.leap": [[40, "module-sleap.nn.architectures.leap"]], "sleap.nn.architectures.pretrained_encoders": [[41, "module-sleap.nn.architectures.pretrained_encoders"]], "sleap.nn.architectures.resnet": [[42, "module-sleap.nn.architectures.resnet"]], "sleap.nn.architectures.unet": [[43, "module-sleap.nn.architectures.unet"]], "sleap.nn.architectures.upsampling": [[44, "module-sleap.nn.architectures.upsampling"]], "sleap.nn.callbacks": [[45, "module-sleap.nn.callbacks"]], "sleap.nn.config.data": [[46, "module-sleap.nn.config.data"]], "sleap.nn.config.model": [[47, "module-sleap.nn.config.model"]], "sleap.nn.config.optimization": [[48, "module-sleap.nn.config.optimization"]], "sleap.nn.config.outputs": [[49, "module-sleap.nn.config.outputs"]], "sleap.nn.config.training_job": [[50, "module-sleap.nn.config.training_job"]], "sleap.nn.config.utils": [[51, "module-sleap.nn.config.utils"]], "sleap.nn.data.augmentation": [[52, "module-sleap.nn.data.augmentation"]], "sleap.nn.data.confidence_maps": [[53, "module-sleap.nn.data.confidence_maps"]], "sleap.nn.data.dataset_ops": [[54, "module-sleap.nn.data.dataset_ops"]], "sleap.nn.data.edge_maps": [[55, "module-sleap.nn.data.edge_maps"]], "sleap.nn.data.general": [[56, "module-sleap.nn.data.general"]], "sleap.nn.data.grouping": [[57, "module-sleap.nn.data.grouping"]], "sleap.nn.data.identity": [[58, "module-sleap.nn.data.identity"]], "sleap.nn.data.inference": [[59, "module-sleap.nn.data.inference"]], "sleap.nn.data.instance_centroids": [[60, "module-sleap.nn.data.instance_centroids"]], "sleap.nn.data.instance_cropping": [[61, "module-sleap.nn.data.instance_cropping"]], "sleap.nn.data.normalization": [[62, "module-sleap.nn.data.normalization"]], "sleap.nn.data.offset_regression": [[63, "module-sleap.nn.data.offset_regression"]], "sleap.nn.data.pipelines": [[64, "module-sleap.nn.data.pipelines"]], "sleap.nn.data.providers": [[65, "module-sleap.nn.data.providers"]], "sleap.nn.data.resizing": [[66, "module-sleap.nn.data.resizing"]], "sleap.nn.data.training": [[67, "module-sleap.nn.data.training"]], "sleap.nn.data.utils": [[68, "module-sleap.nn.data.utils"]], "sleap.nn.evals": [[69, "module-sleap.nn.evals"]], "sleap.nn.heads": [[70, "module-sleap.nn.heads"]], "sleap.nn.identity": [[71, "module-sleap.nn.identity"]], "sleap.nn.inference": [[72, "module-sleap.nn.inference"]], "sleap.nn.losses": [[73, "module-sleap.nn.losses"]], "sleap.nn.model": [[74, "module-sleap.nn.model"]], "sleap.nn.paf_grouping": [[75, "module-sleap.nn.paf_grouping"]], "sleap.nn.peak_finding": [[76, "module-sleap.nn.peak_finding"]], "sleap.nn.system": [[77, "module-sleap.nn.system"]], "sleap.nn.tracker.components": [[78, "module-sleap.nn.tracker.components"]], "sleap.nn.tracker.kalman": [[79, "module-sleap.nn.tracker.kalman"]], "sleap.nn.tracking": [[80, "module-sleap.nn.tracking"]], "sleap.nn.training": [[81, "module-sleap.nn.training"]], "sleap.nn.utils": [[82, "module-sleap.nn.utils"]], "sleap.nn.viz": [[83, "module-sleap.nn.viz"]], "sleap.skeleton": [[84, "module-sleap.skeleton"]], "sleap.util": [[85, "module-sleap.util"]], "Datasets": [[86, "datasets"]], "fly32": [[86, "fly32"]], "flies13": [[86, "flies13"]], "mice_of": [[86, "mice-of"]], "mice_hc": [[86, "mice-hc"]], "bees": [[86, "bees"]], "gerbils": [[86, "gerbils"]], "Using Bonsai with SLEAP": [[87, "using-bonsai-with-sleap"]], "Exporting a SLEAP trained model": [[87, "exporting-a-sleap-trained-model"]], "Installing Bonsai and necessary packages": [[87, "installing-bonsai-and-necessary-packages"]], "Using Bonsai SLEAP modules": [[87, "using-bonsai-sleap-modules"]], "Top-down model": [[87, "top-down-model"]], "Top-Down-ID model": [[87, "top-down-id-model"]], "Single instance model": [[87, "single-instance-model"]], "Connecting the modules": [[87, "connecting-the-modules"]], "Configuring models": [[88, "configuring-models"]], "Model type": [[88, "model-type"]], "Hyperparameters": [[88, "hyperparameters"]], "Command line interfaces": [[89, "command-line-interfaces"]], "GUI": [[89, "gui"], [92, "gui"]], "sleap-label": [[89, "sleap-label"]], "Training": [[89, "training"]], "sleap-train": [[89, "sleap-train"]], "sleap-export": [[89, "sleap-export"]], "Inference and Tracking": [[89, "inference-and-tracking"]], "sleap-track": [[89, "sleap-track"]], "Examples:": [[89, "examples"]], "Dataset files": [[89, "dataset-files"]], "sleap-convert": [[89, "sleap-convert"]], "sleap-inspect": [[89, "sleap-inspect"]], "Rendering": [[89, "rendering"]], "sleap-render": [[89, "sleap-render"]], "Debugging": [[89, "debugging"]], "sleap-diagnostic": [[89, "sleap-diagnostic"]], "Run training and inference on Colab": [[90, "run-training-and-inference-on-colab"]], "About Colab": [[90, "about-colab"]], "Moving Data to/from Colab": [[90, "moving-data-to-from-colab"]], "Creating a custom training profile": [[91, "creating-a-custom-training-profile"]], "Menus": [[92, "menus"]], "File": [[92, "file"]], "Go": [[92, "go"]], "View": [[92, "view"]], "Labels": [[92, "labels"]], "Predict": [[92, "predict"]], "Help": [[92, "help"], [100, "help"]], "Application GUI": [[92, "application-gui"]], "Mouse": [[92, "mouse"]], "Navigation Keys": [[92, "navigation-keys"]], "Selection Keys": [[92, "selection-keys"]], "Seekbar": [[92, "seekbar"]], "Labeling Suggestions": [[92, "labeling-suggestions"]], "Guides": [[93, "guides"]], "General": [[93, "general"]], "Getting better results": [[93, "getting-better-results"]], "Running remotely": [[93, "running-remotely"]], "SLEAP with Bonsai": [[93, "sleap-with-bonsai"]], "Importing predictions for labeling": [[94, "importing-predictions-for-labeling"]], "Tracking and proofreading": [[95, "tracking-and-proofreading"]], "Tracking methods": [[95, "tracking-methods"]], "More training data?": [[95, "more-training-data"]], "The \u201ctrack cleaning\u201d script": [[95, "the-track-cleaning-script"]], "Color palettes": [[95, "color-palettes"]], "Proofreading": [[95, "id1"]], "Orientation": [[95, "orientation"]], "Running SLEAP remotely": [[96, "running-sleap-remotely"]], "Remote training": [[96, "remote-training"]], "Remote inference": [[96, "remote-inference"]], "Skeleton design": [[97, "skeleton-design"]], "Tips": [[97, "tips"]], "Training with GUI": [[98, "training-with-gui"]], "Troubleshooting workflows": [[99, "troubleshooting-workflows"]], "Installation": [[100, "installation"], [102, "installation"]], "I can\u2019t get SLEAP to install!": [[100, "i-cant-get-sleap-to-install"]], "Can I install it on a computer without a GPU?": [[100, "can-i-install-it-on-a-computer-without-a-gpu"]], "What if I already have CUDA set up on my system?": [[100, "what-if-i-already-have-cuda-set-up-on-my-system"]], "Usage": [[100, "usage"]], "How do I use SLEAP?": [[100, "how-do-i-use-sleap"]], "Does my data need to be in a particular format?": [[100, "does-my-data-need-to-be-in-a-particular-format"]], "I get strange results where the poses appear to be correct but shifted relative to the image.": [[100, "i-get-strange-results-where-the-poses-appear-to-be-correct-but-shifted-relative-to-the-image"]], "How do I get predictions out?": [[100, "how-do-i-get-predictions-out"]], "What do I do with the output of SLEAP?": [[100, "what-do-i-do-with-the-output-of-sleap"]], "Getting more help": [[100, "getting-more-help"]], "I\u2019ve found a bug or have another problem!": [[100, "ive-found-a-bug-or-have-another-problem"]], "Can I just talk to someone?": [[100, "can-i-just-talk-to-someone"]], "Improving SLEAP": [[100, "improving-sleap"]], "How can I help improve SLEAP?": [[100, "how-can-i-help-improve-sleap"]], "What is usage data?": [[100, "what-is-usage-data"]], "Social LEAP Estimates Animal Poses (SLEAP)": [[101, "social-leap-estimates-animal-poses-sleap"]], "Features": [[101, "features"]], "Get some SLEAP": [[101, "get-some-sleap"]], "Quick install": [[101, "quick-install"]], "Learn to SLEAP": [[101, "learn-to-sleap"]], "References": [[101, "references"]], "Contact": [[101, "contact"]], "Contributors": [[101, "contributors"]], "License": [[101, "license"]], "SLEAP Documentation": [[101, "sleap-documentation"]], "Contents": [[102, "contents"]], "Package Manager": [[102, "package-manager"]], "Miniforge (recommended)": [[102, "miniforge-recommended"]], "Miniconda": [[102, "miniconda"]], "Installation methods": [[102, "installation-methods"]], "Testing that things are working": [[102, "testing-that-things-are-working"]], "GUI support": [[102, "gui-support"]], "Importing": [[102, "importing"]], "GPU support": [[102, "gpu-support"]], "Upgrading and uninstalling": [[102, "upgrading-and-uninstalling"]], "Getting help": [[102, "getting-help"]], "Analysis examples": [[103, "analysis-examples"], [112, "id4"]], "Example analysis data": [[103, "example-analysis-data"]], "Loading the data": [[103, "loading-the-data"]], "Fill missing values": [[103, "fill-missing-values"]], "Visualize thorax movement across video": [[103, "visualize-thorax-movement-across-video"]], "More advanced visualizations": [[103, "more-advanced-visualizations"]], "Visualizing thorax x-y dynamics and velocity for fly 0": [[103, "visualizing-thorax-x-y-dynamics-and-velocity-for-fly-0"]], "Visualize thorax colored by magnitude of fly speed": [[103, "visualize-thorax-colored-by-magnitude-of-fly-speed"]], "Find covariance in thorax velocities between fly-0 and fly-1": [[103, "find-covariance-in-thorax-velocities-between-fly-0-and-fly-1"]], "Clustering": [[103, "clustering"]], "Data structures": [[104, "data-structures"], [112, "id5"]], "1. Setup SLEAP and data": [[104, "setup-sleap-and-data"]], "2. Data structures and inference": [[104, "data-structures-and-inference"]], "Interactive and realtime inference": [[105, "interactive-and-realtime-inference"], [112, "id8"]], "1. Setup SLEAP": [[105, "setup-sleap"], [106, "setup-sleap"], [108, "setup-sleap"]], "2. Setup data": [[105, "setup-data"], [108, "setup-data"]], "3. Interactive inference": [[105, "interactive-inference"]], "4. Realtime performance": [[105, "realtime-performance"]], "Interactive and resumable training": [[106, "interactive-and-resumable-training"], [112, "id7"]], "2. Setup training data": [[106, "setup-training-data"]], "3. Setup training job": [[106, "setup-training-job"]], "4. Training": [[106, "training"]], "5. Continuing training": [[106, "continuing-training"]], "Model evaluation": [[107, "model-evaluation"], [112, "id9"]], "Post-inference tracking": [[108, "post-inference-tracking"], [112, "id6"]], "Install": [[108, "install"]], "Test": [[108, "test"]], "3. Track": [[108, "track"]], "4. Inspect and save": [[108, "inspect-and-save"]], "Training and inference on an example dataset": [[109, "training-and-inference-on-an-example-dataset"], [112, "id2"]], "Install SLEAP": [[109, "install-sleap"], [110, "install-sleap"]], "Download sample training data into Colab": [[109, "download-sample-training-data-into-colab"]], "Train models": [[109, "train-models"]], "Inference": [[109, "inference"], [117, "inference"]], "Training and inference on your own data using Google Drive": [[110, "training-and-inference-on-your-own-data-using-google-drive"], [112, "id3"]], "Import training data into Colab with Google Drive": [[110, "import-training-data-into-colab-with-google-drive"]], "Create and export the training job package": [[110, "create-and-export-the-training-job-package"]], "Upload training job package to Google Drive": [[110, "upload-training-job-package-to-google-drive"]], "Mount your Google Drive": [[110, "mount-your-google-drive"]], "Train a model": [[110, "train-a-model"]], "Note on training profiles": [[110, "note-on-training-profiles"]], "Note on training process": [[110, "note-on-training-process"]], "Run inference to predict instances": [[110, "run-inference-to-predict-instances"]], "Predicting instances in suggested frames": [[110, "predicting-instances-in-suggested-frames"]], "Predicting and tracking instances in uploaded video": [[110, "predicting-and-tracking-instances-in-uploaded-video"]], "Inference with top-down models": [[110, "inference-with-top-down-models"]], "Notebooks": [[112, "notebooks"]], "Basic usage": [[112, "basic-usage"]], "Advanced SLEAPing": [[112, "advanced-sleaping"]], "Overview": [[113, "overview"]], "Export Data For Analysis": [[114, "export-data-for-analysis"]], "MATLAB": [[114, "matlab"]], "Python": [[114, "python"]], "Prediction-assisted labeling": [[115, "prediction-assisted-labeling"]], "Reviewing and fixing predictions": [[115, "reviewing-and-fixing-predictions"]], "Initial Labeling": [[116, "initial-labeling"]], "Selecting frames to label": [[116, "selecting-frames-to-label"]], "Labeling the first frame": [[116, "labeling-the-first-frame"]], "Saving": [[116, "saving"]], "Labeling more frames": [[116, "labeling-more-frames"]], "Training and Inference": [[117, "training-and-inference"]], "Training Options": [[117, "training-options"]], "Start Training": [[117, "start-training"]], "Creating a project": [[118, "creating-a-project"]], "Starting SLEAP": [[118, "starting-sleap"]], "Opening a video": [[118, "opening-a-video"]], "Creating a Skeleton": [[118, "creating-a-skeleton"]], "Tracking instances across frames": [[119, "tracking-instances-across-frames"]], "Track proofreading": [[119, "track-proofreading"]], "Tutorial": [[120, "tutorial"]]}, "indexentries": {"align_instance_points() (in module sleap.info.align)": [[3, "sleap.info.align.align_instance_points"]], "align_instances() (in module sleap.info.align)": [[3, "sleap.info.align.align_instances"]], "align_instances_on_most_stable() (in module sleap.info.align)": [[3, "sleap.info.align.align_instances_on_most_stable"]], "get_instances_points() (in module sleap.info.align)": [[3, "sleap.info.align.get_instances_points"]], "get_mean_and_std_for_points() (in module sleap.info.align)": [[3, "sleap.info.align.get_mean_and_std_for_points"]], "get_most_stable_node_pair() (in module sleap.info.align)": [[3, "sleap.info.align.get_most_stable_node_pair"]], "get_stable_node_pairs() (in module sleap.info.align)": [[3, "sleap.info.align.get_stable_node_pairs"]], "get_template_points_array() (in module sleap.info.align)": [[3, "sleap.info.align.get_template_points_array"]], "module": [[3, "module-sleap.info.align"], [4, "module-sleap.info.feature_suggestions"], [5, "module-sleap.info.labels"], [6, "module-sleap.info.metrics"], [7, "module-sleap.info.summary"], [8, "module-sleap.info.trackcleaner"], [9, "module-sleap.info.write_tracking_h5"], [10, "module-sleap.instance"], [11, "module-sleap.io.convert"], [12, "module-sleap.io.dataset"], [13, "module-sleap.io.format.adaptor"], [14, "module-sleap.io.format.alphatracker"], [15, "module-sleap.io.format.coco"], [16, "module-sleap.io.format.csv"], [17, "module-sleap.io.format.deeplabcut"], [18, "module-sleap.io.format.deepposekit"], [19, "module-sleap.io.format.dispatch"], [20, "module-sleap.io.format.filehandle"], [21, "module-sleap.io.format.genericjson"], [22, "module-sleap.io.format.hdf5"], [23, "module-sleap.io.format.labels_json"], [24, "module-sleap.io.format.leap_matlab"], [25, "module-sleap.io.format.main"], [26, "module-sleap.io.format.ndx_pose"], [27, "module-sleap.io.format.nix"], [28, "module-sleap.io.format.sleap_analysis"], [29, "module-sleap.io.format.text"], [30, "module-sleap.io.legacy"], [31, "module-sleap.io.pathutils"], [32, "module-sleap.io.video"], [33, "module-sleap.io.videowriter"], [34, "module-sleap.io.visuals"], [35, "module-sleap.message"], [36, "module-sleap.nn.architectures.common"], [37, "module-sleap.nn.architectures.encoder_decoder"], [38, "module-sleap.nn.architectures.hourglass"], [39, "module-sleap.nn.architectures.hrnet"], [40, "module-sleap.nn.architectures.leap"], [41, "module-sleap.nn.architectures.pretrained_encoders"], [42, "module-sleap.nn.architectures.resnet"], [43, "module-sleap.nn.architectures.unet"], [44, "module-sleap.nn.architectures.upsampling"], [45, "module-sleap.nn.callbacks"], [46, "module-sleap.nn.config.data"], [47, "module-sleap.nn.config.model"], [48, "module-sleap.nn.config.optimization"], [49, "module-sleap.nn.config.outputs"], [50, "module-sleap.nn.config.training_job"], [51, "module-sleap.nn.config.utils"], [52, "module-sleap.nn.data.augmentation"], [53, "module-sleap.nn.data.confidence_maps"], [54, "module-sleap.nn.data.dataset_ops"], [55, "module-sleap.nn.data.edge_maps"], [56, "module-sleap.nn.data.general"], [57, "module-sleap.nn.data.grouping"], [58, "module-sleap.nn.data.identity"], [59, "module-sleap.nn.data.inference"], [60, "module-sleap.nn.data.instance_centroids"], [61, "module-sleap.nn.data.instance_cropping"], [62, "module-sleap.nn.data.normalization"], [63, "module-sleap.nn.data.offset_regression"], [64, "module-sleap.nn.data.pipelines"], [65, "module-sleap.nn.data.providers"], [66, "module-sleap.nn.data.resizing"], [67, "module-sleap.nn.data.training"], [68, "module-sleap.nn.data.utils"], [69, "module-sleap.nn.evals"], [70, "module-sleap.nn.heads"], [71, "module-sleap.nn.identity"], [72, "module-sleap.nn.inference"], [73, "module-sleap.nn.losses"], [74, "module-sleap.nn.model"], [75, "module-sleap.nn.paf_grouping"], [76, "module-sleap.nn.peak_finding"], [77, "module-sleap.nn.system"], [78, "module-sleap.nn.tracker.components"], [79, "module-sleap.nn.tracker.kalman"], [80, "module-sleap.nn.tracking"], [81, "module-sleap.nn.training"], [82, "module-sleap.nn.utils"], [83, "module-sleap.nn.viz"], [84, "module-sleap.skeleton"], [85, "module-sleap.util"]], "sleap.info.align": [[3, "module-sleap.info.align"]], "framegroupset (class in sleap.info.feature_suggestions)": [[4, "sleap.info.feature_suggestions.FrameGroupSet"]], "frameitem (class in sleap.info.feature_suggestions)": [[4, "sleap.info.feature_suggestions.FrameItem"]], "itemstack (class in sleap.info.feature_suggestions)": [[4, "sleap.info.feature_suggestions.ItemStack"]], "parallelfeaturepipeline (class in sleap.info.feature_suggestions)": [[4, "sleap.info.feature_suggestions.ParallelFeaturePipeline"]], "all_items (sleap.info.feature_suggestions.framegroupset property)": [[4, "sleap.info.feature_suggestions.FrameGroupSet.all_items"]], "append_to_group() (sleap.info.feature_suggestions.framegroupset method)": [[4, "sleap.info.feature_suggestions.FrameGroupSet.append_to_group"]], "brisk_bag_of_features() (sleap.info.feature_suggestions.itemstack method)": [[4, "sleap.info.feature_suggestions.ItemStack.brisk_bag_of_features"]], "current_groupset (sleap.info.feature_suggestions.itemstack property)": [[4, "sleap.info.feature_suggestions.ItemStack.current_groupset"]], "data (sleap.info.feature_suggestions.itemstack attribute)": [[4, "sleap.info.feature_suggestions.ItemStack.data"]], "extend_group_items() (sleap.info.feature_suggestions.framegroupset method)": [[4, "sleap.info.feature_suggestions.FrameGroupSet.extend_group_items"]], "extend_ownership() (sleap.info.feature_suggestions.itemstack method)": [[4, "sleap.info.feature_suggestions.ItemStack.extend_ownership"]], "flatten() (sleap.info.feature_suggestions.itemstack method)": [[4, "sleap.info.feature_suggestions.ItemStack.flatten"]], "get() (sleap.info.feature_suggestions.parallelfeaturepipeline method)": [[4, "sleap.info.feature_suggestions.ParallelFeaturePipeline.get"]], "get_all_items_from_group() (sleap.info.feature_suggestions.itemstack method)": [[4, "sleap.info.feature_suggestions.ItemStack.get_all_items_from_group"]], "get_item_data() (sleap.info.feature_suggestions.itemstack method)": [[4, "sleap.info.feature_suggestions.ItemStack.get_item_data"]], "get_item_data_idxs() (sleap.info.feature_suggestions.itemstack method)": [[4, "sleap.info.feature_suggestions.ItemStack.get_item_data_idxs"]], "get_item_group() (sleap.info.feature_suggestions.framegroupset method)": [[4, "sleap.info.feature_suggestions.FrameGroupSet.get_item_group"]], "get_raw_images() (sleap.info.feature_suggestions.itemstack method)": [[4, "sleap.info.feature_suggestions.ItemStack.get_raw_images"]], "group_data (sleap.info.feature_suggestions.framegroupset attribute)": [[4, "sleap.info.feature_suggestions.FrameGroupSet.group_data"]], "group_sets (sleap.info.feature_suggestions.itemstack attribute)": [[4, "sleap.info.feature_suggestions.ItemStack.group_sets"]], "groups (sleap.info.feature_suggestions.framegroupset property)": [[4, "sleap.info.feature_suggestions.FrameGroupSet.groups"]], "groupset_data (sleap.info.feature_suggestions.framegroupset attribute)": [[4, "sleap.info.feature_suggestions.FrameGroupSet.groupset_data"]], "hog_bag_of_features() (sleap.info.feature_suggestions.itemstack method)": [[4, "sleap.info.feature_suggestions.ItemStack.hog_bag_of_features"]], "item_group (sleap.info.feature_suggestions.framegroupset attribute)": [[4, "sleap.info.feature_suggestions.FrameGroupSet.item_group"]], "items (sleap.info.feature_suggestions.itemstack attribute)": [[4, "sleap.info.feature_suggestions.ItemStack.items"]], "kmeans() (sleap.info.feature_suggestions.itemstack method)": [[4, "sleap.info.feature_suggestions.ItemStack.kmeans"]], "make() (sleap.info.feature_suggestions.parallelfeaturepipeline class method)": [[4, "sleap.info.feature_suggestions.ParallelFeaturePipeline.make"]], "make_sample_group() (sleap.info.feature_suggestions.itemstack method)": [[4, "sleap.info.feature_suggestions.ItemStack.make_sample_group"]], "meta (sleap.info.feature_suggestions.itemstack attribute)": [[4, "sleap.info.feature_suggestions.ItemStack.meta"]], "method (sleap.info.feature_suggestions.framegroupset attribute)": [[4, "sleap.info.feature_suggestions.FrameGroupSet.method"]], "ownership (sleap.info.feature_suggestions.itemstack attribute)": [[4, "sleap.info.feature_suggestions.ItemStack.ownership"]], "pca() (sleap.info.feature_suggestions.itemstack method)": [[4, "sleap.info.feature_suggestions.ItemStack.pca"]], "run() (sleap.info.feature_suggestions.parallelfeaturepipeline class method)": [[4, "sleap.info.feature_suggestions.ParallelFeaturePipeline.run"]], "sample() (sleap.info.feature_suggestions.framegroupset method)": [[4, "sleap.info.feature_suggestions.FrameGroupSet.sample"]], "sample_groups() (sleap.info.feature_suggestions.itemstack method)": [[4, "sleap.info.feature_suggestions.ItemStack.sample_groups"]], "sleap.info.feature_suggestions": [[4, "module-sleap.info.feature_suggestions"]], "tuples_to_suggestions() (sleap.info.feature_suggestions.parallelfeaturepipeline class method)": [[4, "sleap.info.feature_suggestions.ParallelFeaturePipeline.tuples_to_suggestions"]], "sleap.info.labels": [[5, "module-sleap.info.labels"]], "calculate_pairwise_cost() (in module sleap.info.metrics)": [[6, "sleap.info.metrics.calculate_pairwise_cost"]], "compare_instance_lists() (in module sleap.info.metrics)": [[6, "sleap.info.metrics.compare_instance_lists"]], "list_points_array() (in module sleap.info.metrics)": [[6, "sleap.info.metrics.list_points_array"]], "match_instance_lists() (in module sleap.info.metrics)": [[6, "sleap.info.metrics.match_instance_lists"]], "match_instance_lists_nodewise() (in module sleap.info.metrics)": [[6, "sleap.info.metrics.match_instance_lists_nodewise"]], "matched_instance_distances() (in module sleap.info.metrics)": [[6, "sleap.info.metrics.matched_instance_distances"]], "nodeless_point_dist() (in module sleap.info.metrics)": [[6, "sleap.info.metrics.nodeless_point_dist"]], "point_dist() (in module sleap.info.metrics)": [[6, "sleap.info.metrics.point_dist"]], "point_match_count() (in module sleap.info.metrics)": [[6, "sleap.info.metrics.point_match_count"]], "point_nonmatch_count() (in module sleap.info.metrics)": [[6, "sleap.info.metrics.point_nonmatch_count"]], "sleap.info.metrics": [[6, "module-sleap.info.metrics"]], "statisticseries (class in sleap.info.summary)": [[7, "sleap.info.summary.StatisticSeries"]], "get_instance_score_series() (sleap.info.summary.statisticseries method)": [[7, "sleap.info.summary.StatisticSeries.get_instance_score_series"]], "get_point_count_series() (sleap.info.summary.statisticseries method)": [[7, "sleap.info.summary.StatisticSeries.get_point_count_series"]], "get_point_displacement_series() (sleap.info.summary.statisticseries method)": [[7, "sleap.info.summary.StatisticSeries.get_point_displacement_series"]], "get_point_score_series() (sleap.info.summary.statisticseries method)": [[7, "sleap.info.summary.StatisticSeries.get_point_score_series"]], "get_primary_point_displacement_series() (sleap.info.summary.statisticseries method)": [[7, "sleap.info.summary.StatisticSeries.get_primary_point_displacement_series"]], "get_tracking_score_series() (sleap.info.summary.statisticseries method)": [[7, "sleap.info.summary.StatisticSeries.get_tracking_score_series"]], "sleap.info.summary": [[7, "module-sleap.info.summary"]], "fit_tracks() (in module sleap.info.trackcleaner)": [[8, "sleap.info.trackcleaner.fit_tracks"]], "sleap.info.trackcleaner": [[8, "module-sleap.info.trackcleaner"]], "get_edges_as_np_strings() (in module sleap.info.write_tracking_h5)": [[9, "sleap.info.write_tracking_h5.get_edges_as_np_strings"]], "get_nodes_as_np_strings() (in module sleap.info.write_tracking_h5)": [[9, "sleap.info.write_tracking_h5.get_nodes_as_np_strings"]], "get_occupancy_and_points_matrices() (in module sleap.info.write_tracking_h5)": [[9, "sleap.info.write_tracking_h5.get_occupancy_and_points_matrices"]], "get_tracks_as_np_strings() (in module sleap.info.write_tracking_h5)": [[9, "sleap.info.write_tracking_h5.get_tracks_as_np_strings"]], "main() (in module sleap.info.write_tracking_h5)": [[9, "sleap.info.write_tracking_h5.main"]], "remove_empty_tracks_from_matrices() (in module sleap.info.write_tracking_h5)": [[9, "sleap.info.write_tracking_h5.remove_empty_tracks_from_matrices"]], "sleap.info.write_tracking_h5": [[9, "module-sleap.info.write_tracking_h5"]], "write_csv_file() (in module sleap.info.write_tracking_h5)": [[9, "sleap.info.write_tracking_h5.write_csv_file"]], "write_occupancy_file() (in module sleap.info.write_tracking_h5)": [[9, "sleap.info.write_tracking_h5.write_occupancy_file"]], "instance (class in sleap.instance)": [[10, "sleap.instance.Instance"]], "instanceslist (class in sleap.instance)": [[10, "sleap.instance.InstancesList"]], "labeledframe (class in sleap.instance)": [[10, "sleap.instance.LabeledFrame"]], "point (class in sleap.instance)": [[10, "sleap.instance.Point"]], "pointarray (class in sleap.instance)": [[10, "sleap.instance.PointArray"]], "predictedinstance (class in sleap.instance)": [[10, "sleap.instance.PredictedInstance"]], "predictedpoint (class in sleap.instance)": [[10, "sleap.instance.PredictedPoint"]], "predictedpointarray (class in sleap.instance)": [[10, "sleap.instance.PredictedPointArray"]], "track (class in sleap.instance)": [[10, "sleap.instance.Track"]], "append() (sleap.instance.instanceslist method)": [[10, "sleap.instance.InstancesList.append"]], "bounding_box (sleap.instance.instance property)": [[10, "sleap.instance.Instance.bounding_box"]], "centroid (sleap.instance.instance property)": [[10, "sleap.instance.Instance.centroid"]], "clear() (sleap.instance.instanceslist method)": [[10, "sleap.instance.InstancesList.clear"]], "complex_frame_merge() (sleap.instance.labeledframe class method)": [[10, "sleap.instance.LabeledFrame.complex_frame_merge"]], "complex_merge_between() (sleap.instance.labeledframe class method)": [[10, "sleap.instance.LabeledFrame.complex_merge_between"]], "copy() (sleap.instance.instanceslist method)": [[10, "sleap.instance.InstancesList.copy"]], "dtype (sleap.instance.point attribute)": [[10, "sleap.instance.Point.dtype"]], "dtype (sleap.instance.predictedpoint attribute)": [[10, "sleap.instance.PredictedPoint.dtype"]], "extend() (sleap.instance.instanceslist method)": [[10, "sleap.instance.InstancesList.extend"]], "fill_missing() (sleap.instance.instance method)": [[10, "sleap.instance.Instance.fill_missing"]], "find() (sleap.instance.labeledframe method)": [[10, "sleap.instance.LabeledFrame.find"]], "frame_idx (sleap.instance.instance property)": [[10, "sleap.instance.Instance.frame_idx"]], "from_array() (sleap.instance.pointarray class method)": [[10, "sleap.instance.PointArray.from_array"]], "from_arrays() (sleap.instance.predictedinstance class method)": [[10, "sleap.instance.PredictedInstance.from_arrays"]], "from_instance() (sleap.instance.predictedinstance class method)": [[10, "sleap.instance.PredictedInstance.from_instance"]], "from_numpy() (sleap.instance.instance class method)": [[10, "sleap.instance.Instance.from_numpy"]], "from_numpy() (sleap.instance.predictedinstance class method)": [[10, "sleap.instance.PredictedInstance.from_numpy"]], "from_point() (sleap.instance.predictedpoint class method)": [[10, "sleap.instance.PredictedPoint.from_point"]], "from_pointsarray() (sleap.instance.instance class method)": [[10, "sleap.instance.Instance.from_pointsarray"]], "from_pointsarray() (sleap.instance.predictedinstance class method)": [[10, "sleap.instance.PredictedInstance.from_pointsarray"]], "get_points_array() (sleap.instance.instance method)": [[10, "sleap.instance.Instance.get_points_array"]], "has_predicted_instances (sleap.instance.labeledframe property)": [[10, "sleap.instance.LabeledFrame.has_predicted_instances"]], "has_tracked_instances (sleap.instance.labeledframe property)": [[10, "sleap.instance.LabeledFrame.has_tracked_instances"]], "has_user_instances (sleap.instance.labeledframe property)": [[10, "sleap.instance.LabeledFrame.has_user_instances"]], "image (sleap.instance.labeledframe property)": [[10, "sleap.instance.LabeledFrame.image"]], "index() (sleap.instance.labeledframe method)": [[10, "sleap.instance.LabeledFrame.index"]], "insert() (sleap.instance.instanceslist method)": [[10, "sleap.instance.InstancesList.insert"]], "insert() (sleap.instance.labeledframe method)": [[10, "sleap.instance.LabeledFrame.insert"]], "instances (sleap.instance.labeledframe property)": [[10, "sleap.instance.LabeledFrame.instances"]], "instances_to_show (sleap.instance.labeledframe property)": [[10, "sleap.instance.LabeledFrame.instances_to_show"]], "isnan() (sleap.instance.point method)": [[10, "sleap.instance.Point.isnan"]], "labeled_frame (sleap.instance.instanceslist property)": [[10, "sleap.instance.InstancesList.labeled_frame"]], "make_default() (sleap.instance.pointarray class method)": [[10, "sleap.instance.PointArray.make_default"]], "make_instance_cattr() (in module sleap.instance)": [[10, "sleap.instance.make_instance_cattr"]], "matches() (sleap.instance.instance method)": [[10, "sleap.instance.Instance.matches"]], "matches() (sleap.instance.track method)": [[10, "sleap.instance.Track.matches"]], "merge_frames() (sleap.instance.labeledframe static method)": [[10, "sleap.instance.LabeledFrame.merge_frames"]], "midpoint (sleap.instance.instance property)": [[10, "sleap.instance.Instance.midpoint"]], "n_predicted_instances (sleap.instance.labeledframe property)": [[10, "sleap.instance.LabeledFrame.n_predicted_instances"]], "n_tracked_instances (sleap.instance.labeledframe property)": [[10, "sleap.instance.LabeledFrame.n_tracked_instances"]], "n_user_instances (sleap.instance.labeledframe property)": [[10, "sleap.instance.LabeledFrame.n_user_instances"]], "n_visible_points (sleap.instance.instance property)": [[10, "sleap.instance.Instance.n_visible_points"]], "nodes (sleap.instance.instance property)": [[10, "sleap.instance.Instance.nodes"]], "nodes_points (sleap.instance.instance property)": [[10, "sleap.instance.Instance.nodes_points"]], "numpy() (sleap.instance.instance method)": [[10, "sleap.instance.Instance.numpy"]], "numpy() (sleap.instance.labeledframe method)": [[10, "sleap.instance.LabeledFrame.numpy"]], "numpy() (sleap.instance.point method)": [[10, "sleap.instance.Point.numpy"]], "plot() (sleap.instance.labeledframe method)": [[10, "sleap.instance.LabeledFrame.plot"]], "plot_predicted() (sleap.instance.labeledframe method)": [[10, "sleap.instance.LabeledFrame.plot_predicted"]], "points (sleap.instance.instance property)": [[10, "sleap.instance.Instance.points"]], "points_and_scores_array (sleap.instance.predictedinstance property)": [[10, "sleap.instance.PredictedInstance.points_and_scores_array"]], "points_array (sleap.instance.instance property)": [[10, "sleap.instance.Instance.points_array"]], "pop() (sleap.instance.instanceslist method)": [[10, "sleap.instance.InstancesList.pop"]], "predicted_instances (sleap.instance.labeledframe property)": [[10, "sleap.instance.LabeledFrame.predicted_instances"]], "remove() (sleap.instance.instanceslist method)": [[10, "sleap.instance.InstancesList.remove"]], "remove_empty_instances() (sleap.instance.labeledframe method)": [[10, "sleap.instance.LabeledFrame.remove_empty_instances"]], "remove_untracked() (sleap.instance.labeledframe method)": [[10, "sleap.instance.LabeledFrame.remove_untracked"]], "scores (sleap.instance.predictedinstance property)": [[10, "sleap.instance.PredictedInstance.scores"]], "sleap.instance": [[10, "module-sleap.instance"]], "to_array() (sleap.instance.predictedpointarray class method)": [[10, "sleap.instance.PredictedPointArray.to_array"]], "tracked_instances (sleap.instance.labeledframe property)": [[10, "sleap.instance.LabeledFrame.tracked_instances"]], "training_instances (sleap.instance.labeledframe property)": [[10, "sleap.instance.LabeledFrame.training_instances"]], "transform_points() (sleap.instance.instance method)": [[10, "sleap.instance.Instance.transform_points"]], "unused_predictions (sleap.instance.labeledframe property)": [[10, "sleap.instance.LabeledFrame.unused_predictions"]], "user_instances (sleap.instance.labeledframe property)": [[10, "sleap.instance.LabeledFrame.user_instances"]], "video (sleap.instance.instance property)": [[10, "sleap.instance.Instance.video"]], "main() (in module sleap.io.convert)": [[11, "sleap.io.convert.main"]], "sleap.io.convert": [[11, "module-sleap.io.convert"]], "labels (class in sleap.io.dataset)": [[12, "sleap.io.dataset.Labels"]], "labelsdatacache (class in sleap.io.dataset)": [[12, "sleap.io.dataset.LabelsDataCache"]], "add_instance() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.add_instance"]], "add_instance() (sleap.io.dataset.labelsdatacache method)": [[12, "sleap.io.dataset.LabelsDataCache.add_instance"]], "add_suggestion() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.add_suggestion"]], "add_track() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.add_track"]], "add_track() (sleap.io.dataset.labelsdatacache method)": [[12, "sleap.io.dataset.LabelsDataCache.add_track"]], "add_video() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.add_video"]], "all_instances (sleap.io.dataset.labels property)": [[12, "sleap.io.dataset.Labels.all_instances"]], "append() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.append"]], "append_suggestions() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.append_suggestions"]], "clear_suggestions() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.clear_suggestions"]], "complex_merge_between() (sleap.io.dataset.labels class method)": [[12, "sleap.io.dataset.Labels.complex_merge_between"]], "copy() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.copy"]], "delete_suggestions() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.delete_suggestions"]], "describe() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.describe"]], "export() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.export"]], "export_csv() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.export_csv"]], "export_nwb() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.export_nwb"]], "extend_from() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.extend_from"]], "extract() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.extract"]], "find() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.find"]], "find_fancy_frame_idxs() (sleap.io.dataset.labelsdatacache method)": [[12, "sleap.io.dataset.LabelsDataCache.find_fancy_frame_idxs"]], "find_first() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.find_first"]], "find_frames() (sleap.io.dataset.labelsdatacache method)": [[12, "sleap.io.dataset.LabelsDataCache.find_frames"]], "find_last() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.find_last"]], "find_path_using_paths() (in module sleap.io.dataset)": [[12, "sleap.io.dataset.find_path_using_paths"]], "find_suggestion() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.find_suggestion"]], "find_track_occupancy() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.find_track_occupancy"]], "finish_complex_merge() (sleap.io.dataset.labels static method)": [[12, "sleap.io.dataset.Labels.finish_complex_merge"]], "frames() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.frames"]], "get() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.get"]], "get_filtered_frame_idxs() (sleap.io.dataset.labelsdatacache method)": [[12, "sleap.io.dataset.LabelsDataCache.get_filtered_frame_idxs"]], "get_frame_count() (sleap.io.dataset.labelsdatacache method)": [[12, "sleap.io.dataset.LabelsDataCache.get_frame_count"]], "get_next_suggestion() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.get_next_suggestion"]], "get_suggestions() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.get_suggestions"]], "get_track_count() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.get_track_count"]], "get_track_occupancy() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.get_track_occupancy"]], "get_track_occupancy() (sleap.io.dataset.labelsdatacache method)": [[12, "sleap.io.dataset.LabelsDataCache.get_track_occupancy"]], "get_unlabeled_suggestion_inds() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.get_unlabeled_suggestion_inds"]], "get_video_suggestions() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.get_video_suggestions"]], "get_video_track_occupancy() (sleap.io.dataset.labelsdatacache method)": [[12, "sleap.io.dataset.LabelsDataCache.get_video_track_occupancy"]], "has_frame() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.has_frame"]], "has_missing_videos (sleap.io.dataset.labels property)": [[12, "sleap.io.dataset.Labels.has_missing_videos"]], "index() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.index"]], "insert() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.insert"]], "instance_count() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.instance_count"]], "instances() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.instances"]], "is_multi_instance (sleap.io.dataset.labels property)": [[12, "sleap.io.dataset.Labels.is_multi_instance"]], "labeled_frames (sleap.io.dataset.labels attribute)": [[12, "sleap.io.dataset.Labels.labeled_frames"]], "labels (sleap.io.dataset.labels property)": [[12, "sleap.io.dataset.Labels.labels"]], "load_file() (in module sleap.io.dataset)": [[12, "sleap.io.dataset.load_file"]], "load_file() (sleap.io.dataset.labels class method)": [[12, "sleap.io.dataset.Labels.load_file"]], "make_video_callback() (sleap.io.dataset.labels class method)": [[12, "sleap.io.dataset.Labels.make_video_callback"]], "merge_container_dicts() (sleap.io.dataset.labels static method)": [[12, "sleap.io.dataset.Labels.merge_container_dicts"]], "merge_matching_frames() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.merge_matching_frames"]], "merge_nodes() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.merge_nodes"]], "negative_anchors (sleap.io.dataset.labels attribute)": [[12, "sleap.io.dataset.Labels.negative_anchors"]], "numpy() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.numpy"]], "predicted_instances (sleap.io.dataset.labels property)": [[12, "sleap.io.dataset.Labels.predicted_instances"]], "provenance (sleap.io.dataset.labels attribute)": [[12, "sleap.io.dataset.Labels.provenance"]], "remove() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.remove"]], "remove_all_tracks() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.remove_all_tracks"]], "remove_empty_frames() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.remove_empty_frames"]], "remove_empty_instances() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.remove_empty_instances"]], "remove_frame() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.remove_frame"]], "remove_frame() (sleap.io.dataset.labelsdatacache method)": [[12, "sleap.io.dataset.LabelsDataCache.remove_frame"]], "remove_frames() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.remove_frames"]], "remove_instance() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.remove_instance"]], "remove_instance() (sleap.io.dataset.labelsdatacache method)": [[12, "sleap.io.dataset.LabelsDataCache.remove_instance"]], "remove_predictions() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.remove_predictions"]], "remove_suggestion() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.remove_suggestion"]], "remove_track() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.remove_track"]], "remove_untracked_instances() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.remove_untracked_instances"]], "remove_unused_tracks() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.remove_unused_tracks"]], "remove_user_instances() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.remove_user_instances"]], "remove_video() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.remove_video"]], "remove_video() (sleap.io.dataset.labelsdatacache method)": [[12, "sleap.io.dataset.LabelsDataCache.remove_video"]], "save() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.save"]], "save_file() (sleap.io.dataset.labels class method)": [[12, "sleap.io.dataset.Labels.save_file"]], "save_frame_data_hdf5() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.save_frame_data_hdf5"]], "save_frame_data_imgstore() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.save_frame_data_imgstore"]], "set_suggestions() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.set_suggestions"]], "skeleton (sleap.io.dataset.labels property)": [[12, "sleap.io.dataset.Labels.skeleton"]], "skeletons (sleap.io.dataset.labels attribute)": [[12, "sleap.io.dataset.Labels.skeletons"]], "sleap.io.dataset": [[12, "module-sleap.io.dataset"]], "split() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.split"]], "suggestions (sleap.io.dataset.labels attribute)": [[12, "sleap.io.dataset.Labels.suggestions"]], "to_dict() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.to_dict"]], "to_json() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.to_json"]], "to_pipeline() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.to_pipeline"]], "track_set_instance() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.track_set_instance"]], "track_swap() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.track_swap"]], "track_swap() (sleap.io.dataset.labelsdatacache method)": [[12, "sleap.io.dataset.LabelsDataCache.track_swap"]], "tracks (sleap.io.dataset.labels attribute)": [[12, "sleap.io.dataset.Labels.tracks"]], "unlabeled_suggestions (sleap.io.dataset.labels property)": [[12, "sleap.io.dataset.Labels.unlabeled_suggestions"]], "update() (sleap.io.dataset.labelsdatacache method)": [[12, "sleap.io.dataset.LabelsDataCache.update"]], "update_counts_for_frame() (sleap.io.dataset.labelsdatacache method)": [[12, "sleap.io.dataset.LabelsDataCache.update_counts_for_frame"]], "user_instances (sleap.io.dataset.labels property)": [[12, "sleap.io.dataset.Labels.user_instances"]], "user_labeled_frame_inds (sleap.io.dataset.labels property)": [[12, "sleap.io.dataset.Labels.user_labeled_frame_inds"]], "user_labeled_frames (sleap.io.dataset.labels property)": [[12, "sleap.io.dataset.Labels.user_labeled_frames"]], "video (sleap.io.dataset.labels property)": [[12, "sleap.io.dataset.Labels.video"]], "videos (sleap.io.dataset.labels attribute)": [[12, "sleap.io.dataset.Labels.videos"]], "with_user_labels_only() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.with_user_labels_only"]], "adaptor (class in sleap.io.format.adaptor)": [[13, "sleap.io.format.adaptor.Adaptor"]], "sleapobjecttype (class in sleap.io.format.adaptor)": [[13, "sleap.io.format.adaptor.SleapObjectType"]], "all_exts (sleap.io.format.adaptor.adaptor property)": [[13, "sleap.io.format.adaptor.Adaptor.all_exts"]], "can_read_file() (sleap.io.format.adaptor.adaptor method)": [[13, "sleap.io.format.adaptor.Adaptor.can_read_file"]], "can_write_filename() (sleap.io.format.adaptor.adaptor method)": [[13, "sleap.io.format.adaptor.Adaptor.can_write_filename"]], "default_ext (sleap.io.format.adaptor.adaptor property)": [[13, "sleap.io.format.adaptor.Adaptor.default_ext"]], "does_match_ext() (sleap.io.format.adaptor.adaptor method)": [[13, "sleap.io.format.adaptor.Adaptor.does_match_ext"]], "does_read() (sleap.io.format.adaptor.adaptor method)": [[13, "sleap.io.format.adaptor.Adaptor.does_read"]], "does_write() (sleap.io.format.adaptor.adaptor method)": [[13, "sleap.io.format.adaptor.Adaptor.does_write"]], "formatted_ext_options (sleap.io.format.adaptor.adaptor property)": [[13, "sleap.io.format.adaptor.Adaptor.formatted_ext_options"]], "handles (sleap.io.format.adaptor.adaptor property)": [[13, "sleap.io.format.adaptor.Adaptor.handles"]], "name (sleap.io.format.adaptor.adaptor property)": [[13, "sleap.io.format.adaptor.Adaptor.name"]], "read() (sleap.io.format.adaptor.adaptor method)": [[13, "sleap.io.format.adaptor.Adaptor.read"]], "sleap.io.format.adaptor": [[13, "module-sleap.io.format.adaptor"]], "write() (sleap.io.format.adaptor.adaptor method)": [[13, "sleap.io.format.adaptor.Adaptor.write"]], "alphatrackeradaptor (class in sleap.io.format.alphatracker)": [[14, "sleap.io.format.alphatracker.AlphaTrackerAdaptor"]], "all_exts (sleap.io.format.alphatracker.alphatrackeradaptor property)": [[14, "sleap.io.format.alphatracker.AlphaTrackerAdaptor.all_exts"]], "can_read_file() (sleap.io.format.alphatracker.alphatrackeradaptor method)": [[14, "sleap.io.format.alphatracker.AlphaTrackerAdaptor.can_read_file"]], "can_write_filename() (sleap.io.format.alphatracker.alphatrackeradaptor method)": [[14, "sleap.io.format.alphatracker.AlphaTrackerAdaptor.can_write_filename"]], "default_ext (sleap.io.format.alphatracker.alphatrackeradaptor property)": [[14, "sleap.io.format.alphatracker.AlphaTrackerAdaptor.default_ext"]], "does_match_ext() (sleap.io.format.alphatracker.alphatrackeradaptor method)": [[14, "sleap.io.format.alphatracker.AlphaTrackerAdaptor.does_match_ext"]], "does_read() (sleap.io.format.alphatracker.alphatrackeradaptor method)": [[14, "sleap.io.format.alphatracker.AlphaTrackerAdaptor.does_read"]], "does_write() (sleap.io.format.alphatracker.alphatrackeradaptor method)": [[14, "sleap.io.format.alphatracker.AlphaTrackerAdaptor.does_write"]], "formatted_ext_options (sleap.io.format.alphatracker.alphatrackeradaptor property)": [[14, "sleap.io.format.alphatracker.AlphaTrackerAdaptor.formatted_ext_options"]], "get_alpha_tracker_frame_dict() (sleap.io.format.alphatracker.alphatrackeradaptor method)": [[14, "sleap.io.format.alphatracker.AlphaTrackerAdaptor.get_alpha_tracker_frame_dict"]], "get_alpha_tracker_instance_dict() (sleap.io.format.alphatracker.alphatrackeradaptor method)": [[14, "sleap.io.format.alphatracker.AlphaTrackerAdaptor.get_alpha_tracker_instance_dict"]], "get_alpha_tracker_point_dict() (sleap.io.format.alphatracker.alphatrackeradaptor method)": [[14, "sleap.io.format.alphatracker.AlphaTrackerAdaptor.get_alpha_tracker_point_dict"]], "handles (sleap.io.format.alphatracker.alphatrackeradaptor property)": [[14, "sleap.io.format.alphatracker.AlphaTrackerAdaptor.handles"]], "make_video_for_image_list() (sleap.io.format.alphatracker.alphatrackeradaptor method)": [[14, "sleap.io.format.alphatracker.AlphaTrackerAdaptor.make_video_for_image_list"]], "name (sleap.io.format.alphatracker.alphatrackeradaptor property)": [[14, "sleap.io.format.alphatracker.AlphaTrackerAdaptor.name"]], "read() (sleap.io.format.alphatracker.alphatrackeradaptor method)": [[14, "sleap.io.format.alphatracker.AlphaTrackerAdaptor.read"]], "sleap.io.format.alphatracker": [[14, "module-sleap.io.format.alphatracker"]], "write() (sleap.io.format.alphatracker.alphatrackeradaptor method)": [[14, "sleap.io.format.alphatracker.AlphaTrackerAdaptor.write"]], "labelscocoadaptor (class in sleap.io.format.coco)": [[15, "sleap.io.format.coco.LabelsCocoAdaptor"]], "all_exts (sleap.io.format.coco.labelscocoadaptor property)": [[15, "sleap.io.format.coco.LabelsCocoAdaptor.all_exts"]], "can_read_file() (sleap.io.format.coco.labelscocoadaptor method)": [[15, "sleap.io.format.coco.LabelsCocoAdaptor.can_read_file"]], "can_write_filename() (sleap.io.format.coco.labelscocoadaptor method)": [[15, "sleap.io.format.coco.LabelsCocoAdaptor.can_write_filename"]], "default_ext (sleap.io.format.coco.labelscocoadaptor property)": [[15, "sleap.io.format.coco.LabelsCocoAdaptor.default_ext"]], "does_read() (sleap.io.format.coco.labelscocoadaptor method)": [[15, "sleap.io.format.coco.LabelsCocoAdaptor.does_read"]], "does_write() (sleap.io.format.coco.labelscocoadaptor method)": [[15, "sleap.io.format.coco.LabelsCocoAdaptor.does_write"]], "handles (sleap.io.format.coco.labelscocoadaptor property)": [[15, "sleap.io.format.coco.LabelsCocoAdaptor.handles"]], "name (sleap.io.format.coco.labelscocoadaptor property)": [[15, "sleap.io.format.coco.LabelsCocoAdaptor.name"]], "read() (sleap.io.format.coco.labelscocoadaptor class method)": [[15, "sleap.io.format.coco.LabelsCocoAdaptor.read"]], "sleap.io.format.coco": [[15, "module-sleap.io.format.coco"]], "csvadaptor (class in sleap.io.format.csv)": [[16, "sleap.io.format.csv.CSVAdaptor"]], "all_exts (sleap.io.format.csv.csvadaptor property)": [[16, "sleap.io.format.csv.CSVAdaptor.all_exts"]], "can_read_file() (sleap.io.format.csv.csvadaptor method)": [[16, "sleap.io.format.csv.CSVAdaptor.can_read_file"]], "can_write_filename() (sleap.io.format.csv.csvadaptor method)": [[16, "sleap.io.format.csv.CSVAdaptor.can_write_filename"]], "default_ext (sleap.io.format.csv.csvadaptor property)": [[16, "sleap.io.format.csv.CSVAdaptor.default_ext"]], "does_read() (sleap.io.format.csv.csvadaptor method)": [[16, "sleap.io.format.csv.CSVAdaptor.does_read"]], "does_write() (sleap.io.format.csv.csvadaptor method)": [[16, "sleap.io.format.csv.CSVAdaptor.does_write"]], "handles (sleap.io.format.csv.csvadaptor property)": [[16, "sleap.io.format.csv.CSVAdaptor.handles"]], "name (sleap.io.format.csv.csvadaptor property)": [[16, "sleap.io.format.csv.CSVAdaptor.name"]], "sleap.io.format.csv": [[16, "module-sleap.io.format.csv"]], "write() (sleap.io.format.csv.csvadaptor class method)": [[16, "sleap.io.format.csv.CSVAdaptor.write"]], "labelsdeeplabcutcsvadaptor (class in sleap.io.format.deeplabcut)": [[17, "sleap.io.format.deeplabcut.LabelsDeepLabCutCsvAdaptor"]], "labelsdeeplabcutyamladaptor (class in sleap.io.format.deeplabcut)": [[17, "sleap.io.format.deeplabcut.LabelsDeepLabCutYamlAdaptor"]], "all_exts (sleap.io.format.deeplabcut.labelsdeeplabcutcsvadaptor property)": [[17, "sleap.io.format.deeplabcut.LabelsDeepLabCutCsvAdaptor.all_exts"]], "all_exts (sleap.io.format.deeplabcut.labelsdeeplabcutyamladaptor property)": [[17, "sleap.io.format.deeplabcut.LabelsDeepLabCutYamlAdaptor.all_exts"]], "can_read_file() (sleap.io.format.deeplabcut.labelsdeeplabcutcsvadaptor method)": [[17, "sleap.io.format.deeplabcut.LabelsDeepLabCutCsvAdaptor.can_read_file"]], "can_read_file() (sleap.io.format.deeplabcut.labelsdeeplabcutyamladaptor method)": [[17, "sleap.io.format.deeplabcut.LabelsDeepLabCutYamlAdaptor.can_read_file"]], "can_write_filename() (sleap.io.format.deeplabcut.labelsdeeplabcutcsvadaptor method)": [[17, "sleap.io.format.deeplabcut.LabelsDeepLabCutCsvAdaptor.can_write_filename"]], "can_write_filename() (sleap.io.format.deeplabcut.labelsdeeplabcutyamladaptor method)": [[17, "sleap.io.format.deeplabcut.LabelsDeepLabCutYamlAdaptor.can_write_filename"]], "default_ext (sleap.io.format.deeplabcut.labelsdeeplabcutcsvadaptor property)": [[17, "sleap.io.format.deeplabcut.LabelsDeepLabCutCsvAdaptor.default_ext"]], "default_ext (sleap.io.format.deeplabcut.labelsdeeplabcutyamladaptor property)": [[17, "sleap.io.format.deeplabcut.LabelsDeepLabCutYamlAdaptor.default_ext"]], "does_read() (sleap.io.format.deeplabcut.labelsdeeplabcutcsvadaptor method)": [[17, "sleap.io.format.deeplabcut.LabelsDeepLabCutCsvAdaptor.does_read"]], "does_read() (sleap.io.format.deeplabcut.labelsdeeplabcutyamladaptor method)": [[17, "sleap.io.format.deeplabcut.LabelsDeepLabCutYamlAdaptor.does_read"]], "does_write() (sleap.io.format.deeplabcut.labelsdeeplabcutcsvadaptor method)": [[17, "sleap.io.format.deeplabcut.LabelsDeepLabCutCsvAdaptor.does_write"]], "does_write() (sleap.io.format.deeplabcut.labelsdeeplabcutyamladaptor method)": [[17, "sleap.io.format.deeplabcut.LabelsDeepLabCutYamlAdaptor.does_write"]], "handles (sleap.io.format.deeplabcut.labelsdeeplabcutcsvadaptor property)": [[17, "sleap.io.format.deeplabcut.LabelsDeepLabCutCsvAdaptor.handles"]], "handles (sleap.io.format.deeplabcut.labelsdeeplabcutyamladaptor property)": [[17, "sleap.io.format.deeplabcut.LabelsDeepLabCutYamlAdaptor.handles"]], "make_video_for_image_list() (sleap.io.format.deeplabcut.labelsdeeplabcutcsvadaptor class method)": [[17, "sleap.io.format.deeplabcut.LabelsDeepLabCutCsvAdaptor.make_video_for_image_list"]], "name (sleap.io.format.deeplabcut.labelsdeeplabcutcsvadaptor property)": [[17, "sleap.io.format.deeplabcut.LabelsDeepLabCutCsvAdaptor.name"]], "name (sleap.io.format.deeplabcut.labelsdeeplabcutyamladaptor property)": [[17, "sleap.io.format.deeplabcut.LabelsDeepLabCutYamlAdaptor.name"]], "read() (sleap.io.format.deeplabcut.labelsdeeplabcutcsvadaptor class method)": [[17, "sleap.io.format.deeplabcut.LabelsDeepLabCutCsvAdaptor.read"]], "read() (sleap.io.format.deeplabcut.labelsdeeplabcutyamladaptor class method)": [[17, "sleap.io.format.deeplabcut.LabelsDeepLabCutYamlAdaptor.read"]], "sleap.io.format.deeplabcut": [[17, "module-sleap.io.format.deeplabcut"]], "labelsdeepposekitadaptor (class in sleap.io.format.deepposekit)": [[18, "sleap.io.format.deepposekit.LabelsDeepPoseKitAdaptor"]], "all_exts (sleap.io.format.deepposekit.labelsdeepposekitadaptor property)": [[18, "sleap.io.format.deepposekit.LabelsDeepPoseKitAdaptor.all_exts"]], "can_read_file() (sleap.io.format.deepposekit.labelsdeepposekitadaptor method)": [[18, "sleap.io.format.deepposekit.LabelsDeepPoseKitAdaptor.can_read_file"]], "can_write_filename() (sleap.io.format.deepposekit.labelsdeepposekitadaptor method)": [[18, "sleap.io.format.deepposekit.LabelsDeepPoseKitAdaptor.can_write_filename"]], "default_ext (sleap.io.format.deepposekit.labelsdeepposekitadaptor property)": [[18, "sleap.io.format.deepposekit.LabelsDeepPoseKitAdaptor.default_ext"]], "does_read() (sleap.io.format.deepposekit.labelsdeepposekitadaptor method)": [[18, "sleap.io.format.deepposekit.LabelsDeepPoseKitAdaptor.does_read"]], "does_write() (sleap.io.format.deepposekit.labelsdeepposekitadaptor method)": [[18, "sleap.io.format.deepposekit.LabelsDeepPoseKitAdaptor.does_write"]], "handles (sleap.io.format.deepposekit.labelsdeepposekitadaptor property)": [[18, "sleap.io.format.deepposekit.LabelsDeepPoseKitAdaptor.handles"]], "name (sleap.io.format.deepposekit.labelsdeepposekitadaptor property)": [[18, "sleap.io.format.deepposekit.LabelsDeepPoseKitAdaptor.name"]], "read() (sleap.io.format.deepposekit.labelsdeepposekitadaptor class method)": [[18, "sleap.io.format.deepposekit.LabelsDeepPoseKitAdaptor.read"]], "sleap.io.format.deepposekit": [[18, "module-sleap.io.format.deepposekit"]], "sleap.io.format.dispatch": [[19, "module-sleap.io.format.dispatch"]], "filehandle (class in sleap.io.format.filehandle)": [[20, "sleap.io.format.filehandle.FileHandle"]], "close() (sleap.io.format.filehandle.filehandle method)": [[20, "sleap.io.format.filehandle.FileHandle.close"]], "file (sleap.io.format.filehandle.filehandle property)": [[20, "sleap.io.format.filehandle.FileHandle.file"]], "format_id (sleap.io.format.filehandle.filehandle property)": [[20, "sleap.io.format.filehandle.FileHandle.format_id"]], "is_hdf5 (sleap.io.format.filehandle.filehandle property)": [[20, "sleap.io.format.filehandle.FileHandle.is_hdf5"]], "is_json (sleap.io.format.filehandle.filehandle property)": [[20, "sleap.io.format.filehandle.FileHandle.is_json"]], "json (sleap.io.format.filehandle.filehandle property)": [[20, "sleap.io.format.filehandle.FileHandle.json"]], "open() (sleap.io.format.filehandle.filehandle method)": [[20, "sleap.io.format.filehandle.FileHandle.open"]], "sleap.io.format.filehandle": [[20, "module-sleap.io.format.filehandle"]], "text (sleap.io.format.filehandle.filehandle property)": [[20, "sleap.io.format.filehandle.FileHandle.text"]], "genericjsonadaptor (class in sleap.io.format.genericjson)": [[21, "sleap.io.format.genericjson.GenericJsonAdaptor"]], "all_exts (sleap.io.format.genericjson.genericjsonadaptor property)": [[21, "sleap.io.format.genericjson.GenericJsonAdaptor.all_exts"]], "can_read_file() (sleap.io.format.genericjson.genericjsonadaptor method)": [[21, "sleap.io.format.genericjson.GenericJsonAdaptor.can_read_file"]], "can_write_filename() (sleap.io.format.genericjson.genericjsonadaptor method)": [[21, "sleap.io.format.genericjson.GenericJsonAdaptor.can_write_filename"]], "default_ext (sleap.io.format.genericjson.genericjsonadaptor property)": [[21, "sleap.io.format.genericjson.GenericJsonAdaptor.default_ext"]], "does_read() (sleap.io.format.genericjson.genericjsonadaptor method)": [[21, "sleap.io.format.genericjson.GenericJsonAdaptor.does_read"]], "does_write() (sleap.io.format.genericjson.genericjsonadaptor method)": [[21, "sleap.io.format.genericjson.GenericJsonAdaptor.does_write"]], "handles (sleap.io.format.genericjson.genericjsonadaptor property)": [[21, "sleap.io.format.genericjson.GenericJsonAdaptor.handles"]], "name (sleap.io.format.genericjson.genericjsonadaptor property)": [[21, "sleap.io.format.genericjson.GenericJsonAdaptor.name"]], "read() (sleap.io.format.genericjson.genericjsonadaptor method)": [[21, "sleap.io.format.genericjson.GenericJsonAdaptor.read"]], "sleap.io.format.genericjson": [[21, "module-sleap.io.format.genericjson"]], "write() (sleap.io.format.genericjson.genericjsonadaptor method)": [[21, "sleap.io.format.genericjson.GenericJsonAdaptor.write"]], "labelsv1adaptor (class in sleap.io.format.hdf5)": [[22, "sleap.io.format.hdf5.LabelsV1Adaptor"]], "all_exts (sleap.io.format.hdf5.labelsv1adaptor property)": [[22, "sleap.io.format.hdf5.LabelsV1Adaptor.all_exts"]], "can_read_file() (sleap.io.format.hdf5.labelsv1adaptor method)": [[22, "sleap.io.format.hdf5.LabelsV1Adaptor.can_read_file"]], "can_write_filename() (sleap.io.format.hdf5.labelsv1adaptor method)": [[22, "sleap.io.format.hdf5.LabelsV1Adaptor.can_write_filename"]], "default_ext (sleap.io.format.hdf5.labelsv1adaptor property)": [[22, "sleap.io.format.hdf5.LabelsV1Adaptor.default_ext"]], "does_read() (sleap.io.format.hdf5.labelsv1adaptor method)": [[22, "sleap.io.format.hdf5.LabelsV1Adaptor.does_read"]], "does_write() (sleap.io.format.hdf5.labelsv1adaptor method)": [[22, "sleap.io.format.hdf5.LabelsV1Adaptor.does_write"]], "handles (sleap.io.format.hdf5.labelsv1adaptor property)": [[22, "sleap.io.format.hdf5.LabelsV1Adaptor.handles"]], "name (sleap.io.format.hdf5.labelsv1adaptor property)": [[22, "sleap.io.format.hdf5.LabelsV1Adaptor.name"]], "read() (sleap.io.format.hdf5.labelsv1adaptor class method)": [[22, "sleap.io.format.hdf5.LabelsV1Adaptor.read"]], "sleap.io.format.hdf5": [[22, "module-sleap.io.format.hdf5"]], "write() (sleap.io.format.hdf5.labelsv1adaptor class method)": [[22, "sleap.io.format.hdf5.LabelsV1Adaptor.write"]], "labelsjsonadaptor (class in sleap.io.format.labels_json)": [[23, "sleap.io.format.labels_json.LabelsJsonAdaptor"]], "all_exts (sleap.io.format.labels_json.labelsjsonadaptor property)": [[23, "sleap.io.format.labels_json.LabelsJsonAdaptor.all_exts"]], "can_read_file() (sleap.io.format.labels_json.labelsjsonadaptor method)": [[23, "sleap.io.format.labels_json.LabelsJsonAdaptor.can_read_file"]], "can_write_filename() (sleap.io.format.labels_json.labelsjsonadaptor method)": [[23, "sleap.io.format.labels_json.LabelsJsonAdaptor.can_write_filename"]], "default_ext (sleap.io.format.labels_json.labelsjsonadaptor property)": [[23, "sleap.io.format.labels_json.LabelsJsonAdaptor.default_ext"]], "does_read() (sleap.io.format.labels_json.labelsjsonadaptor method)": [[23, "sleap.io.format.labels_json.LabelsJsonAdaptor.does_read"]], "does_write() (sleap.io.format.labels_json.labelsjsonadaptor method)": [[23, "sleap.io.format.labels_json.LabelsJsonAdaptor.does_write"]], "from_json_data() (sleap.io.format.labels_json.labelsjsonadaptor class method)": [[23, "sleap.io.format.labels_json.LabelsJsonAdaptor.from_json_data"]], "handles (sleap.io.format.labels_json.labelsjsonadaptor property)": [[23, "sleap.io.format.labels_json.LabelsJsonAdaptor.handles"]], "name (sleap.io.format.labels_json.labelsjsonadaptor property)": [[23, "sleap.io.format.labels_json.LabelsJsonAdaptor.name"]], "read() (sleap.io.format.labels_json.labelsjsonadaptor class method)": [[23, "sleap.io.format.labels_json.LabelsJsonAdaptor.read"]], "sleap.io.format.labels_json": [[23, "module-sleap.io.format.labels_json"]], "write() (sleap.io.format.labels_json.labelsjsonadaptor class method)": [[23, "sleap.io.format.labels_json.LabelsJsonAdaptor.write"]], "labelsleapmatlabadaptor (class in sleap.io.format.leap_matlab)": [[24, "sleap.io.format.leap_matlab.LabelsLeapMatlabAdaptor"]], "all_exts (sleap.io.format.leap_matlab.labelsleapmatlabadaptor property)": [[24, "sleap.io.format.leap_matlab.LabelsLeapMatlabAdaptor.all_exts"]], "can_read_file() (sleap.io.format.leap_matlab.labelsleapmatlabadaptor method)": [[24, "sleap.io.format.leap_matlab.LabelsLeapMatlabAdaptor.can_read_file"]], "can_write_filename() (sleap.io.format.leap_matlab.labelsleapmatlabadaptor method)": [[24, "sleap.io.format.leap_matlab.LabelsLeapMatlabAdaptor.can_write_filename"]], "default_ext (sleap.io.format.leap_matlab.labelsleapmatlabadaptor property)": [[24, "sleap.io.format.leap_matlab.LabelsLeapMatlabAdaptor.default_ext"]], "does_read() (sleap.io.format.leap_matlab.labelsleapmatlabadaptor method)": [[24, "sleap.io.format.leap_matlab.LabelsLeapMatlabAdaptor.does_read"]], "does_write() (sleap.io.format.leap_matlab.labelsleapmatlabadaptor method)": [[24, "sleap.io.format.leap_matlab.LabelsLeapMatlabAdaptor.does_write"]], "handles (sleap.io.format.leap_matlab.labelsleapmatlabadaptor property)": [[24, "sleap.io.format.leap_matlab.LabelsLeapMatlabAdaptor.handles"]], "name (sleap.io.format.leap_matlab.labelsleapmatlabadaptor property)": [[24, "sleap.io.format.leap_matlab.LabelsLeapMatlabAdaptor.name"]], "read() (sleap.io.format.leap_matlab.labelsleapmatlabadaptor class method)": [[24, "sleap.io.format.leap_matlab.LabelsLeapMatlabAdaptor.read"]], "sleap.io.format.leap_matlab": [[24, "module-sleap.io.format.leap_matlab"]], "read() (in module sleap.io.format.main)": [[25, "sleap.io.format.main.read"]], "sleap.io.format.main": [[25, "module-sleap.io.format.main"]], "write() (in module sleap.io.format.main)": [[25, "sleap.io.format.main.write"]], "ndxposeadaptor (class in sleap.io.format.ndx_pose)": [[26, "sleap.io.format.ndx_pose.NDXPoseAdaptor"]], "all_exts (sleap.io.format.ndx_pose.ndxposeadaptor property)": [[26, "sleap.io.format.ndx_pose.NDXPoseAdaptor.all_exts"]], "can_read_file() (sleap.io.format.ndx_pose.ndxposeadaptor method)": [[26, "sleap.io.format.ndx_pose.NDXPoseAdaptor.can_read_file"]], "can_write_filename() (sleap.io.format.ndx_pose.ndxposeadaptor method)": [[26, "sleap.io.format.ndx_pose.NDXPoseAdaptor.can_write_filename"]], "default_ext (sleap.io.format.ndx_pose.ndxposeadaptor property)": [[26, "sleap.io.format.ndx_pose.NDXPoseAdaptor.default_ext"]], "does_read() (sleap.io.format.ndx_pose.ndxposeadaptor method)": [[26, "sleap.io.format.ndx_pose.NDXPoseAdaptor.does_read"]], "does_write() (sleap.io.format.ndx_pose.ndxposeadaptor method)": [[26, "sleap.io.format.ndx_pose.NDXPoseAdaptor.does_write"]], "handles (sleap.io.format.ndx_pose.ndxposeadaptor property)": [[26, "sleap.io.format.ndx_pose.NDXPoseAdaptor.handles"]], "name (sleap.io.format.ndx_pose.ndxposeadaptor property)": [[26, "sleap.io.format.ndx_pose.NDXPoseAdaptor.name"]], "read() (sleap.io.format.ndx_pose.ndxposeadaptor method)": [[26, "sleap.io.format.ndx_pose.NDXPoseAdaptor.read"]], "sleap.io.format.ndx_pose": [[26, "module-sleap.io.format.ndx_pose"]], "write() (sleap.io.format.ndx_pose.ndxposeadaptor method)": [[26, "sleap.io.format.ndx_pose.NDXPoseAdaptor.write"]], "nixadaptor (class in sleap.io.format.nix)": [[27, "sleap.io.format.nix.NixAdaptor"]], "all_exts (sleap.io.format.nix.nixadaptor property)": [[27, "sleap.io.format.nix.NixAdaptor.all_exts"]], "can_read_file() (sleap.io.format.nix.nixadaptor class method)": [[27, "sleap.io.format.nix.NixAdaptor.can_read_file"]], "can_write_filename() (sleap.io.format.nix.nixadaptor method)": [[27, "sleap.io.format.nix.NixAdaptor.can_write_filename"]], "default_ext (sleap.io.format.nix.nixadaptor property)": [[27, "sleap.io.format.nix.NixAdaptor.default_ext"]], "does_read() (sleap.io.format.nix.nixadaptor class method)": [[27, "sleap.io.format.nix.NixAdaptor.does_read"]], "does_write() (sleap.io.format.nix.nixadaptor class method)": [[27, "sleap.io.format.nix.NixAdaptor.does_write"]], "handles (sleap.io.format.nix.nixadaptor property)": [[27, "sleap.io.format.nix.NixAdaptor.handles"]], "name (sleap.io.format.nix.nixadaptor property)": [[27, "sleap.io.format.nix.NixAdaptor.name"]], "read() (sleap.io.format.nix.nixadaptor class method)": [[27, "sleap.io.format.nix.NixAdaptor.read"]], "sleap.io.format.nix": [[27, "module-sleap.io.format.nix"]], "write() (sleap.io.format.nix.nixadaptor class method)": [[27, "sleap.io.format.nix.NixAdaptor.write"]], "sleapanalysisadaptor (class in sleap.io.format.sleap_analysis)": [[28, "sleap.io.format.sleap_analysis.SleapAnalysisAdaptor"]], "all_exts (sleap.io.format.sleap_analysis.sleapanalysisadaptor property)": [[28, "sleap.io.format.sleap_analysis.SleapAnalysisAdaptor.all_exts"]], "can_read_file() (sleap.io.format.sleap_analysis.sleapanalysisadaptor method)": [[28, "sleap.io.format.sleap_analysis.SleapAnalysisAdaptor.can_read_file"]], "can_write_filename() (sleap.io.format.sleap_analysis.sleapanalysisadaptor method)": [[28, "sleap.io.format.sleap_analysis.SleapAnalysisAdaptor.can_write_filename"]], "default_ext (sleap.io.format.sleap_analysis.sleapanalysisadaptor property)": [[28, "sleap.io.format.sleap_analysis.SleapAnalysisAdaptor.default_ext"]], "does_read() (sleap.io.format.sleap_analysis.sleapanalysisadaptor method)": [[28, "sleap.io.format.sleap_analysis.SleapAnalysisAdaptor.does_read"]], "does_write() (sleap.io.format.sleap_analysis.sleapanalysisadaptor method)": [[28, "sleap.io.format.sleap_analysis.SleapAnalysisAdaptor.does_write"]], "handles (sleap.io.format.sleap_analysis.sleapanalysisadaptor property)": [[28, "sleap.io.format.sleap_analysis.SleapAnalysisAdaptor.handles"]], "name (sleap.io.format.sleap_analysis.sleapanalysisadaptor property)": [[28, "sleap.io.format.sleap_analysis.SleapAnalysisAdaptor.name"]], "read() (sleap.io.format.sleap_analysis.sleapanalysisadaptor class method)": [[28, "sleap.io.format.sleap_analysis.SleapAnalysisAdaptor.read"]], "sleap.io.format.sleap_analysis": [[28, "module-sleap.io.format.sleap_analysis"]], "write() (sleap.io.format.sleap_analysis.sleapanalysisadaptor class method)": [[28, "sleap.io.format.sleap_analysis.SleapAnalysisAdaptor.write"]], "textadaptor (class in sleap.io.format.text)": [[29, "sleap.io.format.text.TextAdaptor"]], "all_exts (sleap.io.format.text.textadaptor property)": [[29, "sleap.io.format.text.TextAdaptor.all_exts"]], "can_read_file() (sleap.io.format.text.textadaptor method)": [[29, "sleap.io.format.text.TextAdaptor.can_read_file"]], "can_write_filename() (sleap.io.format.text.textadaptor method)": [[29, "sleap.io.format.text.TextAdaptor.can_write_filename"]], "default_ext (sleap.io.format.text.textadaptor property)": [[29, "sleap.io.format.text.TextAdaptor.default_ext"]], "does_read() (sleap.io.format.text.textadaptor method)": [[29, "sleap.io.format.text.TextAdaptor.does_read"]], "does_write() (sleap.io.format.text.textadaptor method)": [[29, "sleap.io.format.text.TextAdaptor.does_write"]], "handles (sleap.io.format.text.textadaptor property)": [[29, "sleap.io.format.text.TextAdaptor.handles"]], "name (sleap.io.format.text.textadaptor property)": [[29, "sleap.io.format.text.TextAdaptor.name"]], "read() (sleap.io.format.text.textadaptor method)": [[29, "sleap.io.format.text.TextAdaptor.read"]], "sleap.io.format.text": [[29, "module-sleap.io.format.text"]], "write() (sleap.io.format.text.textadaptor method)": [[29, "sleap.io.format.text.TextAdaptor.write"]], "load_labels_json_old() (in module sleap.io.legacy)": [[30, "sleap.io.legacy.load_labels_json_old"]], "load_predicted_labels_json_old() (in module sleap.io.legacy)": [[30, "sleap.io.legacy.load_predicted_labels_json_old"]], "sleap.io.legacy": [[30, "module-sleap.io.legacy"]], "filenames_prefix_change() (in module sleap.io.pathutils)": [[31, "sleap.io.pathutils.filenames_prefix_change"]], "find_changed_subpath() (in module sleap.io.pathutils)": [[31, "sleap.io.pathutils.find_changed_subpath"]], "list_file_missing() (in module sleap.io.pathutils)": [[31, "sleap.io.pathutils.list_file_missing"]], "sleap.io.pathutils": [[31, "module-sleap.io.pathutils"]], "dummyvideo (class in sleap.io.video)": [[32, "sleap.io.video.DummyVideo"]], "hdf5video (class in sleap.io.video)": [[32, "sleap.io.video.HDF5Video"]], "imgstorevideo (class in sleap.io.video)": [[32, "sleap.io.video.ImgStoreVideo"]], "mediavideo (class in sleap.io.video)": [[32, "sleap.io.video.MediaVideo"]], "numpyvideo (class in sleap.io.video)": [[32, "sleap.io.video.NumpyVideo"]], "singleimagevideo (class in sleap.io.video)": [[32, "sleap.io.video.SingleImageVideo"]], "video (class in sleap.io.video)": [[32, "sleap.io.video.Video"]], "available_video_exts() (in module sleap.io.video)": [[32, "sleap.io.video.available_video_exts"]], "cattr() (sleap.io.video.video static method)": [[32, "sleap.io.video.Video.cattr"]], "channels (sleap.io.video.hdf5video property)": [[32, "sleap.io.video.HDF5Video.channels"]], "channels (sleap.io.video.imgstorevideo property)": [[32, "sleap.io.video.ImgStoreVideo.channels"]], "channels (sleap.io.video.mediavideo property)": [[32, "sleap.io.video.MediaVideo.channels"]], "channels (sleap.io.video.numpyvideo property)": [[32, "sleap.io.video.NumpyVideo.channels"]], "channels (sleap.io.video.singleimagevideo property)": [[32, "sleap.io.video.SingleImageVideo.channels"]], "check() (sleap.io.video.hdf5video method)": [[32, "sleap.io.video.HDF5Video.check"]], "close() (sleap.io.video.hdf5video method)": [[32, "sleap.io.video.HDF5Video.close"]], "close() (sleap.io.video.imgstorevideo method)": [[32, "sleap.io.video.ImgStoreVideo.close"]], "dtype (sleap.io.video.hdf5video property)": [[32, "sleap.io.video.HDF5Video.dtype"]], "dtype (sleap.io.video.imgstorevideo property)": [[32, "sleap.io.video.ImgStoreVideo.dtype"]], "dtype (sleap.io.video.mediavideo property)": [[32, "sleap.io.video.MediaVideo.dtype"]], "dtype (sleap.io.video.numpyvideo property)": [[32, "sleap.io.video.NumpyVideo.dtype"]], "dtype (sleap.io.video.singleimagevideo property)": [[32, "sleap.io.video.SingleImageVideo.dtype"]], "embedded_frame_inds (sleap.io.video.hdf5video property)": [[32, "sleap.io.video.HDF5Video.embedded_frame_inds"]], "enable_source_video (sleap.io.video.hdf5video property)": [[32, "sleap.io.video.HDF5Video.enable_source_video"]], "fixup_path() (sleap.io.video.video static method)": [[32, "sleap.io.video.Video.fixup_path"]], "fps (sleap.io.video.mediavideo property)": [[32, "sleap.io.video.MediaVideo.fps"]], "frames (sleap.io.video.hdf5video property)": [[32, "sleap.io.video.HDF5Video.frames"]], "frames (sleap.io.video.imgstorevideo property)": [[32, "sleap.io.video.ImgStoreVideo.frames"]], "frames (sleap.io.video.mediavideo property)": [[32, "sleap.io.video.MediaVideo.frames"]], "frames (sleap.io.video.numpyvideo property)": [[32, "sleap.io.video.NumpyVideo.frames"]], "frames (sleap.io.video.singleimagevideo property)": [[32, "sleap.io.video.SingleImageVideo.frames"]], "from_filename() (sleap.io.video.video class method)": [[32, "sleap.io.video.Video.from_filename"]], "from_hdf5() (sleap.io.video.video class method)": [[32, "sleap.io.video.Video.from_hdf5"]], "from_image_filenames() (sleap.io.video.video class method)": [[32, "sleap.io.video.Video.from_image_filenames"]], "from_media() (sleap.io.video.video class method)": [[32, "sleap.io.video.Video.from_media"]], "from_numpy() (sleap.io.video.video class method)": [[32, "sleap.io.video.Video.from_numpy"]], "get_frame() (sleap.io.video.hdf5video method)": [[32, "sleap.io.video.HDF5Video.get_frame"]], "get_frame() (sleap.io.video.imgstorevideo method)": [[32, "sleap.io.video.ImgStoreVideo.get_frame"]], "get_frame() (sleap.io.video.mediavideo method)": [[32, "sleap.io.video.MediaVideo.get_frame"]], "get_frame() (sleap.io.video.numpyvideo method)": [[32, "sleap.io.video.NumpyVideo.get_frame"]], "get_frame() (sleap.io.video.singleimagevideo method)": [[32, "sleap.io.video.SingleImageVideo.get_frame"]], "get_frame() (sleap.io.video.video method)": [[32, "sleap.io.video.Video.get_frame"]], "get_frames() (sleap.io.video.video method)": [[32, "sleap.io.video.Video.get_frames"]], "get_frames_safely() (sleap.io.video.video method)": [[32, "sleap.io.video.Video.get_frames_safely"]], "has_embedded_images (sleap.io.video.hdf5video property)": [[32, "sleap.io.video.HDF5Video.has_embedded_images"]], "height (sleap.io.video.hdf5video property)": [[32, "sleap.io.video.HDF5Video.height"]], "height (sleap.io.video.imgstorevideo property)": [[32, "sleap.io.video.ImgStoreVideo.height"]], "height (sleap.io.video.mediavideo property)": [[32, "sleap.io.video.MediaVideo.height"]], "height (sleap.io.video.numpyvideo property)": [[32, "sleap.io.video.NumpyVideo.height"]], "height (sleap.io.video.singleimagevideo property)": [[32, "sleap.io.video.SingleImageVideo.height"]], "imgstore (sleap.io.video.imgstorevideo property)": [[32, "sleap.io.video.ImgStoreVideo.imgstore"]], "imgstore_from_filenames() (sleap.io.video.video class method)": [[32, "sleap.io.video.Video.imgstore_from_filenames"]], "is_missing (sleap.io.video.numpyvideo property)": [[32, "sleap.io.video.NumpyVideo.is_missing"]], "is_missing (sleap.io.video.video property)": [[32, "sleap.io.video.Video.is_missing"]], "last_frame_idx (sleap.io.video.hdf5video property)": [[32, "sleap.io.video.HDF5Video.last_frame_idx"]], "last_frame_idx (sleap.io.video.imgstorevideo property)": [[32, "sleap.io.video.ImgStoreVideo.last_frame_idx"]], "last_frame_idx (sleap.io.video.video property)": [[32, "sleap.io.video.Video.last_frame_idx"]], "load_video() (in module sleap.io.video)": [[32, "sleap.io.video.load_video"]], "matches() (sleap.io.video.hdf5video method)": [[32, "sleap.io.video.HDF5Video.matches"]], "matches() (sleap.io.video.imgstorevideo method)": [[32, "sleap.io.video.ImgStoreVideo.matches"]], "matches() (sleap.io.video.mediavideo method)": [[32, "sleap.io.video.MediaVideo.matches"]], "matches() (sleap.io.video.numpyvideo method)": [[32, "sleap.io.video.NumpyVideo.matches"]], "matches() (sleap.io.video.singleimagevideo method)": [[32, "sleap.io.video.SingleImageVideo.matches"]], "num_frames (sleap.io.video.video property)": [[32, "sleap.io.video.Video.num_frames"]], "open() (sleap.io.video.imgstorevideo method)": [[32, "sleap.io.video.ImgStoreVideo.open"]], "reset() (sleap.io.video.hdf5video method)": [[32, "sleap.io.video.HDF5Video.reset"]], "reset() (sleap.io.video.imgstorevideo method)": [[32, "sleap.io.video.ImgStoreVideo.reset"]], "reset() (sleap.io.video.mediavideo method)": [[32, "sleap.io.video.MediaVideo.reset"]], "reset() (sleap.io.video.numpyvideo method)": [[32, "sleap.io.video.NumpyVideo.reset"]], "reset() (sleap.io.video.singleimagevideo method)": [[32, "sleap.io.video.SingleImageVideo.reset"]], "shape (sleap.io.video.video property)": [[32, "sleap.io.video.Video.shape"]], "sleap.io.video": [[32, "module-sleap.io.video"]], "source_video (sleap.io.video.hdf5video property)": [[32, "sleap.io.video.HDF5Video.source_video"]], "source_video_available (sleap.io.video.hdf5video property)": [[32, "sleap.io.video.HDF5Video.source_video_available"]], "to_hdf5() (sleap.io.video.video method)": [[32, "sleap.io.video.Video.to_hdf5"]], "to_imgstore() (sleap.io.video.video method)": [[32, "sleap.io.video.Video.to_imgstore"]], "to_pipeline() (sleap.io.video.video method)": [[32, "sleap.io.video.Video.to_pipeline"]], "width (sleap.io.video.hdf5video property)": [[32, "sleap.io.video.HDF5Video.width"]], "width (sleap.io.video.imgstorevideo property)": [[32, "sleap.io.video.ImgStoreVideo.width"]], "width (sleap.io.video.mediavideo property)": [[32, "sleap.io.video.MediaVideo.width"]], "width (sleap.io.video.numpyvideo property)": [[32, "sleap.io.video.NumpyVideo.width"]], "width (sleap.io.video.singleimagevideo property)": [[32, "sleap.io.video.SingleImageVideo.width"]], "videowriter (class in sleap.io.videowriter)": [[33, "sleap.io.videowriter.VideoWriter"]], "videowriterimageio (class in sleap.io.videowriter)": [[33, "sleap.io.videowriter.VideoWriterImageio"]], "videowriteropencv (class in sleap.io.videowriter)": [[33, "sleap.io.videowriter.VideoWriterOpenCV"]], "can_use_ffmpeg() (sleap.io.videowriter.videowriter static method)": [[33, "sleap.io.videowriter.VideoWriter.can_use_ffmpeg"]], "crf (sleap.io.videowriter.videowriterimageio attribute)": [[33, "sleap.io.videowriter.VideoWriterImageio.crf"]], "filename (sleap.io.videowriter.videowriterimageio attribute)": [[33, "sleap.io.videowriter.VideoWriterImageio.filename"]], "fps (sleap.io.videowriter.videowriterimageio attribute)": [[33, "sleap.io.videowriter.VideoWriterImageio.fps"]], "height (sleap.io.videowriter.videowriterimageio attribute)": [[33, "sleap.io.videowriter.VideoWriterImageio.height"]], "preset (sleap.io.videowriter.videowriterimageio attribute)": [[33, "sleap.io.videowriter.VideoWriterImageio.preset"]], "safe_builder() (sleap.io.videowriter.videowriter static method)": [[33, "sleap.io.videowriter.VideoWriter.safe_builder"]], "sleap.io.videowriter": [[33, "module-sleap.io.videowriter"]], "width (sleap.io.videowriter.videowriterimageio attribute)": [[33, "sleap.io.videowriter.VideoWriterImageio.width"]], "videomarkerthread (class in sleap.io.visuals)": [[34, "sleap.io.visuals.VideoMarkerThread"]], "img_to_cv() (in module sleap.io.visuals)": [[34, "sleap.io.visuals.img_to_cv"]], "reader() (in module sleap.io.visuals)": [[34, "sleap.io.visuals.reader"]], "resize_image() (in module sleap.io.visuals)": [[34, "sleap.io.visuals.resize_image"]], "run() (sleap.io.visuals.videomarkerthread method)": [[34, "sleap.io.visuals.VideoMarkerThread.run"]], "save_labeled_video() (in module sleap.io.visuals)": [[34, "sleap.io.visuals.save_labeled_video"]], "sleap.io.visuals": [[34, "module-sleap.io.visuals"]], "writer() (in module sleap.io.visuals)": [[34, "sleap.io.visuals.writer"]], "basemessageparticipant (class in sleap.message)": [[35, "sleap.message.BaseMessageParticipant"]], "receiver (class in sleap.message)": [[35, "sleap.message.Receiver"]], "sender (class in sleap.message)": [[35, "sleap.message.Sender"]], "check_message() (sleap.message.receiver method)": [[35, "sleap.message.Receiver.check_message"]], "check_messages() (sleap.message.receiver method)": [[35, "sleap.message.Receiver.check_messages"]], "push_back_message() (sleap.message.receiver method)": [[35, "sleap.message.Receiver.push_back_message"]], "send_array() (sleap.message.sender method)": [[35, "sleap.message.Sender.send_array"]], "send_dict() (sleap.message.sender method)": [[35, "sleap.message.Sender.send_dict"]], "sleap.message": [[35, "module-sleap.message"]], "intermediatefeature (class in sleap.nn.architectures.common)": [[36, "sleap.nn.architectures.common.IntermediateFeature"]], "scale (sleap.nn.architectures.common.intermediatefeature property)": [[36, "sleap.nn.architectures.common.IntermediateFeature.scale"]], "sleap.nn.architectures.common": [[36, "module-sleap.nn.architectures.common"]], "stride (sleap.nn.architectures.common.intermediatefeature attribute)": [[36, "sleap.nn.architectures.common.IntermediateFeature.stride"]], "tensor (sleap.nn.architectures.common.intermediatefeature attribute)": [[36, "sleap.nn.architectures.common.IntermediateFeature.tensor"]], "decoderblock (class in sleap.nn.architectures.encoder_decoder)": [[37, "sleap.nn.architectures.encoder_decoder.DecoderBlock"]], "encoderblock (class in sleap.nn.architectures.encoder_decoder)": [[37, "sleap.nn.architectures.encoder_decoder.EncoderBlock"]], "encoderdecoder (class in sleap.nn.architectures.encoder_decoder)": [[37, "sleap.nn.architectures.encoder_decoder.EncoderDecoder"]], "simpleconvblock (class in sleap.nn.architectures.encoder_decoder)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleConvBlock"]], "simpleupsamplingblock (class in sleap.nn.architectures.encoder_decoder)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleUpsamplingBlock"]], "activation (sleap.nn.architectures.encoder_decoder.simpleconvblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleConvBlock.activation"]], "batch_norm (sleap.nn.architectures.encoder_decoder.simpleconvblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleConvBlock.batch_norm"]], "batch_norm_before_activation (sleap.nn.architectures.encoder_decoder.simpleconvblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleConvBlock.batch_norm_before_activation"]], "block_prefix (sleap.nn.architectures.encoder_decoder.simpleconvblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleConvBlock.block_prefix"]], "decoder_features_stride (sleap.nn.architectures.encoder_decoder.encoderdecoder property)": [[37, "sleap.nn.architectures.encoder_decoder.EncoderDecoder.decoder_features_stride"]], "decoder_stack (sleap.nn.architectures.encoder_decoder.encoderdecoder property)": [[37, "sleap.nn.architectures.encoder_decoder.EncoderDecoder.decoder_stack"]], "encoder_features_stride (sleap.nn.architectures.encoder_decoder.encoderdecoder property)": [[37, "sleap.nn.architectures.encoder_decoder.EncoderDecoder.encoder_features_stride"]], "encoder_stack (sleap.nn.architectures.encoder_decoder.encoderdecoder property)": [[37, "sleap.nn.architectures.encoder_decoder.EncoderDecoder.encoder_stack"]], "filters (sleap.nn.architectures.encoder_decoder.simpleconvblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleConvBlock.filters"]], "interp_method (sleap.nn.architectures.encoder_decoder.simpleupsamplingblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleUpsamplingBlock.interp_method"]], "kernel_size (sleap.nn.architectures.encoder_decoder.simpleconvblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleConvBlock.kernel_size"]], "make_backbone() (sleap.nn.architectures.encoder_decoder.encoderdecoder method)": [[37, "sleap.nn.architectures.encoder_decoder.EncoderDecoder.make_backbone"]], "make_block() (sleap.nn.architectures.encoder_decoder.decoderblock method)": [[37, "sleap.nn.architectures.encoder_decoder.DecoderBlock.make_block"]], "make_block() (sleap.nn.architectures.encoder_decoder.encoderblock method)": [[37, "sleap.nn.architectures.encoder_decoder.EncoderBlock.make_block"]], "make_block() (sleap.nn.architectures.encoder_decoder.simpleconvblock method)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleConvBlock.make_block"]], "make_block() (sleap.nn.architectures.encoder_decoder.simpleupsamplingblock method)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleUpsamplingBlock.make_block"]], "make_decoder() (sleap.nn.architectures.encoder_decoder.encoderdecoder method)": [[37, "sleap.nn.architectures.encoder_decoder.EncoderDecoder.make_decoder"]], "make_encoder() (sleap.nn.architectures.encoder_decoder.encoderdecoder method)": [[37, "sleap.nn.architectures.encoder_decoder.EncoderDecoder.make_encoder"]], "make_stem() (sleap.nn.architectures.encoder_decoder.encoderdecoder method)": [[37, "sleap.nn.architectures.encoder_decoder.EncoderDecoder.make_stem"]], "maximum_stride (sleap.nn.architectures.encoder_decoder.encoderdecoder property)": [[37, "sleap.nn.architectures.encoder_decoder.EncoderDecoder.maximum_stride"]], "num_convs (sleap.nn.architectures.encoder_decoder.simpleconvblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleConvBlock.num_convs"]], "output_stride (sleap.nn.architectures.encoder_decoder.encoderdecoder property)": [[37, "sleap.nn.architectures.encoder_decoder.EncoderDecoder.output_stride"]], "pool (sleap.nn.architectures.encoder_decoder.encoderblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.EncoderBlock.pool"]], "pool (sleap.nn.architectures.encoder_decoder.simpleconvblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleConvBlock.pool"]], "pool_before_convs (sleap.nn.architectures.encoder_decoder.simpleconvblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleConvBlock.pool_before_convs"]], "pooling_stride (sleap.nn.architectures.encoder_decoder.encoderblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.EncoderBlock.pooling_stride"]], "pooling_stride (sleap.nn.architectures.encoder_decoder.simpleconvblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleConvBlock.pooling_stride"]], "refine_convs (sleap.nn.architectures.encoder_decoder.simpleupsamplingblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleUpsamplingBlock.refine_convs"]], "refine_convs_activation (sleap.nn.architectures.encoder_decoder.simpleupsamplingblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleUpsamplingBlock.refine_convs_activation"]], "refine_convs_batch_norm (sleap.nn.architectures.encoder_decoder.simpleupsamplingblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleUpsamplingBlock.refine_convs_batch_norm"]], "refine_convs_batch_norm_before_activation (sleap.nn.architectures.encoder_decoder.simpleupsamplingblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleUpsamplingBlock.refine_convs_batch_norm_before_activation"]], "refine_convs_filters (sleap.nn.architectures.encoder_decoder.simpleupsamplingblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleUpsamplingBlock.refine_convs_filters"]], "refine_convs_first_filters (sleap.nn.architectures.encoder_decoder.simpleupsamplingblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleUpsamplingBlock.refine_convs_first_filters"]], "refine_convs_kernel_size (sleap.nn.architectures.encoder_decoder.simpleupsamplingblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleUpsamplingBlock.refine_convs_kernel_size"]], "refine_convs_use_bias (sleap.nn.architectures.encoder_decoder.simpleupsamplingblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleUpsamplingBlock.refine_convs_use_bias"]], "skip_add (sleap.nn.architectures.encoder_decoder.simpleupsamplingblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleUpsamplingBlock.skip_add"]], "skip_connection (sleap.nn.architectures.encoder_decoder.simpleupsamplingblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleUpsamplingBlock.skip_connection"]], "sleap.nn.architectures.encoder_decoder": [[37, "module-sleap.nn.architectures.encoder_decoder"]], "stacks (sleap.nn.architectures.encoder_decoder.encoderdecoder attribute)": [[37, "sleap.nn.architectures.encoder_decoder.EncoderDecoder.stacks"]], "stem_features_stride (sleap.nn.architectures.encoder_decoder.encoderdecoder property)": [[37, "sleap.nn.architectures.encoder_decoder.EncoderDecoder.stem_features_stride"]], "stem_stack (sleap.nn.architectures.encoder_decoder.encoderdecoder property)": [[37, "sleap.nn.architectures.encoder_decoder.EncoderDecoder.stem_stack"]], "transposed_conv (sleap.nn.architectures.encoder_decoder.simpleupsamplingblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleUpsamplingBlock.transposed_conv"]], "transposed_conv_activation (sleap.nn.architectures.encoder_decoder.simpleupsamplingblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleUpsamplingBlock.transposed_conv_activation"]], "transposed_conv_batch_norm (sleap.nn.architectures.encoder_decoder.simpleupsamplingblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleUpsamplingBlock.transposed_conv_batch_norm"]], "transposed_conv_batch_norm_before_activation (sleap.nn.architectures.encoder_decoder.simpleupsamplingblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleUpsamplingBlock.transposed_conv_batch_norm_before_activation"]], "transposed_conv_filters (sleap.nn.architectures.encoder_decoder.simpleupsamplingblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleUpsamplingBlock.transposed_conv_filters"]], "transposed_conv_kernel_size (sleap.nn.architectures.encoder_decoder.simpleupsamplingblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleUpsamplingBlock.transposed_conv_kernel_size"]], "transposed_conv_use_bias (sleap.nn.architectures.encoder_decoder.simpleupsamplingblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleUpsamplingBlock.transposed_conv_use_bias"]], "upsampling_stride (sleap.nn.architectures.encoder_decoder.decoderblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.DecoderBlock.upsampling_stride"]], "upsampling_stride (sleap.nn.architectures.encoder_decoder.simpleupsamplingblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleUpsamplingBlock.upsampling_stride"]], "use_bias (sleap.nn.architectures.encoder_decoder.simpleconvblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleConvBlock.use_bias"]], "downsamplingblock (class in sleap.nn.architectures.hourglass)": [[38, "sleap.nn.architectures.hourglass.DownsamplingBlock"]], "hourglass (class in sleap.nn.architectures.hourglass)": [[38, "sleap.nn.architectures.hourglass.Hourglass"]], "stemblock (class in sleap.nn.architectures.hourglass)": [[38, "sleap.nn.architectures.hourglass.StemBlock"]], "upsamplingblock (class in sleap.nn.architectures.hourglass)": [[38, "sleap.nn.architectures.hourglass.UpsamplingBlock"]], "conv() (in module sleap.nn.architectures.hourglass)": [[38, "sleap.nn.architectures.hourglass.conv"]], "decoder_stack (sleap.nn.architectures.hourglass.hourglass property)": [[38, "sleap.nn.architectures.hourglass.Hourglass.decoder_stack"]], "down_blocks (sleap.nn.architectures.hourglass.hourglass attribute)": [[38, "sleap.nn.architectures.hourglass.Hourglass.down_blocks"]], "encoder_stack (sleap.nn.architectures.hourglass.hourglass property)": [[38, "sleap.nn.architectures.hourglass.Hourglass.encoder_stack"]], "filter_increase (sleap.nn.architectures.hourglass.hourglass attribute)": [[38, "sleap.nn.architectures.hourglass.Hourglass.filter_increase"]], "filters (sleap.nn.architectures.hourglass.downsamplingblock attribute)": [[38, "sleap.nn.architectures.hourglass.DownsamplingBlock.filters"]], "filters (sleap.nn.architectures.hourglass.hourglass attribute)": [[38, "sleap.nn.architectures.hourglass.Hourglass.filters"]], "filters (sleap.nn.architectures.hourglass.stemblock attribute)": [[38, "sleap.nn.architectures.hourglass.StemBlock.filters"]], "filters (sleap.nn.architectures.hourglass.upsamplingblock attribute)": [[38, "sleap.nn.architectures.hourglass.UpsamplingBlock.filters"]], "first_conv_stride (sleap.nn.architectures.hourglass.stemblock attribute)": [[38, "sleap.nn.architectures.hourglass.StemBlock.first_conv_stride"]], "from_config() (sleap.nn.architectures.hourglass.hourglass class method)": [[38, "sleap.nn.architectures.hourglass.Hourglass.from_config"]], "interp_method (sleap.nn.architectures.hourglass.hourglass attribute)": [[38, "sleap.nn.architectures.hourglass.Hourglass.interp_method"]], "interp_method (sleap.nn.architectures.hourglass.upsamplingblock attribute)": [[38, "sleap.nn.architectures.hourglass.UpsamplingBlock.interp_method"]], "make_block() (sleap.nn.architectures.hourglass.downsamplingblock method)": [[38, "sleap.nn.architectures.hourglass.DownsamplingBlock.make_block"]], "make_block() (sleap.nn.architectures.hourglass.stemblock method)": [[38, "sleap.nn.architectures.hourglass.StemBlock.make_block"]], "make_block() (sleap.nn.architectures.hourglass.upsamplingblock method)": [[38, "sleap.nn.architectures.hourglass.UpsamplingBlock.make_block"]], "output_filters (sleap.nn.architectures.hourglass.stemblock attribute)": [[38, "sleap.nn.architectures.hourglass.StemBlock.output_filters"]], "pool (sleap.nn.architectures.hourglass.stemblock attribute)": [[38, "sleap.nn.architectures.hourglass.StemBlock.pool"]], "pooling_stride (sleap.nn.architectures.hourglass.stemblock attribute)": [[38, "sleap.nn.architectures.hourglass.StemBlock.pooling_stride"]], "sleap.nn.architectures.hourglass": [[38, "module-sleap.nn.architectures.hourglass"]], "stacks (sleap.nn.architectures.hourglass.hourglass attribute)": [[38, "sleap.nn.architectures.hourglass.Hourglass.stacks"]], "stem_filters (sleap.nn.architectures.hourglass.hourglass attribute)": [[38, "sleap.nn.architectures.hourglass.Hourglass.stem_filters"]], "stem_stack (sleap.nn.architectures.hourglass.hourglass property)": [[38, "sleap.nn.architectures.hourglass.Hourglass.stem_stack"]], "stem_stride (sleap.nn.architectures.hourglass.hourglass attribute)": [[38, "sleap.nn.architectures.hourglass.Hourglass.stem_stride"]], "up_blocks (sleap.nn.architectures.hourglass.hourglass attribute)": [[38, "sleap.nn.architectures.hourglass.Hourglass.up_blocks"]], "c (sleap.nn.architectures.hrnet.higherhrnet attribute)": [[39, "sleap.nn.architectures.hrnet.HigherHRNet.C"]], "higherhrnet (class in sleap.nn.architectures.hrnet)": [[39, "sleap.nn.architectures.hrnet.HigherHRNet"]], "adjust_prefix() (in module sleap.nn.architectures.hrnet)": [[39, "sleap.nn.architectures.hrnet.adjust_prefix"]], "bilinear_upsampling (sleap.nn.architectures.hrnet.higherhrnet attribute)": [[39, "sleap.nn.architectures.hrnet.HigherHRNet.bilinear_upsampling"]], "bottleneck (sleap.nn.architectures.hrnet.higherhrnet attribute)": [[39, "sleap.nn.architectures.hrnet.HigherHRNet.bottleneck"]], "bottleneck_block() (in module sleap.nn.architectures.hrnet)": [[39, "sleap.nn.architectures.hrnet.bottleneck_block"]], "deconv_filters (sleap.nn.architectures.hrnet.higherhrnet attribute)": [[39, "sleap.nn.architectures.hrnet.HigherHRNet.deconv_filters"]], "down_blocks (sleap.nn.architectures.hrnet.higherhrnet property)": [[39, "sleap.nn.architectures.hrnet.HigherHRNet.down_blocks"]], "initial_downsampling_steps (sleap.nn.architectures.hrnet.higherhrnet attribute)": [[39, "sleap.nn.architectures.hrnet.HigherHRNet.initial_downsampling_steps"]], "n_deconv_modules (sleap.nn.architectures.hrnet.higherhrnet attribute)": [[39, "sleap.nn.architectures.hrnet.HigherHRNet.n_deconv_modules"]], "output() (sleap.nn.architectures.hrnet.higherhrnet method)": [[39, "sleap.nn.architectures.hrnet.HigherHRNet.output"]], "output_scale (sleap.nn.architectures.hrnet.higherhrnet property)": [[39, "sleap.nn.architectures.hrnet.HigherHRNet.output_scale"]], "simple_block() (in module sleap.nn.architectures.hrnet)": [[39, "sleap.nn.architectures.hrnet.simple_block"]], "sleap.nn.architectures.hrnet": [[39, "module-sleap.nn.architectures.hrnet"]], "leapcnn (class in sleap.nn.architectures.leap)": [[40, "sleap.nn.architectures.leap.LeapCNN"]], "decoder_stack (sleap.nn.architectures.leap.leapcnn property)": [[40, "sleap.nn.architectures.leap.LeapCNN.decoder_stack"]], "down_blocks (sleap.nn.architectures.leap.leapcnn attribute)": [[40, "sleap.nn.architectures.leap.LeapCNN.down_blocks"]], "down_convs_per_block (sleap.nn.architectures.leap.leapcnn attribute)": [[40, "sleap.nn.architectures.leap.LeapCNN.down_convs_per_block"]], "encoder_stack (sleap.nn.architectures.leap.leapcnn property)": [[40, "sleap.nn.architectures.leap.LeapCNN.encoder_stack"]], "filters (sleap.nn.architectures.leap.leapcnn attribute)": [[40, "sleap.nn.architectures.leap.LeapCNN.filters"]], "filters_rate (sleap.nn.architectures.leap.leapcnn attribute)": [[40, "sleap.nn.architectures.leap.LeapCNN.filters_rate"]], "from_config() (sleap.nn.architectures.leap.leapcnn class method)": [[40, "sleap.nn.architectures.leap.LeapCNN.from_config"]], "sleap.nn.architectures.leap": [[40, "module-sleap.nn.architectures.leap"]], "up_blocks (sleap.nn.architectures.leap.leapcnn attribute)": [[40, "sleap.nn.architectures.leap.LeapCNN.up_blocks"]], "up_convs_per_block (sleap.nn.architectures.leap.leapcnn attribute)": [[40, "sleap.nn.architectures.leap.LeapCNN.up_convs_per_block"]], "up_interpolate (sleap.nn.architectures.leap.leapcnn attribute)": [[40, "sleap.nn.architectures.leap.LeapCNN.up_interpolate"]], "unetpretrainedencoder (class in sleap.nn.architectures.pretrained_encoders)": [[41, "sleap.nn.architectures.pretrained_encoders.UnetPretrainedEncoder"]], "decoder_filters (sleap.nn.architectures.pretrained_encoders.unetpretrainedencoder attribute)": [[41, "sleap.nn.architectures.pretrained_encoders.UnetPretrainedEncoder.decoder_filters"]], "down_blocks (sleap.nn.architectures.pretrained_encoders.unetpretrainedencoder property)": [[41, "sleap.nn.architectures.pretrained_encoders.UnetPretrainedEncoder.down_blocks"]], "encoder (sleap.nn.architectures.pretrained_encoders.unetpretrainedencoder attribute)": [[41, "sleap.nn.architectures.pretrained_encoders.UnetPretrainedEncoder.encoder"]], "from_config() (sleap.nn.architectures.pretrained_encoders.unetpretrainedencoder class method)": [[41, "sleap.nn.architectures.pretrained_encoders.UnetPretrainedEncoder.from_config"]], "make_backbone() (sleap.nn.architectures.pretrained_encoders.unetpretrainedencoder method)": [[41, "sleap.nn.architectures.pretrained_encoders.UnetPretrainedEncoder.make_backbone"]], "maximum_stride (sleap.nn.architectures.pretrained_encoders.unetpretrainedencoder property)": [[41, "sleap.nn.architectures.pretrained_encoders.UnetPretrainedEncoder.maximum_stride"]], "output_stride (sleap.nn.architectures.pretrained_encoders.unetpretrainedencoder property)": [[41, "sleap.nn.architectures.pretrained_encoders.UnetPretrainedEncoder.output_stride"]], "pretrained (sleap.nn.architectures.pretrained_encoders.unetpretrainedencoder attribute)": [[41, "sleap.nn.architectures.pretrained_encoders.UnetPretrainedEncoder.pretrained"]], "sleap.nn.architectures.pretrained_encoders": [[41, "module-sleap.nn.architectures.pretrained_encoders"]], "up_blocks (sleap.nn.architectures.pretrained_encoders.unetpretrainedencoder property)": [[41, "sleap.nn.architectures.pretrained_encoders.UnetPretrainedEncoder.up_blocks"]], "resnet101 (class in sleap.nn.architectures.resnet)": [[42, "sleap.nn.architectures.resnet.ResNet101"]], "resnet152 (class in sleap.nn.architectures.resnet)": [[42, "sleap.nn.architectures.resnet.ResNet152"]], "resnet50 (class in sleap.nn.architectures.resnet)": [[42, "sleap.nn.architectures.resnet.ResNet50"]], "resnetv1 (class in sleap.nn.architectures.resnet)": [[42, "sleap.nn.architectures.resnet.ResNetv1"]], "block_v1() (in module sleap.nn.architectures.resnet)": [[42, "sleap.nn.architectures.resnet.block_v1"]], "down_blocks (sleap.nn.architectures.resnet.resnetv1 property)": [[42, "sleap.nn.architectures.resnet.ResNetv1.down_blocks"]], "features_output_stride (sleap.nn.architectures.resnet.resnet101 attribute)": [[42, "sleap.nn.architectures.resnet.ResNet101.features_output_stride"]], "features_output_stride (sleap.nn.architectures.resnet.resnet152 attribute)": [[42, "sleap.nn.architectures.resnet.ResNet152.features_output_stride"]], "features_output_stride (sleap.nn.architectures.resnet.resnet50 attribute)": [[42, "sleap.nn.architectures.resnet.ResNet50.features_output_stride"]], "features_output_stride (sleap.nn.architectures.resnet.resnetv1 attribute)": [[42, "sleap.nn.architectures.resnet.ResNetv1.features_output_stride"]], "from_config() (sleap.nn.architectures.resnet.resnetv1 class method)": [[42, "sleap.nn.architectures.resnet.ResNetv1.from_config"]], "frozen (sleap.nn.architectures.resnet.resnet101 attribute)": [[42, "sleap.nn.architectures.resnet.ResNet101.frozen"]], "frozen (sleap.nn.architectures.resnet.resnet152 attribute)": [[42, "sleap.nn.architectures.resnet.ResNet152.frozen"]], "frozen (sleap.nn.architectures.resnet.resnet50 attribute)": [[42, "sleap.nn.architectures.resnet.ResNet50.frozen"]], "frozen (sleap.nn.architectures.resnet.resnetv1 attribute)": [[42, "sleap.nn.architectures.resnet.ResNetv1.frozen"]], "imagenet_preproc_v1() (in module sleap.nn.architectures.resnet)": [[42, "sleap.nn.architectures.resnet.imagenet_preproc_v1"]], "make_backbone() (sleap.nn.architectures.resnet.resnetv1 method)": [[42, "sleap.nn.architectures.resnet.ResNetv1.make_backbone"]], "make_backbone_fn() (in module sleap.nn.architectures.resnet)": [[42, "sleap.nn.architectures.resnet.make_backbone_fn"]], "make_resnet_model() (in module sleap.nn.architectures.resnet)": [[42, "sleap.nn.architectures.resnet.make_resnet_model"]], "maximum_stride (sleap.nn.architectures.resnet.resnetv1 property)": [[42, "sleap.nn.architectures.resnet.ResNetv1.maximum_stride"]], "model_name (sleap.nn.architectures.resnet.resnetv1 attribute)": [[42, "sleap.nn.architectures.resnet.ResNetv1.model_name"]], "output_scale (sleap.nn.architectures.resnet.resnetv1 property)": [[42, "sleap.nn.architectures.resnet.ResNetv1.output_scale"]], "output_stride (sleap.nn.architectures.resnet.resnetv1 property)": [[42, "sleap.nn.architectures.resnet.ResNetv1.output_stride"]], "pretrained (sleap.nn.architectures.resnet.resnet101 attribute)": [[42, "sleap.nn.architectures.resnet.ResNet101.pretrained"]], "pretrained (sleap.nn.architectures.resnet.resnet152 attribute)": [[42, "sleap.nn.architectures.resnet.ResNet152.pretrained"]], "pretrained (sleap.nn.architectures.resnet.resnet50 attribute)": [[42, "sleap.nn.architectures.resnet.ResNet50.pretrained"]], "pretrained (sleap.nn.architectures.resnet.resnetv1 attribute)": [[42, "sleap.nn.architectures.resnet.ResNetv1.pretrained"]], "skip_connections (sleap.nn.architectures.resnet.resnet101 attribute)": [[42, "sleap.nn.architectures.resnet.ResNet101.skip_connections"]], "skip_connections (sleap.nn.architectures.resnet.resnet152 attribute)": [[42, "sleap.nn.architectures.resnet.ResNet152.skip_connections"]], "skip_connections (sleap.nn.architectures.resnet.resnet50 attribute)": [[42, "sleap.nn.architectures.resnet.ResNet50.skip_connections"]], "skip_connections (sleap.nn.architectures.resnet.resnetv1 attribute)": [[42, "sleap.nn.architectures.resnet.ResNetv1.skip_connections"]], "sleap.nn.architectures.resnet": [[42, "module-sleap.nn.architectures.resnet"]], "stack_configs (sleap.nn.architectures.resnet.resnetv1 attribute)": [[42, "sleap.nn.architectures.resnet.ResNetv1.stack_configs"]], "stack_v1() (in module sleap.nn.architectures.resnet)": [[42, "sleap.nn.architectures.resnet.stack_v1"]], "tile_channels() (in module sleap.nn.architectures.resnet)": [[42, "sleap.nn.architectures.resnet.tile_channels"]], "upsampling_stack (sleap.nn.architectures.resnet.resnet101 attribute)": [[42, "sleap.nn.architectures.resnet.ResNet101.upsampling_stack"]], "upsampling_stack (sleap.nn.architectures.resnet.resnet152 attribute)": [[42, "sleap.nn.architectures.resnet.ResNet152.upsampling_stack"]], "upsampling_stack (sleap.nn.architectures.resnet.resnet50 attribute)": [[42, "sleap.nn.architectures.resnet.ResNet50.upsampling_stack"]], "upsampling_stack (sleap.nn.architectures.resnet.resnetv1 attribute)": [[42, "sleap.nn.architectures.resnet.ResNetv1.upsampling_stack"]], "poolingblock (class in sleap.nn.architectures.unet)": [[43, "sleap.nn.architectures.unet.PoolingBlock"]], "unet (class in sleap.nn.architectures.unet)": [[43, "sleap.nn.architectures.unet.UNet"]], "block_contraction (sleap.nn.architectures.unet.unet attribute)": [[43, "sleap.nn.architectures.unet.UNet.block_contraction"]], "convs_per_block (sleap.nn.architectures.unet.unet attribute)": [[43, "sleap.nn.architectures.unet.UNet.convs_per_block"]], "decoder_stack (sleap.nn.architectures.unet.unet property)": [[43, "sleap.nn.architectures.unet.UNet.decoder_stack"]], "down_blocks (sleap.nn.architectures.unet.unet attribute)": [[43, "sleap.nn.architectures.unet.UNet.down_blocks"]], "encoder_stack (sleap.nn.architectures.unet.unet property)": [[43, "sleap.nn.architectures.unet.UNet.encoder_stack"]], "filters (sleap.nn.architectures.unet.unet attribute)": [[43, "sleap.nn.architectures.unet.UNet.filters"]], "filters_rate (sleap.nn.architectures.unet.unet attribute)": [[43, "sleap.nn.architectures.unet.UNet.filters_rate"]], "from_config() (sleap.nn.architectures.unet.unet class method)": [[43, "sleap.nn.architectures.unet.UNet.from_config"]], "kernel_size (sleap.nn.architectures.unet.unet attribute)": [[43, "sleap.nn.architectures.unet.UNet.kernel_size"]], "make_block() (sleap.nn.architectures.unet.poolingblock method)": [[43, "sleap.nn.architectures.unet.PoolingBlock.make_block"]], "middle_block (sleap.nn.architectures.unet.unet attribute)": [[43, "sleap.nn.architectures.unet.UNet.middle_block"]], "pool (sleap.nn.architectures.unet.poolingblock attribute)": [[43, "sleap.nn.architectures.unet.PoolingBlock.pool"]], "pooling_stride (sleap.nn.architectures.unet.poolingblock attribute)": [[43, "sleap.nn.architectures.unet.PoolingBlock.pooling_stride"]], "sleap.nn.architectures.unet": [[43, "module-sleap.nn.architectures.unet"]], "stem_blocks (sleap.nn.architectures.unet.unet attribute)": [[43, "sleap.nn.architectures.unet.UNet.stem_blocks"]], "stem_kernel_size (sleap.nn.architectures.unet.unet attribute)": [[43, "sleap.nn.architectures.unet.UNet.stem_kernel_size"]], "stem_stack (sleap.nn.architectures.unet.unet property)": [[43, "sleap.nn.architectures.unet.UNet.stem_stack"]], "up_blocks (sleap.nn.architectures.unet.unet attribute)": [[43, "sleap.nn.architectures.unet.UNet.up_blocks"]], "up_interpolate (sleap.nn.architectures.unet.unet attribute)": [[43, "sleap.nn.architectures.unet.UNet.up_interpolate"]], "upsamplingstack (class in sleap.nn.architectures.upsampling)": [[44, "sleap.nn.architectures.upsampling.UpsamplingStack"]], "from_config() (sleap.nn.architectures.upsampling.upsamplingstack class method)": [[44, "sleap.nn.architectures.upsampling.UpsamplingStack.from_config"]], "make_skip_connection (sleap.nn.architectures.upsampling.upsamplingstack attribute)": [[44, "sleap.nn.architectures.upsampling.UpsamplingStack.make_skip_connection"]], "make_stack() (sleap.nn.architectures.upsampling.upsamplingstack method)": [[44, "sleap.nn.architectures.upsampling.UpsamplingStack.make_stack"]], "output_stride (sleap.nn.architectures.upsampling.upsamplingstack attribute)": [[44, "sleap.nn.architectures.upsampling.UpsamplingStack.output_stride"]], "refine_convs (sleap.nn.architectures.upsampling.upsamplingstack attribute)": [[44, "sleap.nn.architectures.upsampling.UpsamplingStack.refine_convs"]], "refine_convs_batchnorm (sleap.nn.architectures.upsampling.upsamplingstack attribute)": [[44, "sleap.nn.architectures.upsampling.UpsamplingStack.refine_convs_batchnorm"]], "refine_convs_filters (sleap.nn.architectures.upsampling.upsamplingstack attribute)": [[44, "sleap.nn.architectures.upsampling.UpsamplingStack.refine_convs_filters"]], "refine_convs_filters_rate (sleap.nn.architectures.upsampling.upsamplingstack attribute)": [[44, "sleap.nn.architectures.upsampling.UpsamplingStack.refine_convs_filters_rate"]], "skip_add (sleap.nn.architectures.upsampling.upsamplingstack attribute)": [[44, "sleap.nn.architectures.upsampling.UpsamplingStack.skip_add"]], "sleap.nn.architectures.upsampling": [[44, "module-sleap.nn.architectures.upsampling"]], "transposed_conv (sleap.nn.architectures.upsampling.upsamplingstack attribute)": [[44, "sleap.nn.architectures.upsampling.UpsamplingStack.transposed_conv"]], "transposed_conv_batchnorm (sleap.nn.architectures.upsampling.upsamplingstack attribute)": [[44, "sleap.nn.architectures.upsampling.UpsamplingStack.transposed_conv_batchnorm"]], "transposed_conv_filters (sleap.nn.architectures.upsampling.upsamplingstack attribute)": [[44, "sleap.nn.architectures.upsampling.UpsamplingStack.transposed_conv_filters"]], "transposed_conv_filters_rate (sleap.nn.architectures.upsampling.upsamplingstack attribute)": [[44, "sleap.nn.architectures.upsampling.UpsamplingStack.transposed_conv_filters_rate"]], "transposed_conv_kernel_size (sleap.nn.architectures.upsampling.upsamplingstack attribute)": [[44, "sleap.nn.architectures.upsampling.UpsamplingStack.transposed_conv_kernel_size"]], "upsampling_stride (sleap.nn.architectures.upsampling.upsamplingstack attribute)": [[44, "sleap.nn.architectures.upsampling.UpsamplingStack.upsampling_stride"]], "matplotlibsaver (class in sleap.nn.callbacks)": [[45, "sleap.nn.callbacks.MatplotlibSaver"]], "modelcheckpointonevent (class in sleap.nn.callbacks)": [[45, "sleap.nn.callbacks.ModelCheckpointOnEvent"]], "progressreporterzmq (class in sleap.nn.callbacks)": [[45, "sleap.nn.callbacks.ProgressReporterZMQ"]], "tensorboardmatplotlibwriter (class in sleap.nn.callbacks)": [[45, "sleap.nn.callbacks.TensorBoardMatplotlibWriter"]], "trainingcontrollerzmq (class in sleap.nn.callbacks)": [[45, "sleap.nn.callbacks.TrainingControllerZMQ"]], "event (sleap.nn.callbacks.modelcheckpointonevent attribute)": [[45, "sleap.nn.callbacks.ModelCheckpointOnEvent.event"]], "filepath (sleap.nn.callbacks.modelcheckpointonevent attribute)": [[45, "sleap.nn.callbacks.ModelCheckpointOnEvent.filepath"]], "logdir (sleap.nn.callbacks.tensorboardmatplotlibwriter attribute)": [[45, "sleap.nn.callbacks.TensorBoardMatplotlibWriter.logdir"]], "on_batch_begin() (sleap.nn.callbacks.progressreporterzmq method)": [[45, "sleap.nn.callbacks.ProgressReporterZMQ.on_batch_begin"]], "on_batch_end() (sleap.nn.callbacks.progressreporterzmq method)": [[45, "sleap.nn.callbacks.ProgressReporterZMQ.on_batch_end"]], "on_batch_end() (sleap.nn.callbacks.trainingcontrollerzmq method)": [[45, "sleap.nn.callbacks.TrainingControllerZMQ.on_batch_end"]], "on_epoch_begin() (sleap.nn.callbacks.progressreporterzmq method)": [[45, "sleap.nn.callbacks.ProgressReporterZMQ.on_epoch_begin"]], "on_epoch_end() (sleap.nn.callbacks.matplotlibsaver method)": [[45, "sleap.nn.callbacks.MatplotlibSaver.on_epoch_end"]], "on_epoch_end() (sleap.nn.callbacks.modelcheckpointonevent method)": [[45, "sleap.nn.callbacks.ModelCheckpointOnEvent.on_epoch_end"]], "on_epoch_end() (sleap.nn.callbacks.progressreporterzmq method)": [[45, "sleap.nn.callbacks.ProgressReporterZMQ.on_epoch_end"]], "on_epoch_end() (sleap.nn.callbacks.tensorboardmatplotlibwriter method)": [[45, "sleap.nn.callbacks.TensorBoardMatplotlibWriter.on_epoch_end"]], "on_train_begin() (sleap.nn.callbacks.modelcheckpointonevent method)": [[45, "sleap.nn.callbacks.ModelCheckpointOnEvent.on_train_begin"]], "on_train_begin() (sleap.nn.callbacks.progressreporterzmq method)": [[45, "sleap.nn.callbacks.ProgressReporterZMQ.on_train_begin"]], "on_train_end() (sleap.nn.callbacks.modelcheckpointonevent method)": [[45, "sleap.nn.callbacks.ModelCheckpointOnEvent.on_train_end"]], "on_train_end() (sleap.nn.callbacks.progressreporterzmq method)": [[45, "sleap.nn.callbacks.ProgressReporterZMQ.on_train_end"]], "plot_fn (sleap.nn.callbacks.matplotlibsaver attribute)": [[45, "sleap.nn.callbacks.MatplotlibSaver.plot_fn"]], "plot_fn (sleap.nn.callbacks.tensorboardmatplotlibwriter attribute)": [[45, "sleap.nn.callbacks.TensorBoardMatplotlibWriter.plot_fn"]], "prefix (sleap.nn.callbacks.matplotlibsaver attribute)": [[45, "sleap.nn.callbacks.MatplotlibSaver.prefix"]], "save_folder (sleap.nn.callbacks.matplotlibsaver attribute)": [[45, "sleap.nn.callbacks.MatplotlibSaver.save_folder"]], "set_lr() (sleap.nn.callbacks.trainingcontrollerzmq method)": [[45, "sleap.nn.callbacks.TrainingControllerZMQ.set_lr"]], "sleap.nn.callbacks": [[45, "module-sleap.nn.callbacks"]], "tag (sleap.nn.callbacks.tensorboardmatplotlibwriter attribute)": [[45, "sleap.nn.callbacks.TensorBoardMatplotlibWriter.tag"]], "dataconfig (class in sleap.nn.config.data)": [[46, "sleap.nn.config.data.DataConfig"]], "instancecroppingconfig (class in sleap.nn.config.data)": [[46, "sleap.nn.config.data.InstanceCroppingConfig"]], "labelsconfig (class in sleap.nn.config.data)": [[46, "sleap.nn.config.data.LabelsConfig"]], "preprocessingconfig (class in sleap.nn.config.data)": [[46, "sleap.nn.config.data.PreprocessingConfig"]], "center_on_part (sleap.nn.config.data.instancecroppingconfig attribute)": [[46, "sleap.nn.config.data.InstanceCroppingConfig.center_on_part"]], "crop_size (sleap.nn.config.data.instancecroppingconfig attribute)": [[46, "sleap.nn.config.data.InstanceCroppingConfig.crop_size"]], "crop_size_detection_padding (sleap.nn.config.data.instancecroppingconfig attribute)": [[46, "sleap.nn.config.data.InstanceCroppingConfig.crop_size_detection_padding"]], "ensure_grayscale (sleap.nn.config.data.preprocessingconfig attribute)": [[46, "sleap.nn.config.data.PreprocessingConfig.ensure_grayscale"]], "ensure_rgb (sleap.nn.config.data.preprocessingconfig attribute)": [[46, "sleap.nn.config.data.PreprocessingConfig.ensure_rgb"]], "imagenet_mode (sleap.nn.config.data.preprocessingconfig attribute)": [[46, "sleap.nn.config.data.PreprocessingConfig.imagenet_mode"]], "input_scale (sleap.nn.config.data.preprocessingconfig attribute)": [[46, "sleap.nn.config.data.PreprocessingConfig.input_scale"]], "pad_to_stride (sleap.nn.config.data.preprocessingconfig attribute)": [[46, "sleap.nn.config.data.PreprocessingConfig.pad_to_stride"]], "resize_and_pad_to_target (sleap.nn.config.data.preprocessingconfig attribute)": [[46, "sleap.nn.config.data.PreprocessingConfig.resize_and_pad_to_target"]], "search_path_hints (sleap.nn.config.data.labelsconfig attribute)": [[46, "sleap.nn.config.data.LabelsConfig.search_path_hints"]], "skeletons (sleap.nn.config.data.labelsconfig attribute)": [[46, "sleap.nn.config.data.LabelsConfig.skeletons"]], "sleap.nn.config.data": [[46, "module-sleap.nn.config.data"]], "split_by_inds (sleap.nn.config.data.labelsconfig attribute)": [[46, "sleap.nn.config.data.LabelsConfig.split_by_inds"]], "target_height (sleap.nn.config.data.preprocessingconfig attribute)": [[46, "sleap.nn.config.data.PreprocessingConfig.target_height"]], "target_width (sleap.nn.config.data.preprocessingconfig attribute)": [[46, "sleap.nn.config.data.PreprocessingConfig.target_width"]], "test_inds (sleap.nn.config.data.labelsconfig attribute)": [[46, "sleap.nn.config.data.LabelsConfig.test_inds"]], "test_labels (sleap.nn.config.data.labelsconfig attribute)": [[46, "sleap.nn.config.data.LabelsConfig.test_labels"]], "training_inds (sleap.nn.config.data.labelsconfig attribute)": [[46, "sleap.nn.config.data.LabelsConfig.training_inds"]], "training_labels (sleap.nn.config.data.labelsconfig attribute)": [[46, "sleap.nn.config.data.LabelsConfig.training_labels"]], "validation_fraction (sleap.nn.config.data.labelsconfig attribute)": [[46, "sleap.nn.config.data.LabelsConfig.validation_fraction"]], "validation_inds (sleap.nn.config.data.labelsconfig attribute)": [[46, "sleap.nn.config.data.LabelsConfig.validation_inds"]], "validation_labels (sleap.nn.config.data.labelsconfig attribute)": [[46, "sleap.nn.config.data.LabelsConfig.validation_labels"]], "backboneconfig (class in sleap.nn.config.model)": [[47, "sleap.nn.config.model.BackboneConfig"]], "centeredinstanceconfmapsheadconfig (class in sleap.nn.config.model)": [[47, "sleap.nn.config.model.CenteredInstanceConfmapsHeadConfig"]], "centroidsheadconfig (class in sleap.nn.config.model)": [[47, "sleap.nn.config.model.CentroidsHeadConfig"]], "classmapsheadconfig (class in sleap.nn.config.model)": [[47, "sleap.nn.config.model.ClassMapsHeadConfig"]], "classvectorsheadconfig (class in sleap.nn.config.model)": [[47, "sleap.nn.config.model.ClassVectorsHeadConfig"]], "headsconfig (class in sleap.nn.config.model)": [[47, "sleap.nn.config.model.HeadsConfig"]], "hourglassconfig (class in sleap.nn.config.model)": [[47, "sleap.nn.config.model.HourglassConfig"]], "leapconfig (class in sleap.nn.config.model)": [[47, "sleap.nn.config.model.LEAPConfig"]], "modelconfig (class in sleap.nn.config.model)": [[47, "sleap.nn.config.model.ModelConfig"]], "multiclassbottomupconfig (class in sleap.nn.config.model)": [[47, "sleap.nn.config.model.MultiClassBottomUpConfig"]], "multiclasstopdownconfig (class in sleap.nn.config.model)": [[47, "sleap.nn.config.model.MultiClassTopDownConfig"]], "multiinstanceconfig (class in sleap.nn.config.model)": [[47, "sleap.nn.config.model.MultiInstanceConfig"]], "multiinstanceconfmapsheadconfig (class in sleap.nn.config.model)": [[47, "sleap.nn.config.model.MultiInstanceConfmapsHeadConfig"]], "partaffinityfieldsheadconfig (class in sleap.nn.config.model)": [[47, "sleap.nn.config.model.PartAffinityFieldsHeadConfig"]], "pretrainedencoderconfig (class in sleap.nn.config.model)": [[47, "sleap.nn.config.model.PretrainedEncoderConfig"]], "resnetconfig (class in sleap.nn.config.model)": [[47, "sleap.nn.config.model.ResNetConfig"]], "singleinstanceconfmapsheadconfig (class in sleap.nn.config.model)": [[47, "sleap.nn.config.model.SingleInstanceConfmapsHeadConfig"]], "unetconfig (class in sleap.nn.config.model)": [[47, "sleap.nn.config.model.UNetConfig"]], "upsamplingconfig (class in sleap.nn.config.model)": [[47, "sleap.nn.config.model.UpsamplingConfig"]], "anchor_part (sleap.nn.config.model.centeredinstanceconfmapsheadconfig attribute)": [[47, "sleap.nn.config.model.CenteredInstanceConfmapsHeadConfig.anchor_part"]], "anchor_part (sleap.nn.config.model.centroidsheadconfig attribute)": [[47, "sleap.nn.config.model.CentroidsHeadConfig.anchor_part"]], "backbone (sleap.nn.config.model.modelconfig attribute)": [[47, "sleap.nn.config.model.ModelConfig.backbone"]], "base_checkpoint (sleap.nn.config.model.modelconfig attribute)": [[47, "sleap.nn.config.model.ModelConfig.base_checkpoint"]], "block_stride (sleap.nn.config.model.upsamplingconfig attribute)": [[47, "sleap.nn.config.model.UpsamplingConfig.block_stride"]], "centered_instance (sleap.nn.config.model.headsconfig attribute)": [[47, "sleap.nn.config.model.HeadsConfig.centered_instance"]], "centroid (sleap.nn.config.model.headsconfig attribute)": [[47, "sleap.nn.config.model.HeadsConfig.centroid"]], "class_maps (sleap.nn.config.model.multiclassbottomupconfig attribute)": [[47, "sleap.nn.config.model.MultiClassBottomUpConfig.class_maps"]], "class_vectors (sleap.nn.config.model.multiclasstopdownconfig attribute)": [[47, "sleap.nn.config.model.MultiClassTopDownConfig.class_vectors"]], "classes (sleap.nn.config.model.classmapsheadconfig attribute)": [[47, "sleap.nn.config.model.ClassMapsHeadConfig.classes"]], "classes (sleap.nn.config.model.classvectorsheadconfig attribute)": [[47, "sleap.nn.config.model.ClassVectorsHeadConfig.classes"]], "confmaps (sleap.nn.config.model.multiclassbottomupconfig attribute)": [[47, "sleap.nn.config.model.MultiClassBottomUpConfig.confmaps"]], "confmaps (sleap.nn.config.model.multiclasstopdownconfig attribute)": [[47, "sleap.nn.config.model.MultiClassTopDownConfig.confmaps"]], "confmaps (sleap.nn.config.model.multiinstanceconfig attribute)": [[47, "sleap.nn.config.model.MultiInstanceConfig.confmaps"]], "conv_batchnorm (sleap.nn.config.model.upsamplingconfig attribute)": [[47, "sleap.nn.config.model.UpsamplingConfig.conv_batchnorm"]], "decoder_batchnorm (sleap.nn.config.model.pretrainedencoderconfig attribute)": [[47, "sleap.nn.config.model.PretrainedEncoderConfig.decoder_batchnorm"]], "decoder_filters (sleap.nn.config.model.pretrainedencoderconfig attribute)": [[47, "sleap.nn.config.model.PretrainedEncoderConfig.decoder_filters"]], "decoder_filters_rate (sleap.nn.config.model.pretrainedencoderconfig attribute)": [[47, "sleap.nn.config.model.PretrainedEncoderConfig.decoder_filters_rate"]], "edges (sleap.nn.config.model.partaffinityfieldsheadconfig attribute)": [[47, "sleap.nn.config.model.PartAffinityFieldsHeadConfig.edges"]], "encoder (sleap.nn.config.model.pretrainedencoderconfig attribute)": [[47, "sleap.nn.config.model.PretrainedEncoderConfig.encoder"]], "filters (sleap.nn.config.model.hourglassconfig attribute)": [[47, "sleap.nn.config.model.HourglassConfig.filters"]], "filters (sleap.nn.config.model.leapconfig attribute)": [[47, "sleap.nn.config.model.LEAPConfig.filters"]], "filters (sleap.nn.config.model.unetconfig attribute)": [[47, "sleap.nn.config.model.UNetConfig.filters"]], "filters (sleap.nn.config.model.upsamplingconfig attribute)": [[47, "sleap.nn.config.model.UpsamplingConfig.filters"]], "filters_increase (sleap.nn.config.model.hourglassconfig attribute)": [[47, "sleap.nn.config.model.HourglassConfig.filters_increase"]], "filters_rate (sleap.nn.config.model.leapconfig attribute)": [[47, "sleap.nn.config.model.LEAPConfig.filters_rate"]], "filters_rate (sleap.nn.config.model.unetconfig attribute)": [[47, "sleap.nn.config.model.UNetConfig.filters_rate"]], "filters_rate (sleap.nn.config.model.upsamplingconfig attribute)": [[47, "sleap.nn.config.model.UpsamplingConfig.filters_rate"]], "heads (sleap.nn.config.model.modelconfig attribute)": [[47, "sleap.nn.config.model.ModelConfig.heads"]], "hourglass (sleap.nn.config.model.backboneconfig attribute)": [[47, "sleap.nn.config.model.BackboneConfig.hourglass"]], "leap (sleap.nn.config.model.backboneconfig attribute)": [[47, "sleap.nn.config.model.BackboneConfig.leap"]], "loss_weight (sleap.nn.config.model.centeredinstanceconfmapsheadconfig attribute)": [[47, "sleap.nn.config.model.CenteredInstanceConfmapsHeadConfig.loss_weight"]], "loss_weight (sleap.nn.config.model.centroidsheadconfig attribute)": [[47, "sleap.nn.config.model.CentroidsHeadConfig.loss_weight"]], "loss_weight (sleap.nn.config.model.classmapsheadconfig attribute)": [[47, "sleap.nn.config.model.ClassMapsHeadConfig.loss_weight"]], "loss_weight (sleap.nn.config.model.classvectorsheadconfig attribute)": [[47, "sleap.nn.config.model.ClassVectorsHeadConfig.loss_weight"]], "loss_weight (sleap.nn.config.model.multiinstanceconfmapsheadconfig attribute)": [[47, "sleap.nn.config.model.MultiInstanceConfmapsHeadConfig.loss_weight"]], "loss_weight (sleap.nn.config.model.partaffinityfieldsheadconfig attribute)": [[47, "sleap.nn.config.model.PartAffinityFieldsHeadConfig.loss_weight"]], "loss_weight (sleap.nn.config.model.singleinstanceconfmapsheadconfig attribute)": [[47, "sleap.nn.config.model.SingleInstanceConfmapsHeadConfig.loss_weight"]], "max_stride (sleap.nn.config.model.hourglassconfig attribute)": [[47, "sleap.nn.config.model.HourglassConfig.max_stride"]], "max_stride (sleap.nn.config.model.leapconfig attribute)": [[47, "sleap.nn.config.model.LEAPConfig.max_stride"]], "max_stride (sleap.nn.config.model.resnetconfig attribute)": [[47, "sleap.nn.config.model.ResNetConfig.max_stride"]], "max_stride (sleap.nn.config.model.unetconfig attribute)": [[47, "sleap.nn.config.model.UNetConfig.max_stride"]], "method (sleap.nn.config.model.upsamplingconfig attribute)": [[47, "sleap.nn.config.model.UpsamplingConfig.method"]], "middle_block (sleap.nn.config.model.unetconfig attribute)": [[47, "sleap.nn.config.model.UNetConfig.middle_block"]], "multi_class_bottomup (sleap.nn.config.model.headsconfig attribute)": [[47, "sleap.nn.config.model.HeadsConfig.multi_class_bottomup"]], "multi_class_topdown (sleap.nn.config.model.headsconfig attribute)": [[47, "sleap.nn.config.model.HeadsConfig.multi_class_topdown"]], "multi_instance (sleap.nn.config.model.headsconfig attribute)": [[47, "sleap.nn.config.model.HeadsConfig.multi_instance"]], "num_fc_layers (sleap.nn.config.model.classvectorsheadconfig attribute)": [[47, "sleap.nn.config.model.ClassVectorsHeadConfig.num_fc_layers"]], "num_fc_units (sleap.nn.config.model.classvectorsheadconfig attribute)": [[47, "sleap.nn.config.model.ClassVectorsHeadConfig.num_fc_units"]], "offset_refinement (sleap.nn.config.model.centeredinstanceconfmapsheadconfig attribute)": [[47, "sleap.nn.config.model.CenteredInstanceConfmapsHeadConfig.offset_refinement"]], "offset_refinement (sleap.nn.config.model.centroidsheadconfig attribute)": [[47, "sleap.nn.config.model.CentroidsHeadConfig.offset_refinement"]], "offset_refinement (sleap.nn.config.model.multiinstanceconfmapsheadconfig attribute)": [[47, "sleap.nn.config.model.MultiInstanceConfmapsHeadConfig.offset_refinement"]], "offset_refinement (sleap.nn.config.model.singleinstanceconfmapsheadconfig attribute)": [[47, "sleap.nn.config.model.SingleInstanceConfmapsHeadConfig.offset_refinement"]], "output_stride (sleap.nn.config.model.centeredinstanceconfmapsheadconfig attribute)": [[47, "sleap.nn.config.model.CenteredInstanceConfmapsHeadConfig.output_stride"]], "output_stride (sleap.nn.config.model.centroidsheadconfig attribute)": [[47, "sleap.nn.config.model.CentroidsHeadConfig.output_stride"]], "output_stride (sleap.nn.config.model.classmapsheadconfig attribute)": [[47, "sleap.nn.config.model.ClassMapsHeadConfig.output_stride"]], "output_stride (sleap.nn.config.model.classvectorsheadconfig attribute)": [[47, "sleap.nn.config.model.ClassVectorsHeadConfig.output_stride"]], "output_stride (sleap.nn.config.model.hourglassconfig attribute)": [[47, "sleap.nn.config.model.HourglassConfig.output_stride"]], "output_stride (sleap.nn.config.model.leapconfig attribute)": [[47, "sleap.nn.config.model.LEAPConfig.output_stride"]], "output_stride (sleap.nn.config.model.multiinstanceconfmapsheadconfig attribute)": [[47, "sleap.nn.config.model.MultiInstanceConfmapsHeadConfig.output_stride"]], "output_stride (sleap.nn.config.model.partaffinityfieldsheadconfig attribute)": [[47, "sleap.nn.config.model.PartAffinityFieldsHeadConfig.output_stride"]], "output_stride (sleap.nn.config.model.pretrainedencoderconfig attribute)": [[47, "sleap.nn.config.model.PretrainedEncoderConfig.output_stride"]], "output_stride (sleap.nn.config.model.resnetconfig attribute)": [[47, "sleap.nn.config.model.ResNetConfig.output_stride"]], "output_stride (sleap.nn.config.model.singleinstanceconfmapsheadconfig attribute)": [[47, "sleap.nn.config.model.SingleInstanceConfmapsHeadConfig.output_stride"]], "output_stride (sleap.nn.config.model.unetconfig attribute)": [[47, "sleap.nn.config.model.UNetConfig.output_stride"]], "pafs (sleap.nn.config.model.multiinstanceconfig attribute)": [[47, "sleap.nn.config.model.MultiInstanceConfig.pafs"]], "part_names (sleap.nn.config.model.centeredinstanceconfmapsheadconfig attribute)": [[47, "sleap.nn.config.model.CenteredInstanceConfmapsHeadConfig.part_names"]], "part_names (sleap.nn.config.model.multiinstanceconfmapsheadconfig attribute)": [[47, "sleap.nn.config.model.MultiInstanceConfmapsHeadConfig.part_names"]], "part_names (sleap.nn.config.model.singleinstanceconfmapsheadconfig attribute)": [[47, "sleap.nn.config.model.SingleInstanceConfmapsHeadConfig.part_names"]], "pretrained (sleap.nn.config.model.pretrainedencoderconfig attribute)": [[47, "sleap.nn.config.model.PretrainedEncoderConfig.pretrained"]], "refine_convs (sleap.nn.config.model.upsamplingconfig attribute)": [[47, "sleap.nn.config.model.UpsamplingConfig.refine_convs"]], "resnet (sleap.nn.config.model.backboneconfig attribute)": [[47, "sleap.nn.config.model.BackboneConfig.resnet"]], "sigma (sleap.nn.config.model.centeredinstanceconfmapsheadconfig attribute)": [[47, "sleap.nn.config.model.CenteredInstanceConfmapsHeadConfig.sigma"]], "sigma (sleap.nn.config.model.centroidsheadconfig attribute)": [[47, "sleap.nn.config.model.CentroidsHeadConfig.sigma"]], "sigma (sleap.nn.config.model.classmapsheadconfig attribute)": [[47, "sleap.nn.config.model.ClassMapsHeadConfig.sigma"]], "sigma (sleap.nn.config.model.multiinstanceconfmapsheadconfig attribute)": [[47, "sleap.nn.config.model.MultiInstanceConfmapsHeadConfig.sigma"]], "sigma (sleap.nn.config.model.partaffinityfieldsheadconfig attribute)": [[47, "sleap.nn.config.model.PartAffinityFieldsHeadConfig.sigma"]], "sigma (sleap.nn.config.model.singleinstanceconfmapsheadconfig attribute)": [[47, "sleap.nn.config.model.SingleInstanceConfmapsHeadConfig.sigma"]], "single_instance (sleap.nn.config.model.headsconfig attribute)": [[47, "sleap.nn.config.model.HeadsConfig.single_instance"]], "skip_connections (sleap.nn.config.model.upsamplingconfig attribute)": [[47, "sleap.nn.config.model.UpsamplingConfig.skip_connections"]], "sleap.nn.config.model": [[47, "module-sleap.nn.config.model"]], "stacks (sleap.nn.config.model.hourglassconfig attribute)": [[47, "sleap.nn.config.model.HourglassConfig.stacks"]], "stacks (sleap.nn.config.model.leapconfig attribute)": [[47, "sleap.nn.config.model.LEAPConfig.stacks"]], "stacks (sleap.nn.config.model.unetconfig attribute)": [[47, "sleap.nn.config.model.UNetConfig.stacks"]], "stem_stride (sleap.nn.config.model.hourglassconfig attribute)": [[47, "sleap.nn.config.model.HourglassConfig.stem_stride"]], "stem_stride (sleap.nn.config.model.unetconfig attribute)": [[47, "sleap.nn.config.model.UNetConfig.stem_stride"]], "transposed_conv_kernel_size (sleap.nn.config.model.upsamplingconfig attribute)": [[47, "sleap.nn.config.model.UpsamplingConfig.transposed_conv_kernel_size"]], "unet (sleap.nn.config.model.backboneconfig attribute)": [[47, "sleap.nn.config.model.BackboneConfig.unet"]], "up_interpolate (sleap.nn.config.model.leapconfig attribute)": [[47, "sleap.nn.config.model.LEAPConfig.up_interpolate"]], "up_interpolate (sleap.nn.config.model.unetconfig attribute)": [[47, "sleap.nn.config.model.UNetConfig.up_interpolate"]], "upsampling (sleap.nn.config.model.resnetconfig attribute)": [[47, "sleap.nn.config.model.ResNetConfig.upsampling"]], "version (sleap.nn.config.model.resnetconfig attribute)": [[47, "sleap.nn.config.model.ResNetConfig.version"]], "weights (sleap.nn.config.model.resnetconfig attribute)": [[47, "sleap.nn.config.model.ResNetConfig.weights"]], "augmentationconfig (class in sleap.nn.config.optimization)": [[48, "sleap.nn.config.optimization.AugmentationConfig"]], "earlystoppingconfig (class in sleap.nn.config.optimization)": [[48, "sleap.nn.config.optimization.EarlyStoppingConfig"]], "hardkeypointminingconfig (class in sleap.nn.config.optimization)": [[48, "sleap.nn.config.optimization.HardKeypointMiningConfig"]], "learningratescheduleconfig (class in sleap.nn.config.optimization)": [[48, "sleap.nn.config.optimization.LearningRateScheduleConfig"]], "optimizationconfig (class in sleap.nn.config.optimization)": [[48, "sleap.nn.config.optimization.OptimizationConfig"]], "augmentation_config (sleap.nn.config.optimization.optimizationconfig attribute)": [[48, "sleap.nn.config.optimization.OptimizationConfig.augmentation_config"]], "batch_size (sleap.nn.config.optimization.optimizationconfig attribute)": [[48, "sleap.nn.config.optimization.OptimizationConfig.batch_size"]], "batches_per_epoch (sleap.nn.config.optimization.optimizationconfig attribute)": [[48, "sleap.nn.config.optimization.OptimizationConfig.batches_per_epoch"]], "brightness (sleap.nn.config.optimization.augmentationconfig attribute)": [[48, "sleap.nn.config.optimization.AugmentationConfig.brightness"]], "brightness_max_val (sleap.nn.config.optimization.augmentationconfig attribute)": [[48, "sleap.nn.config.optimization.AugmentationConfig.brightness_max_val"]], "brightness_min_val (sleap.nn.config.optimization.augmentationconfig attribute)": [[48, "sleap.nn.config.optimization.AugmentationConfig.brightness_min_val"]], "contrast (sleap.nn.config.optimization.augmentationconfig attribute)": [[48, "sleap.nn.config.optimization.AugmentationConfig.contrast"]], "contrast_max_gamma (sleap.nn.config.optimization.augmentationconfig attribute)": [[48, "sleap.nn.config.optimization.AugmentationConfig.contrast_max_gamma"]], "contrast_min_gamma (sleap.nn.config.optimization.augmentationconfig attribute)": [[48, "sleap.nn.config.optimization.AugmentationConfig.contrast_min_gamma"]], "early_stopping (sleap.nn.config.optimization.optimizationconfig attribute)": [[48, "sleap.nn.config.optimization.OptimizationConfig.early_stopping"]], "epochs (sleap.nn.config.optimization.optimizationconfig attribute)": [[48, "sleap.nn.config.optimization.OptimizationConfig.epochs"]], "flip_horizontal (sleap.nn.config.optimization.augmentationconfig attribute)": [[48, "sleap.nn.config.optimization.AugmentationConfig.flip_horizontal"]], "gaussian_noise (sleap.nn.config.optimization.augmentationconfig attribute)": [[48, "sleap.nn.config.optimization.AugmentationConfig.gaussian_noise"]], "gaussian_noise_mean (sleap.nn.config.optimization.augmentationconfig attribute)": [[48, "sleap.nn.config.optimization.AugmentationConfig.gaussian_noise_mean"]], "gaussian_noise_stddev (sleap.nn.config.optimization.augmentationconfig attribute)": [[48, "sleap.nn.config.optimization.AugmentationConfig.gaussian_noise_stddev"]], "hard_keypoint_mining (sleap.nn.config.optimization.optimizationconfig attribute)": [[48, "sleap.nn.config.optimization.OptimizationConfig.hard_keypoint_mining"]], "hard_to_easy_ratio (sleap.nn.config.optimization.hardkeypointminingconfig attribute)": [[48, "sleap.nn.config.optimization.HardKeypointMiningConfig.hard_to_easy_ratio"]], "initial_learning_rate (sleap.nn.config.optimization.optimizationconfig attribute)": [[48, "sleap.nn.config.optimization.OptimizationConfig.initial_learning_rate"]], "learning_rate_schedule (sleap.nn.config.optimization.optimizationconfig attribute)": [[48, "sleap.nn.config.optimization.OptimizationConfig.learning_rate_schedule"]], "loss_scale (sleap.nn.config.optimization.hardkeypointminingconfig attribute)": [[48, "sleap.nn.config.optimization.HardKeypointMiningConfig.loss_scale"]], "max_hard_keypoints (sleap.nn.config.optimization.hardkeypointminingconfig attribute)": [[48, "sleap.nn.config.optimization.HardKeypointMiningConfig.max_hard_keypoints"]], "min_batches_per_epoch (sleap.nn.config.optimization.optimizationconfig attribute)": [[48, "sleap.nn.config.optimization.OptimizationConfig.min_batches_per_epoch"]], "min_hard_keypoints (sleap.nn.config.optimization.hardkeypointminingconfig attribute)": [[48, "sleap.nn.config.optimization.HardKeypointMiningConfig.min_hard_keypoints"]], "min_learning_rate (sleap.nn.config.optimization.learningratescheduleconfig attribute)": [[48, "sleap.nn.config.optimization.LearningRateScheduleConfig.min_learning_rate"]], "min_val_batches_per_epoch (sleap.nn.config.optimization.optimizationconfig attribute)": [[48, "sleap.nn.config.optimization.OptimizationConfig.min_val_batches_per_epoch"]], "online_mining (sleap.nn.config.optimization.hardkeypointminingconfig attribute)": [[48, "sleap.nn.config.optimization.HardKeypointMiningConfig.online_mining"]], "online_shuffling (sleap.nn.config.optimization.optimizationconfig attribute)": [[48, "sleap.nn.config.optimization.OptimizationConfig.online_shuffling"]], "optimizer (sleap.nn.config.optimization.optimizationconfig attribute)": [[48, "sleap.nn.config.optimization.OptimizationConfig.optimizer"]], "plateau_cooldown (sleap.nn.config.optimization.learningratescheduleconfig attribute)": [[48, "sleap.nn.config.optimization.LearningRateScheduleConfig.plateau_cooldown"]], "plateau_min_delta (sleap.nn.config.optimization.earlystoppingconfig attribute)": [[48, "sleap.nn.config.optimization.EarlyStoppingConfig.plateau_min_delta"]], "plateau_min_delta (sleap.nn.config.optimization.learningratescheduleconfig attribute)": [[48, "sleap.nn.config.optimization.LearningRateScheduleConfig.plateau_min_delta"]], "plateau_patience (sleap.nn.config.optimization.earlystoppingconfig attribute)": [[48, "sleap.nn.config.optimization.EarlyStoppingConfig.plateau_patience"]], "plateau_patience (sleap.nn.config.optimization.learningratescheduleconfig attribute)": [[48, "sleap.nn.config.optimization.LearningRateScheduleConfig.plateau_patience"]], "prefetch (sleap.nn.config.optimization.optimizationconfig attribute)": [[48, "sleap.nn.config.optimization.OptimizationConfig.prefetch"]], "preload_data (sleap.nn.config.optimization.optimizationconfig attribute)": [[48, "sleap.nn.config.optimization.OptimizationConfig.preload_data"]], "random_crop (sleap.nn.config.optimization.augmentationconfig attribute)": [[48, "sleap.nn.config.optimization.AugmentationConfig.random_crop"]], "random_crop_height (sleap.nn.config.optimization.augmentationconfig attribute)": [[48, "sleap.nn.config.optimization.AugmentationConfig.random_crop_height"]], "random_crop_width (sleap.nn.config.optimization.augmentationconfig attribute)": [[48, "sleap.nn.config.optimization.AugmentationConfig.random_crop_width"]], "random_flip (sleap.nn.config.optimization.augmentationconfig attribute)": [[48, "sleap.nn.config.optimization.AugmentationConfig.random_flip"]], "reduce_on_plateau (sleap.nn.config.optimization.learningratescheduleconfig attribute)": [[48, "sleap.nn.config.optimization.LearningRateScheduleConfig.reduce_on_plateau"]], "reduction_factor (sleap.nn.config.optimization.learningratescheduleconfig attribute)": [[48, "sleap.nn.config.optimization.LearningRateScheduleConfig.reduction_factor"]], "rotate (sleap.nn.config.optimization.augmentationconfig attribute)": [[48, "sleap.nn.config.optimization.AugmentationConfig.rotate"]], "rotation_max_angle (sleap.nn.config.optimization.augmentationconfig attribute)": [[48, "sleap.nn.config.optimization.AugmentationConfig.rotation_max_angle"]], "rotation_min_angle (sleap.nn.config.optimization.augmentationconfig attribute)": [[48, "sleap.nn.config.optimization.AugmentationConfig.rotation_min_angle"]], "scale (sleap.nn.config.optimization.augmentationconfig attribute)": [[48, "sleap.nn.config.optimization.AugmentationConfig.scale"]], "scale_max (sleap.nn.config.optimization.augmentationconfig attribute)": [[48, "sleap.nn.config.optimization.AugmentationConfig.scale_max"]], "scale_min (sleap.nn.config.optimization.augmentationconfig attribute)": [[48, "sleap.nn.config.optimization.AugmentationConfig.scale_min"]], "shuffle_buffer_size (sleap.nn.config.optimization.optimizationconfig attribute)": [[48, "sleap.nn.config.optimization.OptimizationConfig.shuffle_buffer_size"]], "sleap.nn.config.optimization": [[48, "module-sleap.nn.config.optimization"]], "stop_training_on_plateau (sleap.nn.config.optimization.earlystoppingconfig attribute)": [[48, "sleap.nn.config.optimization.EarlyStoppingConfig.stop_training_on_plateau"]], "translate (sleap.nn.config.optimization.augmentationconfig attribute)": [[48, "sleap.nn.config.optimization.AugmentationConfig.translate"]], "translate_max (sleap.nn.config.optimization.augmentationconfig attribute)": [[48, "sleap.nn.config.optimization.AugmentationConfig.translate_max"]], "translate_min (sleap.nn.config.optimization.augmentationconfig attribute)": [[48, "sleap.nn.config.optimization.AugmentationConfig.translate_min"]], "uniform_noise (sleap.nn.config.optimization.augmentationconfig attribute)": [[48, "sleap.nn.config.optimization.AugmentationConfig.uniform_noise"]], "uniform_noise_max_val (sleap.nn.config.optimization.augmentationconfig attribute)": [[48, "sleap.nn.config.optimization.AugmentationConfig.uniform_noise_max_val"]], "uniform_noise_min_val (sleap.nn.config.optimization.augmentationconfig attribute)": [[48, "sleap.nn.config.optimization.AugmentationConfig.uniform_noise_min_val"]], "val_batches_per_epoch (sleap.nn.config.optimization.optimizationconfig attribute)": [[48, "sleap.nn.config.optimization.OptimizationConfig.val_batches_per_epoch"]], "checkpointingconfig (class in sleap.nn.config.outputs)": [[49, "sleap.nn.config.outputs.CheckpointingConfig"]], "outputsconfig (class in sleap.nn.config.outputs)": [[49, "sleap.nn.config.outputs.OutputsConfig"]], "tensorboardconfig (class in sleap.nn.config.outputs)": [[49, "sleap.nn.config.outputs.TensorBoardConfig"]], "zmqconfig (class in sleap.nn.config.outputs)": [[49, "sleap.nn.config.outputs.ZMQConfig"]], "architecture_graph (sleap.nn.config.outputs.tensorboardconfig attribute)": [[49, "sleap.nn.config.outputs.TensorBoardConfig.architecture_graph"]], "best_model (sleap.nn.config.outputs.checkpointingconfig attribute)": [[49, "sleap.nn.config.outputs.CheckpointingConfig.best_model"]], "checkpointing (sleap.nn.config.outputs.outputsconfig attribute)": [[49, "sleap.nn.config.outputs.OutputsConfig.checkpointing"]], "controller_address (sleap.nn.config.outputs.zmqconfig attribute)": [[49, "sleap.nn.config.outputs.ZMQConfig.controller_address"]], "controller_polling_timeout (sleap.nn.config.outputs.zmqconfig attribute)": [[49, "sleap.nn.config.outputs.ZMQConfig.controller_polling_timeout"]], "every_epoch (sleap.nn.config.outputs.checkpointingconfig attribute)": [[49, "sleap.nn.config.outputs.CheckpointingConfig.every_epoch"]], "final_model (sleap.nn.config.outputs.checkpointingconfig attribute)": [[49, "sleap.nn.config.outputs.CheckpointingConfig.final_model"]], "initial_model (sleap.nn.config.outputs.checkpointingconfig attribute)": [[49, "sleap.nn.config.outputs.CheckpointingConfig.initial_model"]], "keep_viz_images (sleap.nn.config.outputs.outputsconfig attribute)": [[49, "sleap.nn.config.outputs.OutputsConfig.keep_viz_images"]], "latest_model (sleap.nn.config.outputs.checkpointingconfig attribute)": [[49, "sleap.nn.config.outputs.CheckpointingConfig.latest_model"]], "log_to_csv (sleap.nn.config.outputs.outputsconfig attribute)": [[49, "sleap.nn.config.outputs.OutputsConfig.log_to_csv"]], "loss_frequency (sleap.nn.config.outputs.tensorboardconfig attribute)": [[49, "sleap.nn.config.outputs.TensorBoardConfig.loss_frequency"]], "profile_graph (sleap.nn.config.outputs.tensorboardconfig attribute)": [[49, "sleap.nn.config.outputs.TensorBoardConfig.profile_graph"]], "publish_address (sleap.nn.config.outputs.zmqconfig attribute)": [[49, "sleap.nn.config.outputs.ZMQConfig.publish_address"]], "publish_updates (sleap.nn.config.outputs.zmqconfig attribute)": [[49, "sleap.nn.config.outputs.ZMQConfig.publish_updates"]], "run_name (sleap.nn.config.outputs.outputsconfig attribute)": [[49, "sleap.nn.config.outputs.OutputsConfig.run_name"]], "run_name_prefix (sleap.nn.config.outputs.outputsconfig attribute)": [[49, "sleap.nn.config.outputs.OutputsConfig.run_name_prefix"]], "run_name_suffix (sleap.nn.config.outputs.outputsconfig attribute)": [[49, "sleap.nn.config.outputs.OutputsConfig.run_name_suffix"]], "run_path (sleap.nn.config.outputs.outputsconfig property)": [[49, "sleap.nn.config.outputs.OutputsConfig.run_path"]], "runs_folder (sleap.nn.config.outputs.outputsconfig attribute)": [[49, "sleap.nn.config.outputs.OutputsConfig.runs_folder"]], "save_outputs (sleap.nn.config.outputs.outputsconfig attribute)": [[49, "sleap.nn.config.outputs.OutputsConfig.save_outputs"]], "save_visualizations (sleap.nn.config.outputs.outputsconfig attribute)": [[49, "sleap.nn.config.outputs.OutputsConfig.save_visualizations"]], "sleap.nn.config.outputs": [[49, "module-sleap.nn.config.outputs"]], "subscribe_to_controller (sleap.nn.config.outputs.zmqconfig attribute)": [[49, "sleap.nn.config.outputs.ZMQConfig.subscribe_to_controller"]], "tags (sleap.nn.config.outputs.outputsconfig attribute)": [[49, "sleap.nn.config.outputs.OutputsConfig.tags"]], "tensorboard (sleap.nn.config.outputs.outputsconfig attribute)": [[49, "sleap.nn.config.outputs.OutputsConfig.tensorboard"]], "visualizations (sleap.nn.config.outputs.tensorboardconfig attribute)": [[49, "sleap.nn.config.outputs.TensorBoardConfig.visualizations"]], "write_logs (sleap.nn.config.outputs.tensorboardconfig attribute)": [[49, "sleap.nn.config.outputs.TensorBoardConfig.write_logs"]], "zip_outputs (sleap.nn.config.outputs.outputsconfig attribute)": [[49, "sleap.nn.config.outputs.OutputsConfig.zip_outputs"]], "zmq (sleap.nn.config.outputs.outputsconfig attribute)": [[49, "sleap.nn.config.outputs.OutputsConfig.zmq"]], "trainingjobconfig (class in sleap.nn.config.training_job)": [[50, "sleap.nn.config.training_job.TrainingJobConfig"]], "data (sleap.nn.config.training_job.trainingjobconfig attribute)": [[50, "sleap.nn.config.training_job.TrainingJobConfig.data"]], "description (sleap.nn.config.training_job.trainingjobconfig attribute)": [[50, "sleap.nn.config.training_job.TrainingJobConfig.description"]], "filename (sleap.nn.config.training_job.trainingjobconfig attribute)": [[50, "sleap.nn.config.training_job.TrainingJobConfig.filename"]], "from_json() (sleap.nn.config.training_job.trainingjobconfig class method)": [[50, "sleap.nn.config.training_job.TrainingJobConfig.from_json"]], "from_json_dicts() (sleap.nn.config.training_job.trainingjobconfig class method)": [[50, "sleap.nn.config.training_job.TrainingJobConfig.from_json_dicts"]], "load_config() (in module sleap.nn.config.training_job)": [[50, "sleap.nn.config.training_job.load_config"]], "load_json() (sleap.nn.config.training_job.trainingjobconfig class method)": [[50, "sleap.nn.config.training_job.TrainingJobConfig.load_json"]], "model (sleap.nn.config.training_job.trainingjobconfig attribute)": [[50, "sleap.nn.config.training_job.TrainingJobConfig.model"]], "name (sleap.nn.config.training_job.trainingjobconfig attribute)": [[50, "sleap.nn.config.training_job.TrainingJobConfig.name"]], "optimization (sleap.nn.config.training_job.trainingjobconfig attribute)": [[50, "sleap.nn.config.training_job.TrainingJobConfig.optimization"]], "outputs (sleap.nn.config.training_job.trainingjobconfig attribute)": [[50, "sleap.nn.config.training_job.TrainingJobConfig.outputs"]], "save_json() (sleap.nn.config.training_job.trainingjobconfig method)": [[50, "sleap.nn.config.training_job.TrainingJobConfig.save_json"]], "sleap.nn.config.training_job": [[50, "module-sleap.nn.config.training_job"]], "sleap_version (sleap.nn.config.training_job.trainingjobconfig attribute)": [[50, "sleap.nn.config.training_job.TrainingJobConfig.sleap_version"]], "to_json() (sleap.nn.config.training_job.trainingjobconfig method)": [[50, "sleap.nn.config.training_job.TrainingJobConfig.to_json"]], "oneof() (in module sleap.nn.config.utils)": [[51, "sleap.nn.config.utils.oneof"]], "sleap.nn.config.utils": [[51, "module-sleap.nn.config.utils"]], "albumentationsaugmenter (class in sleap.nn.data.augmentation)": [[52, "sleap.nn.data.augmentation.AlbumentationsAugmenter"]], "randomcropper (class in sleap.nn.data.augmentation)": [[52, "sleap.nn.data.augmentation.RandomCropper"]], "randomflipper (class in sleap.nn.data.augmentation)": [[52, "sleap.nn.data.augmentation.RandomFlipper"]], "augmenter (sleap.nn.data.augmentation.albumentationsaugmenter attribute)": [[52, "sleap.nn.data.augmentation.AlbumentationsAugmenter.augmenter"]], "crop_height (sleap.nn.data.augmentation.randomcropper attribute)": [[52, "sleap.nn.data.augmentation.RandomCropper.crop_height"]], "crop_width (sleap.nn.data.augmentation.randomcropper attribute)": [[52, "sleap.nn.data.augmentation.RandomCropper.crop_width"]], "flip_instances_lr() (in module sleap.nn.data.augmentation)": [[52, "sleap.nn.data.augmentation.flip_instances_lr"]], "flip_instances_ud() (in module sleap.nn.data.augmentation)": [[52, "sleap.nn.data.augmentation.flip_instances_ud"]], "from_config() (sleap.nn.data.augmentation.albumentationsaugmenter class method)": [[52, "sleap.nn.data.augmentation.AlbumentationsAugmenter.from_config"]], "from_skeleton() (sleap.nn.data.augmentation.randomflipper class method)": [[52, "sleap.nn.data.augmentation.RandomFlipper.from_skeleton"]], "horizontal (sleap.nn.data.augmentation.randomflipper attribute)": [[52, "sleap.nn.data.augmentation.RandomFlipper.horizontal"]], "image_key (sleap.nn.data.augmentation.albumentationsaugmenter attribute)": [[52, "sleap.nn.data.augmentation.AlbumentationsAugmenter.image_key"]], "input_keys (sleap.nn.data.augmentation.albumentationsaugmenter property)": [[52, "sleap.nn.data.augmentation.AlbumentationsAugmenter.input_keys"]], "instances_key (sleap.nn.data.augmentation.albumentationsaugmenter attribute)": [[52, "sleap.nn.data.augmentation.AlbumentationsAugmenter.instances_key"]], "output_keys (sleap.nn.data.augmentation.albumentationsaugmenter property)": [[52, "sleap.nn.data.augmentation.AlbumentationsAugmenter.output_keys"]], "probability (sleap.nn.data.augmentation.randomflipper attribute)": [[52, "sleap.nn.data.augmentation.RandomFlipper.probability"]], "sleap.nn.data.augmentation": [[52, "module-sleap.nn.data.augmentation"]], "symmetric_inds (sleap.nn.data.augmentation.randomflipper attribute)": [[52, "sleap.nn.data.augmentation.RandomFlipper.symmetric_inds"]], "transform_dataset() (sleap.nn.data.augmentation.albumentationsaugmenter method)": [[52, "sleap.nn.data.augmentation.AlbumentationsAugmenter.transform_dataset"]], "transform_dataset() (sleap.nn.data.augmentation.randomcropper method)": [[52, "sleap.nn.data.augmentation.RandomCropper.transform_dataset"]], "transform_dataset() (sleap.nn.data.augmentation.randomflipper method)": [[52, "sleap.nn.data.augmentation.RandomFlipper.transform_dataset"]], "instanceconfidencemapgenerator (class in sleap.nn.data.confidence_maps)": [[53, "sleap.nn.data.confidence_maps.InstanceConfidenceMapGenerator"]], "multiconfidencemapgenerator (class in sleap.nn.data.confidence_maps)": [[53, "sleap.nn.data.confidence_maps.MultiConfidenceMapGenerator"]], "singleinstanceconfidencemapgenerator (class in sleap.nn.data.confidence_maps)": [[53, "sleap.nn.data.confidence_maps.SingleInstanceConfidenceMapGenerator"]], "all_instances (sleap.nn.data.confidence_maps.instanceconfidencemapgenerator attribute)": [[53, "sleap.nn.data.confidence_maps.InstanceConfidenceMapGenerator.all_instances"]], "centroids (sleap.nn.data.confidence_maps.multiconfidencemapgenerator attribute)": [[53, "sleap.nn.data.confidence_maps.MultiConfidenceMapGenerator.centroids"]], "flatten_offsets (sleap.nn.data.confidence_maps.instanceconfidencemapgenerator attribute)": [[53, "sleap.nn.data.confidence_maps.InstanceConfidenceMapGenerator.flatten_offsets"]], "flatten_offsets (sleap.nn.data.confidence_maps.multiconfidencemapgenerator attribute)": [[53, "sleap.nn.data.confidence_maps.MultiConfidenceMapGenerator.flatten_offsets"]], "flatten_offsets (sleap.nn.data.confidence_maps.singleinstanceconfidencemapgenerator attribute)": [[53, "sleap.nn.data.confidence_maps.SingleInstanceConfidenceMapGenerator.flatten_offsets"]], "input_keys (sleap.nn.data.confidence_maps.instanceconfidencemapgenerator property)": [[53, "sleap.nn.data.confidence_maps.InstanceConfidenceMapGenerator.input_keys"]], "input_keys (sleap.nn.data.confidence_maps.multiconfidencemapgenerator property)": [[53, "sleap.nn.data.confidence_maps.MultiConfidenceMapGenerator.input_keys"]], "input_keys (sleap.nn.data.confidence_maps.singleinstanceconfidencemapgenerator property)": [[53, "sleap.nn.data.confidence_maps.SingleInstanceConfidenceMapGenerator.input_keys"]], "make_confmaps() (in module sleap.nn.data.confidence_maps)": [[53, "sleap.nn.data.confidence_maps.make_confmaps"]], "make_multi_confmaps() (in module sleap.nn.data.confidence_maps)": [[53, "sleap.nn.data.confidence_maps.make_multi_confmaps"]], "make_multi_confmaps_with_offsets() (in module sleap.nn.data.confidence_maps)": [[53, "sleap.nn.data.confidence_maps.make_multi_confmaps_with_offsets"]], "offsets_threshold (sleap.nn.data.confidence_maps.instanceconfidencemapgenerator attribute)": [[53, "sleap.nn.data.confidence_maps.InstanceConfidenceMapGenerator.offsets_threshold"]], "offsets_threshold (sleap.nn.data.confidence_maps.multiconfidencemapgenerator attribute)": [[53, "sleap.nn.data.confidence_maps.MultiConfidenceMapGenerator.offsets_threshold"]], "offsets_threshold (sleap.nn.data.confidence_maps.singleinstanceconfidencemapgenerator attribute)": [[53, "sleap.nn.data.confidence_maps.SingleInstanceConfidenceMapGenerator.offsets_threshold"]], "output_keys (sleap.nn.data.confidence_maps.instanceconfidencemapgenerator property)": [[53, "sleap.nn.data.confidence_maps.InstanceConfidenceMapGenerator.output_keys"]], "output_keys (sleap.nn.data.confidence_maps.multiconfidencemapgenerator property)": [[53, "sleap.nn.data.confidence_maps.MultiConfidenceMapGenerator.output_keys"]], "output_keys (sleap.nn.data.confidence_maps.singleinstanceconfidencemapgenerator property)": [[53, "sleap.nn.data.confidence_maps.SingleInstanceConfidenceMapGenerator.output_keys"]], "output_stride (sleap.nn.data.confidence_maps.instanceconfidencemapgenerator attribute)": [[53, "sleap.nn.data.confidence_maps.InstanceConfidenceMapGenerator.output_stride"]], "output_stride (sleap.nn.data.confidence_maps.multiconfidencemapgenerator attribute)": [[53, "sleap.nn.data.confidence_maps.MultiConfidenceMapGenerator.output_stride"]], "output_stride (sleap.nn.data.confidence_maps.singleinstanceconfidencemapgenerator attribute)": [[53, "sleap.nn.data.confidence_maps.SingleInstanceConfidenceMapGenerator.output_stride"]], "sigma (sleap.nn.data.confidence_maps.instanceconfidencemapgenerator attribute)": [[53, "sleap.nn.data.confidence_maps.InstanceConfidenceMapGenerator.sigma"]], "sigma (sleap.nn.data.confidence_maps.multiconfidencemapgenerator attribute)": [[53, "sleap.nn.data.confidence_maps.MultiConfidenceMapGenerator.sigma"]], "sigma (sleap.nn.data.confidence_maps.singleinstanceconfidencemapgenerator attribute)": [[53, "sleap.nn.data.confidence_maps.SingleInstanceConfidenceMapGenerator.sigma"]], "sleap.nn.data.confidence_maps": [[53, "module-sleap.nn.data.confidence_maps"]], "transform_dataset() (sleap.nn.data.confidence_maps.instanceconfidencemapgenerator method)": [[53, "sleap.nn.data.confidence_maps.InstanceConfidenceMapGenerator.transform_dataset"]], "transform_dataset() (sleap.nn.data.confidence_maps.multiconfidencemapgenerator method)": [[53, "sleap.nn.data.confidence_maps.MultiConfidenceMapGenerator.transform_dataset"]], "transform_dataset() (sleap.nn.data.confidence_maps.singleinstanceconfidencemapgenerator method)": [[53, "sleap.nn.data.confidence_maps.SingleInstanceConfidenceMapGenerator.transform_dataset"]], "with_offsets (sleap.nn.data.confidence_maps.instanceconfidencemapgenerator attribute)": [[53, "sleap.nn.data.confidence_maps.InstanceConfidenceMapGenerator.with_offsets"]], "with_offsets (sleap.nn.data.confidence_maps.multiconfidencemapgenerator attribute)": [[53, "sleap.nn.data.confidence_maps.MultiConfidenceMapGenerator.with_offsets"]], "with_offsets (sleap.nn.data.confidence_maps.singleinstanceconfidencemapgenerator attribute)": [[53, "sleap.nn.data.confidence_maps.SingleInstanceConfidenceMapGenerator.with_offsets"]], "batcher (class in sleap.nn.data.dataset_ops)": [[54, "sleap.nn.data.dataset_ops.Batcher"]], "lambdafilter (class in sleap.nn.data.dataset_ops)": [[54, "sleap.nn.data.dataset_ops.LambdaFilter"]], "prefetcher (class in sleap.nn.data.dataset_ops)": [[54, "sleap.nn.data.dataset_ops.Prefetcher"]], "preloader (class in sleap.nn.data.dataset_ops)": [[54, "sleap.nn.data.dataset_ops.Preloader"]], "repeater (class in sleap.nn.data.dataset_ops)": [[54, "sleap.nn.data.dataset_ops.Repeater"]], "shuffler (class in sleap.nn.data.dataset_ops)": [[54, "sleap.nn.data.dataset_ops.Shuffler"]], "unbatcher (class in sleap.nn.data.dataset_ops)": [[54, "sleap.nn.data.dataset_ops.Unbatcher"]], "batch_size (sleap.nn.data.dataset_ops.batcher attribute)": [[54, "sleap.nn.data.dataset_ops.Batcher.batch_size"]], "buffer_size (sleap.nn.data.dataset_ops.prefetcher attribute)": [[54, "sleap.nn.data.dataset_ops.Prefetcher.buffer_size"]], "buffer_size (sleap.nn.data.dataset_ops.shuffler attribute)": [[54, "sleap.nn.data.dataset_ops.Shuffler.buffer_size"]], "drop_remainder (sleap.nn.data.dataset_ops.batcher attribute)": [[54, "sleap.nn.data.dataset_ops.Batcher.drop_remainder"]], "epochs (sleap.nn.data.dataset_ops.repeater attribute)": [[54, "sleap.nn.data.dataset_ops.Repeater.epochs"]], "examples (sleap.nn.data.dataset_ops.preloader attribute)": [[54, "sleap.nn.data.dataset_ops.Preloader.examples"]], "filter_fn (sleap.nn.data.dataset_ops.lambdafilter attribute)": [[54, "sleap.nn.data.dataset_ops.LambdaFilter.filter_fn"]], "input_keys (sleap.nn.data.dataset_ops.batcher property)": [[54, "sleap.nn.data.dataset_ops.Batcher.input_keys"]], "input_keys (sleap.nn.data.dataset_ops.lambdafilter property)": [[54, "sleap.nn.data.dataset_ops.LambdaFilter.input_keys"]], "input_keys (sleap.nn.data.dataset_ops.prefetcher property)": [[54, "sleap.nn.data.dataset_ops.Prefetcher.input_keys"]], "input_keys (sleap.nn.data.dataset_ops.preloader property)": [[54, "sleap.nn.data.dataset_ops.Preloader.input_keys"]], "input_keys (sleap.nn.data.dataset_ops.repeater property)": [[54, "sleap.nn.data.dataset_ops.Repeater.input_keys"]], "input_keys (sleap.nn.data.dataset_ops.shuffler property)": [[54, "sleap.nn.data.dataset_ops.Shuffler.input_keys"]], "input_keys (sleap.nn.data.dataset_ops.unbatcher property)": [[54, "sleap.nn.data.dataset_ops.Unbatcher.input_keys"]], "output_keys (sleap.nn.data.dataset_ops.batcher property)": [[54, "sleap.nn.data.dataset_ops.Batcher.output_keys"]], "output_keys (sleap.nn.data.dataset_ops.lambdafilter property)": [[54, "sleap.nn.data.dataset_ops.LambdaFilter.output_keys"]], "output_keys (sleap.nn.data.dataset_ops.prefetcher property)": [[54, "sleap.nn.data.dataset_ops.Prefetcher.output_keys"]], "output_keys (sleap.nn.data.dataset_ops.preloader property)": [[54, "sleap.nn.data.dataset_ops.Preloader.output_keys"]], "output_keys (sleap.nn.data.dataset_ops.repeater property)": [[54, "sleap.nn.data.dataset_ops.Repeater.output_keys"]], "output_keys (sleap.nn.data.dataset_ops.shuffler property)": [[54, "sleap.nn.data.dataset_ops.Shuffler.output_keys"]], "output_keys (sleap.nn.data.dataset_ops.unbatcher property)": [[54, "sleap.nn.data.dataset_ops.Unbatcher.output_keys"]], "prefetch (sleap.nn.data.dataset_ops.prefetcher attribute)": [[54, "sleap.nn.data.dataset_ops.Prefetcher.prefetch"]], "repeat (sleap.nn.data.dataset_ops.repeater attribute)": [[54, "sleap.nn.data.dataset_ops.Repeater.repeat"]], "reshuffle_each_iteration (sleap.nn.data.dataset_ops.shuffler attribute)": [[54, "sleap.nn.data.dataset_ops.Shuffler.reshuffle_each_iteration"]], "shuffle (sleap.nn.data.dataset_ops.shuffler attribute)": [[54, "sleap.nn.data.dataset_ops.Shuffler.shuffle"]], "sleap.nn.data.dataset_ops": [[54, "module-sleap.nn.data.dataset_ops"]], "transform_dataset() (sleap.nn.data.dataset_ops.batcher method)": [[54, "sleap.nn.data.dataset_ops.Batcher.transform_dataset"]], "transform_dataset() (sleap.nn.data.dataset_ops.lambdafilter method)": [[54, "sleap.nn.data.dataset_ops.LambdaFilter.transform_dataset"]], "transform_dataset() (sleap.nn.data.dataset_ops.prefetcher method)": [[54, "sleap.nn.data.dataset_ops.Prefetcher.transform_dataset"]], "transform_dataset() (sleap.nn.data.dataset_ops.preloader method)": [[54, "sleap.nn.data.dataset_ops.Preloader.transform_dataset"]], "transform_dataset() (sleap.nn.data.dataset_ops.repeater method)": [[54, "sleap.nn.data.dataset_ops.Repeater.transform_dataset"]], "transform_dataset() (sleap.nn.data.dataset_ops.shuffler method)": [[54, "sleap.nn.data.dataset_ops.Shuffler.transform_dataset"]], "transform_dataset() (sleap.nn.data.dataset_ops.unbatcher method)": [[54, "sleap.nn.data.dataset_ops.Unbatcher.transform_dataset"]], "unrag (sleap.nn.data.dataset_ops.batcher attribute)": [[54, "sleap.nn.data.dataset_ops.Batcher.unrag"]], "partaffinityfieldsgenerator (class in sleap.nn.data.edge_maps)": [[55, "sleap.nn.data.edge_maps.PartAffinityFieldsGenerator"]], "distance_to_edge() (in module sleap.nn.data.edge_maps)": [[55, "sleap.nn.data.edge_maps.distance_to_edge"]], "flatten_channels (sleap.nn.data.edge_maps.partaffinityfieldsgenerator attribute)": [[55, "sleap.nn.data.edge_maps.PartAffinityFieldsGenerator.flatten_channels"]], "get_edge_points() (in module sleap.nn.data.edge_maps)": [[55, "sleap.nn.data.edge_maps.get_edge_points"]], "input_keys (sleap.nn.data.edge_maps.partaffinityfieldsgenerator property)": [[55, "sleap.nn.data.edge_maps.PartAffinityFieldsGenerator.input_keys"]], "make_edge_maps() (in module sleap.nn.data.edge_maps)": [[55, "sleap.nn.data.edge_maps.make_edge_maps"]], "make_multi_pafs() (in module sleap.nn.data.edge_maps)": [[55, "sleap.nn.data.edge_maps.make_multi_pafs"]], "make_pafs() (in module sleap.nn.data.edge_maps)": [[55, "sleap.nn.data.edge_maps.make_pafs"]], "output_keys (sleap.nn.data.edge_maps.partaffinityfieldsgenerator property)": [[55, "sleap.nn.data.edge_maps.PartAffinityFieldsGenerator.output_keys"]], "output_stride (sleap.nn.data.edge_maps.partaffinityfieldsgenerator attribute)": [[55, "sleap.nn.data.edge_maps.PartAffinityFieldsGenerator.output_stride"]], "sigma (sleap.nn.data.edge_maps.partaffinityfieldsgenerator attribute)": [[55, "sleap.nn.data.edge_maps.PartAffinityFieldsGenerator.sigma"]], "skeletons (sleap.nn.data.edge_maps.partaffinityfieldsgenerator attribute)": [[55, "sleap.nn.data.edge_maps.PartAffinityFieldsGenerator.skeletons"]], "sleap.nn.data.edge_maps": [[55, "module-sleap.nn.data.edge_maps"]], "transform_dataset() (sleap.nn.data.edge_maps.partaffinityfieldsgenerator method)": [[55, "sleap.nn.data.edge_maps.PartAffinityFieldsGenerator.transform_dataset"]], "keydevicemover (class in sleap.nn.data.general)": [[56, "sleap.nn.data.general.KeyDeviceMover"]], "keyfilter (class in sleap.nn.data.general)": [[56, "sleap.nn.data.general.KeyFilter"]], "keyrenamer (class in sleap.nn.data.general)": [[56, "sleap.nn.data.general.KeyRenamer"]], "lambdamap (class in sleap.nn.data.general)": [[56, "sleap.nn.data.general.LambdaMap"]], "func (sleap.nn.data.general.lambdamap attribute)": [[56, "sleap.nn.data.general.LambdaMap.func"]], "input_key_names (sleap.nn.data.general.lambdamap attribute)": [[56, "sleap.nn.data.general.LambdaMap.input_key_names"]], "input_keys (sleap.nn.data.general.keydevicemover property)": [[56, "sleap.nn.data.general.KeyDeviceMover.input_keys"]], "input_keys (sleap.nn.data.general.keyfilter property)": [[56, "sleap.nn.data.general.KeyFilter.input_keys"]], "input_keys (sleap.nn.data.general.keyrenamer property)": [[56, "sleap.nn.data.general.KeyRenamer.input_keys"]], "input_keys (sleap.nn.data.general.lambdamap property)": [[56, "sleap.nn.data.general.LambdaMap.input_keys"]], "output_key_names (sleap.nn.data.general.lambdamap attribute)": [[56, "sleap.nn.data.general.LambdaMap.output_key_names"]], "output_keys (sleap.nn.data.general.keydevicemover property)": [[56, "sleap.nn.data.general.KeyDeviceMover.output_keys"]], "output_keys (sleap.nn.data.general.keyfilter property)": [[56, "sleap.nn.data.general.KeyFilter.output_keys"]], "output_keys (sleap.nn.data.general.keyrenamer property)": [[56, "sleap.nn.data.general.KeyRenamer.output_keys"]], "output_keys (sleap.nn.data.general.lambdamap property)": [[56, "sleap.nn.data.general.LambdaMap.output_keys"]], "sleap.nn.data.general": [[56, "module-sleap.nn.data.general"]], "transform_dataset() (sleap.nn.data.general.keydevicemover method)": [[56, "sleap.nn.data.general.KeyDeviceMover.transform_dataset"]], "transform_dataset() (sleap.nn.data.general.keyfilter method)": [[56, "sleap.nn.data.general.KeyFilter.transform_dataset"]], "transform_dataset() (sleap.nn.data.general.keyrenamer method)": [[56, "sleap.nn.data.general.KeyRenamer.transform_dataset"]], "transform_dataset() (sleap.nn.data.general.lambdamap method)": [[56, "sleap.nn.data.general.LambdaMap.transform_dataset"]], "group_examples() (in module sleap.nn.data.grouping)": [[57, "sleap.nn.data.grouping.group_examples"]], "group_examples_iter() (in module sleap.nn.data.grouping)": [[57, "sleap.nn.data.grouping.group_examples_iter"]], "sleap.nn.data.grouping": [[57, "module-sleap.nn.data.grouping"]], "classmapgenerator (class in sleap.nn.data.identity)": [[58, "sleap.nn.data.identity.ClassMapGenerator"]], "classvectorgenerator (class in sleap.nn.data.identity)": [[58, "sleap.nn.data.identity.ClassVectorGenerator"]], "centroids (sleap.nn.data.identity.classmapgenerator attribute)": [[58, "sleap.nn.data.identity.ClassMapGenerator.centroids"]], "class_map_threshold (sleap.nn.data.identity.classmapgenerator attribute)": [[58, "sleap.nn.data.identity.ClassMapGenerator.class_map_threshold"]], "input_keys (sleap.nn.data.identity.classmapgenerator property)": [[58, "sleap.nn.data.identity.ClassMapGenerator.input_keys"]], "input_keys (sleap.nn.data.identity.classvectorgenerator property)": [[58, "sleap.nn.data.identity.ClassVectorGenerator.input_keys"]], "make_class_maps() (in module sleap.nn.data.identity)": [[58, "sleap.nn.data.identity.make_class_maps"]], "make_class_vectors() (in module sleap.nn.data.identity)": [[58, "sleap.nn.data.identity.make_class_vectors"]], "output_keys (sleap.nn.data.identity.classmapgenerator property)": [[58, "sleap.nn.data.identity.ClassMapGenerator.output_keys"]], "output_keys (sleap.nn.data.identity.classvectorgenerator property)": [[58, "sleap.nn.data.identity.ClassVectorGenerator.output_keys"]], "output_stride (sleap.nn.data.identity.classmapgenerator attribute)": [[58, "sleap.nn.data.identity.ClassMapGenerator.output_stride"]], "sigma (sleap.nn.data.identity.classmapgenerator attribute)": [[58, "sleap.nn.data.identity.ClassMapGenerator.sigma"]], "sleap.nn.data.identity": [[58, "module-sleap.nn.data.identity"]], "transform_dataset() (sleap.nn.data.identity.classmapgenerator method)": [[58, "sleap.nn.data.identity.ClassMapGenerator.transform_dataset"]], "transform_dataset() (sleap.nn.data.identity.classvectorgenerator method)": [[58, "sleap.nn.data.identity.ClassVectorGenerator.transform_dataset"]], "globalpeakfinder (class in sleap.nn.data.inference)": [[59, "sleap.nn.data.inference.GlobalPeakFinder"]], "kerasmodelpredictor (class in sleap.nn.data.inference)": [[59, "sleap.nn.data.inference.KerasModelPredictor"]], "localpeakfinder (class in sleap.nn.data.inference)": [[59, "sleap.nn.data.inference.LocalPeakFinder"]], "mockglobalpeakfinder (class in sleap.nn.data.inference)": [[59, "sleap.nn.data.inference.MockGlobalPeakFinder"]], "predictedcenterinstancenormalizer (class in sleap.nn.data.inference)": [[59, "sleap.nn.data.inference.PredictedCenterInstanceNormalizer"]], "input_keys (sleap.nn.data.inference.predictedcenterinstancenormalizer property)": [[59, "sleap.nn.data.inference.PredictedCenterInstanceNormalizer.input_keys"]], "output_keys (sleap.nn.data.inference.predictedcenterinstancenormalizer property)": [[59, "sleap.nn.data.inference.PredictedCenterInstanceNormalizer.output_keys"]], "sleap.nn.data.inference": [[59, "module-sleap.nn.data.inference"]], "transform_dataset() (sleap.nn.data.inference.predictedcenterinstancenormalizer method)": [[59, "sleap.nn.data.inference.PredictedCenterInstanceNormalizer.transform_dataset"]], "instancecentroidfinder (class in sleap.nn.data.instance_centroids)": [[60, "sleap.nn.data.instance_centroids.InstanceCentroidFinder"]], "anchor_part_names (sleap.nn.data.instance_centroids.instancecentroidfinder attribute)": [[60, "sleap.nn.data.instance_centroids.InstanceCentroidFinder.anchor_part_names"]], "center_on_anchor_part (sleap.nn.data.instance_centroids.instancecentroidfinder attribute)": [[60, "sleap.nn.data.instance_centroids.InstanceCentroidFinder.center_on_anchor_part"]], "find_points_bbox_midpoint() (in module sleap.nn.data.instance_centroids)": [[60, "sleap.nn.data.instance_centroids.find_points_bbox_midpoint"]], "from_config() (sleap.nn.data.instance_centroids.instancecentroidfinder class method)": [[60, "sleap.nn.data.instance_centroids.InstanceCentroidFinder.from_config"]], "get_instance_anchors() (in module sleap.nn.data.instance_centroids)": [[60, "sleap.nn.data.instance_centroids.get_instance_anchors"]], "input_keys (sleap.nn.data.instance_centroids.instancecentroidfinder property)": [[60, "sleap.nn.data.instance_centroids.InstanceCentroidFinder.input_keys"]], "instances_key (sleap.nn.data.instance_centroids.instancecentroidfinder attribute)": [[60, "sleap.nn.data.instance_centroids.InstanceCentroidFinder.instances_key"]], "output_keys (sleap.nn.data.instance_centroids.instancecentroidfinder property)": [[60, "sleap.nn.data.instance_centroids.InstanceCentroidFinder.output_keys"]], "skeletons (sleap.nn.data.instance_centroids.instancecentroidfinder attribute)": [[60, "sleap.nn.data.instance_centroids.InstanceCentroidFinder.skeletons"]], "sleap.nn.data.instance_centroids": [[60, "module-sleap.nn.data.instance_centroids"]], "transform_dataset() (sleap.nn.data.instance_centroids.instancecentroidfinder method)": [[60, "sleap.nn.data.instance_centroids.InstanceCentroidFinder.transform_dataset"]], "instancecropper (class in sleap.nn.data.instance_cropping)": [[61, "sleap.nn.data.instance_cropping.InstanceCropper"]], "centroids_key (sleap.nn.data.instance_cropping.instancecropper attribute)": [[61, "sleap.nn.data.instance_cropping.InstanceCropper.centroids_key"]], "crop_bboxes() (in module sleap.nn.data.instance_cropping)": [[61, "sleap.nn.data.instance_cropping.crop_bboxes"]], "crop_height (sleap.nn.data.instance_cropping.instancecropper attribute)": [[61, "sleap.nn.data.instance_cropping.InstanceCropper.crop_height"]], "crop_width (sleap.nn.data.instance_cropping.instancecropper attribute)": [[61, "sleap.nn.data.instance_cropping.InstanceCropper.crop_width"]], "find_instance_crop_size() (in module sleap.nn.data.instance_cropping)": [[61, "sleap.nn.data.instance_cropping.find_instance_crop_size"]], "from_config() (sleap.nn.data.instance_cropping.instancecropper class method)": [[61, "sleap.nn.data.instance_cropping.InstanceCropper.from_config"]], "image_key (sleap.nn.data.instance_cropping.instancecropper attribute)": [[61, "sleap.nn.data.instance_cropping.InstanceCropper.image_key"]], "input_keys (sleap.nn.data.instance_cropping.instancecropper property)": [[61, "sleap.nn.data.instance_cropping.InstanceCropper.input_keys"]], "instances_key (sleap.nn.data.instance_cropping.instancecropper attribute)": [[61, "sleap.nn.data.instance_cropping.InstanceCropper.instances_key"]], "keep_full_image (sleap.nn.data.instance_cropping.instancecropper attribute)": [[61, "sleap.nn.data.instance_cropping.InstanceCropper.keep_full_image"]], "make_centered_bboxes() (in module sleap.nn.data.instance_cropping)": [[61, "sleap.nn.data.instance_cropping.make_centered_bboxes"]], "mock_centroid_confidence (sleap.nn.data.instance_cropping.instancecropper attribute)": [[61, "sleap.nn.data.instance_cropping.InstanceCropper.mock_centroid_confidence"]], "normalize_bboxes() (in module sleap.nn.data.instance_cropping)": [[61, "sleap.nn.data.instance_cropping.normalize_bboxes"]], "output_keys (sleap.nn.data.instance_cropping.instancecropper property)": [[61, "sleap.nn.data.instance_cropping.InstanceCropper.output_keys"]], "sleap.nn.data.instance_cropping": [[61, "module-sleap.nn.data.instance_cropping"]], "transform_dataset() (sleap.nn.data.instance_cropping.instancecropper method)": [[61, "sleap.nn.data.instance_cropping.InstanceCropper.transform_dataset"]], "unbatch (sleap.nn.data.instance_cropping.instancecropper attribute)": [[61, "sleap.nn.data.instance_cropping.InstanceCropper.unbatch"]], "unnormalize_bboxes() (in module sleap.nn.data.instance_cropping)": [[61, "sleap.nn.data.instance_cropping.unnormalize_bboxes"]], "normalizer (class in sleap.nn.data.normalization)": [[62, "sleap.nn.data.normalization.Normalizer"]], "convert_rgb_to_bgr() (in module sleap.nn.data.normalization)": [[62, "sleap.nn.data.normalization.convert_rgb_to_bgr"]], "ensure_float (sleap.nn.data.normalization.normalizer attribute)": [[62, "sleap.nn.data.normalization.Normalizer.ensure_float"]], "ensure_float() (in module sleap.nn.data.normalization)": [[62, "sleap.nn.data.normalization.ensure_float"]], "ensure_grayscale (sleap.nn.data.normalization.normalizer attribute)": [[62, "sleap.nn.data.normalization.Normalizer.ensure_grayscale"]], "ensure_grayscale() (in module sleap.nn.data.normalization)": [[62, "sleap.nn.data.normalization.ensure_grayscale"]], "ensure_int() (in module sleap.nn.data.normalization)": [[62, "sleap.nn.data.normalization.ensure_int"]], "ensure_min_image_rank() (in module sleap.nn.data.normalization)": [[62, "sleap.nn.data.normalization.ensure_min_image_rank"]], "ensure_rgb (sleap.nn.data.normalization.normalizer attribute)": [[62, "sleap.nn.data.normalization.Normalizer.ensure_rgb"]], "ensure_rgb() (in module sleap.nn.data.normalization)": [[62, "sleap.nn.data.normalization.ensure_rgb"]], "from_config() (sleap.nn.data.normalization.normalizer class method)": [[62, "sleap.nn.data.normalization.Normalizer.from_config"]], "image_key (sleap.nn.data.normalization.normalizer attribute)": [[62, "sleap.nn.data.normalization.Normalizer.image_key"]], "imagenet_mode (sleap.nn.data.normalization.normalizer attribute)": [[62, "sleap.nn.data.normalization.Normalizer.imagenet_mode"]], "input_keys (sleap.nn.data.normalization.normalizer property)": [[62, "sleap.nn.data.normalization.Normalizer.input_keys"]], "output_keys (sleap.nn.data.normalization.normalizer property)": [[62, "sleap.nn.data.normalization.Normalizer.output_keys"]], "scale_image_range() (in module sleap.nn.data.normalization)": [[62, "sleap.nn.data.normalization.scale_image_range"]], "scale_to_imagenet_caffe_mode() (in module sleap.nn.data.normalization)": [[62, "sleap.nn.data.normalization.scale_to_imagenet_caffe_mode"]], "scale_to_imagenet_tf_mode() (in module sleap.nn.data.normalization)": [[62, "sleap.nn.data.normalization.scale_to_imagenet_tf_mode"]], "scale_to_imagenet_torch_mode() (in module sleap.nn.data.normalization)": [[62, "sleap.nn.data.normalization.scale_to_imagenet_torch_mode"]], "sleap.nn.data.normalization": [[62, "module-sleap.nn.data.normalization"]], "transform_dataset() (sleap.nn.data.normalization.normalizer method)": [[62, "sleap.nn.data.normalization.Normalizer.transform_dataset"]], "make_offsets() (in module sleap.nn.data.offset_regression)": [[63, "sleap.nn.data.offset_regression.make_offsets"]], "mask_offsets() (in module sleap.nn.data.offset_regression)": [[63, "sleap.nn.data.offset_regression.mask_offsets"]], "sleap.nn.data.offset_regression": [[63, "module-sleap.nn.data.offset_regression"]], "bottomupmulticlasspipeline (class in sleap.nn.data.pipelines)": [[64, "sleap.nn.data.pipelines.BottomUpMultiClassPipeline"]], "bottomuppipeline (class in sleap.nn.data.pipelines)": [[64, "sleap.nn.data.pipelines.BottomUpPipeline"]], "centroidconfmapspipeline (class in sleap.nn.data.pipelines)": [[64, "sleap.nn.data.pipelines.CentroidConfmapsPipeline"]], "pipeline (class in sleap.nn.data.pipelines)": [[64, "sleap.nn.data.pipelines.Pipeline"]], "singleinstanceconfmapspipeline (class in sleap.nn.data.pipelines)": [[64, "sleap.nn.data.pipelines.SingleInstanceConfmapsPipeline"]], "topdownmulticlasspipeline (class in sleap.nn.data.pipelines)": [[64, "sleap.nn.data.pipelines.TopDownMultiClassPipeline"]], "topdownconfmapspipeline (class in sleap.nn.data.pipelines)": [[64, "sleap.nn.data.pipelines.TopdownConfmapsPipeline"]], "append() (sleap.nn.data.pipelines.pipeline method)": [[64, "sleap.nn.data.pipelines.Pipeline.append"]], "centroid_confmap_head (sleap.nn.data.pipelines.centroidconfmapspipeline attribute)": [[64, "sleap.nn.data.pipelines.CentroidConfmapsPipeline.centroid_confmap_head"]], "class_maps_head (sleap.nn.data.pipelines.bottomupmulticlasspipeline attribute)": [[64, "sleap.nn.data.pipelines.BottomUpMultiClassPipeline.class_maps_head"]], "class_vectors_head (sleap.nn.data.pipelines.topdownmulticlasspipeline attribute)": [[64, "sleap.nn.data.pipelines.TopDownMultiClassPipeline.class_vectors_head"]], "confmaps_head (sleap.nn.data.pipelines.bottomupmulticlasspipeline attribute)": [[64, "sleap.nn.data.pipelines.BottomUpMultiClassPipeline.confmaps_head"]], "confmaps_head (sleap.nn.data.pipelines.bottomuppipeline attribute)": [[64, "sleap.nn.data.pipelines.BottomUpPipeline.confmaps_head"]], "confmaps_head (sleap.nn.data.pipelines.topdownmulticlasspipeline attribute)": [[64, "sleap.nn.data.pipelines.TopDownMultiClassPipeline.confmaps_head"]], "data_config (sleap.nn.data.pipelines.bottomupmulticlasspipeline attribute)": [[64, "sleap.nn.data.pipelines.BottomUpMultiClassPipeline.data_config"]], "data_config (sleap.nn.data.pipelines.bottomuppipeline attribute)": [[64, "sleap.nn.data.pipelines.BottomUpPipeline.data_config"]], "data_config (sleap.nn.data.pipelines.centroidconfmapspipeline attribute)": [[64, "sleap.nn.data.pipelines.CentroidConfmapsPipeline.data_config"]], "data_config (sleap.nn.data.pipelines.singleinstanceconfmapspipeline attribute)": [[64, "sleap.nn.data.pipelines.SingleInstanceConfmapsPipeline.data_config"]], "data_config (sleap.nn.data.pipelines.topdownmulticlasspipeline attribute)": [[64, "sleap.nn.data.pipelines.TopDownMultiClassPipeline.data_config"]], "data_config (sleap.nn.data.pipelines.topdownconfmapspipeline attribute)": [[64, "sleap.nn.data.pipelines.TopdownConfmapsPipeline.data_config"]], "describe() (sleap.nn.data.pipelines.pipeline method)": [[64, "sleap.nn.data.pipelines.Pipeline.describe"]], "from_blocks() (sleap.nn.data.pipelines.pipeline class method)": [[64, "sleap.nn.data.pipelines.Pipeline.from_blocks"]], "from_pipelines() (sleap.nn.data.pipelines.pipeline class method)": [[64, "sleap.nn.data.pipelines.Pipeline.from_pipelines"]], "instance_confmap_head (sleap.nn.data.pipelines.topdownconfmapspipeline attribute)": [[64, "sleap.nn.data.pipelines.TopdownConfmapsPipeline.instance_confmap_head"]], "make_base_pipeline() (sleap.nn.data.pipelines.bottomupmulticlasspipeline method)": [[64, "sleap.nn.data.pipelines.BottomUpMultiClassPipeline.make_base_pipeline"]], "make_base_pipeline() (sleap.nn.data.pipelines.bottomuppipeline method)": [[64, "sleap.nn.data.pipelines.BottomUpPipeline.make_base_pipeline"]], "make_base_pipeline() (sleap.nn.data.pipelines.centroidconfmapspipeline method)": [[64, "sleap.nn.data.pipelines.CentroidConfmapsPipeline.make_base_pipeline"]], "make_base_pipeline() (sleap.nn.data.pipelines.singleinstanceconfmapspipeline method)": [[64, "sleap.nn.data.pipelines.SingleInstanceConfmapsPipeline.make_base_pipeline"]], "make_base_pipeline() (sleap.nn.data.pipelines.topdownmulticlasspipeline method)": [[64, "sleap.nn.data.pipelines.TopDownMultiClassPipeline.make_base_pipeline"]], "make_base_pipeline() (sleap.nn.data.pipelines.topdownconfmapspipeline method)": [[64, "sleap.nn.data.pipelines.TopdownConfmapsPipeline.make_base_pipeline"]], "make_dataset() (sleap.nn.data.pipelines.pipeline method)": [[64, "sleap.nn.data.pipelines.Pipeline.make_dataset"]], "make_training_pipeline() (sleap.nn.data.pipelines.bottomupmulticlasspipeline method)": [[64, "sleap.nn.data.pipelines.BottomUpMultiClassPipeline.make_training_pipeline"]], "make_training_pipeline() (sleap.nn.data.pipelines.bottomuppipeline method)": [[64, "sleap.nn.data.pipelines.BottomUpPipeline.make_training_pipeline"]], "make_training_pipeline() (sleap.nn.data.pipelines.centroidconfmapspipeline method)": [[64, "sleap.nn.data.pipelines.CentroidConfmapsPipeline.make_training_pipeline"]], "make_training_pipeline() (sleap.nn.data.pipelines.singleinstanceconfmapspipeline method)": [[64, "sleap.nn.data.pipelines.SingleInstanceConfmapsPipeline.make_training_pipeline"]], "make_training_pipeline() (sleap.nn.data.pipelines.topdownmulticlasspipeline method)": [[64, "sleap.nn.data.pipelines.TopDownMultiClassPipeline.make_training_pipeline"]], "make_training_pipeline() (sleap.nn.data.pipelines.topdownconfmapspipeline method)": [[64, "sleap.nn.data.pipelines.TopdownConfmapsPipeline.make_training_pipeline"]], "make_viz_pipeline() (sleap.nn.data.pipelines.bottomupmulticlasspipeline method)": [[64, "sleap.nn.data.pipelines.BottomUpMultiClassPipeline.make_viz_pipeline"]], "make_viz_pipeline() (sleap.nn.data.pipelines.bottomuppipeline method)": [[64, "sleap.nn.data.pipelines.BottomUpPipeline.make_viz_pipeline"]], "make_viz_pipeline() (sleap.nn.data.pipelines.centroidconfmapspipeline method)": [[64, "sleap.nn.data.pipelines.CentroidConfmapsPipeline.make_viz_pipeline"]], "make_viz_pipeline() (sleap.nn.data.pipelines.singleinstanceconfmapspipeline method)": [[64, "sleap.nn.data.pipelines.SingleInstanceConfmapsPipeline.make_viz_pipeline"]], "make_viz_pipeline() (sleap.nn.data.pipelines.topdownmulticlasspipeline method)": [[64, "sleap.nn.data.pipelines.TopDownMultiClassPipeline.make_viz_pipeline"]], "make_viz_pipeline() (sleap.nn.data.pipelines.topdownconfmapspipeline method)": [[64, "sleap.nn.data.pipelines.TopdownConfmapsPipeline.make_viz_pipeline"]], "offsets_head (sleap.nn.data.pipelines.bottomupmulticlasspipeline attribute)": [[64, "sleap.nn.data.pipelines.BottomUpMultiClassPipeline.offsets_head"]], "offsets_head (sleap.nn.data.pipelines.bottomuppipeline attribute)": [[64, "sleap.nn.data.pipelines.BottomUpPipeline.offsets_head"]], "offsets_head (sleap.nn.data.pipelines.centroidconfmapspipeline attribute)": [[64, "sleap.nn.data.pipelines.CentroidConfmapsPipeline.offsets_head"]], "offsets_head (sleap.nn.data.pipelines.singleinstanceconfmapspipeline attribute)": [[64, "sleap.nn.data.pipelines.SingleInstanceConfmapsPipeline.offsets_head"]], "offsets_head (sleap.nn.data.pipelines.topdownmulticlasspipeline attribute)": [[64, "sleap.nn.data.pipelines.TopDownMultiClassPipeline.offsets_head"]], "offsets_head (sleap.nn.data.pipelines.topdownconfmapspipeline attribute)": [[64, "sleap.nn.data.pipelines.TopdownConfmapsPipeline.offsets_head"]], "optimization_config (sleap.nn.data.pipelines.bottomupmulticlasspipeline attribute)": [[64, "sleap.nn.data.pipelines.BottomUpMultiClassPipeline.optimization_config"]], "optimization_config (sleap.nn.data.pipelines.bottomuppipeline attribute)": [[64, "sleap.nn.data.pipelines.BottomUpPipeline.optimization_config"]], "optimization_config (sleap.nn.data.pipelines.centroidconfmapspipeline attribute)": [[64, "sleap.nn.data.pipelines.CentroidConfmapsPipeline.optimization_config"]], "optimization_config (sleap.nn.data.pipelines.singleinstanceconfmapspipeline attribute)": [[64, "sleap.nn.data.pipelines.SingleInstanceConfmapsPipeline.optimization_config"]], "optimization_config (sleap.nn.data.pipelines.topdownmulticlasspipeline attribute)": [[64, "sleap.nn.data.pipelines.TopDownMultiClassPipeline.optimization_config"]], "optimization_config (sleap.nn.data.pipelines.topdownconfmapspipeline attribute)": [[64, "sleap.nn.data.pipelines.TopdownConfmapsPipeline.optimization_config"]], "output_keys (sleap.nn.data.pipelines.pipeline property)": [[64, "sleap.nn.data.pipelines.Pipeline.output_keys"]], "pafs_head (sleap.nn.data.pipelines.bottomuppipeline attribute)": [[64, "sleap.nn.data.pipelines.BottomUpPipeline.pafs_head"]], "peek() (sleap.nn.data.pipelines.pipeline method)": [[64, "sleap.nn.data.pipelines.Pipeline.peek"]], "providers (sleap.nn.data.pipelines.pipeline attribute)": [[64, "sleap.nn.data.pipelines.Pipeline.providers"]], "run() (sleap.nn.data.pipelines.pipeline method)": [[64, "sleap.nn.data.pipelines.Pipeline.run"]], "single_instance_confmap_head (sleap.nn.data.pipelines.singleinstanceconfmapspipeline attribute)": [[64, "sleap.nn.data.pipelines.SingleInstanceConfmapsPipeline.single_instance_confmap_head"]], "sleap.nn.data.pipelines": [[64, "module-sleap.nn.data.pipelines"]], "transformers (sleap.nn.data.pipelines.pipeline attribute)": [[64, "sleap.nn.data.pipelines.Pipeline.transformers"]], "validate_pipeline() (sleap.nn.data.pipelines.pipeline method)": [[64, "sleap.nn.data.pipelines.Pipeline.validate_pipeline"]], "labelsreader (class in sleap.nn.data.providers)": [[65, "sleap.nn.data.providers.LabelsReader"]], "videoreader (class in sleap.nn.data.providers)": [[65, "sleap.nn.data.providers.VideoReader"]], "example_indices (sleap.nn.data.providers.labelsreader attribute)": [[65, "sleap.nn.data.providers.LabelsReader.example_indices"]], "example_indices (sleap.nn.data.providers.videoreader attribute)": [[65, "sleap.nn.data.providers.VideoReader.example_indices"]], "from_filename() (sleap.nn.data.providers.labelsreader class method)": [[65, "sleap.nn.data.providers.LabelsReader.from_filename"]], "from_filepath() (sleap.nn.data.providers.videoreader class method)": [[65, "sleap.nn.data.providers.VideoReader.from_filepath"]], "from_unlabeled_suggestions() (sleap.nn.data.providers.labelsreader class method)": [[65, "sleap.nn.data.providers.LabelsReader.from_unlabeled_suggestions"]], "from_user_instances() (sleap.nn.data.providers.labelsreader class method)": [[65, "sleap.nn.data.providers.LabelsReader.from_user_instances"]], "from_user_labeled_frames() (sleap.nn.data.providers.labelsreader class method)": [[65, "sleap.nn.data.providers.LabelsReader.from_user_labeled_frames"]], "is_from_multi_size_videos (sleap.nn.data.providers.labelsreader property)": [[65, "sleap.nn.data.providers.LabelsReader.is_from_multi_size_videos"]], "labels (sleap.nn.data.providers.labelsreader attribute)": [[65, "sleap.nn.data.providers.LabelsReader.labels"]], "make_dataset() (sleap.nn.data.providers.labelsreader method)": [[65, "sleap.nn.data.providers.LabelsReader.make_dataset"]], "make_dataset() (sleap.nn.data.providers.videoreader method)": [[65, "sleap.nn.data.providers.VideoReader.make_dataset"]], "max_height_and_width (sleap.nn.data.providers.labelsreader property)": [[65, "sleap.nn.data.providers.LabelsReader.max_height_and_width"]], "max_height_and_width (sleap.nn.data.providers.videoreader property)": [[65, "sleap.nn.data.providers.VideoReader.max_height_and_width"]], "output_keys (sleap.nn.data.providers.labelsreader property)": [[65, "sleap.nn.data.providers.LabelsReader.output_keys"]], "output_keys (sleap.nn.data.providers.videoreader property)": [[65, "sleap.nn.data.providers.VideoReader.output_keys"]], "sleap.nn.data.providers": [[65, "module-sleap.nn.data.providers"]], "tracks (sleap.nn.data.providers.labelsreader property)": [[65, "sleap.nn.data.providers.LabelsReader.tracks"]], "user_instances_only (sleap.nn.data.providers.labelsreader attribute)": [[65, "sleap.nn.data.providers.LabelsReader.user_instances_only"]], "video (sleap.nn.data.providers.videoreader attribute)": [[65, "sleap.nn.data.providers.VideoReader.video"]], "video_ind (sleap.nn.data.providers.videoreader attribute)": [[65, "sleap.nn.data.providers.VideoReader.video_ind"]], "videos (sleap.nn.data.providers.labelsreader property)": [[65, "sleap.nn.data.providers.LabelsReader.videos"]], "videos (sleap.nn.data.providers.videoreader property)": [[65, "sleap.nn.data.providers.VideoReader.videos"]], "with_track_only (sleap.nn.data.providers.labelsreader attribute)": [[65, "sleap.nn.data.providers.LabelsReader.with_track_only"]], "pointsrescaler (class in sleap.nn.data.resizing)": [[66, "sleap.nn.data.resizing.PointsRescaler"]], "resizer (class in sleap.nn.data.resizing)": [[66, "sleap.nn.data.resizing.Resizer"]], "sizematcher (class in sleap.nn.data.resizing)": [[66, "sleap.nn.data.resizing.SizeMatcher"]], "center_pad (sleap.nn.data.resizing.sizematcher attribute)": [[66, "sleap.nn.data.resizing.SizeMatcher.center_pad"]], "find_padding_for_stride() (in module sleap.nn.data.resizing)": [[66, "sleap.nn.data.resizing.find_padding_for_stride"]], "from_config() (sleap.nn.data.resizing.resizer class method)": [[66, "sleap.nn.data.resizing.Resizer.from_config"]], "from_config() (sleap.nn.data.resizing.sizematcher class method)": [[66, "sleap.nn.data.resizing.SizeMatcher.from_config"]], "full_image_key (sleap.nn.data.resizing.resizer attribute)": [[66, "sleap.nn.data.resizing.Resizer.full_image_key"]], "full_image_key (sleap.nn.data.resizing.sizematcher attribute)": [[66, "sleap.nn.data.resizing.SizeMatcher.full_image_key"]], "image_key (sleap.nn.data.resizing.resizer attribute)": [[66, "sleap.nn.data.resizing.Resizer.image_key"]], "image_key (sleap.nn.data.resizing.sizematcher attribute)": [[66, "sleap.nn.data.resizing.SizeMatcher.image_key"]], "input_keys (sleap.nn.data.resizing.pointsrescaler property)": [[66, "sleap.nn.data.resizing.PointsRescaler.input_keys"]], "input_keys (sleap.nn.data.resizing.resizer property)": [[66, "sleap.nn.data.resizing.Resizer.input_keys"]], "input_keys (sleap.nn.data.resizing.sizematcher property)": [[66, "sleap.nn.data.resizing.SizeMatcher.input_keys"]], "keep_full_image (sleap.nn.data.resizing.resizer attribute)": [[66, "sleap.nn.data.resizing.Resizer.keep_full_image"]], "keep_full_image (sleap.nn.data.resizing.sizematcher attribute)": [[66, "sleap.nn.data.resizing.SizeMatcher.keep_full_image"]], "max_image_height (sleap.nn.data.resizing.sizematcher attribute)": [[66, "sleap.nn.data.resizing.SizeMatcher.max_image_height"]], "max_image_width (sleap.nn.data.resizing.sizematcher attribute)": [[66, "sleap.nn.data.resizing.SizeMatcher.max_image_width"]], "output_keys (sleap.nn.data.resizing.pointsrescaler property)": [[66, "sleap.nn.data.resizing.PointsRescaler.output_keys"]], "output_keys (sleap.nn.data.resizing.resizer property)": [[66, "sleap.nn.data.resizing.Resizer.output_keys"]], "output_keys (sleap.nn.data.resizing.sizematcher property)": [[66, "sleap.nn.data.resizing.SizeMatcher.output_keys"]], "pad_to_stride (sleap.nn.data.resizing.resizer attribute)": [[66, "sleap.nn.data.resizing.Resizer.pad_to_stride"]], "pad_to_stride() (in module sleap.nn.data.resizing)": [[66, "sleap.nn.data.resizing.pad_to_stride"]], "points_key (sleap.nn.data.resizing.resizer attribute)": [[66, "sleap.nn.data.resizing.Resizer.points_key"]], "points_key (sleap.nn.data.resizing.sizematcher attribute)": [[66, "sleap.nn.data.resizing.SizeMatcher.points_key"]], "resize_image() (in module sleap.nn.data.resizing)": [[66, "sleap.nn.data.resizing.resize_image"]], "scale (sleap.nn.data.resizing.resizer attribute)": [[66, "sleap.nn.data.resizing.Resizer.scale"]], "scale_key (sleap.nn.data.resizing.resizer attribute)": [[66, "sleap.nn.data.resizing.Resizer.scale_key"]], "scale_key (sleap.nn.data.resizing.sizematcher attribute)": [[66, "sleap.nn.data.resizing.SizeMatcher.scale_key"]], "sleap.nn.data.resizing": [[66, "module-sleap.nn.data.resizing"]], "transform_dataset() (sleap.nn.data.resizing.pointsrescaler method)": [[66, "sleap.nn.data.resizing.PointsRescaler.transform_dataset"]], "transform_dataset() (sleap.nn.data.resizing.resizer method)": [[66, "sleap.nn.data.resizing.Resizer.transform_dataset"]], "transform_dataset() (sleap.nn.data.resizing.sizematcher method)": [[66, "sleap.nn.data.resizing.SizeMatcher.transform_dataset"]], "keymapper (class in sleap.nn.data.training)": [[67, "sleap.nn.data.training.KeyMapper"]], "input_keys (sleap.nn.data.training.keymapper property)": [[67, "sleap.nn.data.training.KeyMapper.input_keys"]], "key_maps (sleap.nn.data.training.keymapper attribute)": [[67, "sleap.nn.data.training.KeyMapper.key_maps"]], "output_keys (sleap.nn.data.training.keymapper property)": [[67, "sleap.nn.data.training.KeyMapper.output_keys"]], "sleap.nn.data.training": [[67, "module-sleap.nn.data.training"]], "split_labels() (in module sleap.nn.data.training)": [[67, "sleap.nn.data.training.split_labels"]], "split_labels_reader() (in module sleap.nn.data.training)": [[67, "sleap.nn.data.training.split_labels_reader"]], "split_labels_train_val() (in module sleap.nn.data.training)": [[67, "sleap.nn.data.training.split_labels_train_val"]], "transform_dataset() (sleap.nn.data.training.keymapper method)": [[67, "sleap.nn.data.training.KeyMapper.transform_dataset"]], "describe_tensors() (in module sleap.nn.data.utils)": [[68, "sleap.nn.data.utils.describe_tensors"]], "ensure_list() (in module sleap.nn.data.utils)": [[68, "sleap.nn.data.utils.ensure_list"]], "expand_to_rank() (in module sleap.nn.data.utils)": [[68, "sleap.nn.data.utils.expand_to_rank"]], "gaussian_pdf() (in module sleap.nn.data.utils)": [[68, "sleap.nn.data.utils.gaussian_pdf"]], "make_grid_vectors() (in module sleap.nn.data.utils)": [[68, "sleap.nn.data.utils.make_grid_vectors"]], "sleap.nn.data.utils": [[68, "module-sleap.nn.data.utils"]], "unrag_example() (in module sleap.nn.data.utils)": [[68, "sleap.nn.data.utils.unrag_example"]], "unrag_tensor() (in module sleap.nn.data.utils)": [[68, "sleap.nn.data.utils.unrag_tensor"]], "compute_dist_metrics() (in module sleap.nn.evals)": [[69, "sleap.nn.evals.compute_dist_metrics"]], "compute_dists() (in module sleap.nn.evals)": [[69, "sleap.nn.evals.compute_dists"]], "compute_generalized_voc_metrics() (in module sleap.nn.evals)": [[69, "sleap.nn.evals.compute_generalized_voc_metrics"]], "compute_instance_area() (in module sleap.nn.evals)": [[69, "sleap.nn.evals.compute_instance_area"]], "compute_oks() (in module sleap.nn.evals)": [[69, "sleap.nn.evals.compute_oks"]], "compute_pck_metrics() (in module sleap.nn.evals)": [[69, "sleap.nn.evals.compute_pck_metrics"]], "compute_visibility_conf() (in module sleap.nn.evals)": [[69, "sleap.nn.evals.compute_visibility_conf"]], "evaluate() (in module sleap.nn.evals)": [[69, "sleap.nn.evals.evaluate"]], "evaluate_model() (in module sleap.nn.evals)": [[69, "sleap.nn.evals.evaluate_model"]], "find_frame_pairs() (in module sleap.nn.evals)": [[69, "sleap.nn.evals.find_frame_pairs"]], "load_metrics() (in module sleap.nn.evals)": [[69, "sleap.nn.evals.load_metrics"]], "match_frame_pairs() (in module sleap.nn.evals)": [[69, "sleap.nn.evals.match_frame_pairs"]], "match_instances() (in module sleap.nn.evals)": [[69, "sleap.nn.evals.match_instances"]], "replace_path() (in module sleap.nn.evals)": [[69, "sleap.nn.evals.replace_path"]], "sleap.nn.evals": [[69, "module-sleap.nn.evals"]], "centeredinstanceconfmapshead (class in sleap.nn.heads)": [[70, "sleap.nn.heads.CenteredInstanceConfmapsHead"]], "centroidconfmapshead (class in sleap.nn.heads)": [[70, "sleap.nn.heads.CentroidConfmapsHead"]], "classmapshead (class in sleap.nn.heads)": [[70, "sleap.nn.heads.ClassMapsHead"]], "classvectorshead (class in sleap.nn.heads)": [[70, "sleap.nn.heads.ClassVectorsHead"]], "head (class in sleap.nn.heads)": [[70, "sleap.nn.heads.Head"]], "multiinstanceconfmapshead (class in sleap.nn.heads)": [[70, "sleap.nn.heads.MultiInstanceConfmapsHead"]], "offsetrefinementhead (class in sleap.nn.heads)": [[70, "sleap.nn.heads.OffsetRefinementHead"]], "partaffinityfieldshead (class in sleap.nn.heads)": [[70, "sleap.nn.heads.PartAffinityFieldsHead"]], "singleinstanceconfmapshead (class in sleap.nn.heads)": [[70, "sleap.nn.heads.SingleInstanceConfmapsHead"]], "activation (sleap.nn.heads.classmapshead property)": [[70, "sleap.nn.heads.ClassMapsHead.activation"]], "activation (sleap.nn.heads.classvectorshead property)": [[70, "sleap.nn.heads.ClassVectorsHead.activation"]], "activation (sleap.nn.heads.head property)": [[70, "sleap.nn.heads.Head.activation"]], "anchor_part (sleap.nn.heads.centeredinstanceconfmapshead attribute)": [[70, "sleap.nn.heads.CenteredInstanceConfmapsHead.anchor_part"]], "anchor_part (sleap.nn.heads.centroidconfmapshead attribute)": [[70, "sleap.nn.heads.CentroidConfmapsHead.anchor_part"]], "channels (sleap.nn.heads.centeredinstanceconfmapshead property)": [[70, "sleap.nn.heads.CenteredInstanceConfmapsHead.channels"]], "channels (sleap.nn.heads.centroidconfmapshead property)": [[70, "sleap.nn.heads.CentroidConfmapsHead.channels"]], "channels (sleap.nn.heads.classmapshead property)": [[70, "sleap.nn.heads.ClassMapsHead.channels"]], "channels (sleap.nn.heads.classvectorshead property)": [[70, "sleap.nn.heads.ClassVectorsHead.channels"]], "channels (sleap.nn.heads.head property)": [[70, "sleap.nn.heads.Head.channels"]], "channels (sleap.nn.heads.multiinstanceconfmapshead property)": [[70, "sleap.nn.heads.MultiInstanceConfmapsHead.channels"]], "channels (sleap.nn.heads.offsetrefinementhead property)": [[70, "sleap.nn.heads.OffsetRefinementHead.channels"]], "channels (sleap.nn.heads.partaffinityfieldshead property)": [[70, "sleap.nn.heads.PartAffinityFieldsHead.channels"]], "channels (sleap.nn.heads.singleinstanceconfmapshead property)": [[70, "sleap.nn.heads.SingleInstanceConfmapsHead.channels"]], "classes (sleap.nn.heads.classmapshead attribute)": [[70, "id1"], [70, "sleap.nn.heads.ClassMapsHead.classes"]], "classes (sleap.nn.heads.classvectorshead attribute)": [[70, "id2"], [70, "sleap.nn.heads.ClassVectorsHead.classes"]], "config (sleap.nn.heads.centeredinstanceconfmapshead attribute)": [[70, "sleap.nn.heads.CenteredInstanceConfmapsHead.config"]], "config (sleap.nn.heads.centroidconfmapshead attribute)": [[70, "sleap.nn.heads.CentroidConfmapsHead.config"]], "config (sleap.nn.heads.classmapshead attribute)": [[70, "sleap.nn.heads.ClassMapsHead.config"]], "config (sleap.nn.heads.classvectorshead attribute)": [[70, "sleap.nn.heads.ClassVectorsHead.config"]], "config (sleap.nn.heads.multiinstanceconfmapshead attribute)": [[70, "sleap.nn.heads.MultiInstanceConfmapsHead.config"]], "config (sleap.nn.heads.offsetrefinementhead attribute)": [[70, "sleap.nn.heads.OffsetRefinementHead.config"]], "config (sleap.nn.heads.partaffinityfieldshead attribute)": [[70, "sleap.nn.heads.PartAffinityFieldsHead.config"]], "config (sleap.nn.heads.singleinstanceconfmapshead attribute)": [[70, "sleap.nn.heads.SingleInstanceConfmapsHead.config"]], "edges (sleap.nn.heads.partaffinityfieldshead attribute)": [[70, "id7"], [70, "sleap.nn.heads.PartAffinityFieldsHead.edges"]], "from_config() (sleap.nn.heads.centeredinstanceconfmapshead class method)": [[70, "sleap.nn.heads.CenteredInstanceConfmapsHead.from_config"]], "from_config() (sleap.nn.heads.centroidconfmapshead class method)": [[70, "sleap.nn.heads.CentroidConfmapsHead.from_config"]], "from_config() (sleap.nn.heads.classmapshead class method)": [[70, "sleap.nn.heads.ClassMapsHead.from_config"]], "from_config() (sleap.nn.heads.classvectorshead class method)": [[70, "sleap.nn.heads.ClassVectorsHead.from_config"]], "from_config() (sleap.nn.heads.multiinstanceconfmapshead class method)": [[70, "sleap.nn.heads.MultiInstanceConfmapsHead.from_config"]], "from_config() (sleap.nn.heads.offsetrefinementhead class method)": [[70, "sleap.nn.heads.OffsetRefinementHead.from_config"]], "from_config() (sleap.nn.heads.partaffinityfieldshead class method)": [[70, "sleap.nn.heads.PartAffinityFieldsHead.from_config"]], "from_config() (sleap.nn.heads.singleinstanceconfmapshead class method)": [[70, "sleap.nn.heads.SingleInstanceConfmapsHead.from_config"]], "loss_function (sleap.nn.heads.classvectorshead property)": [[70, "sleap.nn.heads.ClassVectorsHead.loss_function"]], "loss_function (sleap.nn.heads.head property)": [[70, "sleap.nn.heads.Head.loss_function"]], "loss_weight (sleap.nn.heads.centeredinstanceconfmapshead attribute)": [[70, "sleap.nn.heads.CenteredInstanceConfmapsHead.loss_weight"]], "loss_weight (sleap.nn.heads.centroidconfmapshead attribute)": [[70, "sleap.nn.heads.CentroidConfmapsHead.loss_weight"]], "loss_weight (sleap.nn.heads.classmapshead attribute)": [[70, "sleap.nn.heads.ClassMapsHead.loss_weight"]], "loss_weight (sleap.nn.heads.classvectorshead attribute)": [[70, "sleap.nn.heads.ClassVectorsHead.loss_weight"]], "loss_weight (sleap.nn.heads.multiinstanceconfmapshead attribute)": [[70, "sleap.nn.heads.MultiInstanceConfmapsHead.loss_weight"]], "loss_weight (sleap.nn.heads.offsetrefinementhead attribute)": [[70, "id6"], [70, "sleap.nn.heads.OffsetRefinementHead.loss_weight"]], "loss_weight (sleap.nn.heads.partaffinityfieldshead attribute)": [[70, "sleap.nn.heads.PartAffinityFieldsHead.loss_weight"]], "loss_weight (sleap.nn.heads.singleinstanceconfmapshead attribute)": [[70, "sleap.nn.heads.SingleInstanceConfmapsHead.loss_weight"]], "make_head() (sleap.nn.heads.classvectorshead method)": [[70, "sleap.nn.heads.ClassVectorsHead.make_head"]], "make_head() (sleap.nn.heads.head method)": [[70, "sleap.nn.heads.Head.make_head"]], "num_fc_layers (sleap.nn.heads.classvectorshead attribute)": [[70, "sleap.nn.heads.ClassVectorsHead.num_fc_layers"]], "num_fc_units (sleap.nn.heads.classvectorshead attribute)": [[70, "sleap.nn.heads.ClassVectorsHead.num_fc_units"]], "output_stride (sleap.nn.heads.centeredinstanceconfmapshead attribute)": [[70, "sleap.nn.heads.CenteredInstanceConfmapsHead.output_stride"]], "output_stride (sleap.nn.heads.centroidconfmapshead attribute)": [[70, "sleap.nn.heads.CentroidConfmapsHead.output_stride"]], "output_stride (sleap.nn.heads.classmapshead attribute)": [[70, "sleap.nn.heads.ClassMapsHead.output_stride"]], "output_stride (sleap.nn.heads.classvectorshead attribute)": [[70, "sleap.nn.heads.ClassVectorsHead.output_stride"]], "output_stride (sleap.nn.heads.multiinstanceconfmapshead attribute)": [[70, "sleap.nn.heads.MultiInstanceConfmapsHead.output_stride"]], "output_stride (sleap.nn.heads.offsetrefinementhead attribute)": [[70, "sleap.nn.heads.OffsetRefinementHead.output_stride"]], "output_stride (sleap.nn.heads.partaffinityfieldshead attribute)": [[70, "sleap.nn.heads.PartAffinityFieldsHead.output_stride"]], "output_stride (sleap.nn.heads.singleinstanceconfmapshead attribute)": [[70, "sleap.nn.heads.SingleInstanceConfmapsHead.output_stride"]], "part_names (sleap.nn.heads.centeredinstanceconfmapshead attribute)": [[70, "id0"], [70, "sleap.nn.heads.CenteredInstanceConfmapsHead.part_names"]], "part_names (sleap.nn.heads.multiinstanceconfmapshead attribute)": [[70, "id3"], [70, "sleap.nn.heads.MultiInstanceConfmapsHead.part_names"]], "part_names (sleap.nn.heads.offsetrefinementhead attribute)": [[70, "id4"], [70, "sleap.nn.heads.OffsetRefinementHead.part_names"]], "part_names (sleap.nn.heads.singleinstanceconfmapshead attribute)": [[70, "id8"], [70, "sleap.nn.heads.SingleInstanceConfmapsHead.part_names"]], "sigma (sleap.nn.heads.centeredinstanceconfmapshead attribute)": [[70, "sleap.nn.heads.CenteredInstanceConfmapsHead.sigma"]], "sigma (sleap.nn.heads.centroidconfmapshead attribute)": [[70, "sleap.nn.heads.CentroidConfmapsHead.sigma"]], "sigma (sleap.nn.heads.classmapshead attribute)": [[70, "sleap.nn.heads.ClassMapsHead.sigma"]], "sigma (sleap.nn.heads.multiinstanceconfmapshead attribute)": [[70, "sleap.nn.heads.MultiInstanceConfmapsHead.sigma"]], "sigma (sleap.nn.heads.partaffinityfieldshead attribute)": [[70, "sleap.nn.heads.PartAffinityFieldsHead.sigma"]], "sigma (sleap.nn.heads.singleinstanceconfmapshead attribute)": [[70, "sleap.nn.heads.SingleInstanceConfmapsHead.sigma"]], "sigma_threshold (sleap.nn.heads.offsetrefinementhead attribute)": [[70, "id5"], [70, "sleap.nn.heads.OffsetRefinementHead.sigma_threshold"]], "sleap.nn.heads": [[70, "module-sleap.nn.heads"]], "classify_peaks_from_maps() (in module sleap.nn.identity)": [[71, "sleap.nn.identity.classify_peaks_from_maps"]], "classify_peaks_from_vectors() (in module sleap.nn.identity)": [[71, "sleap.nn.identity.classify_peaks_from_vectors"]], "group_class_peaks() (in module sleap.nn.identity)": [[71, "sleap.nn.identity.group_class_peaks"]], "sleap.nn.identity": [[71, "module-sleap.nn.identity"]], "bottomupinferencelayer (class in sleap.nn.inference)": [[72, "sleap.nn.inference.BottomUpInferenceLayer"]], "bottomupinferencemodel (class in sleap.nn.inference)": [[72, "sleap.nn.inference.BottomUpInferenceModel"]], "bottomupmulticlassinferencelayer (class in sleap.nn.inference)": [[72, "sleap.nn.inference.BottomUpMultiClassInferenceLayer"]], "bottomupmulticlassinferencemodel (class in sleap.nn.inference)": [[72, "sleap.nn.inference.BottomUpMultiClassInferenceModel"]], "bottomupmulticlasspredictor (class in sleap.nn.inference)": [[72, "sleap.nn.inference.BottomUpMultiClassPredictor"]], "bottomuppredictor (class in sleap.nn.inference)": [[72, "sleap.nn.inference.BottomUpPredictor"]], "centroidcrop (class in sleap.nn.inference)": [[72, "sleap.nn.inference.CentroidCrop"]], "centroidcropgroundtruth (class in sleap.nn.inference)": [[72, "sleap.nn.inference.CentroidCropGroundTruth"]], "centroidinferencemodel (class in sleap.nn.inference)": [[72, "sleap.nn.inference.CentroidInferenceModel"]], "findinstancepeaks (class in sleap.nn.inference)": [[72, "sleap.nn.inference.FindInstancePeaks"]], "findinstancepeaksgroundtruth (class in sleap.nn.inference)": [[72, "sleap.nn.inference.FindInstancePeaksGroundTruth"]], "inferencelayer (class in sleap.nn.inference)": [[72, "sleap.nn.inference.InferenceLayer"]], "inferencemodel (class in sleap.nn.inference)": [[72, "sleap.nn.inference.InferenceModel"]], "movenetinferencelayer (class in sleap.nn.inference)": [[72, "sleap.nn.inference.MoveNetInferenceLayer"]], "movenetinferencemodel (class in sleap.nn.inference)": [[72, "sleap.nn.inference.MoveNetInferenceModel"]], "movenetpredictor (class in sleap.nn.inference)": [[72, "sleap.nn.inference.MoveNetPredictor"]], "predictor (class in sleap.nn.inference)": [[72, "sleap.nn.inference.Predictor"]], "ratecolumn (class in sleap.nn.inference)": [[72, "sleap.nn.inference.RateColumn"]], "singleinstanceinferencelayer (class in sleap.nn.inference)": [[72, "sleap.nn.inference.SingleInstanceInferenceLayer"]], "singleinstanceinferencemodel (class in sleap.nn.inference)": [[72, "sleap.nn.inference.SingleInstanceInferenceModel"]], "singleinstancepredictor (class in sleap.nn.inference)": [[72, "sleap.nn.inference.SingleInstancePredictor"]], "topdowninferencemodel (class in sleap.nn.inference)": [[72, "sleap.nn.inference.TopDownInferenceModel"]], "topdownmulticlassfindpeaks (class in sleap.nn.inference)": [[72, "sleap.nn.inference.TopDownMultiClassFindPeaks"]], "topdownmulticlassinferencemodel (class in sleap.nn.inference)": [[72, "sleap.nn.inference.TopDownMultiClassInferenceModel"]], "topdownmulticlasspredictor (class in sleap.nn.inference)": [[72, "sleap.nn.inference.TopDownMultiClassPredictor"]], "topdownpredictor (class in sleap.nn.inference)": [[72, "sleap.nn.inference.TopDownPredictor"]], "visualpredictor (class in sleap.nn.inference)": [[72, "sleap.nn.inference.VisualPredictor"]], "batch_size (sleap.nn.inference.bottomupmulticlasspredictor attribute)": [[72, "sleap.nn.inference.BottomUpMultiClassPredictor.batch_size"]], "batch_size (sleap.nn.inference.bottomuppredictor attribute)": [[72, "sleap.nn.inference.BottomUpPredictor.batch_size"]], "batch_size (sleap.nn.inference.movenetpredictor attribute)": [[72, "sleap.nn.inference.MoveNetPredictor.batch_size"]], "batch_size (sleap.nn.inference.singleinstancepredictor attribute)": [[72, "sleap.nn.inference.SingleInstancePredictor.batch_size"]], "batch_size (sleap.nn.inference.topdownmulticlasspredictor attribute)": [[72, "sleap.nn.inference.TopDownMultiClassPredictor.batch_size"]], "batch_size (sleap.nn.inference.topdownpredictor attribute)": [[72, "sleap.nn.inference.TopDownPredictor.batch_size"]], "bottomup_config (sleap.nn.inference.bottomuppredictor attribute)": [[72, "sleap.nn.inference.BottomUpPredictor.bottomup_config"]], "bottomup_layer (sleap.nn.inference.bottomupinferencemodel attribute)": [[72, "sleap.nn.inference.BottomUpInferenceModel.bottomup_layer"]], "bottomup_model (sleap.nn.inference.bottomuppredictor attribute)": [[72, "sleap.nn.inference.BottomUpPredictor.bottomup_model"]], "call() (sleap.nn.inference.bottomupinferencelayer method)": [[72, "sleap.nn.inference.BottomUpInferenceLayer.call"]], "call() (sleap.nn.inference.bottomupinferencemodel method)": [[72, "sleap.nn.inference.BottomUpInferenceModel.call"]], "call() (sleap.nn.inference.bottomupmulticlassinferencelayer method)": [[72, "sleap.nn.inference.BottomUpMultiClassInferenceLayer.call"]], "call() (sleap.nn.inference.bottomupmulticlassinferencemodel method)": [[72, "sleap.nn.inference.BottomUpMultiClassInferenceModel.call"]], "call() (sleap.nn.inference.centroidcrop method)": [[72, "sleap.nn.inference.CentroidCrop.call"]], "call() (sleap.nn.inference.centroidcropgroundtruth method)": [[72, "sleap.nn.inference.CentroidCropGroundTruth.call"]], "call() (sleap.nn.inference.centroidinferencemodel method)": [[72, "sleap.nn.inference.CentroidInferenceModel.call"]], "call() (sleap.nn.inference.findinstancepeaks method)": [[72, "sleap.nn.inference.FindInstancePeaks.call"]], "call() (sleap.nn.inference.findinstancepeaksgroundtruth method)": [[72, "sleap.nn.inference.FindInstancePeaksGroundTruth.call"]], "call() (sleap.nn.inference.inferencelayer method)": [[72, "sleap.nn.inference.InferenceLayer.call"]], "call() (sleap.nn.inference.movenetinferencelayer method)": [[72, "sleap.nn.inference.MoveNetInferenceLayer.call"]], "call() (sleap.nn.inference.movenetinferencemodel method)": [[72, "sleap.nn.inference.MoveNetInferenceModel.call"]], "call() (sleap.nn.inference.singleinstanceinferencelayer method)": [[72, "sleap.nn.inference.SingleInstanceInferenceLayer.call"]], "call() (sleap.nn.inference.singleinstanceinferencemodel method)": [[72, "sleap.nn.inference.SingleInstanceInferenceModel.call"]], "call() (sleap.nn.inference.topdowninferencemodel method)": [[72, "sleap.nn.inference.TopDownInferenceModel.call"]], "call() (sleap.nn.inference.topdownmulticlassfindpeaks method)": [[72, "sleap.nn.inference.TopDownMultiClassFindPeaks.call"]], "call() (sleap.nn.inference.topdownmulticlassinferencemodel method)": [[72, "sleap.nn.inference.TopDownMultiClassInferenceModel.call"]], "centroid_config (sleap.nn.inference.topdownmulticlasspredictor attribute)": [[72, "sleap.nn.inference.TopDownMultiClassPredictor.centroid_config"]], "centroid_config (sleap.nn.inference.topdownpredictor attribute)": [[72, "sleap.nn.inference.TopDownPredictor.centroid_config"]], "centroid_crop (sleap.nn.inference.centroidinferencemodel attribute)": [[72, "sleap.nn.inference.CentroidInferenceModel.centroid_crop"]], "centroid_crop (sleap.nn.inference.topdowninferencemodel attribute)": [[72, "sleap.nn.inference.TopDownInferenceModel.centroid_crop"]], "centroid_crop (sleap.nn.inference.topdownmulticlassinferencemodel attribute)": [[72, "sleap.nn.inference.TopDownMultiClassInferenceModel.centroid_crop"]], "centroid_model (sleap.nn.inference.topdownmulticlasspredictor attribute)": [[72, "sleap.nn.inference.TopDownMultiClassPredictor.centroid_model"]], "centroid_model (sleap.nn.inference.topdownpredictor attribute)": [[72, "sleap.nn.inference.TopDownPredictor.centroid_model"]], "class_maps_ind (sleap.nn.inference.bottomupmulticlassinferencelayer attribute)": [[72, "sleap.nn.inference.BottomUpMultiClassInferenceLayer.class_maps_ind"]], "class_maps_output_stride (sleap.nn.inference.bottomupmulticlassinferencelayer attribute)": [[72, "sleap.nn.inference.BottomUpMultiClassInferenceLayer.class_maps_output_stride"]], "class_vectors_ind (sleap.nn.inference.topdownmulticlassfindpeaks attribute)": [[72, "sleap.nn.inference.TopDownMultiClassFindPeaks.class_vectors_ind"]], "cm_output_stride (sleap.nn.inference.bottomupinferencelayer attribute)": [[72, "sleap.nn.inference.BottomUpInferenceLayer.cm_output_stride"]], "cm_output_stride (sleap.nn.inference.bottomupmulticlassinferencelayer attribute)": [[72, "sleap.nn.inference.BottomUpMultiClassInferenceLayer.cm_output_stride"]], "config (sleap.nn.inference.bottomupmulticlasspredictor attribute)": [[72, "sleap.nn.inference.BottomUpMultiClassPredictor.config"]], "confmap_config (sleap.nn.inference.singleinstancepredictor attribute)": [[72, "sleap.nn.inference.SingleInstancePredictor.confmap_config"]], "confmap_config (sleap.nn.inference.topdownmulticlasspredictor attribute)": [[72, "sleap.nn.inference.TopDownMultiClassPredictor.confmap_config"]], "confmap_config (sleap.nn.inference.topdownpredictor attribute)": [[72, "sleap.nn.inference.TopDownPredictor.confmap_config"]], "confmap_model (sleap.nn.inference.singleinstancepredictor attribute)": [[72, "sleap.nn.inference.SingleInstancePredictor.confmap_model"]], "confmap_model (sleap.nn.inference.topdownmulticlasspredictor attribute)": [[72, "sleap.nn.inference.TopDownMultiClassPredictor.confmap_model"]], "confmap_model (sleap.nn.inference.topdownpredictor attribute)": [[72, "sleap.nn.inference.TopDownPredictor.confmap_model"]], "confmaps_ind (sleap.nn.inference.bottomupinferencelayer attribute)": [[72, "sleap.nn.inference.BottomUpInferenceLayer.confmaps_ind"]], "confmaps_ind (sleap.nn.inference.bottomupmulticlassinferencelayer attribute)": [[72, "sleap.nn.inference.BottomUpMultiClassInferenceLayer.confmaps_ind"]], "confmaps_ind (sleap.nn.inference.centroidcrop attribute)": [[72, "sleap.nn.inference.CentroidCrop.confmaps_ind"]], "confmaps_ind (sleap.nn.inference.findinstancepeaks attribute)": [[72, "sleap.nn.inference.FindInstancePeaks.confmaps_ind"]], "confmaps_ind (sleap.nn.inference.singleinstanceinferencelayer attribute)": [[72, "sleap.nn.inference.SingleInstanceInferenceLayer.confmaps_ind"]], "confmaps_ind (sleap.nn.inference.topdownmulticlassfindpeaks attribute)": [[72, "sleap.nn.inference.TopDownMultiClassFindPeaks.confmaps_ind"]], "crop_size (sleap.nn.inference.centroidcrop attribute)": [[72, "sleap.nn.inference.CentroidCrop.crop_size"]], "crop_size (sleap.nn.inference.centroidcropgroundtruth attribute)": [[72, "sleap.nn.inference.CentroidCropGroundTruth.crop_size"]], "dist_penalty_weight (sleap.nn.inference.bottomuppredictor attribute)": [[72, "sleap.nn.inference.BottomUpPredictor.dist_penalty_weight"]], "ensure_float (sleap.nn.inference.inferencelayer attribute)": [[72, "sleap.nn.inference.InferenceLayer.ensure_float"]], "ensure_float (sleap.nn.inference.movenetinferencelayer attribute)": [[72, "sleap.nn.inference.MoveNetInferenceLayer.ensure_float"]], "ensure_grayscale (sleap.nn.inference.inferencelayer attribute)": [[72, "sleap.nn.inference.InferenceLayer.ensure_grayscale"]], "ensure_grayscale (sleap.nn.inference.movenetinferencelayer attribute)": [[72, "sleap.nn.inference.MoveNetInferenceLayer.ensure_grayscale"]], "export_cli() (in module sleap.nn.inference)": [[72, "sleap.nn.inference.export_cli"]], "export_model() (in module sleap.nn.inference)": [[72, "sleap.nn.inference.export_model"]], "export_model() (sleap.nn.inference.inferencemodel method)": [[72, "sleap.nn.inference.InferenceModel.export_model"]], "export_model() (sleap.nn.inference.predictor method)": [[72, "sleap.nn.inference.Predictor.export_model"]], "export_model() (sleap.nn.inference.singleinstancepredictor method)": [[72, "sleap.nn.inference.SingleInstancePredictor.export_model"]], "export_model() (sleap.nn.inference.topdownmulticlassinferencemodel method)": [[72, "sleap.nn.inference.TopDownMultiClassInferenceModel.export_model"]], "export_model() (sleap.nn.inference.topdownmulticlasspredictor method)": [[72, "sleap.nn.inference.TopDownMultiClassPredictor.export_model"]], "export_model() (sleap.nn.inference.topdownpredictor method)": [[72, "sleap.nn.inference.TopDownPredictor.export_model"]], "find_head() (in module sleap.nn.inference)": [[72, "sleap.nn.inference.find_head"]], "find_peaks() (sleap.nn.inference.bottomupinferencelayer method)": [[72, "sleap.nn.inference.BottomUpInferenceLayer.find_peaks"]], "find_peaks() (sleap.nn.inference.bottomupmulticlassinferencelayer method)": [[72, "sleap.nn.inference.BottomUpMultiClassInferenceLayer.find_peaks"]], "forward_pass() (sleap.nn.inference.bottomupinferencelayer method)": [[72, "sleap.nn.inference.BottomUpInferenceLayer.forward_pass"]], "forward_pass() (sleap.nn.inference.bottomupmulticlassinferencelayer method)": [[72, "sleap.nn.inference.BottomUpMultiClassInferenceLayer.forward_pass"]], "from_model_paths() (sleap.nn.inference.predictor class method)": [[72, "sleap.nn.inference.Predictor.from_model_paths"]], "from_trained_models() (sleap.nn.inference.bottomupmulticlasspredictor class method)": [[72, "sleap.nn.inference.BottomUpMultiClassPredictor.from_trained_models"]], "from_trained_models() (sleap.nn.inference.bottomuppredictor class method)": [[72, "sleap.nn.inference.BottomUpPredictor.from_trained_models"]], "from_trained_models() (sleap.nn.inference.movenetpredictor class method)": [[72, "sleap.nn.inference.MoveNetPredictor.from_trained_models"]], "from_trained_models() (sleap.nn.inference.singleinstancepredictor class method)": [[72, "sleap.nn.inference.SingleInstancePredictor.from_trained_models"]], "from_trained_models() (sleap.nn.inference.topdownmulticlasspredictor class method)": [[72, "sleap.nn.inference.TopDownMultiClassPredictor.from_trained_models"]], "from_trained_models() (sleap.nn.inference.topdownpredictor class method)": [[72, "sleap.nn.inference.TopDownPredictor.from_trained_models"]], "get_keras_model_path() (in module sleap.nn.inference)": [[72, "sleap.nn.inference.get_keras_model_path"]], "get_model_output_stride() (in module sleap.nn.inference)": [[72, "sleap.nn.inference.get_model_output_stride"]], "inference_layer (sleap.nn.inference.bottomupmulticlassinferencemodel attribute)": [[72, "sleap.nn.inference.BottomUpMultiClassInferenceModel.inference_layer"]], "inference_layer (sleap.nn.inference.movenetinferencemodel attribute)": [[72, "sleap.nn.inference.MoveNetInferenceModel.inference_layer"]], "inference_model (sleap.nn.inference.bottomupmulticlasspredictor attribute)": [[72, "sleap.nn.inference.BottomUpMultiClassPredictor.inference_model"]], "inference_model (sleap.nn.inference.bottomuppredictor attribute)": [[72, "sleap.nn.inference.BottomUpPredictor.inference_model"]], "inference_model (sleap.nn.inference.movenetpredictor attribute)": [[72, "sleap.nn.inference.MoveNetPredictor.inference_model"]], "inference_model (sleap.nn.inference.singleinstancepredictor attribute)": [[72, "sleap.nn.inference.SingleInstancePredictor.inference_model"]], "inference_model (sleap.nn.inference.topdownmulticlasspredictor attribute)": [[72, "sleap.nn.inference.TopDownMultiClassPredictor.inference_model"]], "inference_model (sleap.nn.inference.topdownpredictor attribute)": [[72, "sleap.nn.inference.TopDownPredictor.inference_model"]], "input_scale (sleap.nn.inference.bottomupinferencelayer attribute)": [[72, "sleap.nn.inference.BottomUpInferenceLayer.input_scale"]], "input_scale (sleap.nn.inference.bottomupmulticlassinferencelayer attribute)": [[72, "sleap.nn.inference.BottomUpMultiClassInferenceLayer.input_scale"]], "input_scale (sleap.nn.inference.centroidcrop attribute)": [[72, "sleap.nn.inference.CentroidCrop.input_scale"]], "input_scale (sleap.nn.inference.findinstancepeaks attribute)": [[72, "sleap.nn.inference.FindInstancePeaks.input_scale"]], "input_scale (sleap.nn.inference.inferencelayer attribute)": [[72, "sleap.nn.inference.InferenceLayer.input_scale"]], "input_scale (sleap.nn.inference.movenetinferencelayer attribute)": [[72, "sleap.nn.inference.MoveNetInferenceLayer.input_scale"]], "input_scale (sleap.nn.inference.singleinstanceinferencelayer attribute)": [[72, "sleap.nn.inference.SingleInstanceInferenceLayer.input_scale"]], "input_scale (sleap.nn.inference.topdownmulticlassfindpeaks attribute)": [[72, "sleap.nn.inference.TopDownMultiClassFindPeaks.input_scale"]], "instance_peaks (sleap.nn.inference.topdowninferencemodel attribute)": [[72, "sleap.nn.inference.TopDownInferenceModel.instance_peaks"]], "instance_peaks (sleap.nn.inference.topdownmulticlassinferencemodel attribute)": [[72, "sleap.nn.inference.TopDownMultiClassInferenceModel.instance_peaks"]], "integral_patch_size (sleap.nn.inference.bottomupinferencelayer attribute)": [[72, "sleap.nn.inference.BottomUpInferenceLayer.integral_patch_size"]], "integral_patch_size (sleap.nn.inference.bottomupmulticlassinferencelayer attribute)": [[72, "sleap.nn.inference.BottomUpMultiClassInferenceLayer.integral_patch_size"]], "integral_patch_size (sleap.nn.inference.bottomupmulticlasspredictor attribute)": [[72, "sleap.nn.inference.BottomUpMultiClassPredictor.integral_patch_size"]], "integral_patch_size (sleap.nn.inference.bottomuppredictor attribute)": [[72, "sleap.nn.inference.BottomUpPredictor.integral_patch_size"]], "integral_patch_size (sleap.nn.inference.centroidcrop attribute)": [[72, "sleap.nn.inference.CentroidCrop.integral_patch_size"]], "integral_patch_size (sleap.nn.inference.findinstancepeaks attribute)": [[72, "sleap.nn.inference.FindInstancePeaks.integral_patch_size"]], "integral_patch_size (sleap.nn.inference.singleinstanceinferencelayer attribute)": [[72, "sleap.nn.inference.SingleInstanceInferenceLayer.integral_patch_size"]], "integral_patch_size (sleap.nn.inference.singleinstancepredictor attribute)": [[72, "sleap.nn.inference.SingleInstancePredictor.integral_patch_size"]], "integral_patch_size (sleap.nn.inference.topdownmulticlassfindpeaks attribute)": [[72, "sleap.nn.inference.TopDownMultiClassFindPeaks.integral_patch_size"]], "integral_patch_size (sleap.nn.inference.topdownmulticlasspredictor attribute)": [[72, "sleap.nn.inference.TopDownMultiClassPredictor.integral_patch_size"]], "integral_patch_size (sleap.nn.inference.topdownpredictor attribute)": [[72, "sleap.nn.inference.TopDownPredictor.integral_patch_size"]], "integral_refinement (sleap.nn.inference.bottomupmulticlasspredictor attribute)": [[72, "sleap.nn.inference.BottomUpMultiClassPredictor.integral_refinement"]], "integral_refinement (sleap.nn.inference.bottomuppredictor attribute)": [[72, "sleap.nn.inference.BottomUpPredictor.integral_refinement"]], "integral_refinement (sleap.nn.inference.singleinstancepredictor attribute)": [[72, "sleap.nn.inference.SingleInstancePredictor.integral_refinement"]], "integral_refinement (sleap.nn.inference.topdownmulticlasspredictor attribute)": [[72, "sleap.nn.inference.TopDownMultiClassPredictor.integral_refinement"]], "integral_refinement (sleap.nn.inference.topdownpredictor attribute)": [[72, "sleap.nn.inference.TopDownPredictor.integral_refinement"]], "is_grayscale (sleap.nn.inference.bottomupmulticlasspredictor property)": [[72, "sleap.nn.inference.BottomUpMultiClassPredictor.is_grayscale"]], "is_grayscale (sleap.nn.inference.bottomuppredictor property)": [[72, "sleap.nn.inference.BottomUpPredictor.is_grayscale"]], "is_grayscale (sleap.nn.inference.movenetpredictor property)": [[72, "sleap.nn.inference.MoveNetPredictor.is_grayscale"]], "is_grayscale (sleap.nn.inference.predictor property)": [[72, "sleap.nn.inference.Predictor.is_grayscale"]], "is_grayscale (sleap.nn.inference.singleinstancepredictor property)": [[72, "sleap.nn.inference.SingleInstancePredictor.is_grayscale"]], "is_grayscale (sleap.nn.inference.topdownmulticlasspredictor property)": [[72, "sleap.nn.inference.TopDownMultiClassPredictor.is_grayscale"]], "is_grayscale (sleap.nn.inference.topdownpredictor property)": [[72, "sleap.nn.inference.TopDownPredictor.is_grayscale"]], "keras_model (sleap.nn.inference.bottomupinferencelayer attribute)": [[72, "sleap.nn.inference.BottomUpInferenceLayer.keras_model"]], "keras_model (sleap.nn.inference.bottomupmulticlassinferencelayer attribute)": [[72, "sleap.nn.inference.BottomUpMultiClassInferenceLayer.keras_model"]], "keras_model (sleap.nn.inference.centroidcrop attribute)": [[72, "sleap.nn.inference.CentroidCrop.keras_model"]], "keras_model (sleap.nn.inference.findinstancepeaks attribute)": [[72, "sleap.nn.inference.FindInstancePeaks.keras_model"]], "keras_model (sleap.nn.inference.inferencelayer attribute)": [[72, "sleap.nn.inference.InferenceLayer.keras_model"]], "keras_model (sleap.nn.inference.movenetinferencelayer attribute)": [[72, "sleap.nn.inference.MoveNetInferenceLayer.keras_model"]], "keras_model (sleap.nn.inference.singleinstanceinferencelayer attribute)": [[72, "sleap.nn.inference.SingleInstanceInferenceLayer.keras_model"]], "keras_model (sleap.nn.inference.topdownmulticlassfindpeaks attribute)": [[72, "sleap.nn.inference.TopDownMultiClassFindPeaks.keras_model"]], "load_model() (in module sleap.nn.inference)": [[72, "sleap.nn.inference.load_model"]], "main() (in module sleap.nn.inference)": [[72, "sleap.nn.inference.main"]], "make_model_movenet() (in module sleap.nn.inference)": [[72, "sleap.nn.inference.make_model_movenet"]], "make_pipeline() (sleap.nn.inference.predictor method)": [[72, "sleap.nn.inference.Predictor.make_pipeline"]], "make_pipeline() (sleap.nn.inference.topdownmulticlasspredictor method)": [[72, "sleap.nn.inference.TopDownMultiClassPredictor.make_pipeline"]], "make_pipeline() (sleap.nn.inference.topdownpredictor method)": [[72, "sleap.nn.inference.TopDownPredictor.make_pipeline"]], "make_pipeline() (sleap.nn.inference.visualpredictor method)": [[72, "sleap.nn.inference.VisualPredictor.make_pipeline"]], "max_edge_length_ratio (sleap.nn.inference.bottomuppredictor attribute)": [[72, "sleap.nn.inference.BottomUpPredictor.max_edge_length_ratio"]], "max_instances (sleap.nn.inference.bottomuppredictor attribute)": [[72, "sleap.nn.inference.BottomUpPredictor.max_instances"]], "max_instances (sleap.nn.inference.centroidcrop attribute)": [[72, "sleap.nn.inference.CentroidCrop.max_instances"]], "max_instances (sleap.nn.inference.topdownpredictor attribute)": [[72, "sleap.nn.inference.TopDownPredictor.max_instances"]], "min_line_scores (sleap.nn.inference.bottomuppredictor attribute)": [[72, "sleap.nn.inference.BottomUpPredictor.min_line_scores"]], "model (sleap.nn.inference.bottomupmulticlasspredictor attribute)": [[72, "sleap.nn.inference.BottomUpMultiClassPredictor.model"]], "model_name (sleap.nn.inference.movenetinferencelayer attribute)": [[72, "sleap.nn.inference.MoveNetInferenceLayer.model_name"]], "model_name (sleap.nn.inference.movenetpredictor attribute)": [[72, "sleap.nn.inference.MoveNetPredictor.model_name"]], "offsets_ind (sleap.nn.inference.bottomupinferencelayer attribute)": [[72, "sleap.nn.inference.BottomUpInferenceLayer.offsets_ind"]], "offsets_ind (sleap.nn.inference.bottomupmulticlassinferencelayer attribute)": [[72, "sleap.nn.inference.BottomUpMultiClassInferenceLayer.offsets_ind"]], "offsets_ind (sleap.nn.inference.centroidcrop attribute)": [[72, "sleap.nn.inference.CentroidCrop.offsets_ind"]], "offsets_ind (sleap.nn.inference.findinstancepeaks attribute)": [[72, "sleap.nn.inference.FindInstancePeaks.offsets_ind"]], "offsets_ind (sleap.nn.inference.singleinstanceinferencelayer attribute)": [[72, "sleap.nn.inference.SingleInstanceInferenceLayer.offsets_ind"]], "offsets_ind (sleap.nn.inference.topdownmulticlassfindpeaks attribute)": [[72, "sleap.nn.inference.TopDownMultiClassFindPeaks.offsets_ind"]], "optimal_grouping (sleap.nn.inference.topdownmulticlassfindpeaks attribute)": [[72, "sleap.nn.inference.TopDownMultiClassFindPeaks.optimal_grouping"]], "output_stride (sleap.nn.inference.centroidcrop attribute)": [[72, "sleap.nn.inference.CentroidCrop.output_stride"]], "output_stride (sleap.nn.inference.findinstancepeaks attribute)": [[72, "sleap.nn.inference.FindInstancePeaks.output_stride"]], "output_stride (sleap.nn.inference.singleinstanceinferencelayer attribute)": [[72, "sleap.nn.inference.SingleInstanceInferenceLayer.output_stride"]], "output_stride (sleap.nn.inference.topdownmulticlassfindpeaks attribute)": [[72, "sleap.nn.inference.TopDownMultiClassFindPeaks.output_stride"]], "pad_to_stride (sleap.nn.inference.centroidcrop attribute)": [[72, "sleap.nn.inference.CentroidCrop.pad_to_stride"]], "pad_to_stride (sleap.nn.inference.inferencelayer attribute)": [[72, "sleap.nn.inference.InferenceLayer.pad_to_stride"]], "pad_to_stride (sleap.nn.inference.movenetinferencelayer attribute)": [[72, "sleap.nn.inference.MoveNetInferenceLayer.pad_to_stride"]], "pad_to_stride (sleap.nn.inference.singleinstanceinferencelayer attribute)": [[72, "sleap.nn.inference.SingleInstanceInferenceLayer.pad_to_stride"]], "paf_line_points (sleap.nn.inference.bottomuppredictor attribute)": [[72, "sleap.nn.inference.BottomUpPredictor.paf_line_points"]], "paf_output_stride (sleap.nn.inference.bottomupinferencelayer attribute)": [[72, "sleap.nn.inference.BottomUpInferenceLayer.paf_output_stride"]], "paf_scorer (sleap.nn.inference.bottomupinferencelayer attribute)": [[72, "sleap.nn.inference.BottomUpInferenceLayer.paf_scorer"]], "pafs_ind (sleap.nn.inference.bottomupinferencelayer attribute)": [[72, "sleap.nn.inference.BottomUpInferenceLayer.pafs_ind"]], "peak_threshold (sleap.nn.inference.bottomupinferencelayer attribute)": [[72, "sleap.nn.inference.BottomUpInferenceLayer.peak_threshold"]], "peak_threshold (sleap.nn.inference.bottomupmulticlassinferencelayer attribute)": [[72, "sleap.nn.inference.BottomUpMultiClassInferenceLayer.peak_threshold"]], "peak_threshold (sleap.nn.inference.bottomupmulticlasspredictor attribute)": [[72, "sleap.nn.inference.BottomUpMultiClassPredictor.peak_threshold"]], "peak_threshold (sleap.nn.inference.bottomuppredictor attribute)": [[72, "sleap.nn.inference.BottomUpPredictor.peak_threshold"]], "peak_threshold (sleap.nn.inference.centroidcrop attribute)": [[72, "sleap.nn.inference.CentroidCrop.peak_threshold"]], "peak_threshold (sleap.nn.inference.findinstancepeaks attribute)": [[72, "sleap.nn.inference.FindInstancePeaks.peak_threshold"]], "peak_threshold (sleap.nn.inference.movenetpredictor attribute)": [[72, "sleap.nn.inference.MoveNetPredictor.peak_threshold"]], "peak_threshold (sleap.nn.inference.singleinstanceinferencelayer attribute)": [[72, "sleap.nn.inference.SingleInstanceInferenceLayer.peak_threshold"]], "peak_threshold (sleap.nn.inference.singleinstancepredictor attribute)": [[72, "sleap.nn.inference.SingleInstancePredictor.peak_threshold"]], "peak_threshold (sleap.nn.inference.topdownmulticlassfindpeaks attribute)": [[72, "sleap.nn.inference.TopDownMultiClassFindPeaks.peak_threshold"]], "peak_threshold (sleap.nn.inference.topdownmulticlasspredictor attribute)": [[72, "sleap.nn.inference.TopDownMultiClassPredictor.peak_threshold"]], "peak_threshold (sleap.nn.inference.topdownpredictor attribute)": [[72, "sleap.nn.inference.TopDownPredictor.peak_threshold"]], "pipeline (sleap.nn.inference.bottomupmulticlasspredictor attribute)": [[72, "sleap.nn.inference.BottomUpMultiClassPredictor.pipeline"]], "pipeline (sleap.nn.inference.bottomuppredictor attribute)": [[72, "sleap.nn.inference.BottomUpPredictor.pipeline"]], "pipeline (sleap.nn.inference.movenetpredictor attribute)": [[72, "sleap.nn.inference.MoveNetPredictor.pipeline"]], "pipeline (sleap.nn.inference.singleinstancepredictor attribute)": [[72, "sleap.nn.inference.SingleInstancePredictor.pipeline"]], "pipeline (sleap.nn.inference.topdownmulticlasspredictor attribute)": [[72, "sleap.nn.inference.TopDownMultiClassPredictor.pipeline"]], "pipeline (sleap.nn.inference.topdownpredictor attribute)": [[72, "sleap.nn.inference.TopDownPredictor.pipeline"]], "predict() (sleap.nn.inference.inferencemodel method)": [[72, "sleap.nn.inference.InferenceModel.predict"]], "predict() (sleap.nn.inference.predictor method)": [[72, "sleap.nn.inference.Predictor.predict"]], "predict() (sleap.nn.inference.visualpredictor method)": [[72, "sleap.nn.inference.VisualPredictor.predict"]], "predict_on_batch() (sleap.nn.inference.inferencemodel method)": [[72, "sleap.nn.inference.InferenceModel.predict_on_batch"]], "preprocess() (sleap.nn.inference.inferencelayer method)": [[72, "sleap.nn.inference.InferenceLayer.preprocess"]], "refinement (sleap.nn.inference.bottomupinferencelayer attribute)": [[72, "sleap.nn.inference.BottomUpInferenceLayer.refinement"]], "refinement (sleap.nn.inference.bottomupmulticlassinferencelayer attribute)": [[72, "sleap.nn.inference.BottomUpMultiClassInferenceLayer.refinement"]], "refinement (sleap.nn.inference.centroidcrop attribute)": [[72, "sleap.nn.inference.CentroidCrop.refinement"]], "refinement (sleap.nn.inference.findinstancepeaks attribute)": [[72, "sleap.nn.inference.FindInstancePeaks.refinement"]], "refinement (sleap.nn.inference.singleinstanceinferencelayer attribute)": [[72, "sleap.nn.inference.SingleInstanceInferenceLayer.refinement"]], "refinement (sleap.nn.inference.topdownmulticlassfindpeaks attribute)": [[72, "sleap.nn.inference.TopDownMultiClassFindPeaks.refinement"]], "render() (sleap.nn.inference.ratecolumn method)": [[72, "sleap.nn.inference.RateColumn.render"]], "report_period (sleap.nn.inference.predictor property)": [[72, "sleap.nn.inference.Predictor.report_period"]], "return_class_maps (sleap.nn.inference.bottomupmulticlassinferencelayer attribute)": [[72, "sleap.nn.inference.BottomUpMultiClassInferenceLayer.return_class_maps"]], "return_class_vectors (sleap.nn.inference.topdownmulticlassfindpeaks attribute)": [[72, "sleap.nn.inference.TopDownMultiClassFindPeaks.return_class_vectors"]], "return_confmaps (sleap.nn.inference.bottomupinferencelayer attribute)": [[72, "sleap.nn.inference.BottomUpInferenceLayer.return_confmaps"]], "return_confmaps (sleap.nn.inference.bottomupmulticlassinferencelayer attribute)": [[72, "sleap.nn.inference.BottomUpMultiClassInferenceLayer.return_confmaps"]], "return_confmaps (sleap.nn.inference.centroidcrop attribute)": [[72, "sleap.nn.inference.CentroidCrop.return_confmaps"]], "return_confmaps (sleap.nn.inference.findinstancepeaks attribute)": [[72, "sleap.nn.inference.FindInstancePeaks.return_confmaps"]], "return_confmaps (sleap.nn.inference.singleinstanceinferencelayer attribute)": [[72, "sleap.nn.inference.SingleInstanceInferenceLayer.return_confmaps"]], "return_confmaps (sleap.nn.inference.topdownmulticlassfindpeaks attribute)": [[72, "sleap.nn.inference.TopDownMultiClassFindPeaks.return_confmaps"]], "return_crops (sleap.nn.inference.centroidcrop attribute)": [[72, "sleap.nn.inference.CentroidCrop.return_crops"]], "return_paf_graph (sleap.nn.inference.bottomupinferencelayer attribute)": [[72, "sleap.nn.inference.BottomUpInferenceLayer.return_paf_graph"]], "return_pafs (sleap.nn.inference.bottomupinferencelayer attribute)": [[72, "sleap.nn.inference.BottomUpInferenceLayer.return_pafs"]], "safely_generate() (sleap.nn.inference.visualpredictor method)": [[72, "sleap.nn.inference.VisualPredictor.safely_generate"]], "single_instance_layer (sleap.nn.inference.singleinstanceinferencemodel attribute)": [[72, "sleap.nn.inference.SingleInstanceInferenceModel.single_instance_layer"]], "sleap.nn.inference": [[72, "module-sleap.nn.inference"]], "tracker (sleap.nn.inference.bottomuppredictor attribute)": [[72, "sleap.nn.inference.BottomUpPredictor.tracker"]], "tracker (sleap.nn.inference.topdownmulticlasspredictor attribute)": [[72, "sleap.nn.inference.TopDownMultiClassPredictor.tracker"]], "tracker (sleap.nn.inference.topdownpredictor attribute)": [[72, "sleap.nn.inference.TopDownPredictor.tracker"]], "tracks (sleap.nn.inference.bottomupmulticlasspredictor attribute)": [[72, "sleap.nn.inference.BottomUpMultiClassPredictor.tracks"]], "tracks (sleap.nn.inference.topdownmulticlasspredictor attribute)": [[72, "sleap.nn.inference.TopDownMultiClassPredictor.tracks"]], "ohkmloss (class in sleap.nn.losses)": [[73, "sleap.nn.losses.OHKMLoss"]], "partloss (class in sleap.nn.losses)": [[73, "sleap.nn.losses.PartLoss"]], "call() (sleap.nn.losses.ohkmloss method)": [[73, "sleap.nn.losses.OHKMLoss.call"]], "channel_ind (sleap.nn.losses.partloss attribute)": [[73, "sleap.nn.losses.PartLoss.channel_ind"]], "compute_ohkm_loss() (in module sleap.nn.losses)": [[73, "sleap.nn.losses.compute_ohkm_loss"]], "from_config() (sleap.nn.losses.ohkmloss class method)": [[73, "sleap.nn.losses.OHKMLoss.from_config"]], "hard_to_easy_ratio (sleap.nn.losses.ohkmloss attribute)": [[73, "sleap.nn.losses.OHKMLoss.hard_to_easy_ratio"]], "loss_scale (sleap.nn.losses.ohkmloss attribute)": [[73, "sleap.nn.losses.OHKMLoss.loss_scale"]], "max_hard_keypoints (sleap.nn.losses.ohkmloss attribute)": [[73, "sleap.nn.losses.OHKMLoss.max_hard_keypoints"]], "min_hard_keypoints (sleap.nn.losses.ohkmloss attribute)": [[73, "sleap.nn.losses.OHKMLoss.min_hard_keypoints"]], "name (sleap.nn.losses.partloss attribute)": [[73, "sleap.nn.losses.PartLoss.name"]], "result() (sleap.nn.losses.partloss method)": [[73, "sleap.nn.losses.PartLoss.result"]], "sleap.nn.losses": [[73, "module-sleap.nn.losses"]], "update_state() (sleap.nn.losses.partloss method)": [[73, "sleap.nn.losses.PartLoss.update_state"]], "model (class in sleap.nn.model)": [[74, "sleap.nn.model.Model"]], "backbone (sleap.nn.model.model attribute)": [[74, "sleap.nn.model.Model.backbone"]], "from_config() (sleap.nn.model.model class method)": [[74, "sleap.nn.model.Model.from_config"]], "heads (sleap.nn.model.model attribute)": [[74, "sleap.nn.model.Model.heads"]], "keras_model (sleap.nn.model.model attribute)": [[74, "sleap.nn.model.Model.keras_model"]], "make_model() (sleap.nn.model.model method)": [[74, "sleap.nn.model.Model.make_model"]], "maximum_stride (sleap.nn.model.model property)": [[74, "sleap.nn.model.Model.maximum_stride"]], "sleap.nn.model": [[74, "module-sleap.nn.model"]], "edgeconnection (class in sleap.nn.paf_grouping)": [[75, "sleap.nn.paf_grouping.EdgeConnection"]], "edgetype (class in sleap.nn.paf_grouping)": [[75, "sleap.nn.paf_grouping.EdgeType"]], "pafscorer (class in sleap.nn.paf_grouping)": [[75, "sleap.nn.paf_grouping.PAFScorer"]], "peakid (class in sleap.nn.paf_grouping)": [[75, "sleap.nn.paf_grouping.PeakID"]], "assign_connections_to_instances() (in module sleap.nn.paf_grouping)": [[75, "sleap.nn.paf_grouping.assign_connections_to_instances"]], "compute_distance_penalty() (in module sleap.nn.paf_grouping)": [[75, "sleap.nn.paf_grouping.compute_distance_penalty"]], "dist_penalty_weight (sleap.nn.paf_grouping.pafscorer attribute)": [[75, "sleap.nn.paf_grouping.PAFScorer.dist_penalty_weight"]], "dst_node_ind (sleap.nn.paf_grouping.edgetype attribute)": [[75, "sleap.nn.paf_grouping.EdgeType.dst_node_ind"]], "dst_peak_ind (sleap.nn.paf_grouping.edgeconnection attribute)": [[75, "sleap.nn.paf_grouping.EdgeConnection.dst_peak_ind"]], "edge_inds (sleap.nn.paf_grouping.pafscorer attribute)": [[75, "sleap.nn.paf_grouping.PAFScorer.edge_inds"]], "edge_types (sleap.nn.paf_grouping.pafscorer attribute)": [[75, "sleap.nn.paf_grouping.PAFScorer.edge_types"]], "edges (sleap.nn.paf_grouping.pafscorer attribute)": [[75, "sleap.nn.paf_grouping.PAFScorer.edges"]], "from_config() (sleap.nn.paf_grouping.pafscorer class method)": [[75, "sleap.nn.paf_grouping.PAFScorer.from_config"]], "get_connection_candidates() (in module sleap.nn.paf_grouping)": [[75, "sleap.nn.paf_grouping.get_connection_candidates"]], "get_paf_lines() (in module sleap.nn.paf_grouping)": [[75, "sleap.nn.paf_grouping.get_paf_lines"]], "group_instances() (sleap.nn.paf_grouping.pafscorer method)": [[75, "sleap.nn.paf_grouping.PAFScorer.group_instances"]], "group_instances_batch() (in module sleap.nn.paf_grouping)": [[75, "sleap.nn.paf_grouping.group_instances_batch"]], "group_instances_sample() (in module sleap.nn.paf_grouping)": [[75, "sleap.nn.paf_grouping.group_instances_sample"]], "make_line_subs() (in module sleap.nn.paf_grouping)": [[75, "sleap.nn.paf_grouping.make_line_subs"]], "make_predicted_instances() (in module sleap.nn.paf_grouping)": [[75, "sleap.nn.paf_grouping.make_predicted_instances"]], "match_candidates() (sleap.nn.paf_grouping.pafscorer method)": [[75, "sleap.nn.paf_grouping.PAFScorer.match_candidates"]], "match_candidates_batch() (in module sleap.nn.paf_grouping)": [[75, "sleap.nn.paf_grouping.match_candidates_batch"]], "match_candidates_sample() (in module sleap.nn.paf_grouping)": [[75, "sleap.nn.paf_grouping.match_candidates_sample"]], "max_edge_length_ratio (sleap.nn.paf_grouping.pafscorer attribute)": [[75, "sleap.nn.paf_grouping.PAFScorer.max_edge_length_ratio"]], "min_instance_peaks (sleap.nn.paf_grouping.pafscorer attribute)": [[75, "sleap.nn.paf_grouping.PAFScorer.min_instance_peaks"]], "min_line_scores (sleap.nn.paf_grouping.pafscorer attribute)": [[75, "sleap.nn.paf_grouping.PAFScorer.min_line_scores"]], "n_edges (sleap.nn.paf_grouping.pafscorer attribute)": [[75, "sleap.nn.paf_grouping.PAFScorer.n_edges"]], "n_nodes (sleap.nn.paf_grouping.pafscorer attribute)": [[75, "sleap.nn.paf_grouping.PAFScorer.n_nodes"]], "n_points (sleap.nn.paf_grouping.pafscorer attribute)": [[75, "sleap.nn.paf_grouping.PAFScorer.n_points"]], "node_ind (sleap.nn.paf_grouping.peakid attribute)": [[75, "sleap.nn.paf_grouping.PeakID.node_ind"]], "pafs_stride (sleap.nn.paf_grouping.pafscorer attribute)": [[75, "sleap.nn.paf_grouping.PAFScorer.pafs_stride"]], "part_names (sleap.nn.paf_grouping.pafscorer attribute)": [[75, "sleap.nn.paf_grouping.PAFScorer.part_names"]], "peak_ind (sleap.nn.paf_grouping.peakid attribute)": [[75, "sleap.nn.paf_grouping.PeakID.peak_ind"]], "predict() (sleap.nn.paf_grouping.pafscorer method)": [[75, "sleap.nn.paf_grouping.PAFScorer.predict"]], "score (sleap.nn.paf_grouping.edgeconnection attribute)": [[75, "sleap.nn.paf_grouping.EdgeConnection.score"]], "score_paf_lines() (in module sleap.nn.paf_grouping)": [[75, "sleap.nn.paf_grouping.score_paf_lines"]], "score_paf_lines() (sleap.nn.paf_grouping.pafscorer method)": [[75, "sleap.nn.paf_grouping.PAFScorer.score_paf_lines"]], "score_paf_lines_batch() (in module sleap.nn.paf_grouping)": [[75, "sleap.nn.paf_grouping.score_paf_lines_batch"]], "sleap.nn.paf_grouping": [[75, "module-sleap.nn.paf_grouping"]], "sorted_edge_inds (sleap.nn.paf_grouping.pafscorer attribute)": [[75, "sleap.nn.paf_grouping.PAFScorer.sorted_edge_inds"]], "src_node_ind (sleap.nn.paf_grouping.edgetype attribute)": [[75, "sleap.nn.paf_grouping.EdgeType.src_node_ind"]], "src_peak_ind (sleap.nn.paf_grouping.edgeconnection attribute)": [[75, "sleap.nn.paf_grouping.EdgeConnection.src_peak_ind"]], "toposort_edges() (in module sleap.nn.paf_grouping)": [[75, "sleap.nn.paf_grouping.toposort_edges"]], "crop_bboxes() (in module sleap.nn.peak_finding)": [[76, "sleap.nn.peak_finding.crop_bboxes"]], "find_global_peaks() (in module sleap.nn.peak_finding)": [[76, "sleap.nn.peak_finding.find_global_peaks"]], "find_global_peaks_integral() (in module sleap.nn.peak_finding)": [[76, "sleap.nn.peak_finding.find_global_peaks_integral"]], "find_global_peaks_rough() (in module sleap.nn.peak_finding)": [[76, "sleap.nn.peak_finding.find_global_peaks_rough"]], "find_global_peaks_with_offsets() (in module sleap.nn.peak_finding)": [[76, "sleap.nn.peak_finding.find_global_peaks_with_offsets"]], "find_local_peaks() (in module sleap.nn.peak_finding)": [[76, "sleap.nn.peak_finding.find_local_peaks"]], "find_local_peaks_integral() (in module sleap.nn.peak_finding)": [[76, "sleap.nn.peak_finding.find_local_peaks_integral"]], "find_local_peaks_rough() (in module sleap.nn.peak_finding)": [[76, "sleap.nn.peak_finding.find_local_peaks_rough"]], "find_local_peaks_with_offsets() (in module sleap.nn.peak_finding)": [[76, "sleap.nn.peak_finding.find_local_peaks_with_offsets"]], "find_offsets_local_direction() (in module sleap.nn.peak_finding)": [[76, "sleap.nn.peak_finding.find_offsets_local_direction"]], "integral_regression() (in module sleap.nn.peak_finding)": [[76, "sleap.nn.peak_finding.integral_regression"]], "make_gaussian_kernel() (in module sleap.nn.peak_finding)": [[76, "sleap.nn.peak_finding.make_gaussian_kernel"]], "sleap.nn.peak_finding": [[76, "module-sleap.nn.peak_finding"]], "smooth_imgs() (in module sleap.nn.peak_finding)": [[76, "sleap.nn.peak_finding.smooth_imgs"]], "best_logical_device_name() (in module sleap.nn.system)": [[77, "sleap.nn.system.best_logical_device_name"]], "disable_preallocation() (in module sleap.nn.system)": [[77, "sleap.nn.system.disable_preallocation"]], "enable_preallocation() (in module sleap.nn.system)": [[77, "sleap.nn.system.enable_preallocation"]], "get_all_gpus() (in module sleap.nn.system)": [[77, "sleap.nn.system.get_all_gpus"]], "get_available_gpus() (in module sleap.nn.system)": [[77, "sleap.nn.system.get_available_gpus"]], "get_current_gpu() (in module sleap.nn.system)": [[77, "sleap.nn.system.get_current_gpu"]], "get_gpu_memory() (in module sleap.nn.system)": [[77, "sleap.nn.system.get_gpu_memory"]], "initialize_devices() (in module sleap.nn.system)": [[77, "sleap.nn.system.initialize_devices"]], "is_gpu_system() (in module sleap.nn.system)": [[77, "sleap.nn.system.is_gpu_system"]], "is_initialized() (in module sleap.nn.system)": [[77, "sleap.nn.system.is_initialized"]], "sleap.nn.system": [[77, "module-sleap.nn.system"]], "summary() (in module sleap.nn.system)": [[77, "sleap.nn.system.summary"]], "use_cpu_only() (in module sleap.nn.system)": [[77, "sleap.nn.system.use_cpu_only"]], "use_first_gpu() (in module sleap.nn.system)": [[77, "sleap.nn.system.use_first_gpu"]], "use_gpu() (in module sleap.nn.system)": [[77, "sleap.nn.system.use_gpu"]], "use_last_gpu() (in module sleap.nn.system)": [[77, "sleap.nn.system.use_last_gpu"]], "framematches (class in sleap.nn.tracker.components)": [[78, "sleap.nn.tracker.components.FrameMatches"]], "match (class in sleap.nn.tracker.components)": [[78, "sleap.nn.tracker.components.Match"]], "centroid_distance() (in module sleap.nn.tracker.components)": [[78, "sleap.nn.tracker.components.centroid_distance"]], "connect_single_track_breaks() (in module sleap.nn.tracker.components)": [[78, "sleap.nn.tracker.components.connect_single_track_breaks"]], "cost_matrix (sleap.nn.tracker.components.framematches attribute)": [[78, "sleap.nn.tracker.components.FrameMatches.cost_matrix"]], "cull_frame_instances() (in module sleap.nn.tracker.components)": [[78, "sleap.nn.tracker.components.cull_frame_instances"]], "cull_instances() (in module sleap.nn.tracker.components)": [[78, "sleap.nn.tracker.components.cull_instances"]], "factory_object_keypoint_similarity() (in module sleap.nn.tracker.components)": [[78, "sleap.nn.tracker.components.factory_object_keypoint_similarity"]], "first_choice_matching() (in module sleap.nn.tracker.components)": [[78, "sleap.nn.tracker.components.first_choice_matching"]], "from_candidate_instances() (sleap.nn.tracker.components.framematches class method)": [[78, "sleap.nn.tracker.components.FrameMatches.from_candidate_instances"]], "greedy_matching() (in module sleap.nn.tracker.components)": [[78, "sleap.nn.tracker.components.greedy_matching"]], "has_only_first_choice_matches (sleap.nn.tracker.components.framematches property)": [[78, "sleap.nn.tracker.components.FrameMatches.has_only_first_choice_matches"]], "hungarian_matching() (in module sleap.nn.tracker.components)": [[78, "sleap.nn.tracker.components.hungarian_matching"]], "instance_iou() (in module sleap.nn.tracker.components)": [[78, "sleap.nn.tracker.components.instance_iou"]], "instance_similarity() (in module sleap.nn.tracker.components)": [[78, "sleap.nn.tracker.components.instance_similarity"]], "matches (sleap.nn.tracker.components.framematches attribute)": [[78, "sleap.nn.tracker.components.FrameMatches.matches"]], "nms_fast() (in module sleap.nn.tracker.components)": [[78, "sleap.nn.tracker.components.nms_fast"]], "normalized_instance_similarity() (in module sleap.nn.tracker.components)": [[78, "sleap.nn.tracker.components.normalized_instance_similarity"]], "sleap.nn.tracker.components": [[78, "module-sleap.nn.tracker.components"]], "unmatched_instances (sleap.nn.tracker.components.framematches attribute)": [[78, "sleap.nn.tracker.components.FrameMatches.unmatched_instances"]], "get_track_instance_matches() (in module sleap.nn.tracker.kalman)": [[79, "sleap.nn.tracker.kalman.get_track_instance_matches"]], "match_dict_from_match_function() (in module sleap.nn.tracker.kalman)": [[79, "sleap.nn.tracker.kalman.match_dict_from_match_function"]], "remove_second_bests_from_cost_matrix() (in module sleap.nn.tracker.kalman)": [[79, "sleap.nn.tracker.kalman.remove_second_bests_from_cost_matrix"]], "sleap.nn.tracker.kalman": [[79, "module-sleap.nn.tracker.kalman"]], "basetracker (class in sleap.nn.tracking)": [[80, "sleap.nn.tracking.BaseTracker"]], "flowcandidatemaker (class in sleap.nn.tracking)": [[80, "sleap.nn.tracking.FlowCandidateMaker"]], "flowmaxtracker (class in sleap.nn.tracking)": [[80, "sleap.nn.tracking.FlowMaxTracker"]], "flowmaxtrackscandidatemaker (class in sleap.nn.tracking)": [[80, "sleap.nn.tracking.FlowMaxTracksCandidateMaker"]], "flowtracker (class in sleap.nn.tracking)": [[80, "sleap.nn.tracking.FlowTracker"]], "kalmantracker (class in sleap.nn.tracking)": [[80, "sleap.nn.tracking.KalmanTracker"]], "simplecandidatemaker (class in sleap.nn.tracking)": [[80, "sleap.nn.tracking.SimpleCandidateMaker"]], "simplemaxtracker (class in sleap.nn.tracking)": [[80, "sleap.nn.tracking.SimpleMaxTracker"]], "simplemaxtrackscandidatemaker (class in sleap.nn.tracking)": [[80, "sleap.nn.tracking.SimpleMaxTracksCandidateMaker"]], "simpletracker (class in sleap.nn.tracking)": [[80, "sleap.nn.tracking.SimpleTracker"]], "trackcleaner (class in sleap.nn.tracking)": [[80, "sleap.nn.tracking.TrackCleaner"]], "tracker (class in sleap.nn.tracking)": [[80, "sleap.nn.tracking.Tracker"]], "candidate_maker (sleap.nn.tracking.tracker attribute)": [[80, "sleap.nn.tracking.Tracker.candidate_maker"]], "cleaner (sleap.nn.tracking.tracker attribute)": [[80, "sleap.nn.tracking.Tracker.cleaner"]], "final_pass() (sleap.nn.tracking.tracker method)": [[80, "sleap.nn.tracking.Tracker.final_pass"]], "flow_shift_instances() (sleap.nn.tracking.flowcandidatemaker static method)": [[80, "sleap.nn.tracking.FlowCandidateMaker.flow_shift_instances"]], "get_ref_instances() (sleap.nn.tracking.flowmaxtrackscandidatemaker static method)": [[80, "sleap.nn.tracking.FlowMaxTracksCandidateMaker.get_ref_instances"]], "get_shifted_instances() (sleap.nn.tracking.flowcandidatemaker method)": [[80, "sleap.nn.tracking.FlowCandidateMaker.get_shifted_instances"]], "get_shifted_instances_from_earlier_time() (sleap.nn.tracking.flowcandidatemaker method)": [[80, "sleap.nn.tracking.FlowCandidateMaker.get_shifted_instances_from_earlier_time"]], "img_scale (sleap.nn.tracking.flowcandidatemaker attribute)": [[80, "sleap.nn.tracking.FlowCandidateMaker.img_scale"]], "instance_count (sleap.nn.tracking.trackcleaner attribute)": [[80, "sleap.nn.tracking.TrackCleaner.instance_count"]], "iou_threshold (sleap.nn.tracking.trackcleaner attribute)": [[80, "sleap.nn.tracking.TrackCleaner.iou_threshold"]], "is_valid (sleap.nn.tracking.kalmantracker property)": [[80, "sleap.nn.tracking.KalmanTracker.is_valid"]], "make_tracker() (sleap.nn.tracking.kalmantracker class method)": [[80, "sleap.nn.tracking.KalmanTracker.make_tracker"]], "matching_function (sleap.nn.tracking.tracker attribute)": [[80, "sleap.nn.tracking.Tracker.matching_function"]], "matching_function() (sleap.nn.tracking.flowmaxtracker method)": [[80, "sleap.nn.tracking.FlowMaxTracker.matching_function"]], "max_tracking (sleap.nn.tracking.tracker attribute)": [[80, "sleap.nn.tracking.Tracker.max_tracking"]], "max_tracks (sleap.nn.tracking.flowmaxtrackscandidatemaker attribute)": [[80, "sleap.nn.tracking.FlowMaxTracksCandidateMaker.max_tracks"]], "min_new_track_points (sleap.nn.tracking.tracker attribute)": [[80, "sleap.nn.tracking.Tracker.min_new_track_points"]], "min_points (sleap.nn.tracking.flowcandidatemaker attribute)": [[80, "sleap.nn.tracking.FlowCandidateMaker.min_points"]], "of_max_levels (sleap.nn.tracking.flowcandidatemaker attribute)": [[80, "sleap.nn.tracking.FlowCandidateMaker.of_max_levels"]], "of_window_size (sleap.nn.tracking.flowcandidatemaker attribute)": [[80, "sleap.nn.tracking.FlowCandidateMaker.of_window_size"]], "prune_shifted_instances() (sleap.nn.tracking.flowcandidatemaker method)": [[80, "sleap.nn.tracking.FlowCandidateMaker.prune_shifted_instances"]], "robust_best_instance (sleap.nn.tracking.tracker attribute)": [[80, "sleap.nn.tracking.Tracker.robust_best_instance"]], "run_tracker() (in module sleap.nn.tracking)": [[80, "sleap.nn.tracking.run_tracker"]], "save_shifted_instances (sleap.nn.tracking.flowcandidatemaker attribute)": [[80, "sleap.nn.tracking.FlowCandidateMaker.save_shifted_instances"]], "similarity_function (sleap.nn.tracking.tracker attribute)": [[80, "sleap.nn.tracking.Tracker.similarity_function"]], "similarity_function() (sleap.nn.tracking.flowmaxtracker method)": [[80, "sleap.nn.tracking.FlowMaxTracker.similarity_function"]], "sleap.nn.tracking": [[80, "module-sleap.nn.tracking"]], "track() (sleap.nn.tracking.kalmantracker method)": [[80, "sleap.nn.tracking.KalmanTracker.track"]], "track() (sleap.nn.tracking.tracker method)": [[80, "sleap.nn.tracking.Tracker.track"]], "track_window (sleap.nn.tracking.flowcandidatemaker attribute)": [[80, "sleap.nn.tracking.FlowCandidateMaker.track_window"]], "track_window (sleap.nn.tracking.tracker attribute)": [[80, "sleap.nn.tracking.Tracker.track_window"]], "unique_tracks_in_queue (sleap.nn.tracking.tracker property)": [[80, "sleap.nn.tracking.Tracker.unique_tracks_in_queue"]], "bottomupmodeltrainer (class in sleap.nn.training)": [[81, "sleap.nn.training.BottomUpModelTrainer"]], "bottomupmulticlassmodeltrainer (class in sleap.nn.training)": [[81, "sleap.nn.training.BottomUpMultiClassModelTrainer"]], "centroidconfmapsmodeltrainer (class in sleap.nn.training)": [[81, "sleap.nn.training.CentroidConfmapsModelTrainer"]], "datareaders (class in sleap.nn.training)": [[81, "sleap.nn.training.DataReaders"]], "singleinstancemodeltrainer (class in sleap.nn.training)": [[81, "sleap.nn.training.SingleInstanceModelTrainer"]], "topdownmulticlassmodeltrainer (class in sleap.nn.training)": [[81, "sleap.nn.training.TopDownMultiClassModelTrainer"]], "topdownconfmapsmodeltrainer (class in sleap.nn.training)": [[81, "sleap.nn.training.TopdownConfmapsModelTrainer"]], "trainer (class in sleap.nn.training)": [[81, "sleap.nn.training.Trainer"]], "callbacks (sleap.nn.training.trainer property)": [[81, "sleap.nn.training.Trainer.callbacks"]], "cleanup() (sleap.nn.training.trainer method)": [[81, "sleap.nn.training.Trainer.cleanup"]], "config (sleap.nn.training.trainer attribute)": [[81, "sleap.nn.training.Trainer.config"]], "create_trainer_using_cli() (in module sleap.nn.training)": [[81, "sleap.nn.training.create_trainer_using_cli"]], "data_readers (sleap.nn.training.trainer attribute)": [[81, "sleap.nn.training.Trainer.data_readers"]], "evaluate() (sleap.nn.training.trainer method)": [[81, "sleap.nn.training.Trainer.evaluate"]], "from_config() (sleap.nn.training.datareaders class method)": [[81, "sleap.nn.training.DataReaders.from_config"]], "from_config() (sleap.nn.training.trainer class method)": [[81, "sleap.nn.training.Trainer.from_config"]], "from_labels() (sleap.nn.training.datareaders class method)": [[81, "sleap.nn.training.DataReaders.from_labels"]], "get_timestamp() (in module sleap.nn.training)": [[81, "sleap.nn.training.get_timestamp"]], "has_offsets (sleap.nn.training.bottomupmodeltrainer property)": [[81, "sleap.nn.training.BottomUpModelTrainer.has_offsets"]], "has_offsets (sleap.nn.training.bottomupmulticlassmodeltrainer property)": [[81, "sleap.nn.training.BottomUpMultiClassModelTrainer.has_offsets"]], "has_offsets (sleap.nn.training.centroidconfmapsmodeltrainer property)": [[81, "sleap.nn.training.CentroidConfmapsModelTrainer.has_offsets"]], "has_offsets (sleap.nn.training.singleinstancemodeltrainer property)": [[81, "sleap.nn.training.SingleInstanceModelTrainer.has_offsets"]], "has_offsets (sleap.nn.training.topdownmulticlassmodeltrainer property)": [[81, "sleap.nn.training.TopDownMultiClassModelTrainer.has_offsets"]], "has_offsets (sleap.nn.training.topdownconfmapsmodeltrainer property)": [[81, "sleap.nn.training.TopdownConfmapsModelTrainer.has_offsets"]], "initial_config (sleap.nn.training.trainer attribute)": [[81, "sleap.nn.training.Trainer.initial_config"]], "input_keys (sleap.nn.training.bottomupmodeltrainer property)": [[81, "sleap.nn.training.BottomUpModelTrainer.input_keys"]], "input_keys (sleap.nn.training.bottomupmulticlassmodeltrainer property)": [[81, "sleap.nn.training.BottomUpMultiClassModelTrainer.input_keys"]], "input_keys (sleap.nn.training.centroidconfmapsmodeltrainer property)": [[81, "sleap.nn.training.CentroidConfmapsModelTrainer.input_keys"]], "input_keys (sleap.nn.training.singleinstancemodeltrainer property)": [[81, "sleap.nn.training.SingleInstanceModelTrainer.input_keys"]], "input_keys (sleap.nn.training.topdownmulticlassmodeltrainer property)": [[81, "sleap.nn.training.TopDownMultiClassModelTrainer.input_keys"]], "input_keys (sleap.nn.training.topdownconfmapsmodeltrainer property)": [[81, "sleap.nn.training.TopdownConfmapsModelTrainer.input_keys"]], "input_keys (sleap.nn.training.trainer property)": [[81, "sleap.nn.training.Trainer.input_keys"]], "keras_model (sleap.nn.training.trainer property)": [[81, "sleap.nn.training.Trainer.keras_model"]], "main() (in module sleap.nn.training)": [[81, "sleap.nn.training.main"]], "model (sleap.nn.training.trainer attribute)": [[81, "sleap.nn.training.Trainer.model"]], "optimization_callbacks (sleap.nn.training.trainer attribute)": [[81, "sleap.nn.training.Trainer.optimization_callbacks"]], "output_callbacks (sleap.nn.training.trainer attribute)": [[81, "sleap.nn.training.Trainer.output_callbacks"]], "output_keys (sleap.nn.training.bottomupmodeltrainer property)": [[81, "sleap.nn.training.BottomUpModelTrainer.output_keys"]], "output_keys (sleap.nn.training.bottomupmulticlassmodeltrainer property)": [[81, "sleap.nn.training.BottomUpMultiClassModelTrainer.output_keys"]], "output_keys (sleap.nn.training.centroidconfmapsmodeltrainer property)": [[81, "sleap.nn.training.CentroidConfmapsModelTrainer.output_keys"]], "output_keys (sleap.nn.training.singleinstancemodeltrainer property)": [[81, "sleap.nn.training.SingleInstanceModelTrainer.output_keys"]], "output_keys (sleap.nn.training.topdownmulticlassmodeltrainer property)": [[81, "sleap.nn.training.TopDownMultiClassModelTrainer.output_keys"]], "output_keys (sleap.nn.training.topdownconfmapsmodeltrainer property)": [[81, "sleap.nn.training.TopdownConfmapsModelTrainer.output_keys"]], "output_keys (sleap.nn.training.trainer property)": [[81, "sleap.nn.training.Trainer.output_keys"]], "package() (sleap.nn.training.trainer method)": [[81, "sleap.nn.training.Trainer.package"]], "pipeline_builder (sleap.nn.training.trainer attribute)": [[81, "sleap.nn.training.Trainer.pipeline_builder"]], "run_path (sleap.nn.training.trainer attribute)": [[81, "sleap.nn.training.Trainer.run_path"]], "sanitize_scope_name() (in module sleap.nn.training)": [[81, "sleap.nn.training.sanitize_scope_name"]], "setup() (sleap.nn.training.trainer method)": [[81, "sleap.nn.training.Trainer.setup"]], "setup_checkpointing() (in module sleap.nn.training)": [[81, "sleap.nn.training.setup_checkpointing"]], "setup_losses() (in module sleap.nn.training)": [[81, "sleap.nn.training.setup_losses"]], "setup_metrics() (in module sleap.nn.training)": [[81, "sleap.nn.training.setup_metrics"]], "setup_new_run_folder() (in module sleap.nn.training)": [[81, "sleap.nn.training.setup_new_run_folder"]], "setup_optimization_callbacks() (in module sleap.nn.training)": [[81, "sleap.nn.training.setup_optimization_callbacks"]], "setup_optimizer() (in module sleap.nn.training)": [[81, "sleap.nn.training.setup_optimizer"]], "setup_output_callbacks() (in module sleap.nn.training)": [[81, "sleap.nn.training.setup_output_callbacks"]], "setup_tensorboard() (in module sleap.nn.training)": [[81, "sleap.nn.training.setup_tensorboard"]], "setup_visualization() (in module sleap.nn.training)": [[81, "sleap.nn.training.setup_visualization"]], "setup_zmq_callbacks() (in module sleap.nn.training)": [[81, "sleap.nn.training.setup_zmq_callbacks"]], "sleap.nn.training": [[81, "module-sleap.nn.training"]], "test_labels (sleap.nn.training.datareaders property)": [[81, "sleap.nn.training.DataReaders.test_labels"]], "test_labels_reader (sleap.nn.training.datareaders attribute)": [[81, "sleap.nn.training.DataReaders.test_labels_reader"]], "train() (sleap.nn.training.trainer method)": [[81, "sleap.nn.training.Trainer.train"]], "training_labels (sleap.nn.training.datareaders property)": [[81, "sleap.nn.training.DataReaders.training_labels"]], "training_labels_reader (sleap.nn.training.datareaders attribute)": [[81, "sleap.nn.training.DataReaders.training_labels_reader"]], "training_pipeline (sleap.nn.training.trainer attribute)": [[81, "sleap.nn.training.Trainer.training_pipeline"]], "training_viz_pipeline (sleap.nn.training.trainer attribute)": [[81, "sleap.nn.training.Trainer.training_viz_pipeline"]], "validation_labels (sleap.nn.training.datareaders property)": [[81, "sleap.nn.training.DataReaders.validation_labels"]], "validation_labels_reader (sleap.nn.training.datareaders attribute)": [[81, "sleap.nn.training.DataReaders.validation_labels_reader"]], "validation_pipeline (sleap.nn.training.trainer attribute)": [[81, "sleap.nn.training.Trainer.validation_pipeline"]], "validation_viz_pipeline (sleap.nn.training.trainer attribute)": [[81, "sleap.nn.training.Trainer.validation_viz_pipeline"]], "visualization_callbacks (sleap.nn.training.trainer attribute)": [[81, "sleap.nn.training.Trainer.visualization_callbacks"]], "compute_iou() (in module sleap.nn.utils)": [[82, "sleap.nn.utils.compute_iou"]], "group_array() (in module sleap.nn.utils)": [[82, "sleap.nn.utils.group_array"]], "match_points() (in module sleap.nn.utils)": [[82, "sleap.nn.utils.match_points"]], "reset_input_layer() (in module sleap.nn.utils)": [[82, "sleap.nn.utils.reset_input_layer"]], "sleap.nn.utils": [[82, "module-sleap.nn.utils"]], "tf_linear_sum_assignment() (in module sleap.nn.utils)": [[82, "sleap.nn.utils.tf_linear_sum_assignment"]], "generate_skeleton_preview_image() (in module sleap.nn.viz)": [[83, "sleap.nn.viz.generate_skeleton_preview_image"]], "imgfig() (in module sleap.nn.viz)": [[83, "sleap.nn.viz.imgfig"]], "plot_confmaps() (in module sleap.nn.viz)": [[83, "sleap.nn.viz.plot_confmaps"]], "plot_img() (in module sleap.nn.viz)": [[83, "sleap.nn.viz.plot_img"]], "plot_instance() (in module sleap.nn.viz)": [[83, "sleap.nn.viz.plot_instance"]], "plot_instances() (in module sleap.nn.viz)": [[83, "sleap.nn.viz.plot_instances"]], "plot_pafs() (in module sleap.nn.viz)": [[83, "sleap.nn.viz.plot_pafs"]], "plot_peaks() (in module sleap.nn.viz)": [[83, "sleap.nn.viz.plot_peaks"]], "sleap.nn.viz": [[83, "module-sleap.nn.viz"]], "edgetype (class in sleap.skeleton)": [[84, "sleap.skeleton.EdgeType"]], "node (class in sleap.skeleton)": [[84, "sleap.skeleton.Node"]], "skeleton (class in sleap.skeleton)": [[84, "sleap.skeleton.Skeleton"]], "skeletondecoder (class in sleap.skeleton)": [[84, "sleap.skeleton.SkeletonDecoder"]], "skeletonencoder (class in sleap.skeleton)": [[84, "sleap.skeleton.SkeletonEncoder"]], "_is_template (sleap.skeleton.skeleton attribute)": [[84, "sleap.skeleton.Skeleton._is_template"]], "_skeleton_idx (sleap.skeleton.skeleton attribute)": [[84, "sleap.skeleton.Skeleton._skeleton_idx"]], "add_edge() (sleap.skeleton.skeleton method)": [[84, "sleap.skeleton.Skeleton.add_edge"]], "add_node() (sleap.skeleton.skeleton method)": [[84, "sleap.skeleton.Skeleton.add_node"]], "add_nodes() (sleap.skeleton.skeleton method)": [[84, "sleap.skeleton.Skeleton.add_nodes"]], "add_symmetry() (sleap.skeleton.skeleton method)": [[84, "sleap.skeleton.Skeleton.add_symmetry"]], "as_node() (sleap.skeleton.node class method)": [[84, "sleap.skeleton.Node.as_node"]], "clear_edges() (sleap.skeleton.skeleton method)": [[84, "sleap.skeleton.Skeleton.clear_edges"]], "decode() (sleap.skeleton.skeletondecoder class method)": [[84, "sleap.skeleton.SkeletonDecoder.decode"]], "decode_preview_image() (sleap.skeleton.skeletondecoder static method)": [[84, "sleap.skeleton.SkeletonDecoder.decode_preview_image"]], "delete_edge() (sleap.skeleton.skeleton method)": [[84, "sleap.skeleton.Skeleton.delete_edge"]], "delete_node() (sleap.skeleton.skeleton method)": [[84, "sleap.skeleton.Skeleton.delete_node"]], "delete_symmetry() (sleap.skeleton.skeleton method)": [[84, "sleap.skeleton.Skeleton.delete_symmetry"]], "description (sleap.skeleton.skeleton attribute)": [[84, "sleap.skeleton.Skeleton.description"]], "edge_inds (sleap.skeleton.skeleton property)": [[84, "sleap.skeleton.Skeleton.edge_inds"]], "edge_names (sleap.skeleton.skeleton property)": [[84, "sleap.skeleton.Skeleton.edge_names"]], "edge_to_index() (sleap.skeleton.skeleton method)": [[84, "sleap.skeleton.Skeleton.edge_to_index"]], "edges (sleap.skeleton.skeleton property)": [[84, "sleap.skeleton.Skeleton.edges"]], "edges_full (sleap.skeleton.skeleton property)": [[84, "sleap.skeleton.Skeleton.edges_full"]], "encode() (sleap.skeleton.skeletonencoder class method)": [[84, "sleap.skeleton.SkeletonEncoder.encode"]], "find_neighbors() (sleap.skeleton.skeleton method)": [[84, "sleap.skeleton.Skeleton.find_neighbors"]], "find_node() (sleap.skeleton.skeleton method)": [[84, "sleap.skeleton.Skeleton.find_node"]], "find_unique_nodes() (sleap.skeleton.skeleton static method)": [[84, "sleap.skeleton.Skeleton.find_unique_nodes"]], "from_dict() (sleap.skeleton.skeleton class method)": [[84, "sleap.skeleton.Skeleton.from_dict"]], "from_json() (sleap.skeleton.skeleton class method)": [[84, "sleap.skeleton.Skeleton.from_json"]], "from_names() (sleap.skeleton.node static method)": [[84, "sleap.skeleton.Node.from_names"]], "from_names_and_edge_inds() (sleap.skeleton.skeleton class method)": [[84, "sleap.skeleton.Skeleton.from_names_and_edge_inds"]], "get_symmetry() (sleap.skeleton.skeleton method)": [[84, "sleap.skeleton.Skeleton.get_symmetry"]], "get_symmetry_name() (sleap.skeleton.skeleton method)": [[84, "sleap.skeleton.Skeleton.get_symmetry_name"]], "graph (sleap.skeleton.skeleton property)": [[84, "sleap.skeleton.Skeleton.graph"]], "graph_symmetry (sleap.skeleton.skeleton property)": [[84, "sleap.skeleton.Skeleton.graph_symmetry"]], "has_edge() (sleap.skeleton.skeleton method)": [[84, "sleap.skeleton.Skeleton.has_edge"]], "has_node() (sleap.skeleton.skeleton method)": [[84, "sleap.skeleton.Skeleton.has_node"]], "has_nodes() (sleap.skeleton.skeleton method)": [[84, "sleap.skeleton.Skeleton.has_nodes"]], "is_arborescence (sleap.skeleton.skeleton property)": [[84, "sleap.skeleton.Skeleton.is_arborescence"]], "is_template (sleap.skeleton.skeleton property)": [[84, "sleap.skeleton.Skeleton.is_template"]], "load_all_hdf5() (sleap.skeleton.skeleton class method)": [[84, "sleap.skeleton.Skeleton.load_all_hdf5"]], "load_hdf5() (sleap.skeleton.skeleton class method)": [[84, "sleap.skeleton.Skeleton.load_hdf5"]], "load_json() (sleap.skeleton.skeleton class method)": [[84, "sleap.skeleton.Skeleton.load_json"]], "load_mat() (sleap.skeleton.skeleton class method)": [[84, "sleap.skeleton.Skeleton.load_mat"]], "make_cattr() (sleap.skeleton.skeleton static method)": [[84, "sleap.skeleton.Skeleton.make_cattr"]], "matches() (sleap.skeleton.node method)": [[84, "sleap.skeleton.Node.matches"]], "matches() (sleap.skeleton.skeleton method)": [[84, "sleap.skeleton.Skeleton.matches"]], "name (sleap.skeleton.node attribute)": [[84, "sleap.skeleton.Node.name"]], "name (sleap.skeleton.skeleton property)": [[84, "sleap.skeleton.Skeleton.name"]], "node_names (sleap.skeleton.skeleton property)": [[84, "sleap.skeleton.Skeleton.node_names"]], "node_to_index() (sleap.skeleton.skeleton method)": [[84, "sleap.skeleton.Skeleton.node_to_index"]], "nodes (sleap.skeleton.skeleton property)": [[84, "sleap.skeleton.Skeleton.nodes"]], "preview_image (sleap.skeleton.skeleton attribute)": [[84, "sleap.skeleton.Skeleton.preview_image"]], "relabel_node() (sleap.skeleton.skeleton method)": [[84, "sleap.skeleton.Skeleton.relabel_node"]], "relabel_nodes() (sleap.skeleton.skeleton method)": [[84, "sleap.skeleton.Skeleton.relabel_nodes"]], "rename_skeleton() (sleap.skeleton.skeleton class method)": [[84, "sleap.skeleton.Skeleton.rename_skeleton"]], "save_all_hdf5() (sleap.skeleton.skeleton class method)": [[84, "sleap.skeleton.Skeleton.save_all_hdf5"]], "save_hdf5() (sleap.skeleton.skeleton method)": [[84, "sleap.skeleton.Skeleton.save_hdf5"]], "save_json() (sleap.skeleton.skeleton method)": [[84, "sleap.skeleton.Skeleton.save_json"]], "sleap.skeleton": [[84, "module-sleap.skeleton"]], "symmetric_inds (sleap.skeleton.skeleton property)": [[84, "sleap.skeleton.Skeleton.symmetric_inds"]], "symmetries (sleap.skeleton.skeleton property)": [[84, "sleap.skeleton.Skeleton.symmetries"]], "symmetries_full (sleap.skeleton.skeleton property)": [[84, "sleap.skeleton.Skeleton.symmetries_full"]], "symmetry_names (sleap.skeleton.skeleton property)": [[84, "sleap.skeleton.Skeleton.symmetry_names"]], "to_dict() (sleap.skeleton.skeleton static method)": [[84, "sleap.skeleton.Skeleton.to_dict"]], "to_json() (sleap.skeleton.skeleton method)": [[84, "sleap.skeleton.Skeleton.to_json"]], "weight (sleap.skeleton.node attribute)": [[84, "sleap.skeleton.Node.weight"]], "attr_to_dtype() (in module sleap.util)": [[85, "sleap.util.attr_to_dtype"]], "dict_cut() (in module sleap.util)": [[85, "sleap.util.dict_cut"]], "find_files_by_suffix() (in module sleap.util)": [[85, "sleap.util.find_files_by_suffix"]], "frame_list() (in module sleap.util)": [[85, "sleap.util.frame_list"]], "get_config_file() (in module sleap.util)": [[85, "sleap.util.get_config_file"]], "get_package_file() (in module sleap.util)": [[85, "sleap.util.get_package_file"]], "json_dumps() (in module sleap.util)": [[85, "sleap.util.json_dumps"]], "json_loads() (in module sleap.util)": [[85, "sleap.util.json_loads"]], "make_scoped_dictionary() (in module sleap.util)": [[85, "sleap.util.make_scoped_dictionary"]], "parse_uri_path() (in module sleap.util)": [[85, "sleap.util.parse_uri_path"]], "save_dict_to_hdf5() (in module sleap.util)": [[85, "sleap.util.save_dict_to_hdf5"]], "sleap.util": [[85, "module-sleap.util"]], "uniquify() (in module sleap.util)": [[85, "sleap.util.uniquify"]], "usable_cpu_count() (in module sleap.util)": [[85, "sleap.util.usable_cpu_count"]], "weak_filename_match() (in module sleap.util)": [[85, "sleap.util.weak_filename_match"]]}})
\ No newline at end of file
+Search.setIndex({"docnames": ["CODE_OF_CONDUCT", "CONTRIBUTING", "api", "api/sleap.info.align", "api/sleap.info.feature_suggestions", "api/sleap.info.labels", "api/sleap.info.metrics", "api/sleap.info.summary", "api/sleap.info.trackcleaner", "api/sleap.info.write_tracking_h5", "api/sleap.instance", "api/sleap.io.convert", "api/sleap.io.dataset", "api/sleap.io.format.adaptor", "api/sleap.io.format.alphatracker", "api/sleap.io.format.coco", "api/sleap.io.format.csv", "api/sleap.io.format.deeplabcut", "api/sleap.io.format.deepposekit", "api/sleap.io.format.dispatch", "api/sleap.io.format.filehandle", "api/sleap.io.format.genericjson", "api/sleap.io.format.hdf5", "api/sleap.io.format.labels_json", "api/sleap.io.format.leap_matlab", "api/sleap.io.format.main", "api/sleap.io.format.ndx_pose", "api/sleap.io.format.nix", "api/sleap.io.format.sleap_analysis", "api/sleap.io.format.text", "api/sleap.io.legacy", "api/sleap.io.pathutils", "api/sleap.io.video", "api/sleap.io.videowriter", "api/sleap.io.visuals", "api/sleap.message", "api/sleap.nn.architectures.common", "api/sleap.nn.architectures.encoder_decoder", "api/sleap.nn.architectures.hourglass", "api/sleap.nn.architectures.hrnet", "api/sleap.nn.architectures.leap", "api/sleap.nn.architectures.pretrained_encoders", "api/sleap.nn.architectures.resnet", "api/sleap.nn.architectures.unet", "api/sleap.nn.architectures.upsampling", "api/sleap.nn.callbacks", "api/sleap.nn.config.data", "api/sleap.nn.config.model", "api/sleap.nn.config.optimization", "api/sleap.nn.config.outputs", "api/sleap.nn.config.training_job", "api/sleap.nn.config.utils", "api/sleap.nn.data.augmentation", "api/sleap.nn.data.confidence_maps", "api/sleap.nn.data.dataset_ops", "api/sleap.nn.data.edge_maps", "api/sleap.nn.data.general", "api/sleap.nn.data.grouping", "api/sleap.nn.data.identity", "api/sleap.nn.data.inference", "api/sleap.nn.data.instance_centroids", "api/sleap.nn.data.instance_cropping", "api/sleap.nn.data.normalization", "api/sleap.nn.data.offset_regression", "api/sleap.nn.data.pipelines", "api/sleap.nn.data.providers", "api/sleap.nn.data.resizing", "api/sleap.nn.data.training", "api/sleap.nn.data.utils", "api/sleap.nn.evals", "api/sleap.nn.heads", "api/sleap.nn.identity", "api/sleap.nn.inference", "api/sleap.nn.losses", "api/sleap.nn.model", "api/sleap.nn.paf_grouping", "api/sleap.nn.peak_finding", "api/sleap.nn.system", "api/sleap.nn.tracker.components", "api/sleap.nn.tracker.kalman", "api/sleap.nn.tracking", "api/sleap.nn.training", "api/sleap.nn.utils", "api/sleap.nn.viz", "api/sleap.skeleton", "api/sleap.util", "datasets", "guides/bonsai", "guides/choosing-models", "guides/cli", "guides/colab", "guides/custom-training", "guides/gui", "guides/index", "guides/merging", "guides/proofreading", "guides/remote", "guides/skeletons", "guides/training", "guides/troubleshooting-workflows", "help", "index", "installation", "notebooks/Analysis_examples", "notebooks/Data_structures", "notebooks/Interactive_and_realtime_inference", "notebooks/Interactive_and_resumable_training", "notebooks/Model_evaluation", "notebooks/Post_inference_tracking", "notebooks/Training_and_inference_on_an_example_dataset", "notebooks/Training_and_inference_using_Google_Drive", "notebooks/analysis_example/README", "notebooks/index", "overview", "tutorials/analysis", "tutorials/assisted-labeling", "tutorials/initial-labeling", "tutorials/initial-training", "tutorials/new-project", "tutorials/proofreading", "tutorials/tutorial"], "filenames": ["CODE_OF_CONDUCT.md", "CONTRIBUTING.md", "api.rst", "api/sleap.info.align.rst", "api/sleap.info.feature_suggestions.rst", "api/sleap.info.labels.rst", "api/sleap.info.metrics.rst", "api/sleap.info.summary.rst", "api/sleap.info.trackcleaner.rst", "api/sleap.info.write_tracking_h5.rst", "api/sleap.instance.rst", "api/sleap.io.convert.rst", "api/sleap.io.dataset.rst", "api/sleap.io.format.adaptor.rst", "api/sleap.io.format.alphatracker.rst", "api/sleap.io.format.coco.rst", "api/sleap.io.format.csv.rst", "api/sleap.io.format.deeplabcut.rst", "api/sleap.io.format.deepposekit.rst", "api/sleap.io.format.dispatch.rst", "api/sleap.io.format.filehandle.rst", "api/sleap.io.format.genericjson.rst", "api/sleap.io.format.hdf5.rst", "api/sleap.io.format.labels_json.rst", "api/sleap.io.format.leap_matlab.rst", "api/sleap.io.format.main.rst", "api/sleap.io.format.ndx_pose.rst", "api/sleap.io.format.nix.rst", "api/sleap.io.format.sleap_analysis.rst", "api/sleap.io.format.text.rst", "api/sleap.io.legacy.rst", "api/sleap.io.pathutils.rst", "api/sleap.io.video.rst", "api/sleap.io.videowriter.rst", "api/sleap.io.visuals.rst", "api/sleap.message.rst", "api/sleap.nn.architectures.common.rst", "api/sleap.nn.architectures.encoder_decoder.rst", "api/sleap.nn.architectures.hourglass.rst", "api/sleap.nn.architectures.hrnet.rst", "api/sleap.nn.architectures.leap.rst", "api/sleap.nn.architectures.pretrained_encoders.rst", "api/sleap.nn.architectures.resnet.rst", "api/sleap.nn.architectures.unet.rst", "api/sleap.nn.architectures.upsampling.rst", "api/sleap.nn.callbacks.rst", "api/sleap.nn.config.data.rst", "api/sleap.nn.config.model.rst", "api/sleap.nn.config.optimization.rst", "api/sleap.nn.config.outputs.rst", "api/sleap.nn.config.training_job.rst", "api/sleap.nn.config.utils.rst", "api/sleap.nn.data.augmentation.rst", "api/sleap.nn.data.confidence_maps.rst", "api/sleap.nn.data.dataset_ops.rst", "api/sleap.nn.data.edge_maps.rst", "api/sleap.nn.data.general.rst", "api/sleap.nn.data.grouping.rst", "api/sleap.nn.data.identity.rst", "api/sleap.nn.data.inference.rst", "api/sleap.nn.data.instance_centroids.rst", "api/sleap.nn.data.instance_cropping.rst", "api/sleap.nn.data.normalization.rst", "api/sleap.nn.data.offset_regression.rst", "api/sleap.nn.data.pipelines.rst", "api/sleap.nn.data.providers.rst", "api/sleap.nn.data.resizing.rst", "api/sleap.nn.data.training.rst", "api/sleap.nn.data.utils.rst", "api/sleap.nn.evals.rst", "api/sleap.nn.heads.rst", "api/sleap.nn.identity.rst", "api/sleap.nn.inference.rst", "api/sleap.nn.losses.rst", "api/sleap.nn.model.rst", "api/sleap.nn.paf_grouping.rst", "api/sleap.nn.peak_finding.rst", "api/sleap.nn.system.rst", "api/sleap.nn.tracker.components.rst", "api/sleap.nn.tracker.kalman.rst", "api/sleap.nn.tracking.rst", "api/sleap.nn.training.rst", "api/sleap.nn.utils.rst", "api/sleap.nn.viz.rst", "api/sleap.skeleton.rst", "api/sleap.util.rst", "datasets.md", "guides/bonsai.md", "guides/choosing-models.md", "guides/cli.md", "guides/colab.rst", "guides/custom-training.md", "guides/gui.md", "guides/index.md", "guides/merging.rst", "guides/proofreading.md", "guides/remote.md", "guides/skeletons.md", "guides/training.rst", "guides/troubleshooting-workflows.md", "help.md", "index.rst", "installation.md", "notebooks/Analysis_examples.ipynb", "notebooks/Data_structures.ipynb", "notebooks/Interactive_and_realtime_inference.ipynb", "notebooks/Interactive_and_resumable_training.ipynb", "notebooks/Model_evaluation.ipynb", "notebooks/Post_inference_tracking.ipynb", "notebooks/Training_and_inference_on_an_example_dataset.ipynb", "notebooks/Training_and_inference_using_Google_Drive.ipynb", "notebooks/analysis_example/README.md", "notebooks/index.rst", "overview.rst", "tutorials/analysis.rst", "tutorials/assisted-labeling.md", "tutorials/initial-labeling.rst", "tutorials/initial-training.rst", "tutorials/new-project.md", "tutorials/proofreading.rst", "tutorials/tutorial.rst"], "titles": ["Contributor Covenant Code of Conduct", "Contributing to SLEAP", "Developer API", "sleap.info.align", "sleap.info.feature_suggestions", "sleap.info.labels", "sleap.info.metrics", "sleap.info.summary", "sleap.info.trackcleaner", "sleap.info.write_tracking_h5", "sleap.instance", "sleap.io.convert", "sleap.io.dataset", "sleap.io.format.adaptor", "sleap.io.format.alphatracker", "sleap.io.format.coco", "sleap.io.format.csv", "sleap.io.format.deeplabcut", "sleap.io.format.deepposekit", "sleap.io.format.dispatch", "sleap.io.format.filehandle", "sleap.io.format.genericjson", "sleap.io.format.hdf5", "sleap.io.format.labels_json", "sleap.io.format.leap_matlab", "sleap.io.format.main", "sleap.io.format.ndx_pose", "sleap.io.format.nix", "sleap.io.format.sleap_analysis", "sleap.io.format.text", "sleap.io.legacy", "sleap.io.pathutils", "sleap.io.video", "sleap.io.videowriter", "sleap.io.visuals", "sleap.message", "sleap.nn.architectures.common", "sleap.nn.architectures.encoder_decoder", "sleap.nn.architectures.hourglass", "sleap.nn.architectures.hrnet", "sleap.nn.architectures.leap", "sleap.nn.architectures.pretrained_encoders", "sleap.nn.architectures.resnet", "sleap.nn.architectures.unet", "sleap.nn.architectures.upsampling", "sleap.nn.callbacks", "sleap.nn.config.data", "sleap.nn.config.model", "sleap.nn.config.optimization", "sleap.nn.config.outputs", "sleap.nn.config.training_job", "sleap.nn.config.utils", "sleap.nn.data.augmentation", "sleap.nn.data.confidence_maps", "sleap.nn.data.dataset_ops", "sleap.nn.data.edge_maps", "sleap.nn.data.general", "sleap.nn.data.grouping", "sleap.nn.data.identity", "sleap.nn.data.inference", "sleap.nn.data.instance_centroids", "sleap.nn.data.instance_cropping", "sleap.nn.data.normalization", "sleap.nn.data.offset_regression", "sleap.nn.data.pipelines", "sleap.nn.data.providers", "sleap.nn.data.resizing", "sleap.nn.data.training", "sleap.nn.data.utils", "sleap.nn.evals", "sleap.nn.heads", "sleap.nn.identity", "sleap.nn.inference", "sleap.nn.losses", "sleap.nn.model", "sleap.nn.paf_grouping", "sleap.nn.peak_finding", "sleap.nn.system", "sleap.nn.tracker.components", "sleap.nn.tracker.kalman", "sleap.nn.tracking", "sleap.nn.training", "sleap.nn.utils", "sleap.nn.viz", "sleap.skeleton", "sleap.util", "Datasets", "Using Bonsai with SLEAP", "Configuring models", "Command line interfaces", "Run training and inference on Colab", "Creating a custom training profile", "GUI", "Guides", "Importing predictions for labeling", "Tracking and proofreading", "Running SLEAP remotely", "Skeleton design", "Training with GUI", "Troubleshooting workflows", "Help", "Social LEAP Estimates Animal Poses (SLEAP)", "Installation", "Analysis examples", "Data structures", "Interactive and realtime inference", "Interactive and resumable training", "Model evaluation", "Post-inference tracking", "Training and inference on an example dataset", "Training and inference on your own data using Google Drive", "&lt;no title&gt;", "Notebooks", "Overview", "Export Data For Analysis", "Prediction-assisted labeling", "Initial Labeling", "Training and Inference", "Creating a project", "Tracking instances across frames", "Tutorial"], "terms": {"In": [0, 8, 38, 43, 50, 72, 75, 76, 87, 88, 92, 95, 96, 97, 99, 103, 104, 105, 106, 108, 109, 110, 112, 113, 117, 119], "interest": [0, 100], "foster": 0, "an": [0, 1, 3, 4, 6, 9, 10, 11, 12, 13, 14, 20, 23, 25, 26, 28, 32, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 54, 56, 60, 61, 62, 64, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 84, 85, 86, 88, 89, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 110, 114, 115, 116, 117, 119], "open": [0, 1, 12, 20, 32, 84, 85, 86, 87, 89, 91, 92, 94, 99, 100, 101, 102, 104, 107, 108, 109, 110, 111, 120], "welcom": [0, 109, 110], "environ": [0, 77, 86, 101, 102, 103, 104, 107, 118], "we": [0, 3, 6, 7, 10, 11, 12, 14, 17, 20, 23, 25, 28, 30, 31, 32, 34, 35, 78, 79, 80, 84, 85, 86, 87, 89, 92, 94, 95, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 112, 115, 116, 117], "maintain": [0, 12, 42, 48, 53, 54, 101, 102], "make": [0, 1, 4, 9, 10, 12, 32, 47, 50, 53, 55, 58, 63, 65, 67, 68, 70, 72, 73, 77, 79, 82, 84, 88, 91, 92, 94, 95, 96, 97, 102, 104, 105, 106, 107, 108, 113, 116, 117], "particip": 0, "project": [0, 10, 12, 26, 89, 90, 91, 92, 93, 94, 96, 98, 104, 110, 113, 116, 117, 120], "commun": [0, 1, 2, 100, 101, 102], "harass": 0, "free": [0, 1, 41, 90, 99, 100, 102, 109, 116], "experi": [0, 1, 47, 86, 100, 105, 108, 112, 113], "everyon": [0, 1], "regardless": [0, 12, 48, 49, 72, 85, 88], "ag": 0, "bodi": [0, 3, 47, 48, 52, 60, 69, 70, 72, 73, 84, 95, 97, 113, 116, 117, 118], "size": [0, 10, 34, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 54, 61, 62, 65, 66, 68, 69, 72, 75, 76, 80, 83, 86, 88, 89, 95, 98, 104, 107], "disabl": [0, 72, 77, 109], "ethnic": 0, "gender": 0, "ident": [0, 6, 37, 42, 43, 47, 54, 65, 67, 68, 70, 72, 79, 80, 83, 84, 86, 87, 89, 92, 93, 95, 96, 103, 115, 119], "express": [0, 41], "level": [0, 10, 12, 14, 27, 32, 43, 44, 50, 61, 64, 69, 72, 74, 75, 80, 81, 89, 104, 105, 106, 113], "nation": 0, "person": [0, 41, 75, 84, 102, 118], "appear": [0, 10, 86, 89, 92, 94, 98, 116, 119], "race": 0, "religion": 0, "sexual": 0, "orient": [0, 32, 88, 92], "exampl": [0, 12, 20, 21, 25, 29, 32, 37, 44, 45, 46, 48, 49, 52, 53, 54, 56, 57, 60, 61, 64, 65, 66, 67, 68, 72, 73, 75, 76, 81, 82, 84, 86, 87, 88, 90, 91, 92, 96, 100, 104, 106, 110, 111, 113, 117], "behavior": [0, 1, 32, 51, 86, 92, 101, 113], "contribut": [0, 58, 88, 100], "creat": [0, 1, 4, 9, 10, 12, 13, 14, 17, 23, 25, 26, 32, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 72, 74, 75, 77, 78, 80, 81, 83, 84, 85, 87, 89, 92, 93, 94, 96, 97, 101, 102, 103, 104, 105, 106, 108, 109, 113, 120], "posit": [0, 12, 27, 42, 69, 88, 89, 92, 95, 104, 107, 116, 117], "includ": [0, 8, 9, 10, 12, 22, 23, 28, 32, 34, 37, 41, 42, 69, 72, 77, 85, 88, 89, 91, 92, 94, 96, 100, 101, 102, 104, 105, 107, 112, 113, 115], "us": [0, 1, 3, 4, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 53, 54, 55, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108, 109, 111, 113, 115, 116, 117, 118, 119, 120], "inclus": 0, "languag": [0, 87], "Being": 0, "respect": [0, 27, 34, 37, 42, 43, 47, 48, 49, 54, 55, 68, 73, 76, 86, 116], "differ": [0, 11, 12, 14, 25, 32, 37, 41, 42, 43, 44, 46, 48, 60, 63, 65, 69, 72, 75, 80, 82, 84, 88, 91, 92, 93, 95, 96, 99, 102, 103, 104, 105, 106, 107, 110, 116, 119], "viewpoint": 0, "gracefulli": 0, "accept": [0, 32, 72, 84], "construct": [0, 10, 12, 30, 37, 42, 74, 105], "critic": [0, 47, 72, 104, 105, 106, 107, 109], "focus": 0, "what": [0, 34, 45, 79, 83, 88, 91, 95, 96, 99, 102, 103, 104, 105, 107, 109, 110, 119], "i": [0, 1, 3, 4, 7, 8, 9, 10, 11, 12, 14, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119], "best": [0, 1, 3, 6, 77, 78, 79, 92, 95, 96, 97, 116, 117], "show": [0, 10, 34, 72, 89, 92, 95, 103, 109, 110, 112, 116, 117, 119], "empathi": 0, "toward": 0, "other": [0, 3, 6, 10, 12, 23, 25, 28, 32, 41, 43, 48, 49, 50, 64, 65, 66, 67, 74, 78, 79, 80, 84, 85, 87, 89, 90, 91, 92, 96, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 109, 111, 112, 116, 117], "member": [0, 1], "unaccept": [0, 1], "The": [0, 1, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 87, 88, 89, 90, 91, 92, 94, 96, 97, 98, 100, 102, 103, 104, 105, 106, 107, 109, 110, 111, 113, 114, 115, 116, 117, 119, 120], "imageri": 0, "unwelcom": 0, "attent": [0, 88], "advanc": [0, 101], "troll": 0, "insult": 0, "derogatori": 0, "comment": [0, 1], "polit": 0, "attack": 0, "public": 0, "privat": 0, "publish": [0, 35, 41, 49, 100, 101], "inform": [0, 12, 14, 27, 38, 40, 41, 43, 47, 50, 60, 72, 78, 87, 89, 91, 92, 94, 96, 99, 100, 104, 105, 106, 114, 116, 117, 119], "physic": [0, 77, 101], "electron": 0, "address": [0, 35, 45, 49], "without": [0, 9, 10, 12, 13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 26, 27, 28, 29, 32, 35, 40, 41, 48, 49, 54, 62, 67, 69, 74, 75, 77, 78, 84, 89, 94, 96, 101, 102, 103, 106, 108, 112], "explicit": [0, 61, 66, 77], "permiss": [0, 41, 107, 109], "which": [0, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 34, 37, 38, 39, 44, 45, 47, 48, 49, 52, 53, 54, 57, 58, 60, 61, 63, 65, 66, 69, 70, 72, 73, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 102, 103, 104, 105, 107, 110, 112, 115, 116, 117, 119], "could": [0, 12, 13, 32, 69, 91, 102, 104, 105, 107, 108, 109], "reason": [0, 48, 75], "consid": [0, 48, 69, 72, 73, 75, 80, 84, 89, 100], "inappropri": 0, "profession": 0, "set": [0, 1, 3, 4, 6, 9, 10, 12, 23, 26, 32, 37, 38, 40, 42, 43, 44, 46, 47, 48, 49, 51, 52, 53, 54, 55, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 72, 75, 76, 79, 80, 81, 82, 85, 86, 89, 91, 92, 94, 95, 96, 97, 98, 102, 103, 104, 105, 106, 107, 108, 109, 110, 112, 113, 116, 117, 119], "ar": [0, 1, 3, 4, 6, 7, 8, 9, 10, 11, 12, 16, 23, 25, 26, 27, 28, 31, 32, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 75, 76, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 91, 92, 94, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 107, 108, 109, 112, 114, 115, 116, 117, 119], "clarifi": 0, "expect": [0, 1, 9, 11, 12, 49, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 66, 67, 69, 70, 72, 75, 76, 87, 89, 103, 114], "take": [0, 4, 6, 25, 37, 41, 42, 44, 48, 53, 54, 55, 58, 72, 76, 80, 84, 85, 90, 91, 92, 95, 98, 103, 104, 105, 106, 107, 108, 111, 116, 117, 119], "appropri": [0, 13, 14, 15, 17, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 37, 46, 64, 69, 72, 79, 81, 92, 97, 98, 104, 105, 106, 107, 109, 116], "fair": 0, "correct": [0, 12, 25, 69, 70, 75, 92, 93, 94, 95, 97, 107, 113, 115, 117, 119], "action": [0, 41, 45, 92], "ani": [0, 1, 4, 6, 9, 10, 12, 20, 21, 25, 27, 29, 32, 34, 35, 37, 41, 42, 45, 46, 47, 48, 49, 50, 54, 55, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 72, 73, 74, 75, 79, 80, 81, 84, 85, 89, 90, 92, 94, 95, 96, 97, 99, 100, 101, 102, 103, 107, 108, 112, 113, 116, 119], "instanc": [0, 3, 6, 7, 8, 9, 12, 14, 23, 25, 27, 30, 32, 34, 38, 40, 41, 42, 43, 44, 46, 47, 48, 50, 52, 53, 55, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 78, 79, 80, 81, 83, 84, 86, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 103, 104, 105, 107, 108, 109, 113, 115, 116, 117, 120], "have": [0, 1, 3, 4, 8, 9, 10, 12, 23, 25, 28, 31, 32, 35, 37, 38, 41, 42, 43, 46, 47, 48, 49, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 65, 66, 67, 68, 69, 71, 72, 75, 78, 79, 80, 84, 85, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 102, 103, 104, 105, 106, 107, 108, 110, 112, 115, 116, 117, 118, 119], "right": [0, 1, 41, 46, 48, 52, 66, 84, 87, 92, 95, 97, 103, 113, 116, 118, 119], "remov": [0, 9, 10, 12, 65, 69, 71, 78, 79, 80, 84, 85, 89, 94, 95, 97, 102, 108, 110], "edit": [0, 50, 91, 92, 94, 95, 96, 102, 106, 112, 115, 119], "reject": [0, 72, 75], "commit": [0, 1], "wiki": 0, "issu": [0, 66, 99, 100, 101, 102, 104], "align": [0, 10, 53, 66, 72, 76], "thi": [0, 1, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 112, 113, 114, 115, 116, 117, 119, 120], "ban": 0, "temporarili": 0, "perman": 0, "thei": [0, 1, 10, 11, 12, 23, 24, 37, 44, 46, 47, 48, 49, 50, 55, 65, 66, 68, 72, 73, 75, 77, 80, 84, 85, 90, 91, 92, 94, 95, 97, 102, 103, 104, 105, 106, 107, 108, 114], "deem": 0, "threaten": 0, "offens": 0, "harm": 0, "appli": [0, 4, 7, 10, 31, 37, 38, 43, 44, 46, 47, 48, 52, 54, 61, 62, 66, 72, 73, 75, 76, 80, 89, 92, 95, 97, 102, 108, 113, 119], "both": [0, 1, 12, 14, 23, 38, 46, 47, 49, 53, 55, 61, 66, 67, 68, 69, 72, 78, 79, 87, 88, 91, 94, 95, 96, 106, 117], "within": [0, 9, 10, 12, 26, 27, 32, 37, 38, 44, 46, 47, 49, 54, 61, 65, 67, 69, 71, 72, 75, 77, 84, 85, 90, 92, 96, 102, 104, 108, 112], "space": [0, 10, 47, 49, 68, 75, 90, 92, 100, 102, 116, 118], "when": [0, 1, 10, 12, 23, 27, 32, 34, 37, 42, 44, 46, 47, 48, 49, 52, 53, 54, 55, 60, 61, 62, 65, 68, 69, 72, 73, 75, 77, 78, 80, 84, 88, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 104, 106, 108, 109, 110, 112, 115, 116, 117, 118, 119], "individu": [0, 10, 14, 17, 32, 41, 48, 53, 54, 61, 63, 64, 65, 73, 80, 89, 95, 104, 108, 117], "repres": [0, 4, 10, 12, 14, 32, 34, 41, 47, 58, 65, 69, 75, 76, 80, 84, 85, 92, 97, 99, 104], "its": [0, 4, 12, 25, 32, 48, 54, 60, 61, 62, 66, 72, 73, 75, 77, 79, 84, 88, 92, 95, 96, 100, 101, 102, 113, 116, 117, 118, 119], "offici": [0, 87, 100, 102], "e": [0, 1, 3, 6, 10, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 36, 37, 42, 44, 47, 48, 49, 52, 53, 54, 55, 58, 60, 61, 65, 66, 67, 68, 69, 71, 72, 73, 76, 77, 78, 79, 80, 84, 85, 87, 88, 89, 91, 92, 93, 94, 95, 96, 101, 102, 104, 108, 109, 110, 113, 118], "mail": 0, "post": [0, 47, 80, 82, 86, 100, 103], "via": [0, 1, 12, 37, 44, 47, 54, 72, 75, 76, 89, 92, 95, 101, 102, 103, 105, 106, 109, 110, 112, 118], "social": 0, "media": [0, 32], "account": [0, 52, 53, 55, 58, 61, 69, 90, 110, 116], "act": [0, 1, 35], "appoint": 0, "onlin": [0, 48, 73, 88], "offlin": 0, "event": [0, 41, 45], "represent": [0, 12, 40, 42, 43, 47, 50, 72, 75, 76, 84], "mai": [0, 1, 11, 12, 20, 34, 37, 38, 40, 42, 43, 45, 46, 47, 48, 49, 50, 52, 54, 60, 61, 65, 67, 69, 72, 73, 75, 88, 89, 92, 95, 96, 99, 100, 103, 104, 105, 107, 112, 113, 114, 116, 117, 119], "further": [0, 48, 88, 93, 113], "defin": [0, 10, 14, 27, 37, 38, 42, 43, 44, 47, 52, 53, 55, 58, 64, 68, 70, 72, 74, 75, 78, 84, 96, 97, 103, 104, 105, 106, 113], "abus": 0, "otherwis": [0, 1, 9, 10, 12, 14, 17, 32, 37, 41, 42, 54, 62, 64, 68, 72, 84, 89, 92, 96, 102, 103, 110, 116], "report": [0, 1, 12, 72, 86, 89, 100], "contact": [0, 89], "team": [0, 1], "talmo": [0, 1, 30, 86, 99, 100, 101], "salk": [0, 1, 99, 100, 101], "edu": [0, 1, 99, 100, 101], "all": [0, 1, 3, 4, 9, 10, 12, 13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 37, 38, 41, 44, 46, 47, 48, 49, 50, 53, 55, 58, 60, 61, 64, 65, 66, 67, 69, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 86, 88, 90, 92, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 110, 113, 115, 116, 117, 118, 119], "complaint": 0, "review": [0, 1, 12, 80, 95, 100, 101, 120], "investig": 0, "result": [0, 3, 4, 10, 12, 14, 17, 20, 27, 32, 37, 38, 42, 43, 44, 45, 47, 48, 57, 61, 67, 72, 73, 80, 81, 84, 85, 87, 88, 89, 90, 92, 95, 99, 103, 104, 105, 106, 108, 112], "necessari": [0, 12, 72, 81, 91, 96, 100, 102, 104, 106], "circumst": 0, "oblig": 0, "confidenti": 0, "regard": 0, "incid": 0, "detail": [0, 7, 12, 15, 37, 38, 40, 43, 69, 72, 75, 87, 88, 89, 91, 95, 100, 113, 115], "specif": [0, 10, 12, 13, 14, 25, 26, 44, 47, 49, 50, 62, 67, 72, 73, 78, 81, 84, 92, 98, 100, 105], "polici": [0, 77], "separ": [0, 1, 12, 23, 26, 49, 72, 88, 89, 94, 96, 103, 104, 105, 108, 110, 117], "who": [0, 41], "do": [0, 10, 12, 37, 41, 43, 44, 47, 49, 60, 72, 73, 78, 80, 92, 94, 95, 97, 102, 103, 104, 105, 106, 107, 108, 119], "follow": [0, 1, 12, 27, 32, 37, 41, 42, 47, 54, 61, 69, 84, 86, 87, 89, 97, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109], "good": [0, 1, 21, 25, 29, 35, 48, 69, 78, 79, 80, 88, 91, 93, 95, 99, 112, 117], "faith": 0, "face": [0, 14, 50, 99], "temporari": [0, 116], "repercuss": 0, "determin": [0, 6, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 32, 34, 38, 40, 43, 44, 46, 47, 49, 65, 66, 69, 70, 72, 78, 79, 80, 92, 95, 98, 109, 116], "": [0, 1, 10, 12, 14, 16, 17, 20, 23, 25, 28, 30, 32, 34, 35, 37, 39, 41, 42, 44, 46, 49, 53, 54, 55, 58, 60, 62, 64, 65, 66, 68, 69, 72, 74, 75, 78, 79, 80, 82, 84, 85, 86, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 112, 113, 116, 117, 119], "leadership": 0, "adapt": [0, 42], "from": [0, 1, 2, 3, 4, 6, 7, 9, 10, 12, 13, 14, 16, 17, 20, 23, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 58, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 88, 89, 91, 92, 93, 94, 95, 96, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119], "version": [0, 1, 12, 47, 50, 64, 68, 85, 89, 94, 96, 100, 101, 102, 104, 105, 106, 107, 108, 109, 110, 112], "1": [0, 3, 4, 9, 10, 11, 12, 26, 32, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 53, 54, 55, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 75, 76, 78, 79, 80, 82, 83, 84, 86, 89, 95, 98, 102, 107, 109, 110, 119], "4": [0, 3, 12, 32, 34, 38, 39, 41, 42, 43, 44, 47, 48, 50, 53, 55, 61, 69, 72, 76, 79, 82, 83, 86, 89, 92, 98, 100, 101, 102, 103, 104, 107, 109, 110], "avail": [0, 1, 9, 32, 33, 37, 48, 61, 67, 69, 72, 77, 88, 89, 90, 96, 102, 103, 104, 105, 106, 107, 108, 109], "http": [0, 15, 37, 39, 42, 72, 78, 82, 102, 103, 104, 105, 106, 107, 108, 109], "org": [0, 15, 27, 37, 39, 42, 72, 104, 107, 108], "As": [1, 73, 88, 92, 94, 95, 106, 109, 110, 116], "our": [1, 2, 79, 84, 90, 91, 96, 100, 101, 102, 103, 104, 105, 107, 109, 117, 118, 120], "grow": 1, "import": [1, 9, 12, 14, 17, 65, 69, 75, 87, 88, 92, 93, 95, 97, 100, 103, 104, 105, 106, 107, 108, 109, 113, 114, 118], "adher": 1, "guidelin": [1, 100], "These": [1, 12, 28, 35, 37, 38, 40, 41, 43, 44, 46, 47, 49, 50, 53, 54, 55, 60, 65, 67, 68, 69, 71, 72, 75, 86, 88, 90, 92, 95, 102, 103, 104, 105, 106, 107, 113, 119], "chang": [1, 12, 31, 38, 44, 45, 46, 47, 48, 61, 62, 65, 67, 72, 77, 84, 92, 95, 97, 102, 105, 106, 116, 119], "need": [1, 11, 12, 20, 25, 32, 34, 41, 43, 46, 47, 49, 60, 62, 65, 66, 69, 73, 75, 79, 80, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 97, 102, 103, 104, 105, 106, 107, 109, 110, 113, 114, 115, 116, 118, 119], "pleas": [1, 86, 87, 100, 101, 104, 107, 108], "feel": [1, 99, 100, 116], "propos": 1, "sourc": [1, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 87, 95, 97, 100, 101, 102, 104, 107], "govern": 1, "abid": 1, "github": [1, 99, 101, 102, 103, 108, 109], "ha": [1, 3, 9, 10, 11, 12, 25, 26, 32, 37, 38, 39, 42, 43, 46, 47, 49, 51, 54, 60, 64, 67, 68, 72, 74, 75, 77, 78, 80, 84, 87, 88, 89, 90, 92, 95, 96, 98, 102, 109, 115, 116, 117, 119], "made": [1, 41, 95, 101, 119], "easi": [1, 4, 47, 48, 69, 73, 74, 77, 91, 95, 96, 97, 101, 104, 107], "gener": [1, 4, 9, 12, 21, 26, 27, 29, 34, 37, 38, 40, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 58, 61, 63, 64, 65, 67, 68, 69, 72, 73, 75, 76, 78, 80, 81, 82, 83, 87, 88, 89, 92, 94, 95, 96, 97, 100, 101, 102, 104, 105, 106, 107, 108, 109, 110, 112, 113, 115, 116], "speak": 1, "someth": [1, 3, 25, 87, 92], "warrant": 1, "g": [1, 6, 10, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 36, 44, 47, 49, 52, 54, 61, 65, 66, 69, 71, 72, 73, 77, 78, 84, 85, 89, 90, 92, 95, 96, 101, 102, 103, 104, 108, 113], "bug": 1, "fix": [1, 3, 30, 32, 42, 45, 46, 47, 49, 62, 66, 68, 85, 95, 120], "todo": [1, 14, 42, 49], "should": [1, 10, 12, 23, 25, 32, 38, 42, 44, 45, 46, 47, 48, 49, 50, 52, 54, 60, 67, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 91, 92, 94, 95, 97, 98, 102, 103, 104, 105, 106, 108, 113, 115, 117], "submit": 1, "convers": [1, 32, 89], "question": [1, 93, 100], "about": [1, 4, 5, 12, 15, 47, 61, 72, 73, 89, 91, 92, 93, 94, 96, 97, 99, 100, 105, 106, 107, 108, 114, 115, 116, 117, 119], "usag": [1, 19, 25, 33, 48, 61, 72, 89, 101], "improv": [1, 38, 47, 48, 49, 54, 61, 72, 73, 80, 98, 99, 106, 109, 110], "idea": [1, 79, 91, 100, 115, 117], "go": [1, 33, 54, 79, 80, 95, 96, 105, 116, 117], "stage": [1, 61, 72, 99, 104, 116, 117], "area": [1, 69, 82, 92, 99], "befor": [1, 8, 9, 10, 12, 31, 32, 34, 37, 43, 44, 47, 48, 49, 54, 61, 66, 68, 72, 74, 76, 79, 80, 81, 84, 87, 89, 91, 92, 94, 96, 104, 105, 106, 109, 110, 115, 116], "ad": [1, 10, 12, 37, 38, 43, 48, 61, 62, 66, 68, 72, 73, 90, 92, 94, 95, 97, 107, 109, 115, 116], "item": [1, 4, 10, 12, 65, 85, 92, 102, 105], "roadmap": 1, "onc": [1, 47, 54, 77, 87, 90, 91, 94, 95, 96, 99, 100, 102, 104, 105, 106, 109, 110, 112, 113, 115, 117, 118, 119], "can": [1, 3, 4, 7, 10, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34, 37, 38, 41, 42, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 58, 61, 63, 64, 65, 68, 69, 72, 73, 75, 76, 77, 79, 80, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 119, 120], "given": [1, 3, 6, 9, 10, 12, 23, 25, 26, 31, 32, 47, 61, 69, 72, 74, 75, 79, 80, 83, 84, 88, 89, 107, 108], "prioriti": [1, 90], "statu": 1, "assigne": 1, "etc": [1, 4, 12, 32, 44, 85, 102, 104, 117], "check": [1, 10, 12, 14, 28, 31, 32, 33, 35, 49, 51, 64, 72, 77, 80, 84, 85, 89, 92, 95, 100, 101, 102, 104, 109, 110], "close": [1, 20, 32, 33, 47, 79, 105, 112, 116], "help": [1, 2, 37, 44, 47, 48, 65, 72, 73, 89, 95, 99, 101, 107, 108, 113], "page": [1, 2, 101, 102, 109, 110], "sure": [1, 10, 12, 46, 79, 82, 91, 96, 97, 102, 104, 105, 106, 107, 108], "doesn": [1, 3, 10, 12, 32, 54, 85, 91, 92, 96, 97, 98, 115], "t": [1, 3, 10, 11, 12, 20, 25, 28, 31, 32, 35, 44, 47, 54, 73, 78, 79, 80, 85, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 109, 110, 112, 113, 115, 116, 117, 118], "alreadi": [1, 8, 10, 12, 20, 30, 32, 46, 49, 62, 67, 68, 72, 77, 79, 80, 84, 89, 90, 91, 92, 95, 96, 97, 98, 102, 103, 106, 119], "exist": [1, 12, 25, 26, 31, 32, 37, 38, 45, 49, 52, 84, 85, 92, 96, 97, 102, 106, 108, 112], "been": [1, 8, 10, 12, 35, 74, 77, 79, 80, 84, 89, 92, 95, 102, 105, 115, 116], "solv": 1, "new": [1, 4, 10, 12, 13, 23, 25, 31, 32, 37, 39, 49, 54, 64, 66, 67, 72, 78, 80, 81, 84, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 106, 107, 110, 112, 113, 115, 116, 118, 119], "templat": [1, 25, 84, 96], "place": [1, 12, 54, 65, 69, 78, 85, 90, 92, 93, 95, 96, 110, 112, 113, 119], "ask": [1, 92, 101, 116, 118], "3": [1, 3, 10, 12, 26, 32, 37, 38, 40, 41, 42, 43, 47, 48, 53, 55, 60, 61, 62, 65, 69, 75, 76, 79, 80, 82, 85, 86, 89, 95, 100, 102, 103, 104, 107, 109, 110, 119], "categori": 1, "troubl": [1, 117], "softwar": [1, 41, 90, 100, 101], "user": [1, 10, 12, 24, 31, 46, 49, 50, 61, 65, 85, 89, 92, 100, 109, 113], "enhanc": 1, "thing": [1, 73, 84, 85, 89, 90, 92, 96, 103, 116], "would": [1, 25, 54, 61, 66, 67, 72, 76, 78, 79, 88, 92, 94, 100, 102, 104, 106, 107, 108, 110, 116], "nicer": 1, "necessarili": [1, 75], "problem": [1, 75, 89, 95, 99, 102, 115], "If": [1, 6, 7, 9, 10, 11, 12, 14, 16, 17, 23, 24, 25, 26, 28, 31, 32, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 58, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 72, 74, 75, 76, 77, 78, 79, 80, 81, 83, 84, 85, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 108, 109, 110, 111, 116, 117, 118, 119], "fall": 1, "goe": [1, 95, 119], "here": [1, 20, 32, 69, 72, 76, 79, 85, 86, 88, 92, 95, 96, 97, 100, 102, 103, 106, 107, 108, 110, 111, 112, 113, 114], "long": [1, 49, 54, 71, 90, 104, 105], "isn": [1, 32, 88, 91, 92, 96, 100], "instal": [1, 23, 27, 89, 90, 96, 98, 103, 104, 105, 106, 107, 112, 114, 118], "develop": [1, 50, 100, 101, 102, 105, 112], "branch": [1, 37, 47], "instruct": [1, 87, 96, 100, 101, 102, 104, 105, 106, 107, 109, 118], "conda": [1, 100, 101, 102, 103, 104, 105, 106, 108, 109, 110, 118], "env": [1, 102, 104, 107, 108, 109], "fork": 1, "either": [1, 9, 10, 17, 32, 34, 35, 49, 53, 58, 61, 66, 67, 69, 72, 76, 84, 89, 92, 94, 95, 96, 102, 116], "work": [1, 3, 11, 12, 25, 27, 31, 32, 41, 49, 54, 72, 73, 77, 85, 86, 88, 89, 90, 95, 96, 98, 99, 100, 101, 103, 110, 112, 113, 114, 116, 117], "recommend": [1, 49, 54, 72, 89, 99, 100, 101, 104, 105, 106, 107, 108, 117, 118], "tackl": 1, "multipl": [1, 10, 12, 14, 17, 19, 20, 25, 32, 35, 37, 38, 46, 47, 49, 53, 55, 61, 64, 66, 67, 71, 75, 77, 78, 79, 84, 89, 91, 92, 94, 105, 106, 109, 116, 117], "time": [1, 10, 30, 34, 35, 37, 38, 47, 48, 49, 50, 54, 72, 80, 81, 84, 89, 90, 96, 98, 100, 102, 105, 106, 107, 108, 115, 116], "your": [1, 23, 25, 69, 88, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 113, 115, 116, 117, 118, 119, 120], "name": [1, 7, 9, 10, 12, 13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 26, 27, 28, 29, 32, 33, 36, 37, 38, 41, 42, 45, 46, 47, 48, 49, 50, 52, 56, 60, 61, 62, 66, 67, 69, 70, 72, 73, 75, 77, 81, 84, 85, 86, 89, 92, 96, 97, 100, 102, 103, 104, 105, 106, 107, 109, 110, 116, 118, 119], "relev": [1, 13, 14, 72, 92, 119], "keyword": [1, 34, 42, 65], "eg": 1, "git": [1, 102], "checkout": 1, "b": [1, 6, 61, 84, 85, 92, 102], "john": [1, 86, 100, 101], "some_issu": 1, "some": [1, 3, 7, 12, 20, 28, 30, 43, 54, 64, 72, 75, 77, 84, 86, 88, 92, 93, 94, 95, 96, 100, 102, 103, 104, 105, 106, 107, 108, 109, 110, 112, 115, 116, 117], "addit": [1, 12, 25, 37, 43, 44, 47, 48, 50, 61, 72, 78, 96, 99, 103, 107, 113, 117], "write": [1, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 33, 34, 45, 49, 72, 85], "test": [1, 12, 32, 46, 48, 49, 69, 72, 81, 86, 89, 104, 105, 106, 107, 109], "draft": 1, "pr": 1, "get": [1, 2, 3, 4, 7, 9, 10, 12, 16, 28, 32, 34, 35, 37, 41, 44, 61, 64, 75, 77, 78, 84, 85, 88, 89, 90, 92, 94, 95, 96, 98, 99, 103, 104, 105, 106, 108, 109, 110, 112, 115, 116, 117, 119], "coverag": 1, "statist": [1, 7, 12, 49, 73], "codecov": 1, "narrow": 1, "down": [1, 40, 43, 47, 48, 49, 71, 72, 75, 88, 89, 91, 95, 96, 100, 101, 104, 105, 109, 116, 117, 118], "error": [1, 32, 51, 69, 75, 77, 78, 98, 100, 102, 104, 105, 106, 107, 108, 109, 113, 115], "prone": 1, "line": [1, 3, 5, 9, 11, 34, 47, 72, 75, 91, 92, 93, 94, 95, 96, 98, 101, 109, 112, 115], "subtest": 1, "folder": [1, 12, 32, 45, 47, 49, 50, 69, 72, 81, 87, 89, 90, 91, 104, 105, 106, 107, 109, 118], "aim": 1, "hit": [1, 95, 110, 117, 118], "everi": [1, 3, 6, 12, 26, 37, 38, 42, 44, 47, 48, 49, 54, 69, 78, 89, 92, 95], "point": [1, 3, 6, 7, 9, 10, 12, 14, 34, 47, 52, 53, 55, 58, 60, 61, 63, 64, 65, 66, 69, 71, 72, 75, 76, 78, 80, 82, 85, 89, 91, 95, 98, 104, 105, 107, 116, 117], "cover": [1, 47, 91, 95, 100], "edg": [1, 3, 9, 34, 47, 48, 55, 70, 75, 83, 84, 89, 92, 95, 97, 104, 118], "case": [1, 8, 12, 25, 32, 42, 61, 72, 88, 89, 90, 91, 94, 95, 96, 99, 103, 106, 116, 119], "abil": 1, "try": [1, 12, 25, 32, 79, 80, 85, 88, 92, 95, 96, 97, 98, 99, 100, 102, 103, 105, 112, 116, 117, 120], "add": [1, 3, 4, 10, 12, 13, 25, 39, 43, 47, 48, 60, 61, 67, 73, 78, 84, 87, 92, 94, 97, 115, 116, 118], "file": [1, 5, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 41, 42, 46, 47, 49, 50, 65, 69, 72, 81, 84, 85, 86, 87, 90, 91, 94, 95, 96, 100, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118], "push": 1, "origin": [1, 9, 10, 12, 32, 34, 37, 38, 40, 43, 53, 55, 65, 66, 85, 88, 89, 93, 94, 96, 98, 102, 115], "pass": [1, 10, 11, 20, 32, 34, 37, 45, 59, 72, 75, 95], "fail": [1, 48, 49, 54, 69, 89, 95, 100, 102, 109, 110, 119], "repeat": [1, 37, 38, 47, 54, 66, 84, 113, 115, 118], "step": [1, 3, 12, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 53, 55, 58, 62, 66, 68, 72, 75, 79, 80, 88, 92, 95, 99, 100, 101, 102, 105, 106, 109, 113, 117], "5": [1, 4, 6, 12, 26, 36, 37, 41, 42, 47, 48, 52, 59, 61, 62, 69, 70, 72, 73, 75, 76, 80, 82, 85, 86, 89, 102, 103, 104, 105, 107, 108, 109, 110], "look": [1, 25, 32, 37, 55, 60, 69, 80, 85, 87, 88, 89, 90, 91, 92, 95, 107, 111, 116, 117], "convert": [1, 4, 10, 12, 20, 25, 32, 42, 46, 54, 61, 62, 65, 66, 68, 72, 75, 84, 85, 87, 92, 94, 100, 104, 105, 114, 115], "final": [1, 37, 39, 42, 44, 47, 54, 64, 95, 102, 104, 113, 116], "readi": [1, 72, 106, 112, 115, 117, 120], "button": [1, 87, 91, 98, 109, 110, 116, 117, 118], "onli": [1, 9, 10, 12, 32, 34, 38, 42, 43, 45, 46, 47, 48, 49, 51, 61, 64, 65, 67, 72, 75, 77, 78, 79, 80, 84, 87, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 105, 106, 107, 108, 109, 110, 113], "believ": 1, "merg": [1, 10, 12, 23, 41, 78, 80, 89, 92, 94, 96, 110, 119], "option": [1, 4, 6, 8, 9, 10, 11, 12, 13, 14, 16, 17, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 34, 35, 37, 38, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 55, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 88, 89, 92, 95, 96, 102, 105, 108, 113, 116, 119, 120], "assign": [1, 10, 12, 47, 65, 67, 71, 72, 75, 79, 80, 82, 92, 95, 119], "screen": 1, "self": [1, 80, 81, 86, 105, 110], "themselv": 1, "re": [1, 8, 11, 12, 25, 80, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 102, 103, 104, 105, 106, 107, 108, 109, 110, 112, 114, 115, 117, 119], "sign": 1, "off": [1, 45, 69, 72, 90, 95, 99, 104, 106, 107], "squash": 1, "feautur": 1, "main": [1, 9, 11, 12, 38, 47, 72, 74, 78, 81, 84, 92, 95, 103, 108, 115, 118, 119], "releas": [1, 101, 102, 109, 110], "lint": 1, "black": [1, 34, 89, 115], "21": [1, 33, 69, 80, 86, 89, 102, 104, 105, 106, 107, 108, 109], "6b0": 1, "see": [1, 7, 10, 12, 14, 15, 19, 20, 27, 32, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 53, 54, 58, 61, 62, 63, 66, 68, 69, 71, 72, 73, 75, 76, 77, 78, 82, 84, 86, 87, 88, 89, 91, 92, 94, 95, 96, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 112, 113, 114, 115, 116, 117, 118, 119], "dev_requir": 1, "pep8": 1, "type": [1, 4, 6, 9, 10, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 58, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 78, 80, 81, 84, 85, 89, 91, 93, 95, 96, 97, 99, 100, 101, 102, 104, 105, 106, 107, 109, 112, 113, 117, 118, 119], "hint": [1, 105, 106, 109, 110], "encourag": [1, 47, 48], "document": [1, 41, 42, 50, 75, 87, 89, 108], "googl": [1, 90, 102, 103, 106, 108, 109], "docstr": [1, 38, 40, 43], "heart": 1, "head": [2, 3, 12, 26, 37, 39, 42, 44, 47, 64, 72, 74, 75, 103, 104, 105, 106, 109], "discuss": [2, 95, 100, 101, 102], "sleap": [2, 86, 88, 90, 91, 92, 94, 95, 97, 98, 99, 102, 103, 107, 111, 113, 114, 115, 116, 117, 120], "function": [3, 6, 7, 9, 12, 13, 14, 23, 25, 32, 34, 37, 42, 45, 47, 50, 54, 56, 61, 64, 66, 68, 69, 70, 71, 72, 73, 75, 76, 77, 78, 80, 81, 82, 84, 85, 89, 92, 93, 95, 98, 105, 106, 107, 112], "usual": [3, 25, 32, 79, 88, 92, 94, 95, 96, 106], "you": [3, 8, 11, 12, 13, 23, 25, 32, 34, 35, 49, 69, 73, 79, 80, 84, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120], "ll": [3, 7, 10, 12, 13, 14, 17, 23, 25, 31, 35, 69, 80, 84, 85, 88, 90, 91, 92, 94, 95, 96, 97, 98, 100, 103, 104, 105, 106, 107, 108, 109, 110, 112, 114, 115, 116, 118, 119], "want": [3, 10, 11, 12, 25, 31, 32, 34, 35, 44, 69, 78, 80, 84, 88, 91, 92, 93, 94, 95, 96, 97, 100, 103, 105, 106, 107, 108, 110, 111, 112, 114, 115, 116, 117, 119], "find": [3, 6, 10, 12, 14, 17, 24, 31, 32, 44, 47, 48, 56, 59, 60, 69, 72, 75, 76, 78, 79, 84, 89, 90, 92, 95, 101, 105, 110, 117, 119], "out": [3, 10, 12, 27, 41, 46, 48, 49, 54, 64, 72, 75, 88, 90, 92, 95, 98, 99, 101, 102, 104, 105, 106, 107, 108], "skeleton": [3, 10, 12, 14, 26, 27, 28, 46, 47, 48, 52, 55, 60, 65, 72, 74, 75, 78, 79, 83, 86, 88, 92, 93, 95, 103, 104, 105, 108, 109, 113, 116, 120], "calcul": [3, 6, 7, 60, 61, 66, 68, 69, 73, 78, 82, 107], "mean": [3, 4, 7, 11, 12, 32, 33, 42, 46, 48, 53, 62, 69, 73, 78, 79, 89, 90, 92, 95, 100, 102, 103, 105, 107, 114, 117], "std": [3, 105], "node": [3, 6, 7, 9, 10, 11, 12, 14, 26, 27, 28, 34, 46, 47, 52, 53, 55, 60, 61, 69, 70, 71, 72, 75, 80, 84, 86, 88, 89, 92, 94, 95, 96, 97, 98, 103, 104, 105, 106, 107, 108, 109, 115, 116, 118], "locat": [3, 7, 9, 10, 12, 14, 28, 32, 34, 50, 63, 69, 72, 76, 88, 90, 92, 95, 97, 103, 107, 109, 110, 116, 117], "For": [3, 6, 10, 12, 23, 25, 27, 32, 37, 41, 49, 61, 69, 72, 75, 76, 78, 80, 84, 86, 87, 88, 89, 90, 91, 92, 96, 98, 99, 100, 101, 102, 103, 104, 105, 107, 109, 110, 113, 115, 116, 117, 118, 119, 120], "most": [3, 4, 8, 12, 33, 35, 37, 39, 44, 48, 71, 72, 73, 88, 90, 92, 96, 100, 102, 105, 106, 107, 113, 115, 119], "stabl": [3, 88, 95, 117], "smallest": [3, 31, 46, 66], "length": [3, 10, 41, 54, 61, 66, 67, 68, 69, 72, 75, 76, 78, 82, 89, 92, 95, 103, 104, 105, 109], "abov": [3, 11, 41, 48, 49, 72, 75, 86, 91, 92, 95, 100, 102, 104, 107, 108], "threshold": [3, 6, 58, 63, 69, 70, 75, 76, 78, 79, 80, 89, 92, 95, 107], "like": [3, 12, 32, 35, 37, 41, 44, 46, 49, 69, 73, 79, 80, 87, 88, 90, 92, 93, 94, 95, 96, 98, 100, 102, 103, 104, 105, 106, 107, 108, 109, 110, 114, 116, 118], "thorax": [3, 104, 105, 106, 109], "between": [3, 6, 7, 9, 10, 11, 12, 34, 35, 42, 46, 47, 55, 60, 66, 67, 69, 72, 75, 78, 80, 82, 84, 89, 92, 95, 97, 102, 107, 116, 119], "two": [3, 6, 10, 12, 37, 50, 53, 69, 72, 75, 78, 79, 82, 84, 85, 87, 88, 89, 92, 94, 95, 96, 103, 104, 109, 110, 115, 117, 118, 119], "part": [3, 31, 46, 47, 48, 52, 55, 60, 64, 69, 70, 72, 73, 75, 84, 88, 89, 92, 96, 97, 113, 116, 117, 118], "rel": [3, 10, 36, 37, 39, 41, 42, 44, 47, 48, 49, 53, 55, 58, 60, 61, 65, 72, 75, 76, 88, 95, 97, 98, 117], "each": [3, 4, 6, 7, 10, 12, 23, 26, 27, 31, 32, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 52, 53, 54, 55, 56, 58, 60, 61, 63, 64, 65, 67, 69, 70, 71, 72, 73, 75, 76, 77, 78, 80, 82, 84, 88, 89, 90, 91, 92, 95, 96, 97, 98, 102, 103, 104, 105, 108, 109, 110, 113, 117], "thu": 3, "well": [3, 12, 32, 38, 43, 44, 48, 49, 50, 53, 55, 58, 64, 69, 72, 73, 90, 92, 95, 98, 99, 102, 103, 104, 106, 107, 110, 112, 115], "axi": [3, 42, 53, 54, 55, 60, 61, 62, 63, 68, 72, 75, 76, 82, 103, 105], "2": [3, 6, 9, 10, 11, 12, 33, 36, 37, 38, 40, 42, 43, 44, 47, 48, 52, 53, 54, 55, 58, 59, 60, 61, 62, 63, 65, 66, 69, 70, 71, 72, 73, 75, 76, 79, 80, 82, 83, 84, 86, 89, 92, 95, 100, 102, 103, 107, 109, 119], "fairli": [3, 86, 91], "straightforward": [3, 97], "angl": [3, 48], "found": [3, 12, 24, 25, 32, 37, 54, 69, 72, 75, 80, 84, 85, 87, 95, 98, 102, 103, 105, 106, 109, 110, 117], "rotat": [3, 48, 88, 92, 103, 106, 109, 116], "accordingli": [3, 12, 48, 110], "standard": [3, 34, 37, 42, 44, 46, 47, 48, 53, 54, 55, 58, 62, 69, 76, 78, 79, 86, 89, 96, 104, 105], "deviat": [3, 46, 48, 53, 55, 58, 62, 69, 76], "matrix": [3, 6, 9, 10, 32, 53, 69, 78, 79, 80, 82, 103, 105, 106, 109], "note": [3, 4, 9, 11, 22, 23, 28, 32, 44, 48, 54, 73, 84, 85, 92, 94, 98, 100, 102, 103, 104, 105, 107, 108, 109, 111, 114, 116, 119], "vector": [3, 4, 47, 53, 55, 58, 63, 64, 68, 71, 72, 75, 76, 82], "matric": [3, 6, 9, 103, 113], "shape": [3, 9, 10, 11, 12, 32, 34, 42, 52, 53, 54, 55, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 82, 95, 103, 104, 105, 106, 107, 109, 114], "where": [3, 10, 12, 26, 32, 38, 42, 44, 48, 49, 50, 52, 53, 55, 56, 58, 60, 61, 63, 66, 69, 72, 73, 75, 76, 78, 79, 82, 84, 85, 88, 89, 91, 92, 95, 96, 98, 102, 106, 113, 115, 116], "correspond": [3, 4, 6, 7, 9, 10, 12, 31, 35, 37, 53, 55, 61, 62, 63, 69, 71, 72, 75, 76, 80, 82, 84, 88, 92, 95, 104, 108], "x": [3, 10, 12, 14, 37, 38, 42, 44, 48, 52, 53, 55, 61, 63, 68, 72, 75, 76, 82, 86, 92, 102, 104, 105, 106, 109], "y": [3, 10, 12, 14, 48, 52, 53, 55, 61, 63, 68, 72, 75, 76, 92, 100, 101, 102, 104, 105, 106, 107, 108, 109, 110], "after": [3, 12, 37, 38, 40, 42, 44, 46, 47, 48, 49, 54, 64, 66, 68, 70, 72, 76, 80, 89, 91, 92, 94, 95, 96, 97, 98, 99, 103, 104, 105, 107, 112, 113, 115, 116, 117, 118], "itself": [3, 10, 48, 74, 85, 89, 94, 95, 103, 104], "anoth": [3, 10, 12, 32, 49, 73, 79, 84, 89, 90, 92, 95, 96, 97, 98, 106, 107, 117, 119], "align_instance_point": 3, "so": [3, 9, 10, 11, 12, 20, 27, 30, 32, 34, 38, 41, 43, 46, 47, 49, 53, 61, 62, 63, 69, 73, 75, 77, 78, 80, 84, 86, 88, 90, 92, 93, 94, 95, 96, 100, 102, 103, 104, 105, 106, 107, 108, 109, 110, 114, 115, 117], "default": [3, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 33, 38, 40, 41, 42, 43, 47, 49, 50, 52, 60, 61, 69, 70, 72, 77, 78, 84, 85, 89, 91, 92, 93, 95, 96, 98, 102, 104, 106, 107, 108, 109, 117, 119], "yet": [3, 35, 80, 85, 98, 102, 115, 116, 118], "source_points_arrai": 3, "target_points_arrai": 3, "transform": [3, 4, 10, 47, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 64, 66, 67, 72], "fit": [3, 41, 92, 103], "target": [3, 34, 37, 42, 46, 66, 68, 78, 80, 89, 95], "align_inst": 3, "all_points_arrai": 3, "ndarrai": [3, 4, 6, 9, 10, 12, 32, 34, 35, 52, 65, 68, 69, 72, 75, 78, 79, 80, 82, 83, 84, 85, 105], "node_a": 3, "int": [3, 4, 6, 7, 8, 10, 12, 14, 22, 23, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 52, 53, 54, 55, 58, 59, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 82, 83, 84, 85, 105], "node_b": 3, "rotate_on_node_a": 3, "bool": [3, 4, 9, 10, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 64, 65, 66, 68, 69, 70, 72, 74, 77, 78, 79, 80, 81, 83, 84, 85], "fals": [3, 9, 10, 12, 15, 20, 22, 23, 26, 32, 34, 35, 37, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 51, 53, 54, 55, 58, 60, 61, 62, 64, 65, 66, 68, 69, 72, 74, 78, 80, 81, 83, 84, 85, 89, 92, 102, 103, 104, 105, 106, 107, 109], "align_instances_on_most_st": 3, "min_stable_dist": 3, "float": [3, 6, 7, 10, 12, 14, 32, 34, 36, 40, 42, 43, 44, 46, 47, 48, 49, 52, 53, 55, 58, 59, 61, 62, 63, 66, 67, 68, 69, 70, 72, 73, 75, 76, 78, 79, 80, 81, 82, 83, 84, 104], "0": [3, 4, 10, 12, 14, 26, 32, 34, 35, 36, 37, 42, 43, 44, 45, 46, 47, 48, 49, 52, 53, 54, 55, 56, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 75, 76, 78, 79, 80, 82, 83, 84, 85, 89, 92, 95, 102, 104, 105, 106, 107, 108, 109, 110], "pair": [3, 6, 47, 52, 69, 70, 72, 75, 78, 82, 83, 84, 86, 89, 95, 107, 110, 118, 119], "along": [3, 14, 23, 27, 47, 54, 55, 60, 72, 75, 76, 82, 99, 103, 109], "get_instances_point": 3, "list": [3, 4, 6, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 72, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85, 89, 92, 93, 95, 97, 102, 103, 104, 113, 116], "return": [3, 4, 6, 7, 9, 10, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 103, 104, 105, 106, 107, 108, 109, 110, 115], "singl": [3, 4, 7, 10, 12, 14, 17, 23, 32, 34, 35, 42, 46, 47, 48, 49, 50, 51, 53, 55, 60, 61, 62, 64, 65, 66, 70, 72, 75, 77, 78, 80, 81, 83, 84, 86, 88, 89, 90, 91, 92, 94, 95, 101, 104, 105, 110, 117], "get_mean_and_std_for_point": 3, "aligned_points_arrai": 3, "tupl": [3, 4, 6, 9, 10, 12, 31, 32, 34, 36, 37, 41, 42, 44, 47, 53, 55, 64, 65, 66, 67, 68, 69, 70, 71, 72, 74, 75, 76, 78, 80, 82, 83, 84], "get_most_stable_node_pair": 3, "min_dist": 3, "distanc": [3, 6, 7, 47, 55, 69, 72, 75, 78, 82, 89, 95, 107], "over": [3, 4, 6, 8, 10, 12, 48, 49, 50, 54, 65, 67, 68, 72, 75, 76, 78, 80, 82, 83, 88, 89, 90, 92, 95, 103, 105, 106, 107], "min": [3, 7, 101, 106, 107, 109], "get_stable_node_pair": 3, "node_nam": [3, 9, 11, 12, 84, 103], "sort": [3, 6, 48, 69, 79], "dev": [3, 101, 102], "get_template_points_arrai": 3, "modul": [4, 6, 7, 10, 30, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 50, 64, 65, 72, 74, 75, 76, 77, 79, 82, 84, 107], "frame": [4, 6, 7, 9, 10, 11, 12, 14, 16, 17, 23, 28, 32, 33, 34, 46, 47, 55, 57, 61, 65, 67, 69, 72, 75, 78, 79, 80, 83, 86, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 108, 109, 112, 113, 115, 117, 120], "featur": [4, 36, 37, 38, 41, 42, 44, 46, 47, 69, 70, 78, 88, 92, 100, 113, 116], "pca": 4, "kmean": [4, 103], "class": [4, 7, 10, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 64, 65, 66, 67, 70, 71, 72, 73, 74, 75, 78, 80, 81, 82, 84, 85, 105], "framegroupset": 4, "method": [4, 7, 12, 13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 26, 27, 28, 29, 32, 34, 35, 37, 38, 44, 45, 47, 51, 54, 61, 69, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 86, 89, 92, 96, 100, 101, 104, 107, 108, 115, 116, 118, 119], "str": [4, 7, 8, 9, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 41, 42, 43, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 72, 75, 76, 77, 78, 81, 83, 84, 85, 107], "item_group": 4, "dict": [4, 7, 9, 10, 12, 14, 21, 23, 30, 35, 45, 50, 54, 56, 64, 67, 68, 69, 72, 75, 78, 79, 80, 82, 84, 85, 107], "frameitem": 4, "_noth": [4, 10, 12, 32, 35, 42, 46, 47, 48, 49, 50, 56, 64, 72, 78, 80], "noth": [4, 10, 12, 32, 35, 42, 46, 47, 48, 49, 50, 56, 64, 72, 78, 80], "group_data": 4, "groupset_data": 4, "group": [4, 10, 47, 48, 71, 72, 73, 75, 80, 82, 84, 85, 88, 97, 100, 101, 105, 107, 116, 117], "object": [4, 6, 7, 10, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34, 50, 67, 69, 78, 80, 83, 84, 85, 102, 104, 105, 107, 108, 109], "one": [4, 10, 12, 32, 42, 47, 49, 50, 51, 52, 58, 64, 66, 67, 68, 69, 72, 74, 80, 81, 84, 89, 91, 92, 95, 97, 98, 101, 102, 104, 105, 106, 107, 108, 109, 117, 118, 119, 120], "label": [4, 6, 7, 9, 10, 12, 14, 15, 16, 17, 18, 22, 23, 25, 26, 28, 30, 32, 34, 42, 45, 46, 47, 48, 61, 65, 67, 69, 72, 80, 81, 82, 84, 86, 88, 90, 93, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 117, 118, 119, 120], "dictionari": [4, 7, 9, 10, 12, 14, 20, 23, 25, 35, 42, 49, 50, 54, 56, 57, 64, 65, 67, 68, 69, 72, 78, 80, 82, 84, 85, 107], "map": [4, 6, 27, 37, 42, 44, 47, 49, 53, 55, 56, 58, 61, 63, 64, 65, 67, 69, 70, 71, 72, 75, 76, 80, 81, 82, 83, 84, 88, 89, 92, 96, 104, 106, 107, 109, 113], "extra": [4, 46, 47, 102], "data": [4, 5, 6, 7, 9, 10, 12, 14, 15, 16, 17, 20, 23, 24, 25, 26, 27, 28, 31, 32, 34, 35, 42, 45, 47, 48, 49, 50, 69, 72, 80, 81, 84, 85, 86, 88, 89, 91, 92, 93, 94, 96, 97, 98, 99, 107, 113, 119, 120], "kei": [4, 7, 9, 10, 12, 14, 26, 42, 45, 49, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 72, 78, 79, 81, 82, 84, 85, 95, 103, 104, 105, 107, 116, 119], "id": [4, 20, 65, 75, 84, 89, 105, 106, 109, 112], "valu": [4, 7, 9, 10, 12, 13, 32, 33, 38, 42, 46, 47, 48, 49, 53, 54, 58, 61, 62, 63, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 82, 84, 85, 89, 92, 102, 104, 105, 106, 107, 108, 109], "entir": [4, 9, 12, 26, 32, 37, 48, 53, 65, 76, 89, 90, 92, 94, 96, 105, 106, 107, 115, 116, 120], "properti": [4, 10, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 32, 36, 37, 38, 39, 40, 41, 42, 43, 49, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 64, 65, 66, 67, 70, 72, 74, 78, 80, 81, 84], "all_item": 4, "append_to_group": 4, "extend_group_item": 4, "item_list": 4, "get_item_group": 4, "contain": [4, 10, 12, 14, 17, 23, 27, 28, 32, 37, 41, 42, 46, 47, 49, 50, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 65, 66, 67, 69, 71, 72, 75, 76, 79, 81, 82, 84, 85, 86, 89, 90, 91, 94, 95, 96, 104, 105, 106, 107, 110, 112], "iter": [4, 12, 32, 54, 57, 65, 67, 84, 85, 113, 117], "yield": [4, 12, 54, 57, 61, 72], "sampl": [4, 12, 42, 45, 46, 48, 53, 54, 55, 58, 63, 67, 68, 71, 72, 75, 76, 86, 88, 92, 98, 99, 103, 111, 112, 113, 116, 120], "per_group": 4, "unique_sampl": 4, "true": [4, 9, 10, 12, 23, 24, 26, 30, 32, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 64, 65, 66, 68, 69, 70, 72, 74, 76, 77, 78, 79, 80, 83, 84, 85, 89, 102, 103, 104, 105, 106, 107, 108, 109], "current": [4, 12, 14, 23, 26, 32, 37, 42, 44, 45, 47, 49, 53, 55, 74, 77, 79, 80, 81, 84, 85, 87, 88, 90, 92, 95, 98, 101, 102, 105, 106, 110, 116, 118], "order": [4, 10, 12, 32, 37, 42, 46, 47, 48, 52, 54, 60, 62, 65, 66, 67, 72, 73, 75, 76, 79, 80, 84, 85, 96, 97, 103, 104, 116, 117], "match": [4, 10, 11, 12, 23, 32, 34, 37, 44, 46, 47, 57, 60, 65, 69, 71, 72, 75, 78, 79, 80, 82, 84, 85, 89, 92, 95, 96, 108, 109, 114, 119], "drawn": [4, 88, 92, 95], "paramet": [4, 6, 7, 9, 10, 11, 12, 14, 16, 23, 25, 26, 28, 30, 31, 32, 34, 37, 38, 39, 40, 41, 42, 43, 44, 48, 50, 51, 52, 53, 54, 55, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 88, 89, 91, 95, 96, 98, 99, 100, 106, 108, 109, 110, 112, 113], "number": [4, 6, 7, 10, 12, 26, 32, 33, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 51, 53, 54, 58, 61, 62, 64, 66, 69, 70, 71, 72, 73, 75, 78, 79, 80, 85, 86, 88, 89, 92, 95, 98, 100, 101, 103, 106, 109, 110, 113, 119], "whether": [4, 10, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 34, 41, 42, 44, 47, 49, 53, 58, 69, 72, 78, 80, 81, 83, 84, 85, 89, 92, 95, 96, 100, 118], "ensur": [4, 12, 23, 43, 46, 49, 51, 61, 66, 67, 72, 75, 77, 79, 86, 96, 100, 102, 119], "share": [4, 77, 96, 100, 102, 104, 107, 108], "video": [4, 7, 9, 10, 11, 12, 14, 16, 17, 23, 24, 26, 27, 28, 30, 33, 34, 46, 65, 67, 69, 72, 86, 87, 88, 89, 90, 92, 94, 95, 96, 97, 98, 100, 104, 105, 108, 109, 111, 112, 113, 115, 116, 120], "frame_idx": [4, 10, 12, 69, 104, 105], "just": [4, 10, 12, 23, 32, 49, 61, 72, 79, 84, 85, 88, 92, 94, 95, 96, 97, 98, 103, 104, 105, 106, 108, 110, 111, 115, 116, 117, 119], "simpl": [4, 21, 25, 29, 35, 37, 38, 39, 40, 49, 50, 72, 80, 85, 89, 95, 96, 103, 110], "wrapper": [4, 12, 32, 33, 54, 66, 69, 74, 75, 78, 84, 85], "plu": [4, 10, 95], "imag": [4, 10, 12, 14, 17, 23, 32, 34, 38, 39, 41, 42, 45, 46, 47, 48, 49, 52, 53, 55, 58, 61, 62, 65, 66, 68, 72, 75, 76, 80, 81, 83, 84, 86, 88, 89, 90, 91, 92, 95, 96, 97, 98, 104, 105, 106, 107, 108, 110, 113, 116, 117], "itemstack": 4, "none": [4, 6, 7, 9, 10, 11, 12, 14, 16, 17, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 34, 35, 37, 38, 39, 42, 44, 45, 46, 47, 48, 49, 51, 52, 55, 59, 60, 61, 62, 64, 65, 66, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 89, 98, 102, 103, 104, 106, 108, 109], "ownership": 4, "meta": [4, 72, 84], "group_set": 4, "own": [4, 25, 54, 84, 90, 91, 92, 101, 102, 105, 106, 113, 116, 120], "more": [4, 8, 10, 12, 27, 37, 38, 40, 41, 42, 43, 44, 47, 48, 51, 58, 64, 67, 68, 72, 75, 77, 79, 80, 81, 84, 87, 88, 89, 90, 91, 92, 97, 99, 101, 102, 107, 108, 113, 114, 115, 117, 118, 119, 120], "row": [4, 9, 10, 52, 58, 61, 63, 66, 75, 78, 79, 82], "numpi": [4, 9, 10, 12, 26, 27, 32, 35, 52, 65, 68, 69, 72, 76, 78, 80, 82, 85, 102, 103, 104, 105, 106, 107, 108, 109], "specifi": [4, 7, 9, 10, 11, 12, 16, 25, 26, 28, 32, 34, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 60, 61, 62, 63, 65, 66, 67, 68, 70, 72, 74, 75, 76, 79, 80, 81, 82, 83, 84, 85, 87, 89, 92, 95, 96, 100, 106, 107, 109], "store": [4, 9, 10, 11, 12, 20, 23, 26, 32, 36, 46, 48, 49, 52, 54, 60, 61, 65, 66, 67, 72, 78, 84, 90, 96, 100, 103, 104, 106, 109, 114, 118], "metadata": [4, 10, 12, 14, 17, 20, 27, 28, 36, 49, 72, 104, 106, 107, 112], "oper": [4, 12, 37, 38, 40, 43, 46, 53, 54, 55, 61, 62, 64, 65, 66, 67, 68, 69, 72, 73, 75, 76, 100, 104, 105, 106, 107, 109], "stack": [4, 37, 38, 40, 41, 42, 43, 44, 47, 48, 54, 76, 106, 109], "groupset": 4, "brisk_bag_of_featur": 4, "brisk_threshold": 4, "40": [4, 86, 106, 109], "vocab_s": 4, "20": [4, 75, 80, 86, 103, 104, 105, 106, 107, 109, 116, 117], "bag": 4, "base": [4, 7, 10, 12, 13, 20, 32, 33, 35, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 49, 52, 62, 64, 69, 70, 72, 75, 76, 78, 80, 81, 83, 89, 92, 93, 94, 95, 98, 99, 100, 101, 102, 113], "brisk": 4, "current_groupset": 4, "recent": [4, 119], "extend_ownership": 4, "row_count": 4, "extend": [4, 10, 86], "next": [4, 12, 89, 92, 95, 102, 105, 106, 107, 108, 113, 116, 117, 119], "flatten": [4, 53, 55, 68, 70, 103, 107], "d": [4, 61, 72, 82, 84, 85, 86, 90, 92, 93, 94, 95, 100, 101, 102, 104, 105, 106, 107, 108, 109], "arrai": [4, 6, 9, 10, 12, 32, 52, 65, 68, 69, 72, 75, 76, 80, 82, 84, 103, 104, 105], "get_all_items_from_group": 4, "get_item_data": 4, "belong": [4, 10, 12, 61, 75, 76, 108], "get_item_data_idx": 4, "index": [4, 7, 9, 10, 11, 12, 26, 30, 32, 34, 45, 46, 55, 58, 60, 61, 65, 71, 72, 73, 75, 76, 77, 80, 82, 84, 85, 89, 96, 100, 104, 105, 106, 109], "get_raw_imag": 4, "scale": [4, 10, 34, 36, 37, 38, 39, 40, 42, 43, 44, 46, 47, 48, 52, 53, 55, 58, 61, 62, 63, 65, 66, 68, 69, 71, 72, 73, 75, 76, 80, 83, 88, 89, 98, 104, 105, 108, 109], "raw": [4, 20, 46, 48, 50, 52, 53, 55, 65, 72, 103, 105, 108], "hog_bag_of_featur": 4, "hog": 4, "descriptor": 4, "n_cluster": [4, 103], "k": [4, 73, 103], "cluster": [4, 72, 89], "make_sample_group": 4, "samples_per_video": 4, "sample_method": 4, "stride": [4, 10, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 53, 55, 58, 61, 63, 66, 70, 72, 74, 75, 83, 88, 92, 98, 106, 109], "n_compon": 4, "sample_group": 4, "samples_per_group": 4, "parallelfeaturepipelin": 4, "pipelin": [4, 12, 32, 48, 54, 56, 61, 65, 69, 72, 75, 80, 81, 89, 91, 95, 98, 103, 106, 109, 110, 117], "featuresuggestionpipelin": 4, "videos_as_dict": 4, "enabl": [4, 32, 41, 47, 48, 49, 53, 54, 72, 77, 89, 95, 100, 102, 104, 105, 106, 107, 109, 112, 113], "per": [4, 7, 32, 34, 40, 43, 47, 48, 72, 78, 79, 80, 83, 88, 89, 95], "parallel": [4, 47, 48, 49, 54], "suggest": [4, 12, 22, 23, 65, 80, 89, 93, 95, 98, 99, 100, 115, 116], "desir": [4, 12, 38, 40, 42, 43, 44, 47, 49, 52, 60, 61, 62, 66, 80, 91, 95, 108, 113, 117], "call": [4, 12, 13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 42, 45, 54, 69, 72, 73, 76, 78, 80, 85, 91, 96, 105, 106, 110, 113], "run": [4, 8, 12, 34, 45, 49, 50, 64, 65, 72, 75, 77, 80, 81, 82, 87, 88, 89, 91, 92, 94, 95, 98, 100, 102, 103, 105, 106, 108, 109, 112, 117, 119, 120], "process": [4, 12, 26, 32, 35, 47, 48, 54, 56, 61, 64, 65, 66, 68, 80, 85, 88, 90, 91, 95, 96, 98, 100, 102, 106, 112, 113, 115, 117], "care": [4, 43, 104, 105, 106, 107, 108], "serial": [4, 12, 32, 49, 50, 72, 84, 104], "pool": [4, 37, 38, 40, 43, 47, 66, 69], "deseri": [4, 12, 13, 14, 15, 17, 18, 21, 22, 23, 24, 26, 27, 28, 29, 32, 50, 84], "back": [4, 10, 32, 35, 54, 61, 75, 79, 80, 89, 92, 100, 110], "suggestionfram": [4, 12], "video_idx": [4, 12, 26, 34], "idx": [4, 6, 12, 32, 105], "classmethod": [4, 10, 12, 15, 16, 17, 18, 22, 23, 24, 27, 28, 32, 38, 40, 41, 42, 43, 44, 50, 52, 60, 61, 62, 64, 65, 66, 70, 72, 73, 74, 75, 78, 80, 81, 84], "tuples_to_suggest": 4, "command": [5, 11, 23, 25, 49, 87, 91, 92, 93, 94, 95, 96, 100, 102, 109, 112, 116, 117, 118, 119], "util": [5, 11, 31, 36, 53, 55, 58, 62, 63, 67, 69, 71, 72, 75, 77, 83, 95, 104], "print": [5, 12, 64, 68, 72, 77, 102, 103, 104, 105, 106, 107, 114], "produc": [6, 32, 47, 53, 54, 55, 62, 64, 65, 70, 72, 80, 88], "predict": [6, 8, 10, 12, 30, 46, 47, 49, 61, 64, 69, 70, 72, 73, 75, 78, 80, 87, 88, 89, 91, 93, 95, 96, 98, 101, 103, 104, 105, 106, 107, 108, 109, 111, 112, 113, 116, 117, 119, 120], "dataset": [6, 9, 11, 14, 15, 17, 18, 19, 22, 23, 25, 27, 28, 30, 32, 34, 45, 46, 48, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 72, 81, 84, 91, 92, 96, 101, 103, 104, 105, 106, 107, 111, 113, 114, 117, 118, 120], "calculate_pairwise_cost": 6, "instances_a": 6, "union": [6, 10, 12, 22, 23, 25, 28, 32, 37, 60, 64, 65, 69, 70, 72, 75, 78, 80, 81, 82, 83, 84], "predictedinst": [6, 10, 12, 26, 69, 72, 104, 105], "instances_b": 6, "cost_funct": 6, "callabl": [6, 12, 22, 23, 31, 34, 42, 45, 54, 56, 78, 79, 80, 81], "pairwis": [6, 55, 69, 80], "cost": [6, 38, 40, 43, 46, 47, 48, 54, 61, 72, 78, 79, 80, 82, 88, 95, 104, 107], "compare_instance_list": 6, "list_points_arrai": 6, "match_instance_list": 6, "overal": [6, 10, 47], "total": [6, 7, 12, 34, 48, 61, 67, 72, 75, 95, 104, 105, 106, 109], "match_instance_lists_nodewis": 6, "thresh": [6, 79, 107], "first": [6, 7, 9, 11, 12, 14, 16, 28, 32, 34, 37, 38, 40, 42, 43, 44, 48, 52, 53, 54, 55, 61, 62, 64, 65, 68, 72, 77, 78, 79, 80, 84, 85, 89, 91, 92, 94, 95, 97, 102, 103, 104, 105, 106, 107, 108, 109, 110, 113, 114, 115, 117, 118, 119, 120], "closest": [6, 7, 72, 82], "second": [6, 14, 32, 34, 49, 72, 79, 84, 89, 95, 98, 115], "matched_instance_dist": 6, "labels_gt": [6, 69, 107, 109], "io": [6, 65, 89, 114], "labels_pr": [6, 69, 106, 107, 109], "match_lists_funct": 6, "frame_rang": [6, 12], "rang": [6, 10, 12, 26, 32, 33, 41, 42, 48, 61, 62, 68, 69, 72, 75, 85, 88, 89, 92, 96, 98, 103, 107], "ground": [6, 59, 69, 72, 73, 83, 89, 92, 107, 109, 113], "truth": [6, 59, 69, 72, 73, 83, 89, 92, 107, 109, 113], "compar": [6, 12, 32, 84, 85, 89, 107], "indic": [6, 12, 32, 45, 46, 52, 53, 55, 58, 60, 61, 65, 67, 69, 71, 72, 75, 76, 78, 82, 84, 89, 92, 95, 115], "nodeless_point_dist": 6, "inst_a": 6, "inst_b": 6, "ignor": [6, 9, 10, 37, 46, 49, 60, 69, 75, 76, 84, 100, 104, 107, 108], "point_dist": 6, "point_match_count": 6, "dist_arrai": 6, "point_nonmatch_count": 6, "seri": [7, 103], "give": [7, 72, 84, 88, 89, 90, 92, 95, 96, 98, 110, 115, 116], "statisticseri": 7, "variou": [7, 11, 12, 32, 87, 89, 92], "numer": [7, 12, 14, 80, 85, 104], "get_instance_score_seri": 7, "reduct": [7, 48, 53, 55, 66], "sum": [7, 55, 95], "score": [7, 9, 10, 12, 27, 47, 69, 72, 75, 78, 80, 89, 92, 104, 105, 107], "doc": [7, 27, 87, 101, 102, 103], "get_point_count_seri": 7, "get_point_displacement_seri": 7, "displac": [7, 75, 80], "same": [7, 10, 12, 14, 27, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 49, 50, 52, 53, 54, 55, 58, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 75, 76, 78, 79, 83, 84, 85, 88, 90, 91, 92, 93, 94, 95, 96, 100, 102, 104, 108, 109, 110], "track": [7, 8, 9, 10, 11, 12, 26, 27, 28, 35, 46, 47, 58, 61, 65, 66, 67, 72, 74, 78, 79, 83, 86, 92, 93, 96, 97, 100, 101, 103, 104, 105, 109, 113, 114, 115, 116, 120], "earlier": [7, 80], "max": [7, 37, 38, 43, 46, 53, 55, 66, 72, 75, 78, 80, 88, 89, 98, 106, 109], "get_point_score_seri": 7, "get_primary_point_displacement_seri": 7, "primary_nod": 7, "get_tracking_score_seri": 7, "cli": [8, 11, 72, 81, 89, 100, 105, 106, 108, 112], "mostli": [8, 12, 49, 54, 77, 115], "deprec": [8, 23], "cleaner": [8, 80], "cull": [8, 78, 79, 80, 89, 95], "ii": 8, "connect": [8, 35, 36, 37, 38, 40, 41, 42, 43, 44, 47, 70, 72, 74, 75, 78, 84, 89, 90, 92, 95, 96, 97, 103, 104, 109, 113, 118], "break": [8, 78, 80, 89, 100, 102], "let": [8, 90, 91, 92, 94, 96, 98, 103, 104, 105, 107, 108, 109, 110, 116, 117, 119], "control": [8, 33, 44, 47, 49, 75, 83, 88, 91, 92, 98, 109, 110], "how": [8, 34, 38, 46, 47, 49, 66, 69, 78, 80, 85, 86, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 103, 104, 105, 106, 107, 108, 110, 112, 113, 115, 116, 117], "select": [8, 12, 32, 44, 46, 67, 78, 80, 86, 87, 89, 91, 94, 95, 96, 98, 99, 102, 109, 113, 117, 118, 119, 120], "better": [8, 23, 72, 75, 79, 88, 90, 94, 107, 115, 117], "fit_track": 8, "filenam": [8, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 45, 50, 65, 69, 84, 85, 87, 89, 90, 91, 96, 103, 104, 105, 109, 110], "instance_count": [8, 12, 78, 80, 103], "wrap": [8, 14, 17, 64, 72, 75, 77, 105], "easier": [8, 47, 50, 69, 73, 88, 95, 113], "api": [8, 25, 27, 72, 75, 81, 84, 100, 101, 104, 105, 107, 112], "hdf5": [9, 11, 12, 18, 20, 23, 25, 27, 28, 32, 84, 85, 89, 96, 103, 104, 111, 112, 114], "csv": [9, 11, 12, 17, 49, 89, 92, 96, 107, 109], "occup": [9, 12, 113], "empti": [9, 12, 32, 39, 65, 78, 89, 116, 118], "By": [9, 32, 92, 98, 105, 119], "also": [9, 12, 23, 25, 32, 41, 46, 47, 50, 53, 58, 60, 61, 62, 63, 65, 66, 68, 69, 71, 72, 75, 76, 77, 78, 80, 82, 87, 89, 90, 91, 92, 94, 95, 96, 98, 100, 102, 103, 104, 105, 106, 107, 110, 113, 115, 116, 117, 119], "begin": [9, 45, 48, 49, 90], "end": [9, 12, 37, 38, 43, 45, 48, 49, 50, 54, 62, 64, 85, 92, 95, 100, 103, 113], "although": [9, 10, 25, 47, 94, 95, 96, 102, 115, 117], "argument": [9, 11, 12, 23, 32, 34, 42, 44, 45, 60, 61, 65, 66, 72, 76, 79, 89, 96, 109], "track_occup": [9, 11, 12, 28, 103, 114], "track_nam": [9, 11, 12, 103], "edge_nam": [9, 11, 84], "edge_ind": [9, 11, 55, 72, 75, 84], "point_scor": [9, 11], "instance_scor": [9, 10, 11, 72, 105], "tracking_scor": [9, 10, 11, 104, 105], "labels_path": [9, 89, 109], "path": [9, 11, 12, 16, 26, 30, 31, 32, 33, 34, 38, 42, 45, 46, 47, 49, 50, 65, 69, 72, 81, 85, 87, 89, 90, 91, 92, 95, 96, 100, 102, 103, 106, 107, 108, 109, 110, 114], "slp": [9, 11, 12, 22, 32, 69, 86, 89, 91, 96, 103, 104, 105, 106, 107, 108, 109, 110, 111], "gui": [9, 10, 12, 24, 25, 34, 49, 90, 91, 93, 94, 95, 96, 100, 101, 106, 110, 111, 112, 113, 115, 118], "context": [9, 12, 35, 98], "video_path": [9, 18, 69, 89, 109], "video_ind": [9, 57, 65], "scalar": [9, 10, 12, 46, 47, 54, 61, 65, 66, 68, 69, 72, 75, 76, 78, 82, 83], "integ": [9, 12, 37, 41, 42, 44, 45, 46, 47, 48, 49, 58, 61, 62, 66, 68, 71, 72, 75, 76, 89], "proven": [9, 12, 67, 109], "denot": [9, 10, 12, 41, 61, 69, 71, 72, 75, 82, 107], "column": [9, 10, 11, 66, 72, 76, 78, 79, 89, 114], "major": [9, 11, 99, 104, 114], "matlab": [9, 11, 24, 30, 84, 89, 103, 113, 120], "get_edges_as_np_str": 9, "bytes_": 9, "np": [9, 12, 32, 72, 75, 76, 82, 85, 103, 105, 107], "string_": 9, "get_nodes_as_np_str": 9, "get_occupancy_and_points_matric": 9, "all_fram": [9, 12], "build": [9, 12, 32, 33, 36, 37, 39, 41, 51, 60, 61, 62, 64, 66, 72, 74, 101, 102, 103, 105, 106, 109, 113], "assum": [9, 12, 32, 37, 60, 62, 72, 83, 84, 85, 92, 102, 107, 110, 117], "zero": [9, 10, 32, 53, 58, 63, 66, 70, 89, 95, 103, 104, 105, 106, 107, 108, 109], "up": [9, 32, 35, 37, 43, 44, 47, 48, 49, 55, 60, 65, 67, 72, 78, 79, 81, 85, 86, 88, 89, 91, 92, 93, 95, 97, 101, 102, 103, 104, 106, 107, 108, 109, 110, 115, 116, 117], "output": [9, 10, 11, 12, 16, 26, 28, 32, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 47, 50, 52, 53, 55, 56, 58, 60, 61, 64, 65, 66, 67, 68, 70, 72, 73, 74, 75, 81, 84, 88, 89, 92, 96, 102, 104, 105, 106, 107, 109, 110], "last": [9, 12, 32, 35, 37, 41, 42, 53, 55, 61, 62, 63, 68, 72, 75, 76, 77, 80, 89, 92, 96, 100, 118], "source_object": [9, 13, 14, 16, 21, 22, 23, 25, 27, 28, 29], "get_tracks_as_np_str": 9, "output_path": [9, 12, 109], "coordin": [9, 10, 12, 14, 20, 47, 48, 52, 53, 55, 59, 61, 63, 65, 69, 71, 72, 75, 76, 82, 103, 104], "written": [9, 13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 26, 27, 28, 29, 34, 49, 110], "save": [9, 11, 12, 23, 25, 30, 32, 33, 34, 45, 46, 47, 48, 49, 50, 65, 69, 72, 80, 81, 84, 85, 86, 87, 89, 91, 92, 94, 96, 100, 103, 104, 106, 107, 109, 110, 117, 120], "analysi": [9, 11, 12, 16, 22, 25, 27, 28, 89, 93, 100, 107, 111, 113, 119, 120], "remove_empty_tracks_from_matric": 9, "occupancy_matrix": [9, 114], "locations_matrix": 9, "unoccupi": 9, "2d": [9, 53, 55, 58, 75, 76], "4d": [9, 32, 39], "3d": 9, "write_csv_fil": 9, "data_dict": 9, "write_occupancy_fil": 9, "transpos": [9, 11, 37, 39, 40, 43, 44, 47, 92, 95, 103, 114, 119], "format": [9, 10, 11, 12, 30, 32, 42, 50, 61, 62, 64, 72, 84, 85, 87, 89, 91, 92, 95, 96, 104, 105], "structur": [10, 12, 37, 38, 48, 50, 67, 72, 84, 86, 87, 105, 106], "relationship": [10, 47, 84], "A": [10, 11, 12, 14, 23, 26, 30, 32, 35, 37, 38, 39, 41, 42, 44, 45, 46, 47, 49, 50, 52, 53, 54, 55, 56, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 89, 92, 96, 100, 101, 104, 106, 107, 110], "labeledfram": [10, 12, 30, 32, 65, 69, 78, 80, 104], "pointarrai": 10, "predictedpointarrai": 10, "associ": [10, 12, 26, 38, 41, 47, 53, 60, 65, 69, 70, 72, 75, 80, 104, 108, 113], "predictedpoint": [10, 78, 104], "objectss": 10, "ideal": [10, 54, 97], "mani": [10, 12, 37, 47, 72, 80, 85, 89, 92, 95, 98, 100, 102, 113, 115, 117], "sync": [10, 90], "manipul": [10, 104], "from_predict": 10, "altern": [10, 77, 89, 96, 102, 118], "whose": [10, 39, 65, 84], "multi": [10, 37, 41, 42, 44, 47, 53, 54, 61, 66, 69, 70, 72, 75, 76, 77, 81, 88, 89, 96, 100, 101, 117], "allow": [10, 12, 20, 23, 25, 35, 47, 48, 49, 64, 72, 74, 84, 89, 92, 96, 100, 102, 104, 106, 110, 113, 119], "anim": [10, 14, 40, 47, 58, 84, 86, 88, 89, 91, 92, 93, 95, 99, 100, 103, 107, 109, 110, 112, 113, 115, 116, 117], "across": [10, 12, 32, 38, 46, 48, 49, 54, 55, 65, 67, 69, 72, 73, 75, 82, 84, 92, 93, 95, 96, 108, 113, 115, 120], "wa": [10, 12, 14, 17, 31, 32, 37, 38, 45, 49, 50, 53, 61, 62, 65, 72, 77, 79, 82, 84, 87, 89, 92, 94, 95, 100, 101, 104, 105, 106, 107, 109, 110], "copi": [10, 12, 14, 35, 41, 47, 48, 65, 72, 81, 82, 84, 85, 90, 92, 94, 96, 103, 110, 112, 116], "refer": [10, 12, 20, 32, 46, 69, 72, 75, 76, 78, 80, 82, 87, 92, 95, 100, 104, 105, 107], "field": [10, 38, 40, 42, 43, 47, 49, 51, 55, 64, 66, 70, 72, 74, 75, 86, 87, 88, 92, 96, 97, 98, 109, 110, 117], "bounding_box": 10, "bound": [10, 14, 46, 47, 48, 52, 60, 61, 68, 69, 70, 72, 76, 78, 82, 95], "box": [10, 14, 32, 46, 47, 52, 60, 61, 69, 70, 72, 76, 78, 82, 88, 95], "y1": [10, 52, 61, 76, 82], "x1": [10, 52, 61, 76, 82], "y2": [10, 52, 61, 76, 82], "x2": [10, 52, 61, 76, 82], "centroid": [10, 27, 46, 47, 53, 58, 59, 60, 61, 62, 64, 66, 70, 72, 76, 78, 81, 87, 88, 89, 91, 93, 95, 96, 98, 104, 105, 109, 110, 117], "comput": [10, 12, 32, 37, 44, 46, 47, 48, 49, 53, 55, 60, 61, 62, 66, 68, 69, 72, 73, 75, 76, 78, 80, 81, 82, 90, 91, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 112], "median": [10, 69], "visibl": [10, 12, 47, 65, 69, 73, 78, 86, 92, 94, 95, 97, 104, 107, 116], "fill_miss": [10, 103], "max_x": 10, "max_i": 10, "miss": [10, 12, 31, 32, 46, 53, 69, 71, 75, 80, 92, 95, 104, 107, 108], "modifi": [10, 12, 38, 39, 41, 52, 65, 77, 78, 79, 82, 92], "outsid": [10, 84], "valid": [10, 12, 32, 38, 41, 42, 45, 46, 47, 48, 49, 51, 62, 67, 72, 79, 81, 85, 86, 89, 92, 95, 98, 106, 107, 109, 110, 117], "from_numpi": [10, 32], "n_node": [10, 12, 52, 53, 55, 60, 61, 65, 69, 72, 75], "dtype": [10, 32, 42, 52, 53, 55, 58, 60, 61, 62, 63, 65, 66, 68, 71, 75, 76, 85, 104, 105, 106, 107, 109], "float32": [10, 42, 52, 53, 55, 58, 60, 61, 62, 63, 65, 68, 71, 72, 75, 76, 105, 106, 109], "nan": [10, 12, 53, 54, 60, 68, 69, 71, 72, 75, 76, 79, 80, 82, 89, 103, 104, 105], "alia": [10, 12, 45, 81], "from_pointsarrai": 10, "get_points_arrai": 10, "invisible_as_nan": 10, "full": [10, 12, 14, 17, 25, 28, 34, 42, 46, 47, 54, 61, 64, 65, 66, 68, 72, 75, 77, 84, 85, 86, 90, 96, 98, 101, 103], "recarrai": 10, "form": [10, 12, 37, 38, 42, 43, 44, 47, 49, 52, 54, 55, 56, 64, 67, 69, 70, 72, 75, 84, 97, 105, 108], "view": [10, 49, 84, 88, 89, 95, 98, 109], "underli": [10, 12, 20, 32, 50, 54, 72, 75, 81], "invis": 10, "mark": [10, 48, 92, 97, 115, 116, 117], "sinc": [10, 20, 23, 25, 32, 35, 46, 47, 48, 53, 54, 69, 72, 75, 78, 79, 80, 85, 88, 89, 91, 92, 95, 97, 98, 107, 108, 109, 110, 112, 113, 115, 116, 117], "don": [10, 11, 28, 32, 73, 85, 89, 90, 91, 99, 100, 102, 104, 105, 106, 109, 110, 112, 117], "present": [10, 12, 32, 37, 47, 50, 53, 55, 60, 61, 64, 72, 76, 80, 84, 89, 92], "access": [10, 12, 26, 32, 48, 54, 75, 89, 90, 92, 96, 100, 104, 110, 112], "midpoint": [10, 47, 60], "center": [10, 12, 46, 47, 48, 53, 59, 60, 61, 63, 64, 66, 68, 70, 72, 76, 81, 86, 87, 88, 91, 96, 98, 103, 104, 109, 117], "n_visible_point": 10, "nodes_point": 10, "points_arrai": 10, "replac": [10, 12, 23, 31, 32, 38, 53, 58, 63, 67, 68, 69, 70, 76, 79, 82, 84, 91, 92, 100, 102, 106, 108, 115], "were": [10, 12, 32, 46, 54, 58, 62, 67, 72, 77, 78, 80, 86, 87, 89, 92, 95, 102, 103, 104, 108, 110, 111, 113, 115], "transform_point": 10, "transformation_matrix": 10, "affin": [10, 47, 48, 55, 64, 70, 72, 75, 88, 92, 96, 97, 117], "instanceslist": 10, "arg": [10, 11, 12, 15, 17, 18, 21, 22, 23, 24, 25, 28, 29, 32, 34, 47, 72, 73, 80, 81, 107, 109], "labeled_fram": [10, 12, 104, 105, 108], "attribut": [10, 12, 32, 37, 41, 42, 44, 46, 47, 48, 49, 50, 51, 53, 54, 55, 58, 60, 61, 62, 64, 65, 66, 67, 70, 72, 81, 84, 105], "append": [10, 12, 22, 23, 26, 37, 45, 49, 62, 64, 69, 89, 105, 108], "clear": [10, 12, 79, 80, 86, 89, 92, 101], "shallow": [10, 12, 44, 97], "normal": [10, 37, 38, 46, 47, 48, 53, 61, 68, 69, 72, 75, 76, 78, 80, 95, 100, 106], "insert": [10, 12], "pop": [10, 92, 102, 116], "hold": [10, 20, 32, 74, 75, 92, 95, 116], "complex_frame_merg": 10, "base_fram": 10, "new_fram": [10, 12], "conflict": [10, 12, 37, 38, 49, 94, 102], "occur": [10, 12, 49, 54, 95, 113, 115, 116, 119], "perfectli": [10, 12, 14, 17, 53, 103], "those": [10, 12, 32, 46, 47, 72, 84, 89, 92, 94, 96, 102, 104, 107, 115, 117], "three": [10, 12, 14, 75, 95, 96, 102, 117], "complex_merge_between": [10, 12], "base_label": [10, 12], "everyth": [10, 80, 92, 117], "cleanli": [10, 12], "retriev": [10, 75, 107], "non": [10, 12, 25, 32, 48, 49, 66, 72, 76, 78, 80, 89, 92, 93, 97, 102, 103, 105], "has_predicted_inst": 10, "has_tracked_inst": 10, "has_user_inst": 10, "height": [10, 14, 32, 33, 34, 37, 38, 42, 43, 44, 46, 47, 48, 52, 53, 55, 61, 62, 65, 66, 68, 71, 72, 74, 75, 76, 80, 83, 89, 96], "width": [10, 14, 32, 33, 34, 37, 38, 42, 43, 44, 46, 47, 48, 52, 53, 55, 61, 62, 65, 66, 68, 71, 72, 74, 75, 76, 80, 83, 89, 96], "channel": [10, 32, 34, 37, 38, 39, 41, 42, 44, 46, 47, 53, 58, 61, 62, 65, 66, 70, 71, 72, 73, 74, 75, 76, 83, 96, 102, 104, 118], "instances_to_show": 10, "regular": [10, 80, 89, 92, 115], "static": [10, 12, 32, 33, 80, 84], "merge_fram": 10, "remove_redund": 10, "know": [10, 92, 102, 105, 119], "drop": [10, 35, 54, 64, 95, 117, 118], "perfect": [10, 48, 69], "n_predicted_inst": 10, "n_tracked_inst": 10, "n_user_inst": 10, "plot": [10, 83, 92, 103, 104, 105, 107, 108], "load": [10, 12, 20, 23, 30, 32, 41, 42, 47, 48, 50, 54, 65, 69, 72, 84, 102, 104, 105, 106, 107, 108, 109, 112], "figur": [10, 45, 81, 83, 103, 105, 107], "nn": [10, 89, 106, 107, 108, 109], "viz": [10, 45, 49, 96, 106, 109], "plot_img": [10, 83], "plot_inst": [10, 83], "plot_predict": 10, "predicted_inst": [10, 12, 59, 66, 75], "remove_empty_inst": [10, 12], "remove_untrack": 10, "tracked_inst": [10, 80], "training_inst": 10, "train": [10, 12, 23, 32, 42, 45, 46, 47, 48, 49, 50, 54, 55, 64, 65, 69, 72, 73, 74, 82, 86, 88, 92, 93, 94, 97, 99, 101, 103, 104, 105, 107, 111, 113, 115, 116, 119, 120], "unused_predict": 10, "unus": 10, "user_inst": [10, 12, 65], "complet": [10, 12, 14, 49, 75, 84, 87, 104, 113], "horizont": [10, 52], "pixel": [10, 32, 34, 46, 47, 48, 52, 53, 55, 58, 61, 66, 69, 72, 75, 76, 78, 89, 98], "vertic": [10, 52], "verifi": [10, 102, 113], "f8": 10, "isnan": [10, 103], "buf": 10, "offset": [10, 47, 53, 58, 63, 64, 66, 70, 72, 76, 81], "titl": [10, 100, 101, 103, 108], "byteord": 10, "c": [10, 39, 41, 61, 95, 100, 101, 102, 103, 104, 105, 106, 108], "sub": [10, 35, 49], "record": [10, 32, 86, 105, 106, 109, 110, 113], "from_arrai": 10, "child": 10, "make_default": 10, "alloc": [10, 12, 77, 104, 109], "element": [10, 12, 42, 44, 47, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 65, 66, 67, 72, 75, 76, 85], "infer": [10, 12, 32, 46, 47, 49, 50, 54, 57, 61, 64, 65, 66, 71, 74, 75, 76, 82, 88, 91, 92, 93, 94, 95, 97, 98, 101, 103, 106, 107, 113, 115, 116, 119, 120], "procedur": [10, 48, 69, 104, 107], "point_confid": 10, "confid": [10, 47, 53, 55, 58, 61, 63, 64, 70, 71, 72, 75, 76, 81, 83, 88, 89, 92, 96, 104], "paf": [10, 47, 48, 55, 64, 72, 73, 75, 81, 83, 89], "from_inst": 10, "manner": 10, "except": [10, 12, 25, 27, 37, 54, 72, 73, 97, 101], "points_and_scores_arrai": 10, "It": [10, 12, 32, 35, 42, 45, 46, 69, 72, 75, 79, 81, 89, 90, 91, 92, 95, 97, 101, 104, 105, 107, 116], "from_point": 10, "analog": 10, "to_arrai": 10, "spawned_on": [10, 105], "uniqu": [10, 12, 26, 47, 75, 80, 82, 84, 85, 104], "entiti": [10, 27], "spawn": [10, 80, 89, 92, 95, 119], "identifi": [10, 12, 26, 47, 75, 88, 92, 116], "purpos": [10, 37, 41, 44, 47, 50, 56, 72, 101, 113], "make_instance_cattr": 10, "cattr": [10, 32, 84], "requir": [10, 12, 23, 25, 32, 37, 46, 47, 48, 49, 50, 61, 62, 64, 66, 72, 74, 75, 87, 88, 89, 96, 102, 104, 107, 108], "becaus": [10, 23, 80, 84, 90, 92, 96, 97, 100, 102, 103, 106], "automat": [10, 11, 12, 24, 25, 41, 46, 48, 49, 54, 72, 75, 90, 98, 102, 110, 113], "detect": [10, 11, 12, 15, 25, 32, 46, 47, 48, 49, 72, 75, 80, 83, 87, 88, 89, 92, 97, 102, 104, 107, 108], "subset": [10, 12, 32, 65, 67, 82, 85, 89], "hook": [10, 84], "regist": [10, 13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 26, 27, 28, 29, 84, 104, 107, 108], "unstructur": [10, 69, 84], "read": [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34, 50, 65, 67, 69, 89, 91, 95, 96, 100, 101, 104, 105, 106, 107, 108, 109, 112, 114, 115, 120], "h5": [11, 12, 25, 32, 47, 49, 72, 89, 92, 95, 96, 103, 104, 106, 107, 109, 111, 114, 118], "json": [11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 49, 50, 72, 84, 85, 87, 89, 91, 92, 96, 104, 106, 107, 109, 110], "zip": [11, 23, 49, 81, 91, 96, 104, 105, 107, 109, 110], "leap": [11, 24, 30, 37, 44, 47, 84, 92, 109, 117], "mat": [11, 84, 92], "deeplabcut": [11, 92, 100], "yaml": [11, 17, 85, 92], "deepposekit": [11, 92], "coco": [11, 25, 69, 92], "keypoint": [11, 15, 25, 48, 69, 73, 78, 80, 88, 92, 95, 107], "extens": [11, 12, 13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32], "input": [11, 32, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 52, 53, 54, 55, 56, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 72, 73, 74, 75, 76, 80, 81, 82, 84, 85, 88, 89, 98, 100, 104, 105, 106, 107, 109], "export": [11, 12, 27, 46, 72, 90, 91, 92, 96, 100, 102, 103, 112, 113, 119, 120], "_": [11, 12, 26, 37, 69, 89, 103, 109], "python": [11, 12, 23, 27, 36, 54, 56, 68, 72, 78, 84, 85, 89, 90, 95, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 112, 113, 120], "describ": [11, 12, 37, 38, 42, 43, 49, 64, 72, 74, 75, 76, 81, 93, 97, 114, 120], "entrypoint": [11, 72], "collect": [12, 32, 49, 73, 100], "togeth": [12, 41, 47, 54, 64, 72, 79, 86, 95, 96, 104], "annot": [12, 14, 17, 27, 34, 92], "conveni": [12, 38, 50, 55, 61, 64, 65, 66, 75, 76, 77, 83, 84, 104, 105], "wai": [12, 38, 41, 64, 73, 75, 77, 90, 92, 95, 96, 97, 98, 102, 105, 107, 114, 115], "high": [12, 27, 32, 48, 49, 50, 54, 64, 72, 75, 80, 81, 104, 105, 113], "loader": 12, "load_fil": [12, 69, 104, 107, 108], "provid": [12, 14, 25, 32, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 50, 52, 60, 61, 64, 66, 67, 69, 70, 72, 74, 75, 76, 77, 80, 81, 84, 86, 87, 89, 90, 92, 93, 102, 105, 107, 113, 115], "To": [12, 13, 25, 26, 28, 49, 53, 55, 61, 65, 69, 72, 76, 84, 89, 92, 94, 95, 96, 98, 100, 102, 104, 105, 106, 107, 109, 110, 114, 115, 117, 118], "disk": [12, 32, 45, 49, 50], "ve": [12, 80, 91, 92, 93, 94, 95, 96, 97, 98, 103, 107, 110, 112, 115, 118], "move": [12, 46, 49, 56, 75, 86, 92, 94, 95, 97, 115, 116, 119], "directori": [12, 14, 25, 32, 45, 49, 50, 72, 85, 89, 90, 92, 96, 102, 104, 106, 107, 108, 109, 110], "aren": [12, 79, 80, 93, 94, 95, 99], "tell": [12, 88, 92, 99, 100, 117], "search": [12, 44, 46, 72, 85, 87, 101, 102, 118], "There": [12, 87, 89, 91, 92, 95, 98, 103, 116, 119], "single_path_to_search": 12, "path_a": 12, "path_b": 12, "callback_funct": 12, "video_search": [12, 22, 23, 32], "make_video_callback": 12, "callback": [12, 32, 81], "window": [12, 80, 89, 92, 94, 95, 96, 98, 101, 102, 103, 104, 105, 106, 108, 117, 118, 119], "save_fil": [12, 25], "support": [12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 35, 75, 84, 87, 88, 89, 100, 101, 112, 113, 118], "negative_anchor": 12, "front": 12, "interact": [12, 49, 72, 86, 102], "actual": [12, 32, 50, 67, 74, 80, 97, 104, 105, 106, 107, 108], "storag": [12, 46, 48, 49, 90, 104, 105, 106, 107], "backend": [12, 32, 104, 105, 106], "abstract": [12, 33, 70, 72, 80, 81], "awai": 12, "interfac": [12, 32, 72, 84, 92, 93, 96, 102, 104, 105, 109, 112, 113], "again": [12, 48, 106], "referenc": [12, 69, 84], "around": [12, 14, 34, 42, 46, 47, 48, 58, 63, 70, 72, 74, 76, 85, 92, 98, 103, 104, 105], "crop": [12, 34, 46, 47, 48, 52, 59, 60, 61, 65, 66, 72, 76, 88, 89, 92, 98, 104], "neg": [12, 69, 78, 104, 105, 106, 107, 108, 109], "add_inst": 12, "updat": [12, 32, 48, 49, 52, 66, 72, 73, 74, 78, 81, 88, 89, 92, 100, 101, 102, 106, 107], "add_suggest": 12, "add_track": 12, "add_video": 12, "all_inst": [12, 53, 61], "append_suggest": 12, "clear_suggest": 12, "delet": [12, 80, 81, 84, 92, 94, 104, 106, 109], "new_label": 12, "unifi": 12, "anyth": [12, 49, 89, 90, 102, 112], "redund": [12, 79, 80], "mayb": 12, "deep": [12, 14, 40, 84, 85, 100, 101, 104, 105, 106, 107, 109, 113], "admonit": 12, "slow": [12, 48, 49, 88, 92], "delete_suggest": 12, "basic": [12, 32, 38, 39, 60, 72, 85, 95, 99, 100, 105], "content": [12, 105, 109, 110], "mask": [12, 55, 58, 63, 72, 103], "export_csv": 12, "export_nwb": 12, "overwrit": [12, 26, 49, 81], "session_descript": [12, 26], "pose": [12, 26, 40, 47, 69, 75, 76, 80, 84, 87, 89, 93, 99, 105, 106, 107, 108, 109, 112, 113, 117], "session_start_tim": [12, 26], "datetim": [12, 26], "nwb": [12, 26], "pynwb": [12, 26], "nwbfile": [12, 26], "processingmodul": [12, 26], "sleap_video_": [12, 26], "03": [12, 26, 69, 103, 104, 105, 109], "video_fn": [12, 26], "stem": [12, 26, 37, 38, 39, 43, 47, 107], "isinst": [12, 26], "pathlib": [12, 26], "purepath": [12, 26], "ex": [12, 26, 72, 102], "path_to_video": [12, 26], "my_video": [12, 26], "mp4": [12, 23, 26, 32, 33, 86, 89, 96, 100, 104, 105, 108, 109, 110, 118], "003_my_video": [12, 26], "ndx_pose": 12, "poseestim": [12, 26], "under": [12, 26, 61, 79, 85, 101, 110, 116], "track_idx": [12, 26], "untrack": [12, 26, 78], "track001": [12, 26], "poseestimationseri": [12, 26], "covert": [12, 26], "boolean": [12, 26, 72, 83], "descript": [12, 26, 47, 50, 64, 68, 69, 84, 86, 104, 106, 109], "preexist": [12, 26], "guid": [12, 26, 72, 75, 89, 91, 96, 100, 101, 104, 107, 108, 117, 119], "THe": [12, 26], "extend_from": 12, "extract": [12, 37, 38, 41, 72, 85, 103], "ind": [12, 75], "param": [12, 24, 32, 39, 65], "slice": [12, 60, 82, 103], "__getitem__": 12, "preserv": [12, 46, 85], "even": [12, 37, 46, 47, 48, 53, 55, 60, 61, 67, 73, 78, 92, 95, 102, 116], "return_new": 12, "singleton": [12, 62, 68, 78], "criteria": [12, 46, 54, 66, 92, 107], "unless": [12, 25, 32, 85, 92, 115], "frame_index": [12, 32], "find_first": 12, "use_cach": 12, "occurr": 12, "instead": [12, 37, 39, 40, 43, 44, 47, 48, 52, 64, 68, 81, 89, 102, 107, 109, 110], "cach": [12, 32, 54, 78], "els": [12, 75, 110], "loop": [12, 47, 48, 49, 54, 75, 81, 101, 105, 106, 109, 112, 113, 117], "through": [12, 48, 50, 53, 54, 72, 75, 89, 90, 92, 95, 101, 104, 106, 107, 112, 113, 117, 120], "find_last": 12, "find_suggest": 12, "find_track_occup": 12, "pseudo": 12, "finish_complex_merg": 12, "resolved_fram": 12, "finish": [12, 49, 89, 94, 96, 98, 106, 109, 110, 115], "from_frame_idx": 12, "revers": [12, 42, 62], "start": [12, 41, 42, 43, 44, 45, 48, 49, 69, 75, 79, 80, 84, 85, 87, 88, 90, 91, 92, 93, 95, 99, 100, 102, 103, 104, 105, 106, 107, 109, 110, 112, 116, 120], "secondary_kei": 12, "raise_error": [12, 32], "safe": [12, 100], "rais": [12, 14, 32, 42, 49, 51, 60, 61, 64, 66, 67, 72, 77, 84, 85], "against": [12, 80, 85, 89, 95], "linear": [12, 37, 44, 47, 103], "supplement": 12, "keyerror": 12, "catch": [12, 72], "get_next_suggest": 12, "seek_direct": 12, "seek": [12, 100], "get_suggest": 12, "get_track_count": 12, "occupi": [12, 47], "get_track_occup": 12, "get_unlabeled_suggestion_ind": 12, "unlabel": [12, 65, 75, 89, 92, 113], "doe": [12, 25, 41, 43, 45, 47, 49, 52, 53, 55, 58, 60, 61, 64, 67, 84, 85, 89, 102, 104, 107, 108, 115], "remove_empty_fram": 12, "get_video_suggest": 12, "user_label": 12, "has_fram": 12, "lf": [12, 108], "must": [12, 14, 23, 32, 37, 42, 46, 47, 48, 49, 53, 55, 60, 66, 68, 69, 70, 72, 79, 80, 81, 82, 84, 85, 87, 94, 97, 100, 104, 105, 106, 107, 108, 109], "Not": [12, 37, 89, 102], "lookup": 12, "faster": [12, 40, 43, 72, 78, 89, 110, 115], "ones": [12, 43, 61, 67, 72, 75, 81, 102], "match_to": [12, 22, 23], "has_missing_video": 12, "filter": [12, 37, 38, 39, 40, 41, 42, 43, 44, 47, 54, 56, 65, 72, 75, 79, 80, 89, 103, 106, 108, 109], "is_multi_inst": 12, "kwarg": [12, 15, 17, 18, 21, 22, 23, 24, 25, 28, 29, 32, 34, 47, 65, 72, 73, 80, 83], "search_path": 12, "use_gui": 12, "while": [12, 20, 25, 38, 47, 48, 54, 91, 92, 95, 98, 100, 102, 105, 115, 116, 117], "system": [12, 23, 32, 46, 49, 72, 89, 101, 102, 105, 106, 108, 109, 116], "signal": [12, 103], "abort": 12, "changed_on_load": 12, "extern": [12, 49, 69, 92, 100, 102], "merge_container_dict": 12, "dict_a": 12, "dict_b": 12, "merge_matching_fram": 12, "combin": [12, 27, 47, 54, 55], "merge_nod": 12, "base_nod": 12, "remain": [12, 46, 47, 68, 69, 72, 79, 95, 102], "might": [12, 78, 91, 94, 95, 102, 103, 105, 106, 108, 109, 110], "return_confid": 12, "arbitrari": [12, 32, 49, 56], "n_frame": 12, "n_track": [12, 58], "NOT": [12, 41], "intend": [12, 50, 81, 100, 101], "primarili": [12, 42, 66, 97], "remove_all_track": 12, "keep_empty_fram": 12, "remove_fram": 12, "update_cach": 12, "intern": [12, 80], "postpon": 12, "sequenc": [12, 37, 42, 44, 47, 64, 65, 67, 70, 92, 105, 110], "remove_inst": 12, "in_transact": 12, "remove_predict": 12, "prior": [12, 53, 54, 55, 70, 80, 92, 95, 106, 116], "prevent": [12, 37, 44, 47, 48, 49, 54, 72, 100, 104, 105], "overlap": [12, 78, 80, 89, 92, 95, 99], "remove_suggest": 12, "remove_track": 12, "remove_untracked_inst": 12, "remove_unused_track": 12, "remove_user_inst": 12, "remove_video": 12, "with_imag": [12, 104], "embed_all_label": [12, 104], "embed_suggest": 12, "embed": [12, 32, 38, 86, 104], "remot": [12, 89, 91, 101, 102, 117], "default_suffix": 12, "attempt": [12, 24, 32, 35, 49, 80], "suffix": [12, 49, 85, 89, 109], "valueerror": [12, 42, 49, 60, 61, 64, 66, 67, 77, 84, 85], "cannot": [12, 24, 25, 28, 32, 42, 47, 77, 84, 85, 97, 102, 104, 105, 106, 107, 108, 109, 110], "filetyp": 12, "save_frame_data_hdf5": 12, "png": [12, 22, 23, 32, 45, 49], "all_label": [12, 22, 23], "progress_callback": [12, 22, 23], "hdf5video": [12, 32], "progress": [12, 23, 27, 34, 40, 43, 72, 89, 115], "fn": [12, 69, 107], "n": [12, 64, 79, 82, 85, 89, 95, 101, 102, 103, 104, 105, 106, 107, 108, 109], "n_total": 12, "far": [12, 27, 75, 93, 95, 99, 107], "cancel": 12, "save_frame_data_imgstor": 12, "output_dir": 12, "imgstorevideo": [12, 32], "imgstor": [12, 23, 32], "lossless": [12, 32, 100], "jpg": [12, 23, 109], "lossi": [12, 33, 100], "probabl": [12, 47, 52, 55, 58, 71, 72, 76, 85, 88, 90, 103, 105, 107], "set_suggest": 12, "split": [12, 46, 49, 61, 65, 67, 69, 81, 85, 106, 107, 109], "randomli": [12, 41, 48, 92, 106], "fraction": [12, 46, 67, 72, 75, 89, 106, 109], "labels_a": 12, "labels_b": 12, "subsampl": [12, 68], "len": [12, 32, 105], "guarante": [12, 14, 17], "mutual": 12, "exclus": 12, "repeatedli": [12, 105], "py": [12, 25, 84, 89], "8": [12, 42, 47, 48, 54, 69, 80, 86, 89, 102, 103, 104, 105, 106, 107, 108, 109], "val": [12, 57, 69, 89, 106, 107, 109], "labels_train": [12, 67], "labels_val_test": 12, "labels_v": [12, 67], "labels_test": 12, "to_dict": [12, 84], "skip_label": 12, "underl": 12, "nest": [12, 67], "compos": [12, 52, 64], "primit": [12, 68, 72], "skip": [12, 36, 37, 38, 40, 41, 42, 43, 44, 47, 92, 102, 104, 107, 108], "anchor": [12, 47, 60, 70, 72, 76, 88, 117], "top": [12, 32, 37, 42, 47, 66, 71, 72, 73, 84, 88, 89, 91, 96, 98, 101, 104, 105, 109, 117], "to_json": [12, 50, 84], "string": [12, 13, 14, 25, 32, 37, 38, 42, 45, 46, 47, 49, 50, 54, 60, 62, 64, 66, 67, 68, 69, 70, 72, 75, 81, 83, 84, 85], "to_pipelin": [12, 32], "batch_siz": [12, 32, 48, 54, 72, 73, 89, 105, 109], "prefetch": [12, 32, 48, 54, 72, 109], "frame_indic": [12, 32], "user_labeled_onli": 12, "batch": [12, 32, 37, 38, 44, 45, 47, 48, 49, 54, 55, 71, 72, 73, 75, 76, 88, 98, 101, 105], "rank": [12, 32, 41, 53, 54, 55, 60, 62, 68, 72, 76], "tensor": [12, 32, 36, 37, 38, 39, 41, 42, 43, 44, 47, 52, 53, 54, 55, 56, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 75, 76, 77, 81, 82, 89], "limit": [12, 32, 35, 41, 47, 61, 76, 80, 89, 92], "reader": [12, 32, 34, 65, 81], "tf": [12, 32, 37, 39, 41, 42, 45, 46, 48, 52, 53, 54, 55, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 74, 75, 76, 77, 82, 102, 104, 106, 107, 109], "throughput": [12, 32], "o": [12, 32, 64, 65, 85, 89, 96, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110], "dure": [12, 32, 37, 45, 46, 47, 48, 49, 50, 54, 64, 70, 72, 73, 75, 89, 91, 95, 98, 102, 104, 105, 107, 109, 110, 115, 117], "labelsread": [12, 64, 65, 67, 69, 72, 81], "track_set_inst": 12, "new_track": 12, "track_swap": 12, "old_track": 12, "swap": [12, 48, 52, 80, 92, 95, 119], "unlabeled_suggest": 12, "user_labeled_frame_ind": 12, "user_labeled_fram": 12, "with_user_labels_onli": 12, "user_instances_onli": [12, 65], "with_track_onli": [12, 65, 81], "preprocess": [12, 41, 42, 46, 48, 62, 72, 74, 109], "warn": [12, 32, 49, 72, 104], "labelsdatacach": 12, "find_fancy_frame_idx": 12, "find_fram": 12, "get_filtered_frame_idx": 12, "get_frame_count": 12, "possibli": [12, 81, 91], "count": [12, 32, 44, 47, 48, 72, 75, 78, 79, 80, 89, 95, 103, 105], "rangelist": 12, "get_video_track_occup": 12, "rebuild": [12, 104, 105, 106, 107, 109], "update_counts_for_fram": 12, "find_path_using_path": 12, "missing_path": 12, "detect_video": 12, "direct": [12, 44, 47, 55, 70, 75, 76, 92], "reus": [12, 37], "handl": [13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 26, 27, 28, 29, 32, 45, 72, 75, 80, 84, 105, 106], "inherit": [13, 37], "implement": [13, 25, 32, 37, 38, 39, 40, 41, 42, 43, 45, 50, 62, 66, 69, 71, 72, 75, 79, 81, 84, 112], "all_ext": [13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 26, 27, 28, 29], "can_read_fil": [13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 26, 27, 28, 29], "filehandl": [13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 26, 27, 28, 29], "can_write_filenam": [13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 26, 27, 28, 29], "default_ext": [13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 26, 27, 28, 29], "does_match_ext": [13, 14], "does_read": [13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 26, 27, 28, 29], "does_writ": [13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 26, 27, 28, 29], "formatted_ext_opt": [13, 14], "qt": [13, 14, 34, 89], "dialog": [13, 14, 34, 88, 89, 91, 98, 110, 117, 119], "sleapobjecttyp": [13, 14, 26], "dispatch": [13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29], "human": [13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 26, 27, 28, 29, 50, 76, 101, 113, 117], "adaptor": [14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29], "manual": [14, 17, 48, 49, 92, 106, 110, 113, 115], "inspect": [14, 17, 64, 92, 93, 104, 105, 109, 110, 113], "especi": [14, 17, 47, 48, 49, 54, 61, 65, 88, 92], "alphatrackeradaptor": 14, "upper": 14, "third": 14, "fourth": [14, 92], "fifth": 14, "get_alpha_tracker_frame_dict": 14, "get_alpha_tracker_instance_dict": 14, "200": [14, 48, 103, 104, 109, 110], "coor": 14, "lower": [14, 33, 42, 47, 48, 69, 75, 79, 85, 88, 95, 100, 107], "left": [14, 46, 48, 52, 54, 66, 67, 69, 72, 84, 88, 92, 94, 105, 106, 107, 118], "hand": [14, 84, 91], "corner": [14, 82], "get_alpha_tracker_point_dict": 14, "make_video_for_image_list": [14, 17], "image_dir": [14, 17], "full_video": [14, 17], "being": [14, 33, 48, 55, 72, 73, 84, 100, 101], "souce_object": 14, "notimplementederror": [14, 25], "code": [14, 25, 40, 69, 73, 84, 90, 92, 95, 100, 102, 103, 110, 119], "seen": [14, 84], "cocodataset": [15, 69], "labelscocoadaptor": 15, "img_dir": 15, "use_missing_gui": 15, "csvadaptor": 16, "source_path": [16, 27, 28], "toget": [16, 28], "potenti": [17, 49, 54, 60, 72, 102, 106, 113], "labelsdeeplabcutcsvadaptor": 17, "labelsdeeplabcutyamladaptor": 17, "labelsdeepposekitadaptor": 18, "skeleton_path": 18, "dynam": [19, 72, 73, 102, 104, 107, 108], "u": [20, 35, 37, 89, 90, 98, 99, 100, 102], "keep": [20, 35, 46, 47, 48, 49, 54, 65, 66, 80, 85, 89, 92, 97, 115], "previou": [20, 49, 53, 55, 58, 80, 94, 95, 96, 102, 106, 119], "is_hdf5": 20, "is_json": 20, "is_open": 20, "text": [20, 45, 47, 50, 70, 72, 84, 89, 91, 96, 103, 106], "needn": [20, 31], "twice": 20, "format_id": 20, "distinguish": [20, 86], "common": [20, 25, 32, 33, 39, 41, 44, 56, 64, 75, 84, 92, 95, 100, 105], "labelsv1adaptor": [20, 22, 25], "gridlin": 20, "midpixel": 20, "veri": [21, 29, 48, 73, 92, 95, 100, 101], "genericjsonadaptor": [21, 25], "save_frame_data": [22, 23], "frame_data_format": [22, 23], "old": [23, 30, 31, 84, 86, 94], "kind": [23, 41, 99, 103], "now": [23, 62, 79, 87, 91, 95, 103, 105, 106, 109, 110, 115, 116], "labelsjsonadaptor": 23, "from_json_data": 23, "particular": [23, 41, 67, 92], "newli": [23, 30, 95, 117], "instanti": [23, 32, 37, 38, 41, 42, 43, 50, 64, 70, 73, 74, 80, 81, 84], "duplic": [23, 84, 85], "compress": [23, 33, 49, 100, 102], "shutil": 23, "make_arch": 23, "pkzip": 23, "forc": [23, 92, 105, 106, 109, 110], "archiv": [23, 109], "pgm": 23, "bmp": 23, "ppm": 23, "tif": 23, "npy": [23, 32], "mjpeg": [23, 32], "avi": [23, 32, 33, 96, 100, 118], "h264": [23, 100], "mkv": 23, "avc1": 23, "codec": 23, "exclud": [23, 47, 75, 78, 80, 85], "gpl": 23, "licens": [23, 41], "prompt": [24, 89, 91, 92, 102, 110, 118], "labelsleapmatlabadaptor": 24, "roughli": [25, 75, 86], "equival": [25, 36, 37, 54, 61, 68, 76], "principl": 25, "as_format": 25, "nice": 25, "virtual": [25, 90], "sleapanalysisadaptor": [25, 28], "typic": [25, 32, 37, 41, 44, 46, 47, 48, 50, 52, 64, 66, 69, 75, 77, 78, 88, 92, 96, 101, 106, 108, 113], "all_labels_adaptor": 25, "distinct": [25, 47, 79, 80, 88, 90, 92, 95, 96, 103, 111, 116, 117], "ext": 25, "foo": [25, 85], "exportanalysisfil": 25, "importanalysisfil": 25, "custom": [25, 72, 73, 78, 92, 93, 96, 101, 104, 105, 106, 112], "for_object": 25, "typeerror": 25, "shouldn": 25, "happen": [25, 77, 104], "relat": [25, 45, 46, 47, 48, 49, 50, 64, 67, 81, 84, 104], "thrown": 25, "privileg": 25, "ndx": 26, "ndxposeadaptor": 26, "nixadaptor": 27, "model": [27, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 55, 58, 59, 61, 62, 64, 65, 66, 69, 70, 71, 72, 73, 75, 81, 82, 86, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 103, 104, 105, 106, 113, 115, 116, 117, 119], "scientif": 27, "librari": [27, 41, 52, 102, 104, 105, 106, 107, 108, 109], "definit": [27, 38, 42, 70], "nixio": 27, "low": [27, 37, 44, 48, 72, 86, 92, 105, 106], "pip": [27, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110], "nixtrack": 27, "bendalab": 27, "addition": [27, 41, 47, 52, 107], "chunk": [27, 34], "approach": [27, 47, 69, 72, 75, 82, 88, 92, 105, 110, 113, 117], "avoid": [27, 53, 80, 116], "memori": [27, 40, 43, 46, 47, 48, 53, 54, 61, 72, 77, 88, 89, 98, 102, 104, 105, 106, 109], "larg": [27, 47, 48, 49, 53, 61, 88, 92, 95, 100, 101], "author": [27, 41, 100, 101, 110], "jan": 27, "grew": 27, "lack": 28, "textadaptor": 29, "load_labels_json_old": 30, "data_path": [30, 89, 109], "parsed_json": 30, "adjust_matlab_index": 30, "fix_rel_path": 30, "pars": [30, 50, 72, 85], "adjust": [30, 42, 45, 46, 48, 52, 53, 59, 63, 66, 72, 75, 110], "absolut": [30, 32, 36, 46, 48, 49, 61, 65, 75], "load_predicted_labels_json_old": 30, "filenames_prefix_chang": 31, "old_prefix": 31, "new_prefix": 31, "confirm_callback": 31, "initi": [31, 35, 37, 38, 39, 41, 42, 43, 47, 48, 49, 54, 55, 65, 72, 75, 77, 79, 80, 81, 89, 99, 101, 103, 105, 106, 109, 112, 113, 117, 118, 120], "known": 31, "confirm": [31, 35, 92, 102], "find_changed_subpath": 31, "old_path": 31, "new_path": [31, 69], "section": [31, 95, 113], "list_file_miss": 31, "dummyvideo": 32, "2000": [32, 86, 89], "10000": 32, "dummi": [32, 72], "fake": 32, "real": [32, 72, 75], "input_format": [32, 89, 96, 104, 109], "channels_last": [32, 42, 96, 104, 109], "convert_rang": 32, "file_h5": 32, "dataset_h5": 32, "equal": [32, 38, 39, 40, 43, 44, 48, 54, 61, 66, 78, 83, 89], "channels_first": [32, 42], "255": [32, 42, 46, 48, 62, 92, 109], "attr": [32, 51, 84, 104, 107], "embedded_frame_ind": 32, "enable_source_video": 32, "get_fram": 32, "has_embedded_imag": 32, "last_frame_idx": 32, "overrid": [32, 34, 45, 89], "reset": [32, 54, 82, 89, 102, 117], "reload": [32, 104, 105, 106, 108], "source_video": 32, "source_video_avail": 32, "uncach": 32, "index_by_origin": 32, "loopbio": 32, "lightweight": 32, "great": [32, 106, 107, 112], "larger": [32, 47, 48, 61, 72, 75, 88, 89, 98, 100], "directli": [32, 44, 46, 47, 54, 72, 75, 81, 89, 92, 102, 103, 105, 107, 110, 118], "frame_numb": 32, "That": 32, "comapar": 32, "mediavideo": [32, 104, 105], "grayscal": [32, 41, 42, 46, 62, 65, 72, 104, 118], "bgr": [32, 42, 46, 62, 104], "tradit": 32, "readabl": 32, "ffmpeg": [32, 33, 100], "bare": 32, "minimum": [32, 48, 53, 58, 62, 63, 69, 70, 72, 73, 75, 76, 79, 80, 89], "opencv": [32, 33, 34, 96, 104, 105, 106, 107, 108, 109, 110], "videocaptur": 32, "auto": [32, 49, 89, 92, 103, 109], "color": [32, 34, 83, 86, 89, 92, 115, 119], "blue": [32, 88, 98, 115, 116], "green": [32, 87, 115], "red": [32, 95, 115], "fp": [32, 33, 34, 69, 86, 89, 101, 107, 109], "numpyvideo": 32, "is_miss": 32, "come": [32, 37, 47, 52, 65, 96, 102, 107], "singleimagevideo": 32, "height_": 32, "width_": 32, "channels_": 32, "compon": [32, 44, 75, 80], "from_hdf5": 32, "from_media": 32, "Or": [32, 100, 102, 117], "from_filenam": [32, 65], "rgb": [32, 41, 42, 46, 62, 72], "serialiaz": 32, "fixup_path": 32, "raise_warn": 32, "portabl": [32, 81], "whatev": [32, 94, 96], "almost": [32, 119], "certainli": 32, "wrong": [32, 95], "transfer": [32, 42, 106], "prefer": [32, 47, 50, 79, 89, 92, 97, 99, 100, 102, 118], "asset": [32, 109], "filenotfounderror": [32, 85], "still": [32, 47, 92, 95, 97, 99, 106], "motif": 32, "helper": [32, 85], "invok": [32, 34, 73, 102, 110], "from_image_filenam": 32, "request": [32, 54, 103, 104, 109], "get_frames_saf": 32, "successfulli": [32, 80, 112, 115], "imgstore_from_filenam": 32, "output_filenam": 32, "num_fram": 32, "to_hdf5": 32, "encod": [32, 37, 38, 40, 41, 43, 44, 47, 50, 76, 83, 84, 85, 89, 92, 95, 100], "to_imgstor": 32, "facilit": [32, 75], "directoryimgstor": 32, "videoread": [32, 65], "available_video_ext": 32, "load_video": [32, 104, 105], "nonetyp": 32, "treat": 32, "effect": [32, 36, 37, 38, 39, 40, 42, 43, 44, 46, 47, 48, 53, 54, 55, 58, 60, 62, 72, 98, 119], "centered_pair_smal": 32, "1100": 32, "384": [32, 105], "img": [32, 33, 34, 72, 76, 80, 83, 104, 105, 108], "writer": [33, 34], "safe_build": 33, "add_fram": 33, "can_use_ffmpeg": 33, "depend": [33, 44, 49, 53, 58, 68, 88, 90, 92, 96, 100, 102, 104, 105, 106, 107, 108, 110, 113], "videowriterimageio": 33, "crf": [33, 100], "preset": [33, 100], "superfast": [33, 100], "imageio": 33, "movi": [33, 86], "playback": [33, 100], "framer": 33, "rate": [33, 42, 45, 46, 48, 49, 72, 91, 96, 106, 109], "factor": [33, 39, 40, 42, 43, 44, 46, 47, 48, 53, 61, 63, 65, 66, 69, 72, 73, 80, 83, 107], "32": [33, 37, 41, 42, 46, 47, 69, 86, 105, 106, 109], "18": [33, 39, 69, 86, 106, 109], "30": [33, 86, 100, 104, 105, 109], "less": [33, 47, 67, 100], "higher": [33, 37, 38, 39, 40, 43, 44, 46, 47, 48, 54, 58, 68, 72, 74, 88, 95, 107], "qualiti": [33, 100, 113], "libx264": [33, 100], "videowriteropencv": 33, "overlai": 34, "videomarkerthread": 34, "in_q": 34, "queue": [34, 80], "out_q": 34, "show_edg": [34, 89], "edge_is_wedg": [34, 89], "marker_s": [34, 89], "crop_size_xi": 34, "color_manag": 34, "colormanag": 34, "palett": [34, 89, 92], "distinctly_color": [34, 89], "draw": [34, 89], "send": [34, 35], "h": [34, 83, 86, 89, 100, 101], "w": [34, 83, 100, 101, 102, 104, 105, 107, 108, 113], "thread": [34, 102], "activ": [34, 37, 38, 41, 42, 44, 47, 70, 98, 101, 102, 113, 115, 118], "subclass": [34, 45, 72, 81], "constructor": [34, 65, 72], "sequenti": [34, 49, 100], "taken": 34, "img_to_cv": 34, "prepar": [34, 110], "background": [34, 86, 89, 95], "them": [34, 47, 48, 53, 54, 55, 66, 75, 81, 84, 90, 92, 93, 94, 95, 97, 99, 102, 104, 105, 106, 107, 109, 110, 112, 113, 117], "white": [34, 86, 89], "grei": [34, 89, 115, 119], "resize_imag": [34, 66], "resiz": [34, 46, 61, 65, 72], "save_labeled_video": 34, "15": [34, 47, 69, 70, 88, 98, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "gui_progress": 34, "wedg": [34, 89, 92, 95], "marker": [34, 89], "alphabet": [34, 89, 92, 95], "five": [34, 89, 92, 95], "solar": [34, 89], "progress_queu": 34, "receiv": [34, 35, 41, 49, 105, 106, 117], "elaps": [34, 80, 89], "done": [34, 54, 60, 61, 67, 72, 80, 87, 90, 112, 117, 119], "zmq": [35, 49, 89, 109], "pub": [35, 49], "socket": [35, 49], "pairedsend": 35, "pairedreceiv": 35, "handshak": 35, "chanc": 35, "earli": [35, 46, 48, 49, 106, 109, 110], "basemessageparticip": 35, "tcp": [35, 45, 49, 109], "127": [35, 42, 45, 49, 62, 109], "9001": [35, 45, 49, 109], "sender": 35, "message_queu": 35, "check_messag": 35, "timeout": [35, 49, 90], "10": [35, 40, 45, 48, 49, 69, 72, 75, 80, 83, 89, 102, 103, 104, 105, 106, 107, 108, 109, 117], "fresh": [35, 102], "times_to_check": 35, "sent": [35, 103, 104, 109], "until": [35, 98, 104, 109, 110, 113, 117, 118], "reach": [35, 54, 99, 100, 101], "push_back_messag": 35, "didn": [35, 100, 103, 109, 116], "send_arrai": 35, "header_data": 35, "flag": [35, 83, 89, 104, 105, 106, 107, 109], "send_dict": 35, "intermediatefeatur": [36, 37, 38, 41, 42, 44], "intermedi": [36, 37, 38, 41, 42, 44, 47, 72, 92], "resolut": [36, 37, 38, 39, 41, 44, 46, 47, 48, 83, 86], "layer": [36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 66, 67, 70, 72, 82, 106, 109], "tensorflow": [36, 42, 54, 56, 61, 72, 76, 77, 81, 82, 89, 90, 100, 102, 104, 105, 106, 107, 108, 109, 117], "framework": [36, 54, 56, 101], "op": [36, 54, 56, 72, 73, 77, 104, 107], "reciproc": [36, 47, 53, 55, 58, 68], "decod": [37, 38, 40, 41, 43, 44, 47, 50, 84, 85, 103], "fulli": [37, 41, 42, 43, 47, 70], "convolut": [37, 38, 39, 40, 41, 42, 43, 44, 47], "backbon": [37, 38, 39, 41, 42, 44, 47, 74, 98, 106, 109, 117], "block": [37, 38, 39, 40, 41, 42, 43, 47, 64], "network": [37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 60, 72, 74, 75, 76, 92, 96, 98, 101, 104, 105, 106, 107, 109, 117], "respons": [37, 49, 89, 103, 104, 109], "upsampl": [37, 38, 39, 40, 41, 42, 43, 47, 66], "achiev": [37, 42, 47, 88, 113, 117], "pattern": [37, 44, 45, 49], "generaliz": 37, "rubric": 37, "cnn": [37, 40, 44], "www": [37, 72, 78, 104, 106, 107, 108], "natur": [37, 86, 100, 101], "com": [37, 78, 82, 102, 103, 104, 105, 106, 107, 108, 109], "articl": [37, 100, 101], "s41592": 37, "018": 37, "0234": 37, "net": [37, 98], "residu": [37, 38, 39, 42], "hourglass": [37, 44, 47, 76, 109], "arxiv": [37, 39, 42, 107], "pdf": [37, 39, 53, 68, 76, 105], "1603": 37, "06937": 37, "dens": [37, 54, 92], "fc": 37, "densenet": [37, 46, 62], "1611": 37, "09326": 37, "variant": [37, 39, 42, 47, 64], "encoderdecod": 37, "decoderblock": [37, 38], "upsampling_strid": [37, 38, 44], "doubl": [37, 44, 47, 92, 94, 97, 115, 116, 118, 119], "fewer": [37, 44, 47, 54, 67, 75, 80, 97], "make_block": [37, 38, 43], "current_strid": [37, 38, 42, 44], "skip_sourc": [37, 38, 44], "prefix": [37, 38, 39, 43, 45, 69, 85, 89, 109], "x_in": [37, 38, 39, 41, 42, 43, 70], "configur": [37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 60, 61, 62, 64, 66, 70, 72, 74, 80, 81, 89, 91, 92, 93, 96, 98, 99, 105, 106, 107, 110, 113, 117], "encoderblock": [37, 38], "pooling_strid": [37, 38, 43], "encoder_stack": [37, 38, 40, 43], "decoder_stack": [37, 38, 40, 43], "greater": [37, 44, 46, 47, 68, 72, 75, 89, 95], "than": [37, 38, 44, 46, 47, 48, 49, 51, 53, 54, 55, 58, 60, 66, 67, 68, 72, 75, 78, 79, 80, 84, 88, 89, 92, 95, 96, 103, 110, 115], "decoder_features_strid": 37, "encoder_features_strid": 37, "make_backbon": [37, 41, 42], "make_decod": 37, "skip_source_featur": 37, "dec": 37, "At": [37, 48, 98], "make_encod": 37, "enc": 37, "perform": [37, 38, 39, 44, 45, 46, 47, 48, 49, 50, 54, 59, 61, 69, 72, 73, 75, 77, 78, 80, 82, 88, 89, 99, 102, 104, 106, 107, 109, 113], "make_stem": 37, "unlik": 37, "rest": [37, 84, 105], "maximum_strid": [37, 41, 42, 61, 74], "maximum": [37, 40, 41, 42, 43, 48, 53, 58, 62, 65, 66, 68, 72, 73, 74, 75, 76, 78, 80, 89, 106], "divis": [37, 42, 46, 61, 66, 72], "output_strid": [37, 41, 42, 44, 47, 53, 55, 58, 68, 70, 72, 106, 109], "stem_features_strid": 37, "stem_stack": [37, 38, 43], "simpleconvblock": [37, 40, 43], "pool_before_conv": 37, "num_conv": 37, "kernel_s": [37, 38, 42, 43, 76, 106, 109], "use_bia": [37, 42], "batch_norm": [37, 47], "batch_norm_before_activ": 37, "relu": [37, 38, 44, 47], "block_prefix": 37, "flexibl": [37, 101, 105], "below": [37, 43, 46, 48, 53, 58, 61, 63, 69, 70, 73, 75, 76, 86, 92, 95, 100, 102, 106, 108, 110, 113], "kernel": [37, 38, 42, 43, 44, 47, 76], "bia": 37, "term": [37, 47, 70], "conv": [37, 38, 42, 43, 44, 47], "bn": 37, "mini": [37, 48, 54, 73], "creation": [37, 42, 50], "leapcnn": [37, 40], "unet": [37, 41, 44, 47, 106, 109, 117], "conv_block": [37, 43], "simpleupsamplingblock": [37, 40, 43], "transposed_conv": [37, 44, 47], "transposed_conv_filt": [37, 44], "64": [37, 39, 40, 42, 43, 44, 47, 54, 69, 70, 102, 103, 104, 107, 108], "transposed_conv_kernel_s": [37, 44, 47], "transposed_conv_use_bia": 37, "transposed_conv_batch_norm": 37, "transposed_conv_batch_norm_before_activ": 37, "transposed_conv_activ": 37, "interp_method": [37, 38], "bilinear": [37, 38, 39, 40, 43, 44, 47, 104, 107], "skip_connect": [37, 42, 47], "skip_add": [37, 44], "refine_conv": [37, 44, 47], "refine_convs_first_filt": 37, "refine_convs_filt": [37, 44], "refine_convs_use_bia": 37, "refine_convs_kernel_s": 37, "refine_convs_batch_norm": 37, "refine_convs_batch_norm_before_activ": 37, "refine_convs_activ": 37, "refin": [37, 38, 44, 47, 53, 61, 64, 70, 72, 76, 81, 99, 113], "learnabl": [37, 44, 47], "interpol": [37, 38, 40, 43, 47, 75, 95, 103], "transposed_conv_": 37, "nearest": [37, 38, 75, 92, 103], "kera": [37, 39, 41, 42, 45, 46, 48, 59, 62, 64, 68, 72, 74, 81, 82, 104, 106, 107, 109], "upsampling2d": 37, "1x1": [37, 44, 47], "similar": [37, 38, 44, 47, 48, 54, 69, 78, 80, 87, 89, 90, 92, 95, 96, 107, 108, 109, 113], "shortcut": [37, 42, 85, 92, 94, 95, 104], "concaten": [37, 44, 47, 54, 64], "channelwis": [37, 73, 76], "serv": [37, 38, 44, 47, 50, 61, 73, 76, 81, 97, 105], "mix": [37, 44, 46, 47], "fuse": [37, 44, 47], "alias": [37, 44, 47], "checkerboard": [37, 44, 47], "refine_convs_": 37, "prepend": [37, 38, 45, 49, 68, 89], "downsamplingblock": 38, "256": [38, 39, 41, 47, 48, 52, 105, 109], "downsampl": [38, 39, 41, 42, 43, 47, 66, 88], "simplifi": [38, 72], "paper": [38, 40, 69, 86, 100, 101], "simpler": [38, 44], "demonstr": [38, 107, 112], "simpli": [38, 48, 73, 100, 102, 105, 106, 107, 108, 118], "maxpool": 38, "down_block": [38, 39, 40, 41, 42, 43, 106, 109], "up_block": [38, 40, 41, 43, 106, 109], "stem_filt": [38, 39, 42, 47], "128": [38, 41, 42, 47, 48, 83, 103, 109], "stem_strid": [38, 47, 109], "filter_increas": [38, 47], "upon": [38, 102], "primari": 38, "x_out": [38, 42], "symmetr": [38, 48, 52, 76, 84], "reduc": [38, 43, 47, 48, 49, 53, 60, 73, 83, 84, 109], "fine": [38, 42, 48, 73, 88, 116], "increas": [38, 40, 43, 46, 47, 48, 49, 53, 55, 58, 61, 72, 80, 83, 88, 116], "spatial": [38, 40, 47], "recept": [38, 40, 42, 43, 47, 88, 98], "lose": [38, 89, 90, 116], "subsequ": [38, 43, 61, 92, 95, 102, 104, 105, 106, 108, 116, 119], "linearli": [38, 47], "increment": [38, 80], "multipli": [38, 53, 55, 61], "neighbor": [38, 75, 84], "supervis": [38, 65], "from_config": [38, 40, 41, 42, 43, 44, 52, 60, 61, 62, 66, 70, 73, 74, 75, 81, 106], "config": [38, 40, 41, 42, 43, 44, 52, 60, 61, 62, 64, 66, 70, 72, 73, 74, 75, 77, 81, 85, 87, 89, 96, 102, 106, 110], "hourglassconfig": [38, 47], "stemblock": 38, "output_filt": 38, "7": [38, 69, 86, 89, 102, 103, 104, 105, 106, 107, 108, 109], "much": [38, 39, 46, 90, 92, 93, 102, 105], "first_conv_strid": 38, "upsamplingblock": 38, "integr": [38, 59, 72, 75, 76, 101], "x_up": 38, "skip_in": 38, "x_middl": 38, "smaller": [38, 47, 53, 55, 58, 63, 66, 68, 69, 75, 98, 116], "sublay": 38, "pytorch": 39, "higherhrnet": 39, "deconvolut": 39, "ref": [39, 78], "1902": 39, "09212": 39, "1908": 39, "10357": 39, "initial_downsampling_step": 39, "n_deconv_modul": 39, "bottleneck": [39, 42, 43, 48, 54], "deconv_filt": 39, "bilinear_upsampl": 39, "hrnet32": 39, "30m": [39, 104, 105], "highest": [39, 48, 71, 89], "decreas": [39, 40, 43, 47, 48, 54, 80, 88], "introduc": [39, 43, 47], "too": [39, 48, 54, 79, 95, 113], "loss": [39, 40, 47, 48, 49, 70, 81, 88, 98, 106, 109, 110, 117], "deconv": 39, "n_output_channel": 39, "deconv_modul": 39, "higher_hrnet_model": 39, "output_scal": [39, 42, 83], "adjust_prefix": 39, "name_prefix": 39, "delimit": 39, "bottleneck_block": 39, "expansion_r": 39, "simple_block": 39, "downsampling_lay": 39, "filters_r": [40, 43, 47, 106, 109], "down_convs_per_block": 40, "up_interpol": [40, 43, 47, 106, 109], "up_convs_per_block": 40, "fast": [40, 42, 80, 101, 104, 105], "estim": [40, 47, 69, 75, 76, 80, 84, 107, 109, 112, 113, 117], "neural": [40, 41, 75, 98, 101, 104, 105, 106, 107, 109], "2019": [40, 86, 101], "style": [40, 41, 42, 92, 95, 107], "pereira": [40, 86, 100, 101], "et": [40, 43, 86, 95, 101, 117], "al": [40, 43, 86, 95, 101, 117], "8m": 40, "capac": [40, 42, 43, 47], "runtim": [40, 43, 50, 77, 90, 104, 105, 106, 108, 109], "incur": 40, "precis": [40, 47, 69, 92, 107, 113], "abl": [40, 43, 47, 87, 89, 90, 92, 101, 102, 105, 106, 109, 110, 112, 117, 118], "learn": [40, 42, 43, 45, 46, 47, 48, 49, 71, 76, 88, 91, 96, 98, 100, 106, 109, 113, 115, 116], "richer": [40, 43], "complex": [40, 43, 47, 100, 102], "recov": [40, 43, 47, 61, 105, 106, 109, 110], "leapconfig": [40, 47], "pretrain": [41, 42, 46, 47, 49, 62, 101, 106], "wide": [41, 69, 98, 107], "state": [41, 73, 77, 84, 89, 101, 102], "art": [41, 101], "advantag": [41, 47, 72, 88, 105], "imagenet": [41, 42, 46, 47, 62], "weight": [41, 42, 47, 48, 49, 55, 70, 72, 75, 76, 78, 84, 89, 96, 104, 106, 107], "possibl": [41, 72, 75, 79, 80, 88, 95, 96, 97, 100, 101, 106], "pavel": 41, "yakubovskii": 41, "gracious": 41, "put": [41, 75, 85, 95], "info": [41, 72, 87, 95, 100, 104, 106, 109], "repositori": [41, 86, 102, 109, 112], "qubvel": 41, "segmentation_model": 41, "classification_model": 41, "mit": [41, 101], "copyright": 41, "2018": [41, 95], "herebi": 41, "grant": [41, 100], "charg": 41, "obtain": [41, 69, 72], "deal": 41, "restrict": [41, 63, 85], "distribut": [41, 47, 48, 53, 55, 58, 68, 76, 92, 102, 107], "sublicens": 41, "sell": 41, "permit": 41, "whom": 41, "furnish": 41, "subject": 41, "condit": 41, "notic": 41, "shall": 41, "substanti": [41, 61], "portion": [41, 44], "THE": 41, "AS": 41, "warranti": 41, "OF": 41, "OR": 41, "impli": [41, 54], "BUT": [41, 104], "TO": 41, "merchant": 41, "FOR": 41, "AND": 41, "noninfring": 41, "IN": 41, "NO": 41, "holder": 41, "BE": 41, "liabl": 41, "claim": 41, "damag": 41, "liabil": 41, "contract": 41, "tort": 41, "aris": 41, "WITH": 41, "unetpretrainedencod": 41, "efficientnetb0": [41, 47], "decoder_filt": [41, 47], "varieti": [41, 96, 104, 105, 115], "popular": 41, "special": [41, 49, 72, 90], "tile": [41, 42], "vgg16": [41, 47], "vgg19": [41, 47], "resnet18": [41, 47], "resnet34": [41, 47], "resnet50": [41, 42, 47], "resnet101": [41, 42, 47], "resnet152": [41, 42, 47], "resnext50": [41, 47], "resnext101": [41, 47], "inceptionv3": [41, 47], "inceptionresnetv2": [41, 47], "densenet121": [41, 47], "densenet169": [41, 47], "densenet201": [41, 47], "seresnet18": [41, 47], "seresnet34": [41, 47], "seresnet50": [41, 47], "seresnet101": [41, 47], "seresnet152": [41, 47], "seresnext50": [41, 47], "seresnext101": [41, 47], "senet154": [41, 47], "mobilenet": [41, 47], "mobilenetv2": [41, 46, 47, 62], "efficientnetb1": [41, 47], "efficientnetb2": [41, 47], "efficientnetb3": [41, 47], "efficientnetb4": [41, 47], "efficientnetb5": [41, 47], "efficientnetb6": [41, 47], "efficientnetb7": [41, 47], "lowest": [41, 48, 73, 80, 92, 109, 110], "therefor": [41, 72], "pretrainedencoderconfig": [41, 47], "x_main": 41, "intermediate_activ": 41, "intermediateactiv": 41, "atrou": 42, "deeplabv2": 42, "ab": [42, 107], "1606": 42, "00915": 42, "applic": [42, 46, 47, 62, 65, 72, 76, 87, 89, 103, 104, 105, 106, 109, 112], "upsampling_stack": 42, "upsamplingstack": [42, 44], "features_output_strid": 42, "16": [42, 44, 46, 47, 69, 78, 104, 105, 106, 107, 108, 109], "frozen": [42, 47, 72, 89], "model_nam": [42, 72], "stack_config": 42, "23": [42, 69, 86, 100, 105, 106, 109], "canon": [42, 43, 44], "compens": [42, 43, 48], "dilat": [42, 47], "expans": [42, 54], "random": [42, 47, 48, 49, 52, 67, 98, 116, 117], "trainabl": [42, 47, 74, 88, 105], "tune": [42, 46, 48, 73, 99], "reli": [42, 47, 50, 72, 80], "suffici": [42, 47, 88], "resnetv1": [42, 46, 47, 62], "v2": [42, 105], "6": [42, 69, 83, 89, 100, 102, 103, 104, 105, 106, 107, 108, 109, 110], "stack_fn": 42, "consecut": [42, 47, 75], "expand": [42, 46, 62, 68], "stride1": 42, "resnetconfig": [42, 47], "block_v1": 42, "dilation_r": 42, "conv_shortcut": 42, "imagenet_preproc_v1": 42, "accord": [42, 62, 67, 106], "caff": [42, 46, 62], "subtract": [42, 46, 62], "103": [42, 62, 104, 107], "939": [42, 62, 105, 106, 109], "116": [42, 62], "779": [42, 62], "123": [42, 62, 96], "68": [42, 62, 69, 104, 105], "make_backbone_fn": 42, "signatur": [42, 72, 79, 109], "intermediate_feat": 42, "backbone_fn": 42, "make_resnet_model": 42, "preact": 42, "input_tensor": 42, "input_shap": [42, 74], "stem_stride1": 42, "stem_stride2": 42, "resnetv2": [42, 46, 62], "resnext": 42, "pre": [42, 47, 77, 80, 89, 90, 92, 105, 108, 109], "bias": 42, "include_top": 42, "224": [42, 62, 105], "exactli": [42, 61, 69, 76, 80, 88, 89, 95, 100, 103], "invalid": [42, 79], "stack_v1": 42, "tile_channel": 42, "functon": 42, "replic": [42, 61], "monochrom": 42, "poolingblock": 43, "stem_kernel_s": [43, 106, 109], "convs_per_block": [43, 106, 109], "stem_block": [43, 106, 109], "middle_block": [43, 47, 106, 109], "block_contract": [43, 106, 109], "ronneberg": 43, "2015": [43, 78], "34": [43, 69, 106, 109], "5m": [43, 104, 105], "middl": 43, "bear": 43, "particularli": [43, 65, 75, 77], "unetconfig": [43, 47, 106], "consist": [44, 47, 97, 110, 116], "3x3": [44, 47, 61, 76], "suffic": 44, "dlc": 44, "transposed_conv_filters_r": 44, "transposed_conv_batchnorm": 44, "make_skip_connect": 44, "refine_convs_filters_r": 44, "refine_convs_batchnorm": 44, "make_stack": 44, "No": [44, 46, 47, 48, 62, 72, 95, 102, 104, 107, 108], "won": [44, 47, 79, 80, 88, 92, 95, 98], "norm": [44, 47, 103], "incom": [44, 47, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 66, 67], "wise": [44, 47, 54, 58, 75, 78], "upsamplingconfig": [44, 47], "log": [44, 45, 49, 72, 89, 105, 106, 109, 110], "indirectli": 44, "matplotlibsav": 45, "save_fold": 45, "plot_fn": 45, "render": [45, 49, 72], "matplotlib": [45, 83, 103, 105, 107], "visual": [45, 48, 49, 61, 64, 72, 81, 83, 87, 89, 92, 93, 95, 97, 98, 105, 106, 107, 109, 115, 117], "epoch": [45, 48, 49, 54, 88, 98, 106, 109, 110, 117], "trainer": [45, 81, 106, 109], "visualize_predict": 45, "on_epoch_end": 45, "modelcheckpointonev": 45, "filepath": [45, 46, 102], "train_end": 45, "checkpoint": [45, 47, 49, 81, 89, 104, 109], "trigger": [45, 77], "train_start": 45, "on_train_begin": 45, "on_train_end": 45, "progressreporterzmq": 45, "not_set": 45, "on_batch_begin": 45, "backward": [45, 84, 92], "compat": [45, 61, 72, 84, 96, 100, 102], "on_train_batch_begin": 45, "on_batch_end": 45, "on_train_batch_end": 45, "on_epoch_begin": 45, "mode": [45, 46, 62, 72, 73, 88, 96, 102, 108, 110, 117], "futur": [45, 96, 115], "metric": [45, 46, 49, 69, 73, 81, 89, 92, 106, 107, 109, 112], "val_": 45, "tensorboardmatplotlibwrit": 45, "log_dir": 45, "tag": [45, 49, 109], "summari": [45, 49, 77, 89, 107], "logdir": 45, "tensorboard": [45, 49, 81, 89, 109], "trainingcontrollerzmq": 45, "9000": [45, 49, 109], "topic": 45, "poll_timeout": 45, "set_lr": [45, 49], "lr": [45, 49, 106, 109], "nativ": [45, 68, 89], "schedul": [45, 48, 49, 106, 109], "dataconfig": [46, 50, 64], "labelsconfig": [46, 81], "preprocessingconfig": [46, 62, 66], "instance_crop": [46, 106, 109], "instancecroppingconfig": [46, 60, 61], "topdown": [46, 47, 61, 72, 106, 109, 117], "center_on_part": [46, 60, 106, 109], "crop_siz": [46, 61, 72, 76, 109], "crop_size_detection_pad": [46, 109], "largest": [46, 47, 48, 54, 61], "pad": [46, 54, 61, 65, 66, 68, 72, 89], "training_label": [46, 81, 106, 109], "validation_label": [46, 81, 109], "validation_fract": [46, 67, 106, 109], "test_label": [46, 81, 89, 109], "split_by_ind": [46, 109], "training_ind": [46, 109], "validation_ind": [46, 109], "test_ind": [46, 109], "search_path_hint": [46, 109], "hyperparamet": [46, 48, 91, 93, 98, 99, 106], "stop": [46, 48, 49, 98, 106, 109, 110, 117], "held": 46, "never": [46, 54, 94], "benchmark": [46, 69, 86, 104, 105, 112], "optim": [46, 47, 49, 50, 54, 64, 70, 73, 75, 81, 82, 88, 100, 104, 105, 106, 107, 108, 109], "explicitli": [46, 48, 49, 50], "packag": [46, 81, 85, 89, 90, 91, 94, 96, 101, 103, 104, 105, 106, 107, 108, 109, 114], "pull": [46, 64, 75, 109], "ensure_rgb": [46, 62, 109], "ensure_grayscal": [46, 62, 72, 109], "imagenet_mod": [46, 62, 109], "input_sc": [46, 61, 109], "pad_to_strid": [46, 66, 72, 109], "resize_and_pad_to_target": [46, 66, 109], "target_height": [46, 66, 109], "target_width": [46, 66, 109], "commonli": [46, 62, 76], "mobilenetv1": [46, 62], "nasnet": [46, 62], "flip": [46, 48, 52, 62], "torch": [46, 62], "input_scal": [46, 72], "consider": [46, 47, 48, 49, 54, 79, 85, 88], "accuraci": [46, 47, 69, 80, 106, 107, 108, 113, 115, 117], "bottom": [46, 47, 66, 72, 84, 88, 89, 91, 92, 97, 101, 104, 110, 117], "meet": [46, 54, 64, 66, 92], "architectur": [46, 47, 49, 50, 61, 74, 91, 96, 98, 101, 104, 109], "dimens": [46, 47, 53, 55, 62, 65, 66, 68, 69, 70, 72, 75, 82, 103], "aspect": [46, 65, 103], "ratio": [46, 48, 65, 66, 72, 73, 82], "backboneconfig": 47, "resnet": [47, 109, 117], "centeredinstanceconfmapsheadconfig": [47, 70, 106], "anchor_part": [47, 70, 106, 109], "part_nam": [47, 70, 75, 81, 106, 109], "sigma": [47, 53, 55, 58, 68, 70, 76, 106, 109], "loss_weight": [47, 70, 106, 109], "offset_refin": [47, 109], "assumpt": 47, "reliabl": [47, 80, 100], "geometri": 47, "occlud": [47, 69, 92, 116], "strong": 47, "relianc": 47, "heavili": 47, "evalu": [47, 48, 61, 64, 69, 72, 75, 76, 81, 92, 106, 109], "poor": [47, 95, 107], "few": [47, 48, 73, 88, 90, 92, 98, 101, 102, 104, 113, 119], "small": [47, 49, 73, 79, 92, 95], "region": [47, 52, 88, 92], "significantli": [47, 78], "benefit": 47, "spread": [47, 53, 55, 58, 69, 70], "gaussian": [47, 53, 55, 58, 68, 76], "difficult": [47, 48, 95], "densiti": [47, 76], "peak": [47, 53, 54, 58, 59, 63, 71, 72, 75, 76, 83, 89, 105], "unit": [47, 48, 52, 53, 55, 58, 70, 75], "5x": 47, "speed": [47, 48, 49, 72, 89, 93, 105, 106, 115, 116], "weigh": [47, 58, 69, 78], "focu": [47, 48, 73], "subpixel": [47, 76], "local": [47, 48, 58, 59, 63, 69, 71, 72, 76, 91, 92, 96, 103, 104, 105, 106, 107, 108, 110, 112, 117], "hoc": 47, "determinist": 47, "resourc": [47, 48, 73], "centroidsheadconfig": [47, 70], "classmapsheadconfig": [47, 70], "classifi": [47, 71, 72, 75, 107], "semant": 47, "segment": [47, 75], "howev": [47, 92, 100, 106, 113], "neighborhood": [47, 58, 63, 76], "landmark": [47, 75, 76, 84, 92, 97, 104, 107], "nonzero": 47, "classvectorsheadconfig": [47, 70], "num_fc_lay": [47, 70], "num_fc_unit": [47, 70], "global_pool": [47, 70], "classif": [47, 70, 71, 72], "task": [47, 56, 72, 105, 106, 109], "headsconfig": 47, "single_inst": [47, 91, 109, 110], "singleinstanceconfmapsheadconfig": [47, 70], "centered_inst": [47, 89, 91, 104, 105, 106, 107, 109, 110], "multi_inst": [47, 75, 91, 104, 109, 110], "multiinstanceconfig": [47, 75], "multi_class_bottomup": [47, 109], "multiclassbottomupconfig": 47, "multi_class_topdown": [47, 105, 109], "multiclasstopdownconfig": 47, "max_strid": [47, 66, 109], "retain": [47, 78], "filters_increas": 47, "constant": 47, "modelconfig": [47, 50, 74], "base_checkpoint": [47, 89, 109], "confmap": [47, 53, 58, 63, 72, 83], "multiinstanceconfmapsheadconfig": [47, 70], "class_map": [47, 58, 71, 72], "fashion": 47, "beyond": [47, 48, 72, 80, 92], "class_vector": [47, 72], "partaffinityfieldsheadconfig": [47, 70], "alon": 47, "contrast": [47, 48, 86, 88, 109], "benefici": [47, 48, 88], "graph": [47, 55, 70, 72, 73, 75, 84, 89, 92, 97, 105, 117], "averag": [47, 48, 69, 75, 76, 88, 92, 105, 106, 107], "underneath": 47, "candid": [47, 69, 72, 75, 78, 80, 89, 95, 116], "coher": 47, "source_nod": [47, 70], "destination_nod": [47, 70], "disambigu": 47, "nearbi": [47, 79, 92], "decoder_filters_r": 47, "decoder_batchnorm": 47, "tunabl": 47, "global": [47, 48, 59, 72, 76], "block_strid": 47, "conv_batchnorm": 47, "augmentationconfig": [48, 52], "rotation_min_angl": [48, 109], "180": [48, 88], "rotation_max_angl": [48, 109], "translat": [48, 109], "translate_min": [48, 109], "translate_max": [48, 109], "scale_min": [48, 109], "9": [48, 69, 86, 89, 103, 104, 105, 106, 109, 119], "scale_max": [48, 109], "uniform_nois": [48, 109], "uniform_noise_min_v": [48, 109], "uniform_noise_max_v": [48, 109], "gaussian_nois": [48, 109], "gaussian_noise_mean": [48, 109], "gaussian_noise_stddev": [48, 109], "contrast_min_gamma": [48, 109], "contrast_max_gamma": [48, 109], "bright": [48, 88, 109], "brightness_min_v": [48, 109], "brightness_max_v": [48, 109], "random_crop": [48, 109], "random_crop_height": [48, 109], "random_crop_width": [48, 109], "random_flip": [48, 109], "flip_horizont": [48, 109], "augment": [48, 88, 91, 96], "imgaug": 48, "geometr": 48, "degre": 48, "independ": [48, 61, 103], "uniformli": [48, 54], "nois": 48, "simul": [48, 72, 105], "shot": 48, "arithmet": 48, "addelementwis": 48, "uniform": [48, 66], "tigher": 48, "magnitud": 48, "additivegaussiannois": 48, "gamma": 48, "constrast": 48, "gammacontrast": 48, "broadfield": 48, "illumin": 48, "effici": [48, 53, 77], "reflect": [48, 52, 69], "correctli": [48, 49, 102, 105, 106, 112, 117], "earlystoppingconfig": [48, 106, 109], "stop_training_on_plateau": [48, 106, 109], "plateau_min_delta": [48, 106, 109], "1e": [48, 106, 109], "06": [48, 69, 106, 109], "plateau_pati": [48, 106, 109], "termin": [48, 102, 118], "plateau": 48, "minim": [48, 49, 54, 95, 102], "gain": 48, "overfit": [48, 88], "regim": 48, "least": [48, 67, 96, 104, 105, 106, 107, 108, 109], "hardkeypointminingconfig": [48, 73], "online_min": [48, 109], "hard_to_easy_ratio": [48, 73, 109], "min_hard_keypoint": [48, 73, 109], "max_hard_keypoint": [48, 73, 109], "loss_scal": [48, 73, 109], "hard": [48, 69, 73, 88, 92, 95], "mine": [48, 73, 88], "ohkm": [48, 73], "tricki": [48, 96], "switch": [48, 73, 92, 95], "skew": [48, 73], "impact": [48, 49, 72, 73, 100], "altogeth": [48, 73, 104, 108], "learningratescheduleconfig": [48, 106, 109], "reduce_on_plateau": [48, 106, 109], "reduction_factor": [48, 106, 109], "plateau_cooldown": [48, 106, 109], "min_learning_r": [48, 106, 109], "08": [48, 69, 104, 106, 109], "later": [48, 92, 95, 110], "finer": [48, 75, 80], "balanc": 48, "practic": 48, "optimizationconfig": [48, 50, 64, 81], "preload_data": [48, 109], "augmentation_config": [48, 106, 109], "online_shuffl": [48, 109], "shuffle_buffer_s": [48, 109], "batches_per_epoch": [48, 109], "min_batches_per_epoch": [48, 109], "val_batches_per_epoch": [48, 109], "min_val_batches_per_epoch": [48, 109], "100": [48, 80, 86, 92, 103, 104, 105, 106, 108, 109], "adam": [48, 109], "initial_learning_r": [48, 109], "0001": [48, 109], "learning_rate_schedul": [48, 109], "hard_keypoint_min": [48, 109], "early_stop": [48, 109, 110], "preload": [48, 54], "shuffl": [48, 54], "buffer": [48, 54], "vari": [48, 88, 105], "composit": [48, 52, 85], "turn": [48, 88, 92, 95, 104, 117], "promot": [48, 54], "minibatch": [48, 88], "gradient": [48, 72, 76, 88], "gpu": [48, 54, 72, 77, 88, 89, 90, 98, 101, 104, 105, 106, 107, 108, 109, 112, 117], "lead": [48, 54, 77, 88, 103, 104], "whichev": [48, 94], "sever": [48, 89, 107, 112, 113], "execut": [48, 73, 75, 81], "longer": [48, 61, 72, 75, 89, 90, 92, 94, 108], "heurist": [48, 89, 95, 115], "400": [48, 105], "short": [48, 49, 75, 85], "amsgrad": 48, "minima": 48, "descend": [48, 69], "converg": 48, "checkpointingconfig": [49, 81], "initial_model": [49, 109], "best_model": [49, 72, 89, 96, 104, 106, 107, 109], "every_epoch": [49, 109], "latest_model": [49, 109], "final_model": [49, 96, 109], "comparison": [49, 82, 107, 112], "baselin": [49, 91, 109], "run_fold": 49, "04d": 49, "latest": [49, 101, 102, 109, 110], "outputsconfig": [49, 50, 81], "save_output": [49, 109], "run_nam": [49, 89, 96, 106, 109], "run_name_prefix": [49, 109], "run_name_suffix": [49, 109], "runs_fold": [49, 109], "save_visu": [49, 109], "keep_viz_imag": [49, 109], "zip_output": [49, 109], "log_to_csv": [49, 109], "tensorboardconfig": [49, 81], "zmqconfig": [49, 81], "job": [49, 50, 72, 81, 89, 90, 91, 96, 105, 107, 109, 113], "timestamp": 49, "rather": [49, 53, 54, 58, 60, 66, 90, 96, 103], "exact": [49, 68, 100, 107], "_1": 49, "counter": 49, "delai": 49, "client": 49, "subdirectori": [49, 81, 85, 96], "organ": 49, "uncheck": [49, 95], "training_log": [49, 96, 107, 109], "zeromq": [49, 81], "monitor": [49, 72, 73, 86, 98, 115], "run_path": [49, 81], "write_log": [49, 109], "loss_frequ": [49, 109], "architecture_graph": [49, 109], "profile_graph": [49, 109], "parent": [49, 97], "displai": [49, 72, 89, 103, 108, 115], "dashboard": 49, "often": [49, 69, 73, 76, 95, 96, 100], "frequenc": [49, 104, 107], "affect": [49, 92, 100], "graphic": [49, 115], "consum": 49, "lot": [49, 92], "freez": [49, 72], "browser": [49, 109], "tab": [49, 88, 91, 98, 109, 119], "profil": [49, 50, 89, 93, 96, 109], "subscribe_to_control": [49, 109], "controller_address": [49, 109], "controller_polling_timeout": [49, 109], "publish_upd": [49, 109], "publish_address": [49, 109], "listen": 49, "broadcast": [49, 55, 68], "messag": [49, 72, 89, 100, 115], "endpoint": 49, "protocol": 49, "asynchron": 49, "program": [49, 87], "poll": 49, "ip": 49, "hostnam": 49, "port": [49, 104], "ip_address": 49, "port_numb": 49, "microsecond": 49, "poller": 49, "wait": [49, 80, 102], "serializ": 50, "parametr": 50, "easili": [50, 89], "decoupl": 50, "design": [50, 93], "logic": [50, 71, 72, 77, 78, 105], "aggreg": 50, "oppos": 50, "trainingjobconfig": [50, 69, 72, 81, 104, 106], "sleap_vers": [50, 109], "from_json": [50, 84], "json_data": 50, "from_json_dict": 50, "json_data_dict": 50, "load_json": [50, 84], "load_training_config": 50, "initial_config": [50, 81, 96, 106, 107, 109], "save_json": [50, 84], "load_config": [50, 106, 107], "oneof": 51, "attrs_cl": 51, "must_be_set": 51, "decor": 51, "inspir": 51, "protobuff": 51, "__init__": [51, 105], "albumentationsaugment": 52, "image_kei": [52, 61, 62, 66], "instances_kei": [52, 60, 61], "albument": 52, "core": [52, 72, 104, 105, 106, 107, 108, 109, 112], "input_kei": [52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 66, 67, 81], "output_kei": [52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 64, 65, 66, 67, 81], "outgo": [52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 66, 67], "transform_dataset": [52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 66, 67], "input_d": [52, 53, 55, 56, 58, 59, 61, 66], "datasetv2": [52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 64, 65, 66, 67, 72], "randomcropp": 52, "crop_height": [52, 61, 76], "crop_width": [52, 61, 76], "crop_bbox": [52, 61, 76], "randomflipp": 52, "symmetric_ind": [52, 84], "n_symmetri": 52, "mirror": 52, "v": [52, 64, 69, 100, 107], "matter": [52, 96, 97], "from_skeleton": 52, "flip_instances_lr": 52, "img_width": 52, "n_instanc": [52, 53, 55, 58, 60, 61, 65, 72, 75], "int32": [52, 55, 58, 60, 61, 65, 71, 75, 76, 82, 105], "flip_instances_ud": 52, "img_height": 52, "instanceconfidencemapgener": 53, "with_offset": 53, "offsets_threshold": 53, "flatten_offset": 53, "grid": [53, 55, 58, 63, 65, 68, 72, 76, 105], "instance_imag": [53, 59, 61], "center_inst": [53, 61], "instance_confidence_map": [53, 59], "all_instance_confidence_map": 53, "importantli": [53, 55], "proport": [53, 55], "multiconfidencemapgener": 53, "centroid_confidence_map": [53, 59], "singleinstanceconfidencemapgener": 53, "make_confmap": [53, 58, 63], "xv": [53, 55, 63, 68, 76], "yv": [53, 55, 63, 68, 76], "grid_width": [53, 55, 58, 63, 68], "make_grid_vector": [53, 55, 63, 68], "grid_height": [53, 55, 58, 63, 68], "unnorm": [53, 68, 76], "diagon": 53, "covari": [53, 76], "make_multi_confmap": 53, "elementwis": 53, "immedi": [53, 95], "make_multi_confmaps_with_offset": 53, "divid": [53, 62, 63, 72, 75, 76, 95], "batcher": 54, "drop_remaind": 54, "unrag": 54, "variabl": [54, 66, 68, 72, 73, 84, 102, 104], "rag": [54, 68, 72, 89], "remaind": 54, "raggedtensor": [54, 68, 72, 75], "leav": [54, 68], "downstream": [54, 65], "continu": [54, 86, 105, 115, 116, 117, 118], "ds_input": [54, 60, 61, 62, 66, 67], "had": [54, 80, 90, 102, 104, 105, 106, 107, 108, 109], "lambdafilt": 54, "filter_fn": 54, "elimin": 54, "kept": [54, 61], "buffer_s": 54, "unmodifi": 54, "experiment": [54, 95], "autotun": 54, "latenc": [54, 101, 105], "consumpt": 54, "infinit": 54, "indefinit": 54, "boundari": [54, 70], "shuffler": 54, "reshuffle_each_iter": 54, "though": 54, "latter": [54, 72, 89, 99], "technic": [54, 61, 76, 101], "alwai": [54, 65, 72, 84, 95, 102, 116], "fill": [54, 72, 105, 116], "realli": [54, 85], "unbatch": [54, 61], "partaffinityfieldsgener": 55, "flatten_channel": 55, "n_edg": [55, 75], "ax": [55, 72, 103], "skeleton_ind": [55, 60, 65], "part_affinity_field": [55, 72], "distance_to_edg": 55, "edge_sourc": 55, "edge_destin": 55, "undirect": 55, "d_0": 55, "d_n": 55, "get_edge_point": 55, "destin": [55, 70, 75, 84, 95, 97], "make_edge_map": 55, "make_multi_paf": 55, "make_paf": 55, "keydevicemov": 56, "device_nam": [56, 59], "cpu": [56, 72, 77, 85, 89, 102, 104, 105, 106, 107, 109], "devic": [56, 77, 102, 104, 105, 106, 107, 108, 109], "keyfilt": 56, "keep_kei": 56, "keyrenam": 56, "old_key_nam": 56, "new_key_nam": 56, "drop_old": 56, "renam": [56, 84, 118], "lambdamap": 56, "func": 56, "input_key_nam": 56, "output_key_nam": 56, "group_exampl": 57, "frame_ind": [57, 65], "group_examples_it": 57, "vid": 57, "classmapgener": 58, "class_map_threshold": 58, "track_ind": [58, 61, 65], "classvectorgener": 58, "make_class_map": 58, "class_ind": [58, 71], "n_class": [58, 71, 72], "confidence_map": [58, 63], "binari": [58, 104, 105, 106, 107, 109], "make_class_vector": 58, "interpret": [58, 75, 112], "globalpeakfind": 59, "confmaps_kei": 59, "predicted_instance_confidence_map": 59, "confmaps_strid": 59, "peak_threshold": [59, 72, 89, 109], "peaks_kei": 59, "predicted_center_instance_point": 59, "peak_vals_kei": 59, "predicted_center_instance_confid": 59, "keep_confmap": 59, "integral_patch_s": [59, 72, 76], "kerasmodelpredictor": 59, "keras_model": [59, 64, 72, 74, 81, 82, 106], "model_input_kei": 59, "model_output_kei": 59, "localpeakfind": 59, "predicted_centroid": 59, "predicted_centroid_confid": 59, "peak_sample_inds_kei": 59, "predicted_centroid_sample_ind": 59, "peak_channel_inds_kei": 59, "predicted_centroid_channel_ind": 59, "mockglobalpeakfind": 59, "all_peaks_in_kei": 59, "peaks_out_kei": 59, "confmaps_in_kei": 59, "confmaps_out_kei": 59, "mimic": 59, "predictedcenterinstancenorm": 59, "centroid_kei": 59, "centroid_confidence_kei": 59, "centroid_confid": [59, 61], "peak_confidences_kei": 59, "new_centroid_kei": 59, "new_centroid_confidence_kei": 59, "new_peaks_kei": 59, "new_peak_confidences_kei": 59, "predicted_instance_confid": 59, "instancecentroidfind": [60, 72], "center_on_anchor_part": 60, "anchor_part_nam": 60, "stream": [60, 62, 66, 103, 104, 109], "find_points_bbox_midpoint": 60, "n_point": [60, 63, 75], "xy_mid": 60, "xy_min": 60, "xy_max": 60, "get_instance_anchor": 60, "anchor_ind": 60, "gather": 60, "instancecropp": 61, "keep_full_imag": [61, 66], "mock_centroid_confid": 61, "centroids_kei": 61, "knowledg": 61, "bbox": [61, 76, 83], "center_instance_ind": 61, "th": [61, 76, 89], "full_image_height": 61, "full_image_width": 61, "crop_and_res": [61, 76], "becom": 61, "n_bbox": [61, 76], "make_centered_bbox": [61, 76], "span": [61, 68, 71, 76], "patch": [61, 72, 76], "find_instance_crop_s": 61, "min_crop_s": 61, "margin": 61, "truncat": 61, "side": [61, 88, 92, 109, 118, 119], "box_height": 61, "box_width": 61, "n_centroid": [61, 72], "onto": [61, 67, 105], "diagram": 61, "normalize_bbox": 61, "image_height": [61, 66, 68], "image_width": [61, 66, 68], "unnormalize_bbox": 61, "normalized_bbox": 61, "ensure_float": [62, 72], "constraint": [62, 66], "convert_rgb_to_bgr": 62, "convert_image_dtyp": 62, "rgb_to_grayscal": 62, "ensure_int": 62, "uint8": [62, 72, 104, 105], "ensure_min_image_rank": 62, "expand_to_rank": [62, 68], "grayscale_to_rgb": 62, "scale_image_rang": 62, "min_val": 62, "max_val": 62, "scale_to_imagenet_caffe_mod": 62, "approxim": [62, 88, 113], "scale_to_imagenet_tf_mod": 62, "scale_to_imagenet_torch_mod": 62, "485": 62, "456": [62, 96, 105], "406": [62, 104, 105], "229": [62, 105], "225": [62, 105], "regress": [63, 72, 76], "make_offset": 63, "mask_offset": 63, "capabl": [64, 105, 106, 109], "bottomupmulticlasspipelin": 64, "data_config": 64, "optimization_config": 64, "confmaps_head": 64, "multiinstanceconfmapshead": [64, 70, 72], "class_maps_head": 64, "classmapshead": [64, 70, 72], "offsets_head": 64, "offsetrefinementhead": [64, 70, 72], "builder": [64, 81, 106, 109], "make_base_pipelin": 64, "data_provid": [64, 72], "make_training_pipelin": 64, "remap": 64, "keymapp": [64, 67], "make_viz_pipelin": 64, "fetch": 64, "bottomuppipelin": 64, "pafs_head": 64, "partaffinityfieldshead": [64, 70, 72], "centroidconfmapspipelin": 64, "centroid_confmap_head": 64, "centroidconfmapshead": [64, 70, 72, 109], "return_descript": [64, 68], "from_block": 64, "chain": [64, 72], "from_pipelin": 64, "make_dataset": [64, 65], "peek": [64, 103], "quickli": [64, 92, 95, 115], "validate_pipelin": 64, "singleinstanceconfmapspipelin": 64, "single_instance_confmap_head": 64, "singleinstanceconfmapshead": [64, 70, 72], "topdownmulticlasspipelin": 64, "instance_confmap_head": 64, "centeredinstanceconfmapshead": [64, 70, 72, 106, 109], "class_vectors_head": 64, "classvectorshead": [64, 70, 72], "topdownconfmapspipelin": 64, "example_indic": [65, 67], "handi": [65, 92], "from_unlabeled_suggest": 65, "from_user_inst": 65, "from_user_labeled_fram": 65, "is_from_multi_size_video": 65, "ds_index": 65, "raw_image_s": 65, "example_ind": 65, "int64": [65, 85], "x_scale": 65, "y_scale": 65, "properli": [65, 104, 107, 108], "max_height_and_width": [65, 66], "from_filepath": 65, "pointsrescal": 66, "points_kei": 66, "scale_kei": 66, "invert": [66, 84], "full_image_kei": 66, "full_imag": 66, "sizematch": 66, "max_image_height": 66, "max_image_width": 66, "center_pad": 66, "offset_x": 66, "offset_i": 66, "update_config": [66, 74, 81], "find_padding_for_strid": 66, "pad_bottom": 66, "pad_right": 66, "mismatch": 66, "n_down_block": 66, "rescal": 66, "scale_x": 66, "scale_i": 66, "key_map": 67, "split_label": 67, "split_fract": 67, "One": [67, 72, 78, 84, 95], "round": [67, 104, 106], "split_labels_read": 67, "labels_read": 67, "split_labels_train_v": 67, "idx_train": 67, "idx_val": 67, "Their": 67, "miscellan": [68, 85], "describe_tensor": [68, 72], "ensure_list": 68, "target_rank": 68, "gaussian_pdf": 68, "meshgrid": 68, "thought": 68, "induc": 68, "unrag_exampl": 68, "sync_to_numpy_or_python_typ": 68, "unrag_tensor": 68, "max_siz": 68, "measur": [69, 75, 95], "understand": [69, 92, 100], "oks_voc": [69, 107], "vi": [69, 107], "recal": [69, 92, 107, 117], "dist": [69, 107], "p95": [69, 107], "compute_dist_metr": 69, "dists_dict": 69, "euclidean": [69, 75, 82], "percentil": [69, 107], "n_positive_pair": 69, "compute_dist": 69, "positive_pair": 69, "instance_gt": 69, "instance_pr": 69, "compute_generalized_voc_metr": 69, "false_neg": 69, "match_scor": [69, 107], "match_score_threshold": [69, 107], "55": [69, 109], "65": 69, "75": 69, "85": 69, "95": [69, 78, 80, 104, 105, 107], "recall_threshold": [69, 107], "01": [69, 103, 104, 105, 106, 107, 108, 109], "02": [69, 78, 105, 106], "04": [69, 103, 104, 105, 106, 107, 109], "05": [69, 103, 105, 109], "07": [69, 107, 109], "09": [69, 105, 106, 107, 108, 109], "11": [69, 86, 102, 103, 104, 105, 106, 107, 108, 109], "12": [69, 90, 102, 103, 104, 105, 106, 107, 108, 109], "13": [69, 86, 103, 105, 106, 107, 109], "14": [69, 86, 104, 105, 106, 107, 108, 109], "17": [69, 72, 106, 108, 109], "19": [69, 100, 101, 109], "22": [69, 109], "24": [69, 90, 103, 106, 109], "25": [69, 72, 75, 76, 86, 89, 103, 105, 108, 109], "26": [69, 92, 95, 104, 109], "27": [69, 104, 107, 109], "28": [69, 107, 109], "29": [69, 104, 107, 108, 109], "31": [69, 104, 105, 106, 109], "33": [69, 109], "35": [69, 86, 105, 109], "36": [69, 109], "37": [69, 105, 109], "38": [69, 104, 109], "39": [69, 104, 105, 106, 109], "41": [69, 109], "42": [69, 105, 106, 107, 109], "43": [69, 105, 106, 107, 109], "44": [69, 105, 106, 107, 109], "45": [69, 86, 104, 109], "46": [69, 104, 109], "47": [69, 104], "48": [69, 104, 107], "49": [69, 104, 105, 107, 109], "51": 69, "52": [69, 104, 105], "53": [69, 104, 105], "54": [69, 104, 109], "56": [69, 104, 105], "57": [69, 104, 105, 109], "58": [69, 104, 106], "59": [69, 86, 104], "61": [69, 109], "62": 69, "63": [69, 105, 109], "66": 69, "67": [69, 109], "69": [69, 104], "71": [69, 104], "72": [69, 83, 104, 109], "73": [69, 109], "74": [69, 105, 109], "76": 69, "77": [69, 104], "78": [69, 104, 105, 106, 107, 108, 109], "79": [69, 109], "81": [69, 104, 105], "82": [69, 103, 109], "83": [69, 104, 105], "84": [69, 104, 105], "86": [69, 105], "87": [69, 105], "88": [69, 104, 105, 109], "89": [69, 104, 105], "91": [69, 104, 105], "92": [69, 104, 105], "93": 69, "94": [69, 104, 105], "96": [69, 105], "97": [69, 86, 105], "98": [69, 104], "99": [69, 104, 105], "gvoc": 69, "voc": [69, 107], "unmatch": [69, 82], "ok": [69, 103, 104, 106, 107, 109], "compute_instance_area": 69, "compute_ok": 69, "points_gt": 69, "points_pr": 69, "stddev": 69, "025": 69, "use_cocoev": 69, "n_gt": 69, "n_ed": 69, "n_pr": 69, "cocoev": 69, "cocoapi": 69, "difficulti": [69, 107], "072": 69, "easiest": [69, 90, 96, 114], "ey": 69, "hardest": 69, "hip": 69, "107": 69, "bone": 69, "anatom": 69, "cloth": 69, "ronch": 69, "perona": 69, "diagnosi": 69, "iccv": 69, "2017": [69, 75, 117], "compute_pck_metr": 69, "pck": [69, 107], "compute_visibility_conf": 69, "confus": 69, "oks_stddev": 69, "oks_scal": 69, "match_threshold": 69, "user_labels_onli": 69, "evaluate_model": 69, "cfg": [69, 75, 106], "split_nam": 69, "find_frame_pair": 69, "frame_gt": 69, "frame_pr": 69, "load_metr": [69, 107], "model_path": [69, 72, 107, 109], "npz": [69, 106, 107, 109], "tp": [69, 107], "tn": [69, 107], "avg": [69, 107], "p50": [69, 107], "50th": [69, 107], "p75": [69, 107], "75th": [69, 107], "p90": [69, 107], "90th": [69, 107], "95th": [69, 107], "p99": [69, 107], "99th": [69, 107], "mpck": [69, 107], "percentag": [69, 89, 107], "mok": [69, 107], "mar": [69, 107], "pck_voc": [69, 107], "match_frame_pair": 69, "frame_pair": 69, "match_inst": 69, "pascal": 69, "briefli": 69, "greedili": 69, "replace_path": 69, "video_list": 69, "loss_funct": 70, "make_head": 70, "sigma_threshold": 70, "confmapconfig": 70, "classify_peaks_from_map": 71, "peak_point": [71, 76], "peak_val": [71, 72, 75, 76], "peak_sample_ind": [71, 76], "peak_channel_ind": [71, 72, 75, 76], "n_channel": 71, "n_sampl": [71, 75], "n_peak": [71, 75, 76], "point_val": 71, "class_prob": 71, "group_class_peak": 71, "classify_peaks_from_vector": 71, "peak_class_prob": 71, "crop_sample_ind": 71, "peak_ind": [71, 75], "Will": 71, "hungarian": [71, 78, 82, 89, 95], "algorithm": [71, 75, 76, 78, 79, 82, 92, 109, 113, 115], "inferencemodel": [72, 89], "surround": 72, "routin": 72, "predictor": [72, 104, 105, 107, 109], "postprocess": 72, "load_model": [72, 104, 105, 107], "bottomupinferencelay": 72, "encapsul": [72, 78], "forward": [72, 92, 103], "paf_scor": 72, "paf_group": 72, "pafscor": [72, 75], "cm_output_strid": 72, "paf_output_strid": 72, "quarter": [72, 76], "rough": [72, 76], "return_confmap": 72, "slower": [72, 78, 88, 95, 105], "return_paf": 72, "return_paf_graph": 72, "confmaps_ind": 72, "pafs_ind": 72, "offsets_ind": 72, "instance_peak": [72, 105], "instance_peak_v": [72, 105], "edge_peak_ind": [72, 75], "line_scor": [72, 75], "find_peak": 72, "cm": [72, 76, 86], "forward_pass": 72, "bottomupinferencemodel": 72, "bottomup_lay": 72, "bottomupmulticlassinferencelay": 72, "class_maps_output_strid": 72, "return_class_map": 72, "class_maps_ind": 72, "inference_lay": 72, "bottomupmulticlassinferencemodel": 72, "bottomupmulticlasspredictor": 72, "inference_model": [72, 105], "integral_refin": 72, "verbos": [72, 89, 109], "rich": [72, 89, 109], "report_r": 72, "from_trained_model": 72, "training_job": [72, 81, 110], "resize_input_lay": 72, "insid": [72, 85, 87, 88, 89, 92, 96, 114], "training_config": [72, 89, 96, 104, 106, 107, 109], "num_color_channel": 72, "bottomuppredictor": 72, "is_grayscal": 72, "bottomup_config": 72, "bottomup_model": 72, "max_edge_length_ratio": [72, 75, 89, 109], "dist_penalty_weight": [72, 75, 89, 109], "paf_line_point": 72, "min_line_scor": [72, 75], "max_inst": [72, 89, 109], "bottomup": [72, 96, 110], "tracker": [72, 80, 89, 92, 95, 96, 108, 109, 110, 112, 119], "penal": [72, 75, 89], "coeffici": [72, 75, 89], "penalti": [72, 75, 89], "enforc": [72, 75, 89], "strictli": [72, 75, 89, 102], "spuriou": [72, 75], "discard": [72, 75], "extran": 72, "centroidcrop": 72, "pade": 72, "return_crop": 72, "findinstancepeak": 72, "centroid_v": [72, 105], "centroid_confmap": 72, "output_height": 72, "output_width": 72, "crop_offset": 72, "former": 72, "centroidcropgroundtruth": 72, "squar": [72, 76, 83], "example_gt": 72, "centroidinferencemodel": 72, "centroid_crop": 72, "instance_confmap": 72, "findinstancepeaksgroundtruth": 72, "crop_output": 72, "n_instances_gt": 72, "greedi": [72, 75, 78, 79, 80, 89, 95, 108], "inferencelay": 72, "overload": 72, "previous": [72, 84], "export_model": [72, 89], "save_path": 72, "serving_default": 72, "save_trac": 72, "unrag_output": 72, "savedmodel": 72, "trace": 72, "frozen_graph": [72, 87], "pb": [72, 87], "n_valid": [72, 105], "predict_on_batch": [72, 105], "movenetinferencelay": 72, "movenet": 72, "lightn": 72, "thunder": 72, "movenetinferencemodel": 72, "joint": [72, 88, 103, 118], "reappli": 72, "meant": [72, 75], "overridden": 72, "__call__": 72, "masking_and_pad": 72, "movenetpredictor": 72, "from_model_path": 72, "singleinstancepredictor": 72, "topdownpredictor": [72, 109], "topdownmulticlasspredictor": 72, "make_pipelin": 72, "make_label": 72, "report_period": 72, "ratecolumn": 72, "table_column": 72, "singleinstanceinferencelay": 72, "singleinstanceinferencemodel": 72, "detector": 72, "single_instance_lay": 72, "confmap_config": [72, 87], "confmap_model": 72, "topdowninferencemodel": 72, "cropper": 72, "topdownmulticlassfindpeak": 72, "return_class_vector": 72, "associt": 72, "class_vectors_ind": 72, "optimal_group": 72, "topdownmulticlassinferencemodel": 72, "centroid_config": [72, 87], "centroid_model": [72, 105], "centroid_model_path": 72, "confmap_model_path": 72, "visualpredictor": 72, "safely_gener": 72, "export_cli": 72, "exported_model": [72, 89], "find_head": 72, "get_keras_model_path": 72, "get_model_output_strid": 72, "input_ind": 72, "output_ind": 72, "evenli": [72, 92, 116], "tracker_window": 72, "tracker_max_inst": 72, "disable_gpu_prealloc": [72, 77], "progress_report": 72, "flow": [72, 80, 89, 95, 96, 108], "histori": 72, "prealloc": [72, 77], "neglig": 72, "bar": [72, 89, 116], "consol": [72, 89, 102], "notebook": [72, 89, 90, 93, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110, 111, 113], "captur": [72, 105], "programmat": 72, "headless": 72, "machin": [72, 89, 91, 93, 96, 98, 100, 102, 103, 104, 107, 108, 110, 112, 113, 117], "make_model_movenet": 72, "ohkmloss": 73, "reweight": 73, "mse": 73, "worst": [73, 88], "y_gt": 73, "y_pr": 73, "sample_weight": 73, "y_true": 73, "d0": 73, "dn": 73, "spars": 73, "categor": 73, "crossentropi": 73, "y_pred": 73, "get_config": 73, "partloss": 73, "channel_ind": 73, "idempot": 73, "update_st": 73, "accumul": [73, 75], "textual": 73, "worri": [73, 90, 95], "eager": 73, "compute_ohkm_loss": 73, "queri": [74, 77, 78, 84, 95], "engin": 74, "built": [74, 96, 101, 113, 116], "make_model": 74, "resolv": [75, 94, 103, 104, 109], "agreement": 75, "connected": 75, "amen": 75, "zhe": 75, "cao": [75, 117], "toma": 75, "simon": 75, "shih": 75, "en": 75, "wei": 75, "yaser": 75, "sheikh": 75, "realtim": [75, 100, 101], "_cvpr_": 75, "edgeconnect": 75, "src_peak_ind": 75, "dst_peak_ind": 75, "edgetyp": [75, 84], "src_node_ind": [75, 84], "dst_node_ind": [75, 84], "pafs_strid": 75, "min_instance_peak": 75, "src_node": [75, 84], "dst_node": [75, 84], "subscript": [75, 84], "edge_typ": 75, "sorted_edge_ind": 75, "topolog": 75, "assembli": 75, "assign_connections_to_inst": 75, "finder": 75, "scorer": 75, "min_edge_scor": 75, "group_inst": 75, "match_edge_ind": 75, "match_src_peak_ind": 75, "match_dst_peak_ind": 75, "match_line_scor": 75, "n_connect": 75, "match_candid": 75, "whole": [75, 88, 92, 105, 110], "predicted_peak_scor": 75, "predicted_instance_scor": 75, "standalon": [75, 104], "group_instances_batch": 75, "n_candid": 75, "score_paf_lin": 75, "match_candidates_batch": 75, "score_paf_lines_batch": 75, "peakid": 75, "node_ind": 75, "partit": 75, "filter_connection_candid": 75, "node_type_ind": 75, "instance_assign": 75, "compute_distance_penalti": 75, "spatial_vec_length": 75, "max_edge_length": 75, "peaks_sampl": 75, "apart": 75, "infin": 75, "get_connection_candid": 75, "peak_channel_inds_sampl": 75, "skeleton_edg": 75, "get_paf_lin": 75, "pafs_sampl": 75, "n_line_point": 75, "pretti": [75, 105, 107], "gather_nd": 75, "col": [75, 82], "make_line_sub": 75, "group_instances_sampl": 75, "peak_scores_sampl": 75, "match_edge_inds_sampl": 75, "match_src_peak_inds_sampl": 75, "match_dst_peak_inds_sampl": 75, "match_line_scores_sampl": 75, "match_candidates_sampl": 75, "py_funct": 75, "make_predicted_inst": 75, "peak_scor": 75, "munkr": 75, "scipi": [75, 78, 103], "linear_sum_assign": [75, 82], "tf_linear_sum_assign": [75, 82], "edge_inds_sampl": 75, "edge_peak_inds_sampl": 75, "line_scores_sampl": 75, "paf_lines_sampl": 75, "conncet": 75, "dot": [75, 83], "product": [75, 109], "due": [75, 104], "toposort_edg": 75, "assembl": [75, 116], "root": [75, 107, 109, 110], "sometim": [76, 80, 95, 99, 108], "heatmap": 76, "entail": 76, "maxima": 76, "sample_ind": 76, "find_global_peak": 76, "xy": 76, "find_global_peaks_integr": 76, "find_global_peaks_rough": 76, "find_global_peaks_with_offset": 76, "find_local_peak": 76, "find_local_peaks_integr": 76, "find_local_peaks_rough": 76, "suppres": 76, "find_local_peaks_with_offset": 76, "find_offsets_local_direct": 76, "centered_patch": 76, "delta": 76, "dx_i": 76, "dy_i": 76, "reshap": [76, 103], "float64": [76, 85, 105], "alejandro": 76, "newel": 76, "kaiyu": 76, "yang": 76, "jia": 76, "deng": 76, "_european": 76, "confer": 76, "vision_": 76, "2016": 76, "integral_regress": 76, "x_hat": 76, "y_hat": 76, "make_gaussian_kernel": 76, "odd": 76, "pi": 76, "smooth_img": 76, "smooth": [76, 103], "convolv": 76, "best_logical_device_nam": 77, "placement": [77, 92, 97, 116], "disable_prealloc": [77, 104, 105], "growth": [77, 102, 105, 106, 109], "cuda": [77, 102, 104, 105, 106, 107, 108, 109], "startup": 77, "session": [77, 90, 105, 117], "nix": [77, 89], "enable_gpu_prealloc": 77, "enable_prealloc": 77, "get_all_gpu": 77, "physicaldevic": [77, 102], "unavail": 77, "get_available_gpu": 77, "get_current_gpu": 77, "get_gpu_memori": 77, "mib": [77, 109], "initialize_devic": 77, "is_gpu_system": 77, "discover": 77, "is_initi": 77, "hidden": 77, "logicaldevic": 77, "use_cpu_onli": [77, 104], "hide": [77, 92, 104], "use_first_gpu": 77, "use_gpu": 77, "device_ind": 77, "use_last_gpu": 77, "popul": 78, "pick": [78, 91, 92, 95, 106, 116], "clean": [78, 80, 89], "framematch": [78, 80], "cost_matrix": [78, 79, 82], "unmatched_inst": 78, "instancetyp": [78, 79, 80], "choic": [78, 79, 117], "got": [78, 117], "weren": 78, "from_candidate_inst": 78, "untracked_inst": [78, 80], "candidate_inst": 78, "similarity_funct": [78, 80], "matching_funct": [78, 80], "robust_best_inst": [78, 80], "from_cost_matrix": 78, "robust": [78, 80, 88, 89, 92, 109], "quantil": [78, 80, 89], "has_only_first_choice_match": 78, "is_first_choic": 78, "centroid_dist": 78, "ref_inst": [78, 80], "query_inst": [78, 80], "persist": 78, "connect_single_track_break": 78, "lost": [78, 88, 89, 95, 119], "cull_frame_inst": 78, "instances_list": 78, "iou_threshold": [78, 80], "intersect": [78, 80, 82, 95], "iou": [78, 80, 89, 95], "cull_inst": 78, "factory_object_keypoint_similar": 78, "keypoint_error": 78, "score_weight": 78, "normalization_keypoint": 78, "factori": 78, "first_choice_match": 78, "greedy_match": [78, 80], "bipartit": [78, 80], "hungarian_match": [78, 80], "instance_i": [78, 80], "instance_similar": [78, 80], "nms_fast": 78, "target_count": 78, "pyimagesearch": 78, "suppress": 78, "normalized_instance_similar": 78, "img_hw": [78, 80], "Then": [79, 91, 94, 97, 102, 105, 110, 120], "fragment": 79, "mess": 79, "get_track_instance_match": 79, "are_too_close_funct": 79, "ascend": 79, "whenev": 79, "wasn": [79, 107], "upshot": 79, "compet": 79, "looser": 79, "match_dict_from_match_funct": 79, "row_item": 79, "column_item": 79, "match_funct": 79, "key_by_column": 79, "remove_second_bests_from_cost_matrix": 79, "invalid_v": 79, "unclear": 79, "inf": [79, 82], "tool": [80, 93, 95, 100, 102, 115, 119], "link": [80, 104], "basetrack": 80, "flowcandidatemak": 80, "min_point": 80, "img_scal": [80, 89, 108, 109], "of_window_s": [80, 89, 108, 109], "of_max_level": [80, 89, 108, 109], "save_shifted_inst": [80, 89, 109], "track_window": [80, 89, 108, 109], "shifted_inst": 80, "shiftedinst": 80, "optic": [80, 89, 95, 96, 108], "shift": [80, 89, 92, 95], "movement": [80, 92, 113], "pyramid": [80, 89], "flow_shift_inst": 80, "ref_img": 80, "new_img": 80, "min_shifted_point": 80, "window_s": 80, "max_level": 80, "luca": 80, "kanad": 80, "get_shifted_inst": 80, "ref_t": 80, "get_shifted_instances_from_earlier_tim": 80, "prune_shifted_inst": 80, "prune": 80, "older": [80, 102], "flowmaxtrack": [80, 89], "max_track": [80, 89], "candidate_mak": 80, "target_instance_count": [80, 89, 108, 109], "pre_cull_funct": 80, "post_connect_single_break": [80, 89, 108, 109], "min_new_track_point": [80, 89, 108, 109], "track_matching_queu": 80, "dequ": 80, "matchedframeinst": 80, "track_matching_queue_dict": 80, "spawned_track": 80, "save_tracked_inst": 80, "last_match": 80, "flowmaxtrackscandidatemak": 80, "get_ref_inst": 80, "flowtrack": 80, "kalmantrack": 80, "init_track": 80, "init_set": 80, "kalmaninitset": 80, "kalman_track": 80, "barekalmantrack": 80, "cull_funct": 80, "init_frame_count": 80, "re_init_cooldown": 80, "re_init_aft": 80, "init_don": 80, "pre_track": 80, "last_t": 80, "last_init_t": 80, "kalman": [80, 89], "certain": [80, 84, 95, 98, 99], "init": [80, 102, 105, 106, 109], "enough": [80, 88, 93, 95, 99, 117], "gap": 80, "cooldown": 80, "period": 80, "is_valid": 80, "make_track": 80, "node_indic": 80, "instance_iou_threshold": 80, "simplecandidatemak": 80, "simplemaxtrack": [80, 89], "simplemaxtrackscandidatemak": 80, "simpletrack": 80, "trackclean": [80, 95], "veloc": [80, 92, 95], "get_candid": 80, "incorpor": [80, 107], "final_pass": 80, "timestep": 80, "unique_tracks_in_queu": 80, "run_track": 80, "bottomupmodeltrain": 81, "data_read": 81, "dataread": 81, "has_offset": 81, "bottomupmulticlassmodeltrain": 81, "centroidconfmapsmodeltrain": 81, "training_labels_read": 81, "validation_labels_read": 81, "test_labels_read": 81, "labels_config": 81, "video_search_path": 81, "incomplet": 81, "from_label": 81, "singleinstancemodeltrain": 81, "topdownmulticlassmodeltrain": 81, "topdownconfmapsmodeltrain": 81, "pipeline_build": 81, "pipelinebuild": 81, "training_pipelin": 81, "validation_pipelin": 81, "training_viz_pipelin": 81, "validation_viz_pipelin": 81, "optimization_callback": 81, "output_callback": 81, "visualization_callback": 81, "cleanup": 81, "teset": 81, "setup": [81, 86, 107], "create_trainer_using_cli": 81, "get_timestamp": 81, "date": [81, 96, 102, 109], "sanitize_scope_nam": 81, "sanit": 81, "scope": [81, 85], "setup_checkpoint": 81, "setup_loss": 81, "setup_metr": 81, "setup_new_run_fold": 81, "base_run_nam": 81, "setup_optimization_callback": 81, "setup_optim": 81, "optimizerv2": 81, "setup_output_callback": 81, "setup_tensorboard": 81, "setup_visu": 81, "viz_fn": 81, "setup_zmq_callback": 81, "zmq_config": 81, "compute_i": 82, "bbox1": 82, "bbox2": 82, "group_arrai": 82, "blog": [82, 100], "arang": [82, 103], "match_point": 82, "points1": 82, "points2": 82, "m": [82, 83, 85, 87, 89, 95, 96, 100, 101, 105, 108, 109, 110], "inds1": 82, "inds2": 82, "reset_input_lay": 82, "new_shap": 82, "stackoverflow": 82, "58485055": 82, "n_src": 82, "n_dst": 82, "generate_skeleton_preview_imag": 83, "square_bb": 83, "thumbnail_s": 83, "byte": [83, 84, 85], "preview": [83, 84, 88, 98], "thumbnail": 83, "imgfig": 83, "dpi": [83, 105, 107], "tight": 83, "inch": 83, "plot_confmap": 83, "cmap": [83, 103], "color_by_nod": 83, "lw": 83, "color_by_track": 83, "plot_paf": 83, "quiver": 83, "plot_peak": 83, "pts_gt": 83, "pts_pr": 83, "goal": [84, 115, 117], "symmetri": [84, 104], "arm": 84, "as_nod": 84, "from_nam": 84, "name_list": 84, "constitu": 84, "_skeleton_idx": 84, "preview_imag": 84, "_is_templ": 84, "add_edg": 84, "add_nod": 84, "add_symmetri": 84, "node1": 84, "node2": 84, "clear_edg": 84, "delete_edg": 84, "delete_nod": 84, "delete_symmetri": 84, "establish": 84, "edge_to_index": 84, "edges_ful": 84, "find_neighbor": 84, "predecessor": 84, "successor": [84, 101], "find_nod": 84, "find_unique_nod": 84, "from_dict": 84, "node_to_idx": 84, "sto": 84, "json_str": [84, 85], "idx_to_nod": 84, "from_names_and_edge_ind": 84, "get_symmetri": 84, "get_symmetry_nam": 84, "subgraph": 84, "graph_symmetri": 84, "has_edg": 84, "source_nam": 84, "dest_nam": 84, "ye": [84, 97, 100], "has_nod": 84, "is_arboresc": 84, "arboresc": 84, "is_templ": 84, "load_all_hdf5": 84, "return_dict": 84, "h5py": [84, 103, 114], "load_hdf5": 84, "load_mat": 84, "make_cattr": 84, "isomorph": 84, "node_to_index": 84, "relabel_nod": 84, "old_nam": 84, "new_nam": 84, "relabel": 84, "partial": [84, 86, 113], "rename_skeleton": 84, "immut": 84, "hash": 84, "new_skeleton": 84, "old_skeleton": 84, "save_all_hdf5": 84, "save_hdf5": 84, "symmetries_ful": 84, "symmetry_nam": 84, "obj": 84, "skeletondecod": 84, "jsonpickl": 84, "thorax1": 84, "b64": 84, "avzc": 84, "ivbo": 84, "reconstruct": [84, 100], "decode_preview_imag": 84, "img_b64": 84, "return_byt": 84, "pil": 84, "skeletonencod": 84, "neck": 84, "enum": 84, "attr_to_dtyp": 85, "cl": 85, "dict_cut": 85, "subdictionari": 85, "find_files_by_suffix": 85, "root_dir": 85, "depth": [85, 102], "direntri": 85, "subdir": 85, "frame_list": 85, "frame_str": 85, "get_config_fil": 85, "shortnam": 85, "ignore_file_not_found": 85, "get_default": 85, "get_package_fil": 85, "json_dump": 85, "json_load": 85, "make_scoped_dictionari": 85, "flat_dict": 85, "exclude_non": 85, "exclude_nod": 85, "parse_uri_path": 85, "uri": [85, 102], "posix": 85, "save_dict_to_hdf5": 85, "h5file": 85, "dic": 85, "recurs": 85, "uniquifi": 85, "seq": 85, "hashabl": 85, "usable_cpu_count": 85, "usabl": [85, 117], "cpuset": 85, "weak_filename_match": 85, "filename_a": 85, "filename_b": 85, "pkg": [86, 91, 96, 104, 105, 106, 107, 110], "2022": [86, 100, 101], "osf": 86, "quick": [86, 89, 92, 102, 104], "clip": [86, 89, 92, 99, 103, 107, 113, 115], "mice": 86, "home": [86, 92, 101, 102, 104, 107, 108, 109], "cage": 86, "fruit": 86, "fly": 86, "drosophila": [86, 103, 109, 111], "melanogast": [86, 103, 109, 111], "freeli": 86, "enclos": 86, "circular": 86, "arena": 86, "backlight": 86, "camera": [86, 88, 105], "192": [86, 109], "px": [86, 107], "mm": 86, "num": 86, "1500": 86, "download": [86, 87, 89, 90, 100, 102, 103, 104, 105, 106, 107, 108, 110, 111, 112], "credit": 86, "berman": 86, "2014": 86, "gordon": 86, "joshua": [86, 100, 101], "shaevitz": [86, 100, 101], "virgin": 86, "male": [86, 105, 116], "femal": [86, 105, 116], "fli": [86, 103], "nm91": 86, "strain": 86, "dai": 86, "eclos": 86, "frequent": 86, "engag": 86, "courtship": [86, 103, 109, 111], "1024": [86, 103, 104, 105, 107], "150": [86, 107], "4000": 86, "junyu": [86, 100, 101], "li": [86, 100, 101], "shruthi": [86, 100, 101], "ravindranath": [86, 100, 101], "mala": [86, 100, 101], "murthi": [86, 100, 101], "c57bl": 86, "6j": 86, "mu": 86, "musculu": 86, "acryl": 86, "floor": 86, "paw": 86, "1280": 86, "80": [86, 104], "1000": [86, 89, 105], "2950": 86, "uva": [86, 100, 101], "mikhail": [86, 100, 101], "kislin": [86, 100, 101], "samuel": [86, 100, 101], "wang": [86, 100, 101], "swiss": 86, "webster": 86, "musuculu": 86, "lightli": 86, "bed": 86, "1474": 86, "2948": 86, "eleni": [86, 100, 101], "papadoyanni": [86, 100, 101], "annegret": [86, 100, 101], "falkner": [86, 100, 101], "worker": 86, "bumblebe": 86, "bombu": 86, "impatien": 86, "petri": 86, "dish": 86, "hexagon": 86, "beeswax": 86, "minut": [86, 117], "1536": 86, "2048": 86, "804": 86, "1604": 86, "grace": [86, 100, 101], "mckenzi": [86, 100, 101], "smith": [86, 100, 101], "z": [86, 100, 101], "yan": [86, 100, 101], "sarah": [86, 100, 101], "kocher": [86, 100, 101], "pup": 86, "adult": 86, "merion": 86, "unguiculatu": 86, "p15": 86, "month": 86, "shave": 86, "425": [86, 104, 105], "1588": 86, "catalin": [86, 100, 101], "mitelut": [86, 100, 101], "marielisa": [86, 100, 101], "diez": [86, 100, 101], "castro": [86, 100, 101], "dan": [86, 100, 101], "sane": [86, 100, 101], "reactiv": 87, "top_down_id": 87, "workflow": [87, 93, 101, 105, 106, 112, 113, 116, 120], "filecaptur": 87, "toolbox": 87, "editor": [87, 91, 96, 106], "predictcentroid": 87, "predictpos": 87, "modelfilenam": 87, "trainingconfig": 87, "predictposeident": 87, "predictsinglepos": 87, "click": [87, 88, 91, 92, 94, 97, 98, 104, 105, 106, 108, 109, 110, 115, 116, 117, 118, 119], "analyz": [87, 93], "suppli": [88, 96], "wish": [88, 95], "hover": 88, "explan": [88, 114], "worth": 88, "On": [88, 92, 102, 118], "zoom": [88, 92, 98, 116], "pan": 88, "drag": [88, 92, 98, 116, 118], "press": [88, 102, 118], "alt": [88, 92, 102, 116, 118], "rule": [88, 97], "thumb": [88, 97], "accur": [88, 101, 113, 115, 117], "likewis": [88, 109], "unaug": 88, "choos": [88, 92, 94, 95, 96, 97, 114, 116, 117, 119], "nonn": 89, "exit": 89, "incorrectli": [89, 92], "colab": [89, 91, 93, 102, 103, 104, 105, 106, 108, 112, 117], "val_label": [89, 109], "save_viz": [89, 109], "keep_viz": 89, "training_job_path": [89, 109], "resum": 89, "export_path": 89, "preced": 89, "r": [89, 92, 103, 104, 105, 106, 109, 113, 114], "ommit": 89, "hpc": 89, "clean_instance_count": [89, 108, 109], "proofread": [89, 92, 93, 96, 101, 113, 116, 120], "pre_cull_to_target": [89, 108, 109], "pre_cull_iou_threshold": [89, 108, 109], "clean_iou_threshold": [89, 108, 109], "min_match_point": [89, 108, 109], "kf_node_indic": [89, 109], "kf_init_frame_count": [89, 109], "comma": 89, "hyphen": 89, "did": 89, "cap": 89, "normalized_inst": [89, 95], "object_keypoint": [89, 95], "my_model": 89, "output_predict": 89, "input_video": 89, "labels_with_predict": 89, "v005": 89, "retrack": [89, 105, 108], "input_predict": 89, "amongst": [89, 96], "input_path": 89, "convent": 89, "preceed": 89, "analysis_video_0": 89, "001_second": 89, "session1": 89, "f": [89, 95, 102, 103, 104, 105, 107, 114], "video_index": 89, "script": [89, 91, 105, 106, 112], "widget": 89, "walk": [90, 112, 120], "colaboratori": [90, 112], "host": [90, 109], "servic": 90, "server": [90, 102], "think": [90, 98, 100], "hour": 90, "sooner": 90, "idl": 90, "demand": 90, "pai": 90, "pro": 90, "hardwar": 90, "sai": 90, "lenient": 90, "drive": [90, 92, 96, 103, 106, 108], "univers": [90, 101], "suit": 90, "educ": 90, "unlimit": 90, "dropbox": [90, 106], "microsoft": 90, "onedr": 90, "appl": [90, 101, 102], "icloud": 90, "elsewher": [90, 92], "perhap": 90, "plan": 90, "tri": [90, 95, 100], "explain": [91, 95, 96], "decid": [91, 92, 94], "hyperpamet": 91, "But": [91, 95, 96, 104, 105, 106, 108], "sound": 91, "intimid": 91, "menu": [91, 94, 95, 98, 100, 102, 109, 110, 114, 116, 117, 118, 119], "advic": 91, "wherev": 91, "sh": [91, 102], "unzip": [91, 96, 107, 109, 110], "sleap_label": 92, "keyboard": [92, 94, 95], "suppos": [92, 94, 95, 96, 116], "realiz": 92, "join": [92, 95, 107], "clipboard": 92, "toggl": [92, 94, 116], "shown": [92, 94, 95, 116], "yellow": [92, 115, 119], "cycl": [92, 95, 117], "sixth": 92, "orang": [92, 95, 116], "thin": [92, 95, 115], "trail": [92, 95, 103], "250": [92, 104], "500": 92, "signific": 92, "lag": 92, "header": 92, "dock": 92, "outlin": 92, "highlight": 92, "propag": [92, 95], "entireti": 92, "deselect": 92, "withheld": 92, "why": 92, "preform": 92, "ever": 92, "rectangular": 92, "rectangl": 92, "tabl": [92, 109, 116], "wheel": [92, 116], "mac": [92, 102, 116, 118], "substitut": 92, "arrow": 92, "medium": 92, "legend": [92, 95, 103, 107], "escap": 92, "throughout": 92, "variat": 92, "jump": [92, 95], "comprehens": 93, "troubleshoot": 93, "answer": 93, "tip": [93, 100, 119], "happi": [93, 95], "scratch": [94, 106, 109, 115], "uncorrect": 94, "guess": 94, "tutori": [94, 95, 100, 101, 108, 113, 117], "familiar": 94, "neither": 94, "haven": [95, 98, 102, 118], "obvious": 95, "big": 95, "chosen": [95, 110], "xiao": 95, "exp": 95, "maxim": [95, 100, 117], "navig": 95, "cross": [95, 96], "checkbox": 95, "caus": 95, "mistaken": [95, 119], "harder": 95, "techniqu": 95, "seekbar": [95, 115, 116, 117, 119], "mistak": [95, 119], "strategi": [95, 101], "mous": [95, 116], "misidentifi": [95, 119], "knew": 95, "wouldn": 95, "gotten": 95, "50": [95, 103, 104, 107], "hotkei": 95, "downsid": 95, "panel": [95, 109, 116, 118, 119], "appendag": 95, "fact": 95, "adjac": [95, 100], "submenu": [95, 119], "bundl": 96, "linux": [96, 101, 102, 104, 105, 106, 107, 108, 109, 118], "mount": [96, 106, 108], "training_profil": [96, 109], "baseline_medium_rf": [96, 109], "191205_162402": 96, "191205_163413": 96, "essenti": 97, "With": 97, "my": [97, 110], "tree": [97, 103, 107, 109], "children": 97, "littl": [97, 99], "complic": 97, "ran": 98, "amount": [98, 113], "tweak": [99, 108], "adopt": 99, "weird": 99, "squeez": 99, "email": 99, "bit": [99, 108, 117], "screenshot": 99, "stuck": 100, "crash": 100, "toolkit": [100, 102], "v11": [100, 102], "cudnn": [100, 102, 105, 106, 109], "v8": [100, 102], "neurosci": [100, 101], "overview": [100, 101, 104, 120], "hang": 100, "acquisit": [100, 105], "suitabl": 100, "vision": 100, "seekabl": 100, "consequ": [100, 113], "pix_fmt": 100, "yuv420p": 100, "nearli": 100, "highli": 100, "websit": [100, 102], "soon": [100, 109, 110], "situat": 100, "friend": 100, "love": 100, "hear": 100, "stori": 100, "came": 100, "cite": [100, 101], "bibtex": [100, 101], "citat": 100, "manag": 100, "pereira2022sleap": [100, 101], "tabri": [100, 101], "nathaniel": [100, 101], "matsliah": [100, 101], "ari": [100, 101], "turner": [100, 101], "david": [100, 101], "normand": [100, 101], "edna": [100, 101], "deutsch": [100, 101], "l": [100, 101, 104, 105, 106, 110], "journal": [100, 101], "volum": [100, 101], "year": [100, 101], "forum": 100, "anonym": 100, "transmit": 100, "broadest": 100, "userbas": 100, "sens": 100, "fund": [100, 101], "agenc": 100, "opt": 100, "launch": [100, 102, 118], "os": 101, "rapidli": 101, "customiz": [101, 112], "deliv": 101, "60": 101, "600": 101, "10m": 101, "app": [101, 102, 110, 118], "strongli": [101, 102], "miniconda": [101, 118], "forg": [101, 102, 104, 105, 106, 108], "nvidia": [101, 102, 104, 105, 106, 108, 109], "anaconda": [101, 102, 118], "silicon": [101, 102], "pypi": [101, 102, 104, 105, 106, 107, 108, 109, 110], "watch": 101, "aoc": 101, "2023": [101, 104, 105, 106, 107, 108, 109], "workshop": 101, "cbmm": 101, "quantif": 101, "2020": 101, "research": 101, "j": 101, "talmop": 101, "twitter": 101, "inquiri": 101, "institut": 101, "biolog": 101, "studi": 101, "liezl": 101, "mare": 101, "arlo": 101, "sheridan": 101, "princeton": 101, "nat": 101, "lewi": 101, "sigler": 101, "lab": [101, 102], "collabor": 101, "nih": 101, "brain": 101, "r01": 101, "ns104899": 101, "innov": 101, "acceler": [101, 102, 105, 106, 109, 110, 113], "bsd": 101, "academ": 101, "commerci": 101, "lauri": 101, "tzodikov": 101, "assist": [101, 113, 117, 120], "director": 101, "offic": 101, "technologi": 101, "609": 101, "258": 101, "7256": 101, "newest": 102, "enter": [102, 117, 118], "cmder": [102, 118], "ctrl": [102, 118], "cmd": [102, 118], "isol": 102, "solver": 102, "libmamba": 102, "mamba": 102, "wider": 102, "intel": 102, "powershel": 102, "admin": 102, "webrequest": 102, "miniforge3": 102, "x86_64": [102, 104, 105, 106, 107, 108, 109], "outfil": 102, "userprofil": 102, "argumentlist": 102, "installationtyp": 102, "justm": 102, "registerpython": 102, "curl": [102, 105, 106], "fssl": 102, "chmod": 102, "p": 102, "rm": [102, 104, 109], "bin": [102, 105, 109], "basenam": 102, "shell": 102, "rc": 102, "macosx": 102, "arm64": 102, "compani": 102, "repo": 102, "miniconda3": 102, "del": 102, "mkdir": [102, 109], "wget": [102, 103, 104, 107, 108, 109], "bash": 102, "driver": 102, "recogn": 102, "clone": 102, "talmolab": [102, 103, 104, 105, 106, 107, 108, 109], "cd": 102, "yml": 102, "environment_no_cuda": 102, "environment_mac": 102, "sleap_develop": 102, "venv": 102, "cudatoolkit": 102, "refrain": 102, "ship": 102, "jupyt": [102, 112], "conda_jupyt": 102, "conda_dev": 102, "moment": 102, "\u03bb": 102, "19041": 102, "sp0": 102, "system_summari": [102, 104, 105, 106, 108], "physical_devic": [102, 105, 106, 109], "list_physical_devic": 102, "device_typ": 102, "interfer": 102, "downgrad": 102, "stream_executor": [102, 104, 105, 106, 107, 108, 109], "platform": [102, 104, 105, 106, 107, 108, 109], "dso_load": [102, 104, 107, 108], "cc": [102, 104, 105, 106, 107, 108, 109], "libcudart": [102, 104, 107, 108], "dlerror": [102, 104, 107, 108], "conda_prefix": 102, "echo": 102, "sleap_activ": 102, "sleap_old_ld_library_path": 102, "ld_library_path": [102, 104, 107, 108], "lib": [102, 104, 107, 108, 109], "deactiv": 102, "sleap_deactiv": 102, "de": 102, "diagnost": 102, "saw": 102, "advis": 103, "3000": 103, "analysis_exampl": [103, 104, 105, 106], "2021": [103, 104, 105], "140": 103, "113": [103, 109], "443": [103, 104, 105, 109], "await": [103, 104, 109], "302": [103, 109], "githubusercont": [103, 109], "151": [103, 105, 106, 107, 109], "101": [103, 106, 109], "133": [103, 109], "551501": 103, "539k": 103, "octet": [103, 104, 109], "538": 103, "58k": 103, "kb": [103, 104], "mb": [103, 104, 105, 106, 109], "seaborn": [103, 107], "dset_nam": 103, "enumer": 103, "abdomen": [103, 104, 105, 106, 109], "wingl": [103, 104, 105, 106, 109], "wingr": [103, 104, 105, 106, 109], "forelegl4": [103, 104, 105, 106, 109], "forelegr4": [103, 104, 105, 106, 109], "midlegl4": [103, 104, 105, 106, 109], "midlegr4": [103, 104, 105, 106, 109], "hindlegl4": [103, 104, 105, 106, 109], "hindlegr4": [103, 104, 105, 106, 109], "eyel": [103, 104, 105, 106, 109], "eyer": [103, 104, 105, 106, 109], "frame_count": [103, 105], "node_count": 103, "interp1d": 103, "def": [103, 105], "initial_shap": 103, "dim": [103, 104, 107], "flatnonzero": 103, "fill_valu": 103, "bounds_error": 103, "xq": 103, "interp": 103, "restor": 103, "head_index": 103, "thorax_index": 103, "abdo_index": 103, "head_loc": 103, "thorax_loc": 103, "abdo_loc": 103, "sn": [103, 107], "mpl": [103, 107], "pyplot": [103, 105, 107], "plt": [103, 105, 107], "tick": 103, "font_scal": 103, "rcparam": 103, "figsiz": [103, 105, 107], "loc": [103, 107], "xlim": 103, "xtick": 103, "ylim": 103, "ytick": 103, "differenti": 103, "savitzki": 103, "golai": 103, "savgol_filt": 103, "smooth_diff": 103, "node_loc": 103, "win": 103, "poli": 103, "polynomi": 103, "node_loc_vel": 103, "zeros_lik": 103, "deriv": 103, "node_vel": 103, "linalg": 103, "thx_vel_fly0": 103, "thx_vel_fly1": 103, "fig": 103, "ax1": 103, "add_subplot": 103, "211": 103, "set_xtick": 103, "set_titl": 103, "ax2": 103, "212": [103, 105], "sharex": 103, "imshow": 103, "newaxi": 103, "vmin": 103, "vmax": 103, "set_ytick": 103, "121": 103, "set_xlim": 103, "set_ylim": 103, "kp": 103, "122": 103, "scatter": 103, "panda": [103, 107], "pd": [103, 107], "corr_rol": 103, "datax": 103, "datai": 103, "timeseri": 103, "correl": 103, "s1": 103, "s2": 103, "roll": 103, "corr": 103, "cov_vel": 103, "subplot": 103, "markers": 103, "tight_layout": 103, "instance_node_veloc": 103, "instance_idx": 103, "fly_node_loc": 103, "fly_node_veloc": 103, "plot_instance_node_veloc": 103, "node_veloc": 103, "xlabel": [103, 105, 107], "ylabel": [103, 105, 107], "fly_id": 103, "sklearn": 103, "nstate": 103, "km": 103, "fit_predict": 103, "set_xlabel": 103, "set_ylabel": 103, "set_yticklabel": 103, "tab10": 103, "ethogram": 103, "explor": [104, 105, 106, 108], "tail": 104, "plai": 104, "cell": [104, 105, 106, 108], "restart": [104, 105, 106, 108], "uninstal": [104, 105, 106, 107, 108, 109, 110], "qqq": [104, 105, 106, 107, 108, 109, 110], "contrib": [104, 105, 106, 107, 108, 109, 110], "googleapi": [104, 105, 106, 107], "flies13": [104, 105, 107], "190719_090330_wt_18159206_rig1": [104, 105], "4015000": [104, 105], "17560": [104, 105], "bu": [104, 105, 106, 109], "210506_230852": 104, "3d1800": [104, 105, 107], "210504_182918": [104, 105], "td_fast": [104, 105, 107], "210505_012601": [104, 105, 107], "142": 104, "176": 104, "144": [104, 109], "172": 104, "217": 104, "85343812": 104, "81m": 104, "15000": [104, 105], "190719_090330_wt_18": 104, "39m": 104, "7mb": 104, "188": 104, "240": [104, 105], "1581400": 104, "51m": 104, "99mb": 104, "189": 104, "6372537": 104, "1m": [104, 105, 109], "1800": [104, 105, 107], "21050": 104, "08m": 104, "112": 104, "30775963": 104, "29m": 104, "210505_0126": 104, "35m": [104, 109], "3mb": 104, "lah": [104, 105, 106], "239m": 104, "drwxrwxr": [104, 105, 106], "0k": [104, 105, 106], "aug": [104, 105, 106], "rw": [104, 105, 106], "82m": [104, 105], "6m": [104, 105], "jun": [104, 105, 106], "00": [104, 105, 106, 109], "713k": [104, 105, 106], "ipynb": [104, 105, 106], "486k": 104, "data_structur": [104, 105, 106], "1k": [104, 105, 106], "rst": [104, 105, 106], "197k": [104, 105], "interactive_and_realtime_infer": [104, 105, 106], "398k": 104, "interactive_and_resumable_train": [104, 105, 106], "149k": 104, "model_evalu": [104, 105, 106], "150k": 104, "post_inference_track": [104, 105, 106], "5k": 104, "training_and_inference_on_an_example_dataset": [104, 105, 106], "12k": [104, 105, 106], "training_and_inference_using_google_dr": [104, 105, 106], "989133": 104, "cpu_feature_guard": [104, 105, 106, 107, 109], "193": 104, "oneapi": [104, 105, 106, 107, 109], "onednn": [104, 105, 106, 107, 109], "avx2": [104, 105, 106, 107, 109], "avx512f": [104, 105, 106, 107, 109], "avx512_vnni": 104, "fma": [104, 105, 106, 107, 109], "compil": [104, 105, 106, 107, 109], "058048": 104, "104": 104, "slightli": 104, "tf_enable_onednn_opt": 104, "060007": 104, "xla": 104, "micromamba": [104, 107, 108, 109], "sleap_jupyt": [104, 107, 108], "python3": [104, 107, 108], "site": [104, 107, 108], "cv2": [104, 107, 108], "lib64": [104, 107, 108], "060013": 104, "cudart_stub": [104, 107, 108], "cudart": [104, 107, 108], "445179": 104, "libnvinf": 104, "445232": 104, "libnvinfer_plugin": 104, "445236": 104, "tf2tensorrt": 104, "py_util": 104, "trt": 104, "dlopen": [104, 107, 108], "tensorrt": 104, "mention": [104, 107, 108], "debian": [104, 105, 106, 107, 108, 109], "bookworm": [104, 105, 106, 107, 108, 109], "sid": [104, 105, 106, 107, 108, 109], "223182": 104, "cuda_gpu_executor": [104, 105, 106, 107, 108, 109], "981": 104, "success": [104, 105, 106, 107, 108, 109, 117], "numa": [104, 105, 106, 107, 108, 109], "sysf": [104, 105, 106, 107, 108, 109], "223923": 104, "223968": 104, "libcubla": [104, 107, 108], "223999": 104, "libcublaslt": [104, 107, 108], "224028": 104, "libcufft": [104, 107, 108], "224057": 104, "libcurand": [104, 107, 108], "224084": 104, "libcusolv": [104, 107, 108], "224111": 104, "libcuspars": [104, 107, 108], "224140": 104, "libcudnn": [104, 107, 108], "224144": 104, "common_runtim": [104, 105, 106, 107, 108, 109], "gpu_devic": [104, 105, 106, 107, 108, 109], "1934": 104, "blow": 104, "agnost": 104, "And": [104, 109], "2560": [104, 105], "498908": 104, "923466": 104, "grappler": [104, 107], "op_level_cost_estim": [104, 107], "690": [104, 107], "predictcost": [104, 107], "cropandres": [104, 107], "dt_float": [104, 107], "extrapolation_valu": [104, 107], "dt_int32": [104, 107], "vendor": [104, 107], "genuineintel": [104, 107], "3600": [104, 107], "num_cor": [104, 107], "cpu_instruction_set": [104, 107], "avx": [104, 107], "sse": [104, 107], "sse2": [104, 107], "sse3": [104, 107], "ssse3": [104, 107], "sse4": [104, 107], "eigen": [104, 107], "90": [104, 105, 107], "l1_cache_s": [104, 107], "49152": [104, 107], "l2_cache_s": [104, 107], "524288": [104, 107], "l3_cache_s": [104, 107], "16777216": [104, 107], "memory_s": [104, 107], "268435456": [104, 107], "923717": 104, "dt_uint8": [104, 107], "926044": 104, "234": [104, 105], "430": [104, 105], "271": [104, 105], "436": [104, 105], "308": [104, 105], "438": [104, 105], "321": [104, 105], "440": [104, 105], "322": [104, 105], "246": [104, 105], "450": [104, 105], "242": [104, 105], "413": [104, 105], "285": [104, 105], "459": [104, 105], "272": [104, 105], "317": [104, 105], "441": [104, 105], "245": [104, 105], "420": [104, 105], "319": [104, 105], "435": [104, 105], "354": [104, 105], "368": 104, "433": [104, 105], "393": [104, 105, 109], "480": 104, "398": [104, 105], "307": [104, 105], "445": [104, 105], "305": [104, 105], "421": [104, 105], "325": [104, 105], "475": [104, 105], "331": [104, 105], "385": [104, 105], "363": [104, 105], "474": [104, 105], "376": 104, "329": [104, 105], "327": [104, 105], "24440002441406": 104, "52008056640625": 104, "9790770411491394": 104, "58941650390625": 104, "1461486816406": 104, "9358043670654297": 104, "02960205078125": 104, "57135009765625": 104, "5861632227897644": 104, "81768798828125": 104, "08721923828125": 104, "39127233624458313": 104, "0193176269531": 104, "7702941894531": 104, "48629727959632874": 104, "14295959472656": 104, "5621643066406": 104, "9176925420761108": 104, "2632598876953": 104, "9497375488281": 104, "780803382396698": 104, "78155517578125": 104, "91552734375": 104, "47393468022346497": 104, "280029296875": 104, "71759033203125": 104, "7721256017684937": 104, "598876953125": 104, "6053466796875": 104, "296230286359787": 104, "10415649414062": 104, "9450378417969": 104, "8855596780776978": 104, "32009887695312": 104, "9360656738281": 104, "9200019240379333": 104, "concret": 104, "pt": 104, "24440002": 104, "52008057": 104, "5894165": 104, "14614868": 104, "02960205": 104, "5713501": 104, "81768799": 104, "08721924": 104, "01931763": 104, "77029419": 104, "14295959": 104, "56216431": 104, "26325989": 104, "94973755": 104, "78155518": 104, "91552734": 104, "2800293": 104, "71759033": 104, "59887695": 104, "60534668": 104, "10415649": 104, "94503784": 104, "32009888": 104, "93606567": 104, "labels_with_imag": [104, 105], "pure": 105, "forget": [105, 106], "31merror": [105, 106, 109, 110], "0m": [105, 106, 107, 109, 110], "31m": [105, 106, 109, 110], "shiboken2": [105, 106, 109, 110], "reinstal": [105, 106, 109, 110], "dep": [105, 106, 109, 110], "731425": 105, "735933": 105, "736867": 105, "centered_instance_id_model": 105, "td_id": 105, "210519_111253": 105, "xferd": [105, 106], "dload": [105, 106], "upload": [105, 106, 108], "spent": [105, 106], "3m": 105, "7m": 105, "6223k": 105, "2m": 105, "1g": 105, "sep": [105, 106], "33m": 105, "481k": [105, 106], "661k": 105, "fly_clip": [105, 108], "120k": [105, 106], "620m": [105, 106], "158k": 105, "157k": [105, 106], "412k": 105, "422k": 105, "78m": 105, "89m": 105, "trained_model": [105, 109], "94k": [105, 106], "806004": 105, "807011": 105, "807970": 105, "808962": 105, "103658": 105, "104377": 105, "105059": 105, "106019": 105, "1525": [105, 106, 109], "localhost": [105, 106, 109], "replica": [105, 106, 109], "21129": 105, "rtx": [105, 106, 109], "a5000": [105, 106, 109], "pci": [105, 106, 109], "0000": [105, 106, 109], "455046": 105, "cuda_dnn": [105, 106, 109], "366": [105, 106, 109], "8201": [105, 106, 109], "358483": 105, "cuda_bla": [105, 106, 109], "1774": [105, 106, 109], "tensorfloat": [105, 106, 109], "427": 105, "252": 105, "288": 105, "439": 105, "304": 105, "306": 105, "216": 105, "410": 105, "244": 105, "471": 105, "408": 105, "275": 105, "292": 105, "412": 105, "220": 105, "223": 105, "417": 105, "313": 105, "432": 105, "348": 105, "378": 105, "397": 105, "428": 105, "394": 105, "446": 105, "422": 105, "341": 105, "332": 105, "386": 105, "458": 105, "387": 105, "323": 105, "442": 105, "320": 105, "rec": 105, "51400757": 105, "426": 105, "97024536": 105, "251": 105, "97747803": 105, "08648682": 105, "64355469": 105, "3086853": 105, "53396606": 105, "33477783": 105, "20336914": 105, "77227783": 105, "24688721": 105, "47549438": 105, "14550781": 105, "409": 105, "98342896": 105, "39497375": 105, "31561279": 105, "61740112": 105, "89056396": 105, "274": 105, "97470093": 105, "1831665": 105, "2600708": 105, "411": 105, "95904541": 105, "219": 105, "98565674": 105, "437": 105, "97906494": 105, "75566101": 105, "5496521": 105, "176m": 105, "2224": 105, "62598": 105, "5043": 105, "13202": 105, "309": 105, "87125": 105, "64966": 105, "324": 105, "12512": 105, "3908": 105, "3458": 105, "9504": 105, "42352": 105, "67786": 105, "37636": 105, "81458": 105, "5624": 105, "460": 105, "22766": 105, "273": 105, "45117": 105, "51895": 105, "241": 105, "9716": 105, "32303": 105, "46788": 105, "90228": 105, "80017": 105, "48407": 105, "351": 105, "93695": 105, "434": 105, "0301": 105, "369": 105, "43228": 105, "431": 105, "78564": 105, "89014": 105, "481": 105, "0584": 105, "4241": 105, "429": 105, "79565": 105, "42896": 105, "419": 105, "3896": 105, "67926": 105, "0098": 105, "97974": 105, "30814": 105, "66406": 105, "473": 105, "9354": 105, "377": 105, "3852": 105, "13065": 105, "328": 105, "40244": 105, "51434": 105, "1667": 105, "423": 105, "94733": 105, "36913": 105, "38037": 105, "65576": 105, "0479": 105, "311": [105, 109], "6751": 105, "00995": 105, "48315": 105, "1421": 105, "20544": 105, "06784": 105, "43257": 105, "61487": 105, "3986": 105, "8269": 105, "565": 105, "00977": 105, "78204": 105, "46442": 105, "11816": 105, "0634": 105, "55441": 105, "7281": 105, "03793": 105, "2389": 105, "353": 105, "87274": 105, "77695": 105, "370": 105, "67218": 105, "9711": 105, "91922": 105, "09735": 105, "399": 105, "77133": 105, "25983": 105, "48993": 105, "82016": 105, "90115": 105, "94632": 105, "0652": 105, "65408": 105, "70728": 105, "68225": 105, "30194": 105, "72806": 105, "15356": 105, "48532": 105, "624": 105, "5559": 105, "06238": 105, "8775": 105, "9898": 105, "312": 105, "13086": 105, "16318": 105, "77222": 105, "65994": 105, "40115": 105, "7244": 105, "44681": 105, "51874": 105, "45566": 105, "7617": 105, "8958": 105, "56442": 105, "66855": 105, "2377": 105, "26588": 105, "80545": 105, "77664": 105, "7662": 105, "46994": 105, "2546": 105, "89484": 105, "93176": 105, "372": 105, "25574": 105, "46127": 105, "40717": 105, "479": 105, "5797": 105, "30173": 105, "96054": 105, "9821": 105, "449": 105, "3157": 105, "8817": 105, "52148": 105, "98843": 105, "9167": 105, "17917": 105, "04684": 105, "0318": 105, "50616": 105, "391": 105, "05493": 105, "396": 105, "85666": 105, "16904": 105, "04953": 105, "89996": 105, "52533": 105, "65547": 105, "6946": 105, "38303": 105, "68842": 105, "04352": 105, "86963": 105, "80847": 105, "3792": 105, "84747": 105, "93973": 105, "71852": 105, "451": 105, "2873": 105, "57388": 105, "58414": 105, "286": 105, "164": 105, "461": 105, "83655": 105, "8726": 105, "21753": 105, "43861": 105, "46246": 105, "25829": 105, "48416": 105, "7713": 105, "55927": 105, "356": 105, "25912": 105, "81424": 105, "98462": 105, "9266": 105, "402": 105, "0365": 105, "465": 105, "8439": 105, "7685": 105, "310": 105, "4258": 105, "7895": 105, "16397": 105, "86514": 105, "16724": 105, "9967": 105, "362": 105, "87766": 105, "12836": 105, "390": 105, "43555": 105, "69998": 105, "330": 105, "20596": 105, "4066": 105, "0497": 105, "68896": 105, "51591": 105, "5735": 105, "3791": 105, "4755": 105, "74457": 105, "20264": 105, "24997": 105, "69904": 105, "1339": 105, "8241": 105, "75269": 105, "22192": 105, "58466": 105, "53275": 105, "0668": 105, "6229": 105, "87787": 105, "2068": 105, "3858": 105, "31342": 105, "15892": 105, "27942": 105, "91632": 105, "5178": 105, "588": 105, "3604": 105, "374": 105, "51236": 105, "42508": 105, "405": 105, "0515": 105, "2759": 105, "401": 105, "2467": 105, "2713": 105, "314": 105, "74677": 105, "78735": 105, "76758": 105, "29553": 105, "20752": 105, "6215": 105, "86606": 105, "8446": 105, "472": 105, "95822": 105, "388": 105, "92188": 105, "203": 105, "54233": 105, "43842": 105, "1192": 105, "79416": 105, "54964": 105, "56854": 105, "30457": 105, "13345": 105, "08594": 105, "02444": 105, "13245": 105, "11148": 105, "71674": 105, "81714": 105, "79828": 105, "9629": 105, "6766": 105, "53745": 105, "09372": 105, "14362": 105, "87155": 105, "23718": 105, "4111": 105, "2425": 105, "13495": 105, "83694": 105, "7404": 105, "43884": 105, "4725": 105, "68488": 105, "375": 105, "05853": 105, "87177": 105, "404": 105, "3775": 105, "92688": 105, "39508": 105, "9776": 105, "77365": 105, "6409": 105, "17343": 105, "26575": 105, "44904": 105, "56747": 105, "05463": 105, "54587": 105, "72284": 105, "13287": 105, "25458": 105, "28958": 105, "9332": 105, "74493": 105, "15704": 105, "3947": 105, "1558": 105, "1859": 105, "46423": 105, "5753": 105, "42407": 105, "18854": 105, "80786": 105, "41486": 105, "72241": 105, "9671": 105, "64005": 105, "65726": 105, "9537": 105, "01648": 105, "73447": 105, "31635": 105, "89285": 105, "9849": 105, "21112": 105, "0713": 105, "77327": 105, "9886": 105, "03162": 105, "8643": 105, "5856": 105, "9501": 105, "2166": 105, "29108": 105, "09204": 105, "2633": 105, "97113": 105, "12497": 105, "74753": 105, "16742": 105, "3774": 105, "73508": 105, "5342": 105, "97403": 105, "56894": 105, "469": 105, "3632": 105, "81372": 105, "89886": 105, "641": 105, "67194": 105, "04425": 105, "418": 105, "99023": 105, "232": 105, "79128": 105, "2476": 105, "7884": 105, "45706": 105, "26096": 105, "58252": 105, "67697": 105, "28253": 105, "35138": 105, "4916": 105, "49533": 105, "1817": 105, "4297": 105, "56104": 105, "01126": 105, "4526": 105, "72516": 105, "3869": 105, "284": 105, "4912": 105, "79095": 105, "58961": 105, "1936": 105, "4464": 105, "00543": 105, "69318": 105, "96207": 105, "358": 105, "88284": 105, "98035": 105, "379": 105, "26816": 105, "0259": 105, "7312": 105, "5473": 105, "13306": 105, "02057": 105, "64542": 105, "59024": 105, "46237": 105, "79062": 105, "63318": 105, "9981": 105, "9735": 105, "466": 105, "93915": 105, "87518": 105, "89645": 105, "4858": 105, "98822": 105, "72357": 105, "30713": 105, "9138": 105, "26993": 105, "89908": 105, "6341": 105, "36536": 105, "9696": 105, "63763": 105, "87323": 105, "4065": 105, "7932": 105, "48575": 105, "27322": 105, "48721": 105, "6446": 105, "74454": 105, "08987": 105, "75647": 105, "338": 105, "82465": 105, "17297": 105, "64159": 105, "22705": 105, "54178": 105, "04788": 105, "2764": 105, "7331": 105, "359": 105, "43756": 105, "0462": 105, "8793": 105, "56253": 105, "407": 105, "32346": 105, "448": 105, "95087": 105, "74594": 105, "27792": 105, "315": 105, "46356": 105, "38046": 105, "48642": 105, "8147": 105, "63016": 105, "81934": 105, "73767": 105, "03244": 105, "19778": 105, "1395": 105, "32227": 105, "00305": 105, "94138": 105, "76627": 105, "20728": 105, "03998": 105, "59984": 105, "94275": 105, "68756": 105, "925": [105, 106], "74356": 105, "45367": 105, "3493": 105, "94934": 105, "39355": 105, "09885": 105, "09349": 105, "45755": 105, "8041": 105, "40057": 105, "55066": 105, "6091": 105, "43307": 105, "35394": 105, "9949": 105, "04814": 105, "10544": 105, "36105": 105, "95673": 105, "50397": 105, "86414": 105, "65952": 105, "01282": 105, "381": 105, "80063": 105, "2879": 105, "9239": 105, "02728": 105, "27682": 105, "24774": 105, "42343": 105, "444": 105, "4193": 105, "38232": 105, "35754": 105, "6553": 105, "45853": 105, "8156": 105, "7812": 105, "62988": 105, "58368": 105, "52002": 105, "27118": 105, "3299": 105, "78006": 105, "43085": 105, "03174": 105, "25208": 105, "7414": 105, "57523": 105, "99503": 105, "347": 105, "97897": 105, "64392": 105, "52814": 105, "16394": 105, "4637": 105, "9819": 105, "81857": 105, "35481": 105, "535": 105, "59384": 105, "70065": 105, "50806": 105, "95544": 105, "72635": 105, "96436": 105, "3465": 105, "5469": 105, "239": 105, "56883": 105, "8733": 105, "04318": 105, "60315": 105, "36966": 105, "4342": 105, "360": [105, 106], "08127": 105, "41803": 105, "283": 105, "4751": 105, "8785": 105, "59448": 105, "36377": 105, "55792": 105, "316": 105, "73703": 105, "6411": 105, "78436": 105, "899": 105, "92154": 105, "19464": 105, "91168": 105, "32022": 105, "73245": 105, "457": 105, "32578": 105, "57062": 105, "18298": 105, "334": 105, "3139": 105, "40005": 105, "89133": 105, "64728": 105, "70679": 105, "36255": 105, "08994": 105, "64023": 105, "14267": 105, "50543": 105, "68262": 105, "5147": 105, "82147": 105, "87054": 105, "32256": 105, "4768": 105, "57848": 105, "34476": 105, "7278": 105, "26282": 105, "8772": 105, "77335": 105, "55972": 105, "77054": 105, "95602": 105, "7761": 105, "31602": 105, "2043": 105, "92737": 105, "62262": 105, "1631": 105, "82898": 105, "76257": 105, "35846": 105, "0152": 105, "79132": 105, "68118": 105, "318": 105, "88504": 105, "35867": 105, "8374": 105, "72562": 105, "326": [105, 109], "25244": 105, "88055": 105, "2403": 105, "27567": 105, "44467": 105, "21188": 105, "84778": 105, "12372": 105, "335": 105, "4058": 105, "62274": 105, "9344": 105, "79385": 105, "12885": 105, "08496": 105, "77728": 105, "3099": 105, "81348": 105, "31982": 105, "3584": 105, "60254": 105, "39813": 105, "222": 105, "91586": 105, "43195": 105, "6026": 105, "74078": 105, "7489": 105, "09384": 105, "8778": 105, "4865": 105, "287": 105, "56982": 105, "68353": 105, "8655": 105, "80096": 105, "19046": 105, "23196": 105, "46782": 105, "99805": 105, "60196": 105, "36603": 105, "8261": 105, "19696": 105, "17218": 105, "47867": 105, "81366": 105, "09143": 105, "99658": 105, "15668": 105, "84363": 105, "00012": 105, "57254": 105, "2615": 105, "333": 105, "60617": 105, "467": 105, "9318": 105, "6039": 105, "32465": 105, "44635": 105, "16357": 105, "92133": 105, "11078": 105, "336": 105, "72043": 105, "8229": 105, "6642": 105, "31372": 105, "83435": 105, "26373": 105, "11572": 105, "61078": 105, "17926": 105, "66278": 105, "83746": 105, "15924": 105, "40552": 105, "6441": 105, "87045": 105, "41144": 105, "64131": 105, "59937": 105, "06647": 105, "35507": 105, "84183": 105, "3719": 105, "41534": 105, "61237": 105, "42723": 105, "2208": 105, "4097": 105, "95218": 105, "3499": 105, "52005": 105, "361": 105, "36267": 105, "389": 105, "47607": 105, "60114": 105, "6601": 105, "50894": 105, "51843": 105, "6943": 105, "90283": 105, "82428": 105, "70898": 105, "5036": 105, "345": 105, "66882": 105, "1757": 105, "79486": 105, "46274": 105, "46533": 105, "10553": 105, "24854": 105, "009": 105, "337": 105, "8076": 105, "06436": 105, "29004": 105, "49707": 105, "41422": 105, "4673": 105, "8141": 105, "7682": 105, "01324": 105, "98956": 105, "19714": 105, "71683": 105, "71207": 105, "39133": 105, "85786": 105, "4593": 105, "5914": 105, "65207": 105, "67142": 105, "77646": 105, "7307": 105, "5118": 105, "71594": 105, "21155": 105, "99216": 105, "57278": 105, "243": 105, "82819": 105, "339": 105, "47983": 105, "74188": 105, "93173": 105, "2397": 105, "49423": 105, "05255": 105, "68115": 105, "6671": 105, "5454": 105, "09042": 105, "30078": 105, "80396": 105, "82977": 105, "7456": 105, "64886": 105, "89554": 105, "84995": 105, "1559": 105, "78146": 105, "11206": 105, "5744": 105, "94125": 105, "9305": 105, "99496": 105, "5468": 105, "42017": 105, "05379": 105, "01157": 105, "71146": 105, "17175": 105, "08688": 105, "66077": 105, "65015": 105, "097": 105, "3269": 105, "45065": 105, "67744": 105, "92798": 105, "56874": 105, "94662": 105, "72803": 105, "462": 105, "40347": 105, "67886": 105, "66385": 105, "6862": 105, "8137": 105, "559": 105, "416": 105, "42374": 105, "62582": 105, "11035": 105, "73026": 105, "8417": 105, "30188": 105, "77295": 105, "364": 105, "57666": 105, "20844": 105, "32507": 105, "96838": 105, "414": 105, "35016": 105, "2262": 105, "04324": 105, "17578": 105, "63538": 105, "82654": 105, "36795": 105, "21204": 105, "9988": 105, "7216": 105, "20065": 105, "24988": 105, "20847": 105, "9794": 105, "04962": 105, "340": 105, "75934": 105, "0198": 105, "4428": 105, "33124": 105, "9914025": 105, "9798533": 105, "7552497": 105, "45417705": 105, "49756864": 105, "8265212": 105, "89824754": 105, "7941327": 105, "81785023": 105, "05611448": 105, "06403984": 105, "88647026": 105, "96359974": 105, "9033977": 105, "25969282": 105, "6343123": 105, "8396003": 105, "7613073": 105, "04938014": 105, "84057474": 105, "8820076": 105, "8816869": 105, "8243384": 105, "33521563": 105, "8434063": 105, "8127704": 105, "9598888": 105, "97341204": 105, "6766811": 105, "35414153": 105, "49778372": 105, "883279": 105, "9271338": 105, "7989652": 105, "7574282": 105, "04437362": 105, "06203796": 105, "8609162": 105, "89723104": 105, "8814398": 105, "43337214": 105, "6627722": 105, "8388201": 105, "71751094": 105, "08318384": 105, "7553143": 105, "8750135": 105, "8972577": 105, "85390973": 105, "87049603": 105, "84071857": 105, "8853136": 105, "9277581": 105, "9876475": 105, "71884066": 105, "36052382": 105, "53324103": 105, "89681005": 105, "92098916": 105, "8180281": 105, "6177351": 105, "0311976": 105, "07055778": 105, "83666444": 105, "8608399": 105, "8386477": 105, "58817774": 105, "72051835": 105, "7902795": 105, "7041355": 105, "2181147": 105, "76299024": 105, "8507803": 105, "8824023": 105, "8892915": 105, "8559173": 105, "83882904": 105, "9163557": 105, "9318335": 105, "0054291": 105, "7037247": 105, "44776785": 105, "55141157": 105, "8751741": 105, "8788193": 105, "7378067": 105, "6061791": 105, "06516132": 105, "145283": 105, "81688696": 105, "88854957": 105, "85625255": 105, "86021763": 105, "82891417": 105, "5004723": 105, "8896506": 105, "15082283": 105, "57127994": 105, "86683005": 105, "94244254": 105, "8910252": 105, "9375356": 105, "92730576": 105, "8518939": 105, "9335175": 105, "98755246": 105, "66180676": 105, "5590857": 105, "5017098": 105, "89124495": 105, "8839093": 105, "77439654": 105, "5733776": 105, "0646795": 105, "12731166": 105, "816599": 105, "90029544": 105, "9238624": 105, "8279644": 105, "7274184": 105, "8509916": 105, "9116395": 105, "21640316": 105, "4109717": 105, "92344654": 105, "8912647": 105, "8676515": 105, "91081876": 105, "9236755": 105, "9313457": 105, "9660537": 105, "97779256": 105, "6795893": 105, "5347014": 105, "49429995": 105, "89868015": 105, "88998085": 105, "82294524": 105, "49898362": 105, "14230077": 105, "13475017": 105, "8461558": 105, "89860517": 105, "8971772": 105, "85703963": 105, "743163": 105, "87278444": 105, "90552235": 105, "19766915": 105, "33566353": 105, "89383173": 105, "87157995": 105, "83140534": 105, "92693084": 105, "9499294": 105, "85782766": 105, "9214447": 105, "9804845": 105, "6575725": 105, "46105212": 105, "5740245": 105, "88368326": 105, "89460224": 105, "81119704": 105, "50101817": 105, "24979575": 105, "16411652": 105, "83694774": 105, "9241573": 105, "8916": 105, "87129986": 105, "7239725": 105, "8828186": 105, "7020806": 105, "16116264": 105, "36204475": 105, "8973187": 105, "8997571": 105, "51675177": 105, "89034307": 105, "98887885": 105, "88438815": 105, "8979453": 105, "97743154": 105, "5481076": 105, "523632": 105, "570176": 105, "8288708": 105, "9113763": 105, "9194614": 105, "575856": 105, "07603623": 105, "21255928": 105, "9018014": 105, "9266098": 105, "91993105": 105, "8616991": 105, "781426": 105, "7750215": 105, "85324234": 105, "14189687": 105, "5463986": 105, "8761287": 105, "93542594": 105, "50916994": 105, "87139845": 105, "8620718": 105, "9169966": 105, "90489644": 105, "9633726": 105, "6176859": 105, "6120859": 105, "53412354": 105, "8082982": 105, "9141492": 105, "8100913": 105, "7064677": 105, "07797408": 105, "28660768": 105, "9255538": 105, "9081669": 105, "9197768": 105, "89081717": 105, "7697851": 105, "850639": 105, "8240589": 105, "2276387": 105, "7375747": 105, "9573141": 105, "95667875": 105, "7197965": 105, "8762751": 105, "8575352": 105, "8765895": 105, "9522048": 105, "96551245": 105, "72864616": 105, "5890152": 105, "561211": 105, "7051566": 105, "9421855": 105, "39786857": 105, "7715297": 105, "6171893": 105, "06328589": 105, "0118455": 105, "886791": 105, "9031525": 105, "9011465": 105, "7290425": 105, "84665924": 105, "85558087": 105, "35440978": 105, "8101312": 105, "931835": 105, "91998947": 105, "9771716": 105, "88361436": 105, "8611444": 105, "88294595": 105, "93872": 105, "97103214": 105, "63806784": 105, "89063996": 105, "68062663": 105, "9067393": 105, "89928836": 105, "40190646": 105, "75169766": 105, "5388288": 105, "30325472": 105, "86616135": 105, "864786": 105, "9355017": 105, "93469065": 105, "73501164": 105, "89369905": 105, "794787": 105, "29464462": 105, "91743165": 105, "88107586": 105, "89442694": 105, "97276276": 105, "9208387": 105, "8436978": 105, "9492276": 105, "91440874": 105, "97273135": 105, "64372706": 105, "85304886": 105, "6125536": 105, "89858156": 105, "89086473": 105, "33406225": 105, "7624657": 105, "64882857": 105, "18051867": 105, "93381244": 105, "90368915": 105, "9286875": 105, "93761605": 105, "7948513": 105, "81816167": 105, "7628807": 105, "30384466": 105, "83553046": 105, "83106405": 105, "9189269": 105, "93762034": 105, "94770956": 105, "8512343": 105, "9446315": 105, "9450149": 105, "9582136": 105, "78555703": 105, "7544447": 105, "58366936": 105, "85938": 105, "94498163": 105, "6194322": 105, "7035529": 105, "22808443": 105, "24900974": 105, "981288": 105, "92618316": 105, "93841267": 105, "9422818": 105, "80968696": 105, "8445456": 105, "7991047": 105, "4916717": 105, "77814513": 105, "6231525": 105, "93198806": 105, "9570074": 105, "95540506": 105, "9207018": 105, "8778759": 105, "9381855": 105, "94920886": 105, "77673894": 105, "87591183": 105, "3847992": 105, "88775337": 105, "92982674": 105, "8082221": 105, "6930795": 105, "16653292": 105, "26732486": 105, "9830136": 105, "93462956": 105, "9093149": 105, "96090955": 105, "8409559": 105, "83797425": 105, "8743328": 105, "82546026": 105, "32881752": 105, "5494046": 105, "9653242": 105, "9882784": 105, "85375595": 105, "95603913": 105, "9316707": 105, "9048104": 105, "92460406": 105, "75584614": 105, "8082359": 105, "47512543": 105, "8684657": 105, "9260271": 105, "8822638": 105, "71269846": 105, "1508674": 105, "22018598": 105, "9016738": 105, "90536344": 105, "918121": 105, "96696764": 105, "78534484": 105, "883681": 105, "798996": 105, "69723856": 105, "5170047": 105, "8321578": 105, "9426196": 105, "9527973": 105, "91900206": 105, "9706679": 105, "90770215": 105, "9391487": 105, "9352003": 105, "85189575": 105, "72796327": 105, "6884535": 105, "8768972": 105, "9508924": 105, "6879568": 105, "71122557": 105, "7012927": 105, "6031595": 105, "87616193": 105, "91429555": 105, "8932258": 105, "97501004": 105, "78940654": 105, "8651793": 105, "72244436": 105, "82689875": 105, "4597148": 105, "93260366": 105, "9202296": 105, "94214964": 105, "8834407": 105, "98030627": 105, "8976605": 105, "9953135": 105, "99476504": 105, "99593395": 105, "99526805": 105, "9959078": 105, "9945123": 105, "99573624": 105, "993386": 105, "99603134": 105, "99172956": 105, "99564207": 105, "9916197": 105, "9947187": 105, "9915406": 105, "9940315": 105, "98916876": 105, "99394447": 105, "98962784": 105, "9944642": 105, "9910501": 105, "99155337": 105, "9933716": 105, "9916019": 105, "9933976": 105, "9932473": 105, "9932013": 105, "9920751": 105, "9946308": 105, "991653": 105, "99465877": 105, "99162734": 105, "99486005": 105, "8735": 105, "4811": 105, "355": 105, "93707": 105, "63477": 105, "0215": 105, "42197": 105, "2099": 105, "4682": 105, "23578": 105, "31976": 105, "61108": 105, "4756": 105, "57007": 105, "15857": 105, "7147": 105, "9847": 105, "93347": 105, "7111": 105, "8055": 105, "86227": 105, "03918": 105, "64484": 105, "49347": 105, "357": 105, "0275": 105, "29968": 105, "49817": 105, "54977": 105, "29578": 105, "42874": 105, "1338": 105, "81354": 105, "7555": 105, "4507": 105, "2437": 105, "95605": 105, "9807": 105, "4453": 105, "04776": 105, "2247": 105, "3565": 105, "81192": 105, "30673": 105, "8997": 105, "5365": 105, "4532": 105, "9694": 105, "10843": 105, "52646": 105, "42938": 105, "09125": 105, "59042": 105, "5916": 105, "44873": 105, "94284": 105, "18994": 105, "5058": 105, "18735": 105, "0978": 105, "8356": 105, "49683": 105, "1019": 105, "49136": 105, "94554764": 105, "83948356": 105, "9591119": 105, "8525362": 105, "95961505": 105, "86304706": 105, "9252076": 105, "97578657": 105, "974096": 105, "9668305": 105, "9845507": 105, "9572475": 105, "9105379": 105, "97522974": 105, "880064": 105, "9943127": 105, "911333": 105, "0001038": 105, "9698766": 105, "9948527": 105, "96454924": 105, "9799493": 105, "96142364": 105, "0046191": 105, "95354944": 105, "9987816": 105, "94746464": 105, "98374254": 105, "97818244": 105, "98671097": 105, "9833999": 105, "98425347": 105, "grabber": 105, "perf_count": 105, "simulatedcamera": 105, "grab": 105, "grab_fram": 105, "recording_dur": 105, "512": [105, 109], "inference_tim": 105, "frames_record": 105, "took": 105, "t0": 105, "frame_predict": 105, "expand_dim": 105, "dt": 105, "millisecond": 105, "first_inference_tim": 105, "1f": 105, "886": 105, "120": 105, "facecolor": [105, 107], "hist": 105, "training_slp_fil": 106, "b990gxjt3d3j3jh": 106, "210205": 106, "sleap_wt_gold": 106, "13pt": [106, 107], "dl": 106, "wt_gold": [106, 107], "tracking_split2": [106, 107], "619m": 106, "9m": 106, "4m": 106, "622m": 106, "179k": 106, "132k": 106, "reproduc": 106, "preprocesss": 106, "baseline_model": 106, "nitti": 106, "gritti": 106, "mechan": 106, "1440": 106, "160": 106, "775633": 106, "776555": 106, "777493": 106, "778196": 106, "055738": 106, "056597": 106, "057389": 106, "058046": 106, "21261": 106, "799": 106, "501": 106, "kerastensor": [106, 109], "type_spec": [106, 109], "tensorspec": [106, 109], "biasadd": [106, 109], "586040": 106, "104556": 106, "0037": [106, 109], "0030": [106, 109], "0036": [106, 109], "0040": [106, 109], "0038": [106, 109], "0041": [106, 109], "0039": [106, 109], "0035": [106, 109], "val_loss": [106, 109], "0033": [106, 109], "val_head": [106, 109], "0020": [106, 109], "val_thorax": [106, 109], "0029": [106, 109], "val_abdomen": [106, 109], "val_wingl": [106, 109], "val_wingr": [106, 109], "0034": [106, 109], "val_forelegl4": [106, 109], "val_forelegr4": [106, 109], "val_midlegl4": [106, 109], "val_midlegr4": [106, 109], "val_hindlegl4": [106, 109], "val_hindlegr4": [106, 109], "val_eyel": [106, 109], "val_ey": [106, 109], "0027": [106, 109], "0000e": [106, 109], "32m": [106, 109], "0028": [106, 109], "0013": [106, 109], "0018": [106, 109], "0026": [106, 109], "0032": [106, 109], "0015": [106, 109], "0025": [106, 109], "7323e": 106, "0011": [106, 109], "0024": [106, 109], "0012": [106, 109], "21m": 106, "0022": [106, 109], "0630e": 106, "7199e": 106, "0021": [106, 109], "7345e": 106, "4145e": 106, "6439e": 106, "9914e": [106, 109], "0019": [106, 109], "0031": [106, 109], "9466e": 106, "5174e": 106, "20m": 106, "7854e": 106, "6945e": [106, 109], "0017": [106, 109], "0023": [106, 109], "4546e": 106, "9585e": 106, "7640e": 106, "3180e": 106, "2650e": 106, "0064e": 106, "8714e": 106, "0531e": [106, 109], "7827e": 106, "2254e": 106, "5523e": 106, "4019e": 106, "0016": [106, 109], "9871e": [106, 109], "8608e": 106, "3215e": 106, "5232e": 106, "0014": [106, 109], "9826e": 106, "6906e": 106, "3776e": 106, "7946e": 106, "6378e": 106, "5611e": 106, "19m": [106, 109], "8557e": 106, "1089e": 106, "6096e": 106, "3123e": 106, "2092e": 106, "4376e": 106, "4288e": 106, "0581e": 106, "3752e": 106, "7513e": [106, 109], "1807e": 106, "9554e": 106, "6743e": 106, "5883e": 106, "2925e": 106, "5965e": 106, "2635e": 106, "4829e": 106, "0010": [106, 109], "0197e": 106, "8384e": 106, "8699e": 106, "5631e": 106, "1692e": 106, "8370e": 106, "8454e": 106, "9611e": 106, "2278e": 106, "4893e": 106, "5555e": 106, "7396e": 106, "4770e": 106, "9330e": 106, "9460e": 106, "5190e": [106, 109], "9289e": 106, "5512e": 106, "3737e": 106, "eval": [106, 107, 109], "508754": 106, "477220": 106, "3201e": 106, "7118e": 106, "0303e": 106, "9319e": 106, "0134e": 106, "4919e": 106, "2012e": [106, 109], "4680e": 106, "9131e": 106, "4191e": 106, "9155e": 106, "9295e": 106, "3658e": 106, "0085e": 106, "8906e": 106, "6015e": 106, "9128e": 106, "5054e": 106, "5352e": 106, "3093e": 106, "0690e": 106, "9501e": 106, "1907e": 106, "3487e": 106, "6145e": 106, "4151e": 106, "2130e": 106, "9293e": 106, "5396e": 106, "4440e": [106, 109], "7180e": 106, "9867e": 106, "1743e": 106, "2288e": 106, "7110e": 106, "1497e": 106, "9294e": 106, "8076e": 106, "7130e": 106, "4712e": 106, "2889e": 106, "5931e": 106, "9400e": 106, "9486e": 106, "6961e": 106, "559100": 106, "529680": 106, "new_fold": 106, "load_weight": 106, "3664e": 106, "7037e": 106, "8467e": 106, "9929e": 106, "0385e": 106, "5228e": [106, 109], "8510e": 106, "0772e": 106, "9413e": 106, "7351e": 106, "0943e": 106, "7453e": 106, "4413e": 106, "3617e": [106, 109], "4860e": 106, "4441e": 106, "4847e": 106, "4179e": 106, "24m": 106, "0541e": 106, "4627e": 106, "6070e": 106, "4325e": 106, "7257e": 106, "7434e": 106, "9573e": 106, "3483e": 106, "0939e": 106, "8417e": 106, "2339e": 106, "9561e": 106, "2637e": 106, "6513e": 106, "1751e": 106, "5540e": 106, "5588e": 106, "8189e": [106, 109], "2402e": 106, "7741e": [106, 109], "2087e": 106, "4398e": 106, "1826e": 106, "4005e": 106, "5282e": 106, "6551e": 106, "9726e": 106, "8423e": [106, 109], "7468e": [106, 109], "4657e": 106, "5649e": 106, "2162e": [106, 109], "9171e": 106, "9007e": [106, 109], "2471e": [106, 109], "1375e": 106, "8217e": 106, "7370e": 106, "2098e": 106, "585451": 106, "574921": 106, "apt": [107, 109], "qq": 107, "q": [107, 108], "31me": 107, "0mcould": 107, "lock": [107, 109], "var": [107, 109], "dpkg": [107, 109], "frontend": [107, 109], "deni": [107, 109], "0munabl": 107, "acquir": [107, 109], "34mtd_fast": 107, "00m": [107, 109], "with_centroid": 107, "model_info": 107, "982109": 107, "982120": 107, "mpck_part": 107, "ap": 107, "9010142093245521": 107, "0545800141197903": 107, "0166608700891056": 107, "histplot": 107, "binrang": 107, "kde": 107, "kde_kw": 107, "stat": 107, "intuit": 107, "holist": 107, "1707": 107, "05388": 107, "seem": 107, "summar": 107, "curv": 107, "stringent": 107, "2f": 107, "literatur": 107, "8150621709973537": 107, "8885": 107, "newer": 107, "gt": 107, "208933": 107, "936": [107, 108], "209734": 107, "209771": 107, "209801": 107, "209829": 107, "209859": 107, "209886": 107, "209912": 107, "209939": 107, "209945": 107, "1850": [107, 108], "245745": 107, "317060": 107, "320224": 107, "8984147543126978": 107, "197896466395166": 107, "1484228079076315": 107, "797836431061851": 107, "8782499999999999": 107, "hassl": 108, "250591": 108, "250602": 108, "389239": 108, "390139": 108, "390188": 108, "390230": 108, "390267": 108, "390306": 108, "390345": 108, "390383": 108, "390421": 108, "390425": 108, "uo": 108, "blob": 108, "predictions_fil": 108, "1350": 108, "make_tracker_by_nam": 108, "tracked_lf": 108, "tracked_label": 108, "dm": 109, "v1": 109, "unabl": 109, "2e65b": 109, "263375180": 109, "16df8d00": 109, "94f1": 109, "11ea": 109, "98d1": 109, "6c03a2f89e1c": 109, "amz": 109, "aws4": 109, "hmac": 109, "sha256": 109, "credenti": 109, "akiaiwnjyax4csveh53a": 109, "2f20230901": 109, "2fu": 109, "east": 109, "2fs3": 109, "2faws4_request": 109, "20230901t203033z": 109, "expir": 109, "300": 109, "b9b0638744af3144affdc46668c749128bd6c4f23ca2a1313821c7bbcd54ccdd": 109, "signedhead": 109, "actor_id": 109, "key_id": 109, "repo_id": 109, "disposit": 109, "attach": 109, "3b": 109, "20filenam": 109, "3ddrosophila": 109, "2foctet": 109, "185": 109, "199": 109, "108": 109, "109": 109, "110": 109, "111973079": 109, "107m": 109, "106": 109, "79m": 109, "0mb": 109, "inflat": 109, "ds_store": 109, "__macosx": 109, "20190128_113421": 109, "_20190128_113421": 109, "courtship_label": 109, "_courtship_label": 109, "_exampl": 109, "34mdataset": 109, "34mdrosophila": 109, "32m20190128_113421": 109, "32mcourtship_label": 109, "35mexampl": 109, "34m__macosx": 109, "satisfi": [109, 110, 119], "null": 109, "first_gpu": 109, "last_gpu": 109, "pretrained_encod": 109, "827290": 109, "831845": 109, "832633": 109, "22980": 109, "134": 109, "755154": 109, "756024": 109, "757213": 109, "758315": 109, "089801": 109, "090652": 109, "091464": 109, "092164": 109, "21084": 109, "953": 109, "814560": 109, "940585": 109, "5945e": 109, "99m": 109, "2513e": 109, "5694e": 109, "57m": 109, "6987e": 109, "8224e": 109, "1486e": 109, "0657e": 109, "58m": 109, "2174e": 109, "3859e": 109, "55m": 109, "9181e": 109, "0259e": 109, "9353e": 109, "9832e": 109, "8997e": 109, "4787e": 109, "5596e": 109, "5150e": 109, "9256e": 109, "8968e": 109, "8572e": 109, "5451e": 109, "2156e": 109, "8602e": 109, "53m": 109, "7656e": 109, "1905e": 109, "6440e": 109, "6607e": 109, "4415e": 109, "1699e": 109, "3589e": 109, "5362e": 109, "56m": 109, "0888e": 109, "1600e": 109, "0426e": 109, "6782e": 109, "9092e": 109, "8284e": 109, "0018e": 109, "9439e": 109, "7977e": 109, "8703e": 109, "00022": 109, "reducelronplateau": 109, "999999873689376e": 109, "5981e": 109, "6030e": 109, "6479e": 109, "8081e": 109, "2579e": 109, "7954e": 109, "9628e": 109, "6399e": 109, "6915e": 109, "9973e": 109, "4726e": 109, "5831e": 109, "2110e": 109, "7290e": 109, "3421e": 109, "1827e": 109, "3472e": 109, "4653e": 109, "00031": 109, "499999936844688e": 109, "1221e": 109, "5739e": 109, "2486e": 109, "5000e": 109, "5589e": 109, "3135e": 109, "4215e": 109, "8923e": 109, "4033e": 109, "8776e": 109, "3358e": 109, "5874e": 109, "2922e": 109, "6051e": 109, "00038": 109, "249999968422344e": 109, "1278e": 109, "4898e": 109, "0474e": 109, "8901e": 109, "2500e": 109, "0612e": 109, "7469e": 109, "8414e": 109, "8496e": 109, "0196e": 109, "5206e": 109, "8551e": 109, "6483e": 109, "9705e": 109, "4643e": 109, "00045": 109, "24999984211172e": 109, "9136e": 109, "8379e": 109, "7911e": 109, "0055e": 109, "00046": 109, "2kpredict": 109, "114": 109, "156": 109, "35m100": 109, "eta": 109, "36m0": 109, "31m33": 109, "0m31m51": 109, "0m31m52": 109, "0mfp": 109, "25hinfo": 109, "725241": 109, "31m7": 109, "0m0": 109, "31m184": 109, "0mm": 109, "870526": 109, "topdown_confmap": 109, "324520": 109, "329181": 109, "329961": 109, "23056": 109, "254912": 109, "255468": 109, "256291": 109, "257158": 109, "546117": 109, "546866": 109, "547533": 109, "548184": 109, "21151": 109, "684": 109, "877": 109, "940083": 109, "337645": 109, "0108": 109, "0073": 109, "0067": 109, "0111": 109, "0125": 109, "0126": 109, "0127": 109, "0128": 109, "0131": 109, "0082": 109, "0083": 109, "0087": 109, "0089": 109, "0105": 109, "0106": 109, "0091": 109, "0123": 109, "0116": 109, "0045": 109, "38m": 109, "0064": 109, "0057": 109, "0061": 109, "0075": 109, "0078": 109, "0092": 109, "0099": 109, "0102": 109, "0049": 109, "0056": 109, "0079": 109, "0086": 109, "0093": 109, "0081": 109, "0048": 109, "9048e": 109, "0051": 109, "0063": 109, "0066": 109, "0076": 109, "0080": 109, "0058": 109, "0044": 109, "0070": 109, "0072": 109, "0088": 109, "0085": 109, "0097": 109, "16m": 109, "6417e": 109, "0060": 109, "6555e": 109, "0042": 109, "0065": 109, "0069": 109, "0071": 109, "0062": 109, "15m": 109, "1233e": 109, "0052": 109, "0054": 109, "3809e": 109, "0053": 109, "0068": 109, "5957e": 109, "3519e": 109, "0047": 109, "7287e": 109, "6837e": 109, "9723e": 109, "0046": 109, "7941e": 109, "5772e": 109, "3055e": 109, "9191e": 109, "1078e": 109, "4425e": 109, "8283e": 109, "7111e": 109, "2022e": 109, "1555e": 109, "1508e": 109, "8990e": 109, "4963e": 109, "9041e": 109, "7679e": 109, "6666e": 109, "9156e": 109, "0043": 109, "6281e": 109, "0986e": 109, "9581e": 109, "8376e": 109, "2502e": 109, "1183e": 109, "7891e": 109, "4567e": 109, "6811e": 109, "7635e": 109, "3648e": 109, "2940e": 109, "6554e": 109, "8863e": 109, "2604e": 109, "0488e": 109, "1238e": 109, "5798e": 109, "1007e": 109, "5654e": 109, "1802e": 109, "9789e": 109, "0050": 109, "14m": 109, "8818e": 109, "1018e": 109, "8027e": 109, "8017e": 109, "4529e": 109, "6272e": 109, "3265e": 109, "5806e": 109, "6352e": 109, "4029e": 109, "8339e": 109, "6739e": 109, "0118e": 109, "4831e": 109, "1158e": 109, "2793e": 109, "1400e": 109, "4292e": 109, "1119e": 109, "8295e": 109, "3028e": 109, "3006e": 109, "9391e": 109, "8825e": 109, "0989e": 109, "3611e": 109, "4493e": 109, "1164e": 109, "4152e": 109, "4500e": 109, "3208e": 109, "3573e": 109, "0631e": 109, "5007e": 109, "3431e": 109, "9773e": 109, "1004e": 109, "7803e": 109, "3279e": 109, "9841e": 109, "5381e": 109, "0128e": 109, "3161e": 109, "0100e": 109, "8088e": 109, "9153e": 109, "7586e": 109, "9866e": 109, "6100e": 109, "0266e": 109, "9697e": 109, "9149e": 109, "7208e": 109, "8070e": 109, "1903e": 109, "8509e": 109, "7838e": 109, "7844e": 109, "9896e": 109, "9112e": 109, "7495e": 109, "5591e": 109, "5877e": 109, "9042e": 109, "6195e": 109, "9452e": 109, "6819e": 109, "5989e": 109, "4763e": 109, "1925e": 109, "0394e": 109, "0835e": 109, "1323e": 109, "8346e": 109, "5475e": 109, "2159e": 109, "3027e": 109, "9814e": 109, "5814e": 109, "9765e": 109, "9968e": 109, "7869e": 109, "9121e": 109, "4343e": 109, "3077e": 109, "3346e": 109, "4254e": 109, "7991e": 109, "7328e": 109, "2397e": 109, "2417e": 109, "9313e": 109, "8547e": 109, "9704e": 109, "3515e": 109, "8294e": 109, "5212e": 109, "2828e": 109, "2438e": 109, "7034e": 109, "7978e": 109, "7903e": 109, "6477e": 109, "9423e": 109, "4541e": 109, "4100e": 109, "6076e": 109, "4080e": 109, "8343e": 109, "6759e": 109, "7489e": 109, "1060e": 109, "7288e": 109, "2695e": 109, "6401e": 109, "9033e": 109, "8954e": 109, "5764e": 109, "8718e": 109, "6939e": 109, "7738e": 109, "4725e": 109, "0905e": 109, "2447e": 109, "2224e": 109, "0585e": 109, "2169e": 109, "7379e": 109, "5061e": 109, "3931e": 109, "1129e": 109, "2449e": 109, "9372e": 109, "8213e": 109, "2947e": 109, "4640e": 109, "8293e": 109, "6663e": 109, "6084e": 109, "0277e": 109, "0561e": 109, "0192e": 109, "8845e": 109, "3221e": 109, "7722e": 109, "9143e": 109, "3545e": 109, "1985e": 109, "5058e": 109, "7636e": 109, "6468e": 109, "9639e": 109, "6412e": 109, "0466e": 109, "7357e": 109, "0067e": 109, "4886e": 109, "4382e": 109, "9157e": 109, "2551e": 109, "0634e": 109, "0727e": 109, "3863e": 109, "0904e": 109, "5949e": 109, "1201e": 109, "2893e": 109, "8121e": 109, "6669e": 109, "6464e": 109, "2743e": 109, "00025": 109, "0444e": 109, "2563e": 109, "7247e": 109, "6934e": 109, "5754e": 109, "4728e": 109, "8390e": 109, "3959e": 109, "3003e": 109, "6432e": 109, "0270e": 109, "5518e": 109, "5609e": 109, "5365e": 109, "5420e": 109, "5809e": 109, "6708e": 109, "0263e": 109, "3368e": 109, "1149e": 109, "5177e": 109, "1763e": 109, "9396e": 109, "8234e": 109, "8248e": 109, "7555e": 109, "8653e": 109, "7842e": 109, "8074e": 109, "3157e": 109, "2374e": 109, "1815e": 109, "0063e": 109, "2248e": 109, "8071e": 109, "0711e": 109, "4018e": 109, "0210e": 109, "8693e": 109, "7399e": 109, "1753e": 109, "7613e": 109, "2838e": 109, "4471e": 109, "4706e": 109, "1696e": 109, "1452e": 109, "7855e": 109, "7885e": 109, "0074e": 109, "4821e": 109, "8941e": 109, "0606e": 109, "9539e": 109, "4716e": 109, "8173e": 109, "6716e": 109, "2783e": 109, "2172e": 109, "2648e": 109, "3846e": 109, "2823e": 109, "1204e": 109, "0944e": 109, "9505e": 109, "8105e": 109, "7888e": 109, "8985e": 109, "1223e": 109, "0778e": 109, "8262e": 109, "2364e": 109, "3126e": 109, "7625e": 109, "7494e": 109, "5998e": 109, "0159e": 109, "9470e": 109, "0446e": 109, "0576e": 109, "1560e": 109, "1218e": 109, "0720e": 109, "2535e": 109, "8031e": 109, "5428e": 109, "6936e": 109, "7461e": 109, "9617e": 109, "2428e": 109, "7234e": 109, "6780e": 109, "5580e": 109, "7324e": 109, "8042e": 109, "9090e": 109, "0420e": 109, "0318e": 109, "0518e": 109, "0386e": 109, "9058e": 109, "9603e": 109, "7566e": 109, "9699e": 109, "3721e": 109, "7064e": 109, "7373e": 109, "2365e": 109, "6765e": 109, "5656e": 109, "4505e": 109, "7352e": 109, "6274e": 109, "0323e": 109, "9917e": 109, "0639e": 109, "0032e": 109, "7938e": 109, "6727e": 109, "7820e": 109, "4437e": 109, "0607e": 109, "6172e": 109, "00032": 109, "6547e": 109, "6407e": 109, "1578e": 109, "6160e": 109, "5752e": 109, "4326e": 109, "5855e": 109, "8317e": 109, "7880e": 109, "8021e": 109, "9743e": 109, "8831e": 109, "9381e": 109, "9257e": 109, "7361e": 109, "0451e": 109, "8240e": 109, "9328e": 109, "3886e": 109, "18m": 109, "4767e": 109, "0575e": 109, "1097e": 109, "4927e": 109, "4112e": 109, "3113e": 109, "1913e": 109, "1998e": 109, "6045e": 109, "6535e": 109, "8091e": 109, "7343e": 109, "5387e": 109, "2035e": 109, "9046e": 109, "6921e": 109, "4087e": 109, "5647e": 109, "4506e": 109, "9790e": 109, "0771e": 109, "5052e": 109, "4143e": 109, "2485e": 109, "1619e": 109, "6584e": 109, "6250e": 109, "6521e": 109, "6717e": 109, "1550e": 109, "8112e": 109, "8689e": 109, "7203e": 109, "3770e": 109, "0190e": 109, "0213e": 109, "5036e": 109, "3911e": 109, "9674e": 109, "0668e": 109, "4330e": 109, "3906e": 109, "2752e": 109, "9657e": 109, "9577e": 109, "5642e": 109, "6610e": 109, "6394e": 109, "1523e": 109, "9620e": 109, "7511e": 109, "5009e": 109, "7908e": 109, "3697e": 109, "5207e": 109, "0507e": 109, "3913e": 109, "3497e": 109, "2511e": 109, "9152e": 109, "0264e": 109, "5519e": 109, "6368e": 109, "5869e": 109, "0233e": 109, "7055e": 109, "8066e": 109, "6591e": 109, "9582e": 109, "2600e": 109, "6224e": 109, "3638e": 109, "6822e": 109, "4107e": 109, "4047e": 109, "2177e": 109, "9564e": 109, "7970e": 109, "5364e": 109, "5089e": 109, "6647e": 109, "6322e": 109, "0198e": 109, "3218e": 109, "3881e": 109, "00037": 109, "31m39": 109, "0m31m48": 109, "0m31m49": 109, "899237": 109, "31m14": 109, "31m270": 109, "691378": 109, "34mmodel": 109, "34mcourtship": 109, "066840": 109, "only_labeled_fram": 109, "91mfals": 109, "only_suggested_fram": 109, "35mnone": 109, "no_empty_fram": 109, "36m1": 109, "36m4": 109, "open_in_gui": 109, "098811": 109, "103255": 109, "103982": 109, "23050": 109, "157392": 109, "158019": 109, "158864": 109, "159656": 109, "455402": 109, "456138": 109, "456803": 109, "457464": 109, "21145": 109, "237m": 109, "36m": 109, "0m2023": 109, "038687": 109, "31m51": 109, "31m126": 109, "25hfinish": 109, "842469": 109, "775644779205322": 109, "sec": 109, "s0": 109, "total_elaps": 109, "36m7": 109, "start_timestamp": 109, "finish_timestamp": 109, "chrome": 109, "deflat": 109, "safari": 109, "icon": 109, "fron": 110, "pckage": 110, "somewher": 110, "unpack": 110, "inter": 110, "chdir": 110, "chose": 110, "anywher": 110, "colab_demo": 110, "predicted_suggest": 110, "demo": 110, "illustr": 112, "recomput": 112, "nutshel": 113, "quantit": 113, "yourself": 113, "footag": 113, "labori": 113, "involv": 113, "among": 113, "satisfactori": 113, "h5read": 114, "tracks_matrix": 114, "feedback": 115, "poorli": 115, "alert": 115, "told": 115, "thicker": 115, "dark": 115, "lighter": 115, "regularli": 115, "proof": 115, "assess": 115, "prev": 116, "scroll": 116, "undo": 116, "cloud": 117, "slowli": 117, "dropdown": 119}, "objects": {"sleap.info": [[3, 0, 0, "-", "align"], [4, 0, 0, "-", "feature_suggestions"], [5, 0, 0, "-", "labels"], [6, 0, 0, "-", "metrics"], [7, 0, 0, "-", "summary"], [8, 0, 0, "-", "trackcleaner"], [9, 0, 0, "-", "write_tracking_h5"]], "sleap.info.align": [[3, 1, 1, "", "align_instance_points"], [3, 1, 1, "", "align_instances"], [3, 1, 1, "", "align_instances_on_most_stable"], [3, 1, 1, "", "get_instances_points"], [3, 1, 1, "", "get_mean_and_std_for_points"], [3, 1, 1, "", "get_most_stable_node_pair"], [3, 1, 1, "", "get_stable_node_pairs"], [3, 1, 1, "", "get_template_points_array"]], "sleap.info.feature_suggestions": [[4, 2, 1, "", "FrameGroupSet"], [4, 2, 1, "", "FrameItem"], [4, 2, 1, "", "ItemStack"], [4, 2, 1, "", "ParallelFeaturePipeline"]], "sleap.info.feature_suggestions.FrameGroupSet": [[4, 3, 1, "", "all_items"], [4, 4, 1, "", "append_to_group"], [4, 4, 1, "", "extend_group_items"], [4, 4, 1, "", "get_item_group"], [4, 5, 1, "", "group_data"], [4, 3, 1, "", "groups"], [4, 5, 1, "", "groupset_data"], [4, 5, 1, "", "item_group"], [4, 5, 1, "", "method"], [4, 4, 1, "", "sample"]], "sleap.info.feature_suggestions.ItemStack": [[4, 4, 1, "", "brisk_bag_of_features"], [4, 3, 1, "", "current_groupset"], [4, 5, 1, "", "data"], [4, 4, 1, "", "extend_ownership"], [4, 4, 1, "", "flatten"], [4, 4, 1, "", "get_all_items_from_group"], [4, 4, 1, "", "get_item_data"], [4, 4, 1, "", "get_item_data_idxs"], [4, 4, 1, "", "get_raw_images"], [4, 5, 1, "", "group_sets"], [4, 4, 1, "", "hog_bag_of_features"], [4, 5, 1, "", "items"], [4, 4, 1, "", "kmeans"], [4, 4, 1, "", "make_sample_group"], [4, 5, 1, "", "meta"], [4, 5, 1, "", "ownership"], [4, 4, 1, "", "pca"], [4, 4, 1, "", "sample_groups"]], "sleap.info.feature_suggestions.ParallelFeaturePipeline": [[4, 4, 1, "", "get"], [4, 4, 1, "", "make"], [4, 4, 1, "", "run"], [4, 4, 1, "", "tuples_to_suggestions"]], "sleap.info.metrics": [[6, 1, 1, "", "calculate_pairwise_cost"], [6, 1, 1, "", "compare_instance_lists"], [6, 1, 1, "", "list_points_array"], [6, 1, 1, "", "match_instance_lists"], [6, 1, 1, "", "match_instance_lists_nodewise"], [6, 1, 1, "", "matched_instance_distances"], [6, 1, 1, "", "nodeless_point_dist"], [6, 1, 1, "", "point_dist"], [6, 1, 1, "", "point_match_count"], [6, 1, 1, "", "point_nonmatch_count"]], "sleap.info.summary": [[7, 2, 1, "", "StatisticSeries"]], "sleap.info.summary.StatisticSeries": [[7, 4, 1, "", "get_instance_score_series"], [7, 4, 1, "", "get_point_count_series"], [7, 4, 1, "", "get_point_displacement_series"], [7, 4, 1, "", "get_point_score_series"], [7, 4, 1, "", "get_primary_point_displacement_series"], [7, 4, 1, "", "get_tracking_score_series"]], "sleap.info.trackcleaner": [[8, 1, 1, "", "fit_tracks"]], "sleap.info.write_tracking_h5": [[9, 1, 1, "", "get_edges_as_np_strings"], [9, 1, 1, "", "get_nodes_as_np_strings"], [9, 1, 1, "", "get_occupancy_and_points_matrices"], [9, 1, 1, "", "get_tracks_as_np_strings"], [9, 1, 1, "", "main"], [9, 1, 1, "", "remove_empty_tracks_from_matrices"], [9, 1, 1, "", "write_csv_file"], [9, 1, 1, "", "write_occupancy_file"]], "sleap": [[10, 0, 0, "-", "instance"], [35, 0, 0, "-", "message"], [84, 0, 0, "-", "skeleton"], [85, 0, 0, "-", "util"]], "sleap.instance": [[10, 2, 1, "", "Instance"], [10, 2, 1, "", "InstancesList"], [10, 2, 1, "", "LabeledFrame"], [10, 2, 1, "", "Point"], [10, 2, 1, "", "PointArray"], [10, 2, 1, "", "PredictedInstance"], [10, 2, 1, "", "PredictedPoint"], [10, 2, 1, "", "PredictedPointArray"], [10, 2, 1, "", "Track"], [10, 1, 1, "", "make_instance_cattr"]], "sleap.instance.Instance": [[10, 3, 1, "", "bounding_box"], [10, 3, 1, "", "centroid"], [10, 4, 1, "", "fill_missing"], [10, 3, 1, "", "frame_idx"], [10, 4, 1, "", "from_numpy"], [10, 4, 1, "", "from_pointsarray"], [10, 4, 1, "", "get_points_array"], [10, 4, 1, "", "matches"], [10, 3, 1, "", "midpoint"], [10, 3, 1, "", "n_visible_points"], [10, 3, 1, "", "nodes"], [10, 3, 1, "", "nodes_points"], [10, 4, 1, "", "numpy"], [10, 3, 1, "", "points"], [10, 3, 1, "", "points_array"], [10, 4, 1, "", "transform_points"], [10, 3, 1, "", "video"]], "sleap.instance.InstancesList": [[10, 4, 1, "", "append"], [10, 4, 1, "", "clear"], [10, 4, 1, "", "copy"], [10, 4, 1, "", "extend"], [10, 4, 1, "", "insert"], [10, 3, 1, "", "labeled_frame"], [10, 4, 1, "", "pop"], [10, 4, 1, "", "remove"]], "sleap.instance.LabeledFrame": [[10, 4, 1, "", "complex_frame_merge"], [10, 4, 1, "", "complex_merge_between"], [10, 4, 1, "", "find"], [10, 3, 1, "", "has_predicted_instances"], [10, 3, 1, "", "has_tracked_instances"], [10, 3, 1, "", "has_user_instances"], [10, 3, 1, "", "image"], [10, 4, 1, "", "index"], [10, 4, 1, "", "insert"], [10, 3, 1, "", "instances"], [10, 3, 1, "", "instances_to_show"], [10, 4, 1, "", "merge_frames"], [10, 3, 1, "", "n_predicted_instances"], [10, 3, 1, "", "n_tracked_instances"], [10, 3, 1, "", "n_user_instances"], [10, 4, 1, "", "numpy"], [10, 4, 1, "", "plot"], [10, 4, 1, "", "plot_predicted"], [10, 3, 1, "", "predicted_instances"], [10, 4, 1, "", "remove_empty_instances"], [10, 4, 1, "", "remove_untracked"], [10, 3, 1, "", "tracked_instances"], [10, 3, 1, "", "training_instances"], [10, 3, 1, "", "unused_predictions"], [10, 3, 1, "", "user_instances"]], "sleap.instance.Point": [[10, 5, 1, "", "dtype"], [10, 4, 1, "", "isnan"], [10, 4, 1, "", "numpy"]], "sleap.instance.PointArray": [[10, 4, 1, "", "from_array"], [10, 4, 1, "", "make_default"]], "sleap.instance.PredictedInstance": [[10, 4, 1, "", "from_arrays"], [10, 4, 1, "", "from_instance"], [10, 4, 1, "", "from_numpy"], [10, 4, 1, "", "from_pointsarray"], [10, 3, 1, "", "points_and_scores_array"], [10, 3, 1, "", "scores"]], "sleap.instance.PredictedPoint": [[10, 5, 1, "", "dtype"], [10, 4, 1, "", "from_point"]], "sleap.instance.PredictedPointArray": [[10, 4, 1, "", "to_array"]], "sleap.instance.Track": [[10, 4, 1, "", "matches"]], "sleap.io": [[11, 0, 0, "-", "convert"], [12, 0, 0, "-", "dataset"], [30, 0, 0, "-", "legacy"], [31, 0, 0, "-", "pathutils"], [32, 0, 0, "-", "video"], [33, 0, 0, "-", "videowriter"], [34, 0, 0, "-", "visuals"]], "sleap.io.convert": [[11, 1, 1, "", "main"]], "sleap.io.dataset": [[12, 2, 1, "", "Labels"], [12, 2, 1, "", "LabelsDataCache"], [12, 1, 1, "", "find_path_using_paths"], [12, 1, 1, "", "load_file"]], "sleap.io.dataset.Labels": [[12, 4, 1, "", "add_instance"], [12, 4, 1, "", "add_suggestion"], [12, 4, 1, "", "add_track"], [12, 4, 1, "", "add_video"], [12, 3, 1, "", "all_instances"], [12, 4, 1, "", "append"], [12, 4, 1, "", "append_suggestions"], [12, 4, 1, "", "clear_suggestions"], [12, 4, 1, "", "complex_merge_between"], [12, 4, 1, "", "copy"], [12, 4, 1, "", "delete_suggestions"], [12, 4, 1, "", "describe"], [12, 4, 1, "", "export"], [12, 4, 1, "", "export_csv"], [12, 4, 1, "", "export_nwb"], [12, 4, 1, "", "extend_from"], [12, 4, 1, "", "extract"], [12, 4, 1, "", "find"], [12, 4, 1, "", "find_first"], [12, 4, 1, "", "find_last"], [12, 4, 1, "", "find_suggestion"], [12, 4, 1, "", "find_track_occupancy"], [12, 4, 1, "", "finish_complex_merge"], [12, 4, 1, "", "frames"], [12, 4, 1, "", "get"], [12, 4, 1, "", "get_next_suggestion"], [12, 4, 1, "", "get_suggestions"], [12, 4, 1, "", "get_track_count"], [12, 4, 1, "", "get_track_occupancy"], [12, 4, 1, "", "get_unlabeled_suggestion_inds"], [12, 4, 1, "", "get_video_suggestions"], [12, 4, 1, "", "has_frame"], [12, 3, 1, "", "has_missing_videos"], [12, 4, 1, "", "index"], [12, 4, 1, "", "insert"], [12, 4, 1, "", "instance_count"], [12, 4, 1, "", "instances"], [12, 3, 1, "", "is_multi_instance"], [12, 5, 1, "", "labeled_frames"], [12, 3, 1, "", "labels"], [12, 4, 1, "", "load_file"], [12, 4, 1, "", "make_video_callback"], [12, 4, 1, "", "merge_container_dicts"], [12, 4, 1, "", "merge_matching_frames"], [12, 4, 1, "", "merge_nodes"], [12, 5, 1, "", "negative_anchors"], [12, 4, 1, "", "numpy"], [12, 3, 1, "", "predicted_instances"], [12, 5, 1, "", "provenance"], [12, 4, 1, "", "remove"], [12, 4, 1, "", "remove_all_tracks"], [12, 4, 1, "", "remove_empty_frames"], [12, 4, 1, "", "remove_empty_instances"], [12, 4, 1, "", "remove_frame"], [12, 4, 1, "", "remove_frames"], [12, 4, 1, "", "remove_instance"], [12, 4, 1, "", "remove_predictions"], [12, 4, 1, "", "remove_suggestion"], [12, 4, 1, "", "remove_track"], [12, 4, 1, "", "remove_untracked_instances"], [12, 4, 1, "", "remove_unused_tracks"], [12, 4, 1, "", "remove_user_instances"], [12, 4, 1, "", "remove_video"], [12, 4, 1, "", "save"], [12, 4, 1, "", "save_file"], [12, 4, 1, "", "save_frame_data_hdf5"], [12, 4, 1, "", "save_frame_data_imgstore"], [12, 4, 1, "", "set_suggestions"], [12, 3, 1, "", "skeleton"], [12, 5, 1, "", "skeletons"], [12, 4, 1, "", "split"], [12, 5, 1, "", "suggestions"], [12, 4, 1, "", "to_dict"], [12, 4, 1, "", "to_json"], [12, 4, 1, "", "to_pipeline"], [12, 4, 1, "", "track_set_instance"], [12, 4, 1, "", "track_swap"], [12, 5, 1, "", "tracks"], [12, 3, 1, "", "unlabeled_suggestions"], [12, 3, 1, "", "user_instances"], [12, 3, 1, "", "user_labeled_frame_inds"], [12, 3, 1, "", "user_labeled_frames"], [12, 3, 1, "", "video"], [12, 5, 1, "", "videos"], [12, 4, 1, "", "with_user_labels_only"]], "sleap.io.dataset.LabelsDataCache": [[12, 4, 1, "", "add_instance"], [12, 4, 1, "", "add_track"], [12, 4, 1, "", "find_fancy_frame_idxs"], [12, 4, 1, "", "find_frames"], [12, 4, 1, "", "get_filtered_frame_idxs"], [12, 4, 1, "", "get_frame_count"], [12, 4, 1, "", "get_track_occupancy"], [12, 4, 1, "", "get_video_track_occupancy"], [12, 4, 1, "", "remove_frame"], [12, 4, 1, "", "remove_instance"], [12, 4, 1, "", "remove_video"], [12, 4, 1, "", "track_swap"], [12, 4, 1, "", "update"], [12, 4, 1, "", "update_counts_for_frame"]], "sleap.io.format": [[13, 0, 0, "-", "adaptor"], [14, 0, 0, "-", "alphatracker"], [15, 0, 0, "-", "coco"], [16, 0, 0, "-", "csv"], [17, 0, 0, "-", "deeplabcut"], [18, 0, 0, "-", "deepposekit"], [19, 0, 0, "-", "dispatch"], [20, 0, 0, "-", "filehandle"], [21, 0, 0, "-", "genericjson"], [22, 0, 0, "-", "hdf5"], [23, 0, 0, "-", "labels_json"], [24, 0, 0, "-", "leap_matlab"], [25, 0, 0, "-", "main"], [26, 0, 0, "-", "ndx_pose"], [27, 0, 0, "-", "nix"], [28, 0, 0, "-", "sleap_analysis"], [29, 0, 0, "-", "text"]], "sleap.io.format.adaptor": [[13, 2, 1, "", "Adaptor"], [13, 2, 1, "", "SleapObjectType"]], "sleap.io.format.adaptor.Adaptor": [[13, 3, 1, "", "all_exts"], [13, 4, 1, "", "can_read_file"], [13, 4, 1, "", "can_write_filename"], [13, 3, 1, "", "default_ext"], [13, 4, 1, "", "does_match_ext"], [13, 4, 1, "", "does_read"], [13, 4, 1, "", "does_write"], [13, 3, 1, "", "formatted_ext_options"], [13, 3, 1, "", "handles"], [13, 3, 1, "", "name"], [13, 4, 1, "", "read"], [13, 4, 1, "", "write"]], "sleap.io.format.alphatracker": [[14, 2, 1, "", "AlphaTrackerAdaptor"]], "sleap.io.format.alphatracker.AlphaTrackerAdaptor": [[14, 3, 1, "", "all_exts"], [14, 4, 1, "", "can_read_file"], [14, 4, 1, "", "can_write_filename"], [14, 3, 1, "", "default_ext"], [14, 4, 1, "", "does_match_ext"], [14, 4, 1, "", "does_read"], [14, 4, 1, "", "does_write"], [14, 3, 1, "", "formatted_ext_options"], [14, 4, 1, "", "get_alpha_tracker_frame_dict"], [14, 4, 1, "", "get_alpha_tracker_instance_dict"], [14, 4, 1, "", "get_alpha_tracker_point_dict"], [14, 3, 1, "", "handles"], [14, 4, 1, "", "make_video_for_image_list"], [14, 3, 1, "", "name"], [14, 4, 1, "", "read"], [14, 4, 1, "", "write"]], "sleap.io.format.coco": [[15, 2, 1, "", "LabelsCocoAdaptor"]], "sleap.io.format.coco.LabelsCocoAdaptor": [[15, 3, 1, "", "all_exts"], [15, 4, 1, "", "can_read_file"], [15, 4, 1, "", "can_write_filename"], [15, 3, 1, "", "default_ext"], [15, 4, 1, "", "does_read"], [15, 4, 1, "", "does_write"], [15, 3, 1, "", "handles"], [15, 3, 1, "", "name"], [15, 4, 1, "", "read"]], "sleap.io.format.csv": [[16, 2, 1, "", "CSVAdaptor"]], "sleap.io.format.csv.CSVAdaptor": [[16, 3, 1, "", "all_exts"], [16, 4, 1, "", "can_read_file"], [16, 4, 1, "", "can_write_filename"], [16, 3, 1, "", "default_ext"], [16, 4, 1, "", "does_read"], [16, 4, 1, "", "does_write"], [16, 3, 1, "", "handles"], [16, 3, 1, "", "name"], [16, 4, 1, "", "write"]], "sleap.io.format.deeplabcut": [[17, 2, 1, "", "LabelsDeepLabCutCsvAdaptor"], [17, 2, 1, "", "LabelsDeepLabCutYamlAdaptor"]], "sleap.io.format.deeplabcut.LabelsDeepLabCutCsvAdaptor": [[17, 3, 1, "", "all_exts"], [17, 4, 1, "", "can_read_file"], [17, 4, 1, "", "can_write_filename"], [17, 3, 1, "", "default_ext"], [17, 4, 1, "", "does_read"], [17, 4, 1, "", "does_write"], [17, 3, 1, "", "handles"], [17, 4, 1, "", "make_video_for_image_list"], [17, 3, 1, "", "name"], [17, 4, 1, "", "read"]], "sleap.io.format.deeplabcut.LabelsDeepLabCutYamlAdaptor": [[17, 3, 1, "", "all_exts"], [17, 4, 1, "", "can_read_file"], [17, 4, 1, "", "can_write_filename"], [17, 3, 1, "", "default_ext"], [17, 4, 1, "", "does_read"], [17, 4, 1, "", "does_write"], [17, 3, 1, "", "handles"], [17, 3, 1, "", "name"], [17, 4, 1, "", "read"]], "sleap.io.format.deepposekit": [[18, 2, 1, "", "LabelsDeepPoseKitAdaptor"]], "sleap.io.format.deepposekit.LabelsDeepPoseKitAdaptor": [[18, 3, 1, "", "all_exts"], [18, 4, 1, "", "can_read_file"], [18, 4, 1, "", "can_write_filename"], [18, 3, 1, "", "default_ext"], [18, 4, 1, "", "does_read"], [18, 4, 1, "", "does_write"], [18, 3, 1, "", "handles"], [18, 3, 1, "", "name"], [18, 4, 1, "", "read"]], "sleap.io.format.filehandle": [[20, 2, 1, "", "FileHandle"]], "sleap.io.format.filehandle.FileHandle": [[20, 4, 1, "", "close"], [20, 3, 1, "", "file"], [20, 3, 1, "", "format_id"], [20, 3, 1, "", "is_hdf5"], [20, 3, 1, "", "is_json"], [20, 3, 1, "", "json"], [20, 4, 1, "", "open"], [20, 3, 1, "", "text"]], "sleap.io.format.genericjson": [[21, 2, 1, "", "GenericJsonAdaptor"]], "sleap.io.format.genericjson.GenericJsonAdaptor": [[21, 3, 1, "", "all_exts"], [21, 4, 1, "", "can_read_file"], [21, 4, 1, "", "can_write_filename"], [21, 3, 1, "", "default_ext"], [21, 4, 1, "", "does_read"], [21, 4, 1, "", "does_write"], [21, 3, 1, "", "handles"], [21, 3, 1, "", "name"], [21, 4, 1, "", "read"], [21, 4, 1, "", "write"]], "sleap.io.format.hdf5": [[22, 2, 1, "", "LabelsV1Adaptor"]], "sleap.io.format.hdf5.LabelsV1Adaptor": [[22, 3, 1, "", "all_exts"], [22, 4, 1, "", "can_read_file"], [22, 4, 1, "", "can_write_filename"], [22, 3, 1, "", "default_ext"], [22, 4, 1, "", "does_read"], [22, 4, 1, "", "does_write"], [22, 3, 1, "", "handles"], [22, 3, 1, "", "name"], [22, 4, 1, "", "read"], [22, 4, 1, "", "write"]], "sleap.io.format.labels_json": [[23, 2, 1, "", "LabelsJsonAdaptor"]], "sleap.io.format.labels_json.LabelsJsonAdaptor": [[23, 3, 1, "", "all_exts"], [23, 4, 1, "", "can_read_file"], [23, 4, 1, "", "can_write_filename"], [23, 3, 1, "", "default_ext"], [23, 4, 1, "", "does_read"], [23, 4, 1, "", "does_write"], [23, 4, 1, "", "from_json_data"], [23, 3, 1, "", "handles"], [23, 3, 1, "", "name"], [23, 4, 1, "", "read"], [23, 4, 1, "", "write"]], "sleap.io.format.leap_matlab": [[24, 2, 1, "", "LabelsLeapMatlabAdaptor"]], "sleap.io.format.leap_matlab.LabelsLeapMatlabAdaptor": [[24, 3, 1, "", "all_exts"], [24, 4, 1, "", "can_read_file"], [24, 4, 1, "", "can_write_filename"], [24, 3, 1, "", "default_ext"], [24, 4, 1, "", "does_read"], [24, 4, 1, "", "does_write"], [24, 3, 1, "", "handles"], [24, 3, 1, "", "name"], [24, 4, 1, "", "read"]], "sleap.io.format.main": [[25, 1, 1, "", "read"], [25, 1, 1, "", "write"]], "sleap.io.format.ndx_pose": [[26, 2, 1, "", "NDXPoseAdaptor"]], "sleap.io.format.ndx_pose.NDXPoseAdaptor": [[26, 3, 1, "", "all_exts"], [26, 4, 1, "", "can_read_file"], [26, 4, 1, "", "can_write_filename"], [26, 3, 1, "", "default_ext"], [26, 4, 1, "", "does_read"], [26, 4, 1, "", "does_write"], [26, 3, 1, "", "handles"], [26, 3, 1, "", "name"], [26, 4, 1, "", "read"], [26, 4, 1, "", "write"]], "sleap.io.format.nix": [[27, 2, 1, "", "NixAdaptor"]], "sleap.io.format.nix.NixAdaptor": [[27, 3, 1, "", "all_exts"], [27, 4, 1, "", "can_read_file"], [27, 4, 1, "", "can_write_filename"], [27, 3, 1, "", "default_ext"], [27, 4, 1, "", "does_read"], [27, 4, 1, "", "does_write"], [27, 3, 1, "", "handles"], [27, 3, 1, "", "name"], [27, 4, 1, "", "read"], [27, 4, 1, "", "write"]], "sleap.io.format.sleap_analysis": [[28, 2, 1, "", "SleapAnalysisAdaptor"]], "sleap.io.format.sleap_analysis.SleapAnalysisAdaptor": [[28, 3, 1, "", "all_exts"], [28, 4, 1, "", "can_read_file"], [28, 4, 1, "", "can_write_filename"], [28, 3, 1, "", "default_ext"], [28, 4, 1, "", "does_read"], [28, 4, 1, "", "does_write"], [28, 3, 1, "", "handles"], [28, 3, 1, "", "name"], [28, 4, 1, "", "read"], [28, 4, 1, "", "write"]], "sleap.io.format.text": [[29, 2, 1, "", "TextAdaptor"]], "sleap.io.format.text.TextAdaptor": [[29, 3, 1, "", "all_exts"], [29, 4, 1, "", "can_read_file"], [29, 4, 1, "", "can_write_filename"], [29, 3, 1, "", "default_ext"], [29, 4, 1, "", "does_read"], [29, 4, 1, "", "does_write"], [29, 3, 1, "", "handles"], [29, 3, 1, "", "name"], [29, 4, 1, "", "read"], [29, 4, 1, "", "write"]], "sleap.io.legacy": [[30, 1, 1, "", "load_labels_json_old"], [30, 1, 1, "", "load_predicted_labels_json_old"]], "sleap.io.pathutils": [[31, 1, 1, "", "filenames_prefix_change"], [31, 1, 1, "", "find_changed_subpath"], [31, 1, 1, "", "list_file_missing"]], "sleap.io.video": [[32, 2, 1, "", "DummyVideo"], [32, 2, 1, "", "HDF5Video"], [32, 2, 1, "", "ImgStoreVideo"], [32, 2, 1, "", "MediaVideo"], [32, 2, 1, "", "NumpyVideo"], [32, 2, 1, "", "SingleImageVideo"], [32, 2, 1, "", "Video"], [32, 1, 1, "", "available_video_exts"], [32, 1, 1, "", "load_video"]], "sleap.io.video.HDF5Video": [[32, 3, 1, "", "channels"], [32, 4, 1, "", "check"], [32, 4, 1, "", "close"], [32, 3, 1, "", "dtype"], [32, 3, 1, "", "embedded_frame_inds"], [32, 3, 1, "", "enable_source_video"], [32, 3, 1, "", "frames"], [32, 4, 1, "", "get_frame"], [32, 3, 1, "", "has_embedded_images"], [32, 3, 1, "", "height"], [32, 3, 1, "", "last_frame_idx"], [32, 4, 1, "", "matches"], [32, 4, 1, "", "reset"], [32, 3, 1, "", "source_video"], [32, 3, 1, "", "source_video_available"], [32, 3, 1, "", "width"]], "sleap.io.video.ImgStoreVideo": [[32, 3, 1, "", "channels"], [32, 4, 1, "", "close"], [32, 3, 1, "", "dtype"], [32, 3, 1, "", "frames"], [32, 4, 1, "", "get_frame"], [32, 3, 1, "", "height"], [32, 3, 1, "", "imgstore"], [32, 3, 1, "", "last_frame_idx"], [32, 4, 1, "", "matches"], [32, 4, 1, "", "open"], [32, 4, 1, "", "reset"], [32, 3, 1, "", "width"]], "sleap.io.video.MediaVideo": [[32, 3, 1, "", "channels"], [32, 3, 1, "", "dtype"], [32, 3, 1, "", "fps"], [32, 3, 1, "", "frames"], [32, 4, 1, "", "get_frame"], [32, 3, 1, "", "height"], [32, 4, 1, "", "matches"], [32, 4, 1, "", "reset"], [32, 3, 1, "", "width"]], "sleap.io.video.NumpyVideo": [[32, 3, 1, "", "channels"], [32, 3, 1, "", "dtype"], [32, 3, 1, "", "frames"], [32, 4, 1, "", "get_frame"], [32, 3, 1, "", "height"], [32, 3, 1, "", "is_missing"], [32, 4, 1, "", "matches"], [32, 4, 1, "", "reset"], [32, 3, 1, "", "width"]], "sleap.io.video.SingleImageVideo": [[32, 3, 1, "", "channels"], [32, 3, 1, "", "dtype"], [32, 3, 1, "", "frames"], [32, 4, 1, "", "get_frame"], [32, 3, 1, "", "height"], [32, 4, 1, "", "matches"], [32, 4, 1, "", "reset"], [32, 3, 1, "", "width"]], "sleap.io.video.Video": [[32, 4, 1, "", "cattr"], [32, 4, 1, "", "fixup_path"], [32, 4, 1, "", "from_filename"], [32, 4, 1, "", "from_hdf5"], [32, 4, 1, "", "from_image_filenames"], [32, 4, 1, "", "from_media"], [32, 4, 1, "", "from_numpy"], [32, 4, 1, "", "get_frame"], [32, 4, 1, "", "get_frames"], [32, 4, 1, "", "get_frames_safely"], [32, 4, 1, "", "imgstore_from_filenames"], [32, 3, 1, "", "is_missing"], [32, 3, 1, "", "last_frame_idx"], [32, 3, 1, "", "num_frames"], [32, 3, 1, "", "shape"], [32, 4, 1, "", "to_hdf5"], [32, 4, 1, "", "to_imgstore"], [32, 4, 1, "", "to_pipeline"]], "sleap.io.videowriter": [[33, 2, 1, "", "VideoWriter"], [33, 2, 1, "", "VideoWriterImageio"], [33, 2, 1, "", "VideoWriterOpenCV"]], "sleap.io.videowriter.VideoWriter": [[33, 4, 1, "", "can_use_ffmpeg"], [33, 4, 1, "", "safe_builder"]], "sleap.io.videowriter.VideoWriterImageio": [[33, 5, 1, "", "crf"], [33, 5, 1, "", "filename"], [33, 5, 1, "", "fps"], [33, 5, 1, "", "height"], [33, 5, 1, "", "preset"], [33, 5, 1, "", "width"]], "sleap.io.visuals": [[34, 2, 1, "", "VideoMarkerThread"], [34, 1, 1, "", "img_to_cv"], [34, 1, 1, "", "reader"], [34, 1, 1, "", "resize_image"], [34, 1, 1, "", "save_labeled_video"], [34, 1, 1, "", "writer"]], "sleap.io.visuals.VideoMarkerThread": [[34, 4, 1, "", "run"]], "sleap.message": [[35, 2, 1, "", "BaseMessageParticipant"], [35, 2, 1, "", "Receiver"], [35, 2, 1, "", "Sender"]], "sleap.message.Receiver": [[35, 4, 1, "", "check_message"], [35, 4, 1, "", "check_messages"], [35, 4, 1, "", "push_back_message"]], "sleap.message.Sender": [[35, 4, 1, "", "send_array"], [35, 4, 1, "", "send_dict"]], "sleap.nn.architectures": [[36, 0, 0, "-", "common"], [37, 0, 0, "-", "encoder_decoder"], [38, 0, 0, "-", "hourglass"], [39, 0, 0, "-", "hrnet"], [40, 0, 0, "-", "leap"], [41, 0, 0, "-", "pretrained_encoders"], [42, 0, 0, "-", "resnet"], [43, 0, 0, "-", "unet"], [44, 0, 0, "-", "upsampling"]], "sleap.nn.architectures.common": [[36, 2, 1, "", "IntermediateFeature"]], "sleap.nn.architectures.common.IntermediateFeature": [[36, 3, 1, "", "scale"], [36, 5, 1, "", "stride"], [36, 5, 1, "", "tensor"]], "sleap.nn.architectures.encoder_decoder": [[37, 2, 1, "", "DecoderBlock"], [37, 2, 1, "", "EncoderBlock"], [37, 2, 1, "", "EncoderDecoder"], [37, 2, 1, "", "SimpleConvBlock"], [37, 2, 1, "", "SimpleUpsamplingBlock"]], "sleap.nn.architectures.encoder_decoder.DecoderBlock": [[37, 4, 1, "", "make_block"], [37, 5, 1, "", "upsampling_stride"]], "sleap.nn.architectures.encoder_decoder.EncoderBlock": [[37, 4, 1, "", "make_block"], [37, 5, 1, "", "pool"], [37, 5, 1, "", "pooling_stride"]], "sleap.nn.architectures.encoder_decoder.EncoderDecoder": [[37, 3, 1, "", "decoder_features_stride"], [37, 3, 1, "", "decoder_stack"], [37, 3, 1, "", "encoder_features_stride"], [37, 3, 1, "", "encoder_stack"], [37, 4, 1, "", "make_backbone"], [37, 4, 1, "", "make_decoder"], [37, 4, 1, "", "make_encoder"], [37, 4, 1, "", "make_stem"], [37, 3, 1, "", "maximum_stride"], [37, 3, 1, "", "output_stride"], [37, 5, 1, "", "stacks"], [37, 3, 1, "", "stem_features_stride"], [37, 3, 1, "", "stem_stack"]], "sleap.nn.architectures.encoder_decoder.SimpleConvBlock": [[37, 5, 1, "", "activation"], [37, 5, 1, "", "batch_norm"], [37, 5, 1, "", "batch_norm_before_activation"], [37, 5, 1, "", "block_prefix"], [37, 5, 1, "", "filters"], [37, 5, 1, "", "kernel_size"], [37, 4, 1, "", "make_block"], [37, 5, 1, "", "num_convs"], [37, 5, 1, "", "pool"], [37, 5, 1, "", "pool_before_convs"], [37, 5, 1, "", "pooling_stride"], [37, 5, 1, "", "use_bias"]], "sleap.nn.architectures.encoder_decoder.SimpleUpsamplingBlock": [[37, 5, 1, "", "interp_method"], [37, 4, 1, "", "make_block"], [37, 5, 1, "", "refine_convs"], [37, 5, 1, "", "refine_convs_activation"], [37, 5, 1, "", "refine_convs_batch_norm"], [37, 5, 1, "", "refine_convs_batch_norm_before_activation"], [37, 5, 1, "", "refine_convs_filters"], [37, 5, 1, "", "refine_convs_first_filters"], [37, 5, 1, "", "refine_convs_kernel_size"], [37, 5, 1, "", "refine_convs_use_bias"], [37, 5, 1, "", "skip_add"], [37, 5, 1, "", "skip_connection"], [37, 5, 1, "", "transposed_conv"], [37, 5, 1, "", "transposed_conv_activation"], [37, 5, 1, "", "transposed_conv_batch_norm"], [37, 5, 1, "", "transposed_conv_batch_norm_before_activation"], [37, 5, 1, "", "transposed_conv_filters"], [37, 5, 1, "", "transposed_conv_kernel_size"], [37, 5, 1, "", "transposed_conv_use_bias"], [37, 5, 1, "", "upsampling_stride"]], "sleap.nn.architectures.hourglass": [[38, 2, 1, "", "DownsamplingBlock"], [38, 2, 1, "", "Hourglass"], [38, 2, 1, "", "StemBlock"], [38, 2, 1, "", "UpsamplingBlock"], [38, 1, 1, "", "conv"]], "sleap.nn.architectures.hourglass.DownsamplingBlock": [[38, 5, 1, "", "filters"], [38, 4, 1, "", "make_block"]], "sleap.nn.architectures.hourglass.Hourglass": [[38, 3, 1, "", "decoder_stack"], [38, 5, 1, "", "down_blocks"], [38, 3, 1, "", "encoder_stack"], [38, 5, 1, "", "filter_increase"], [38, 5, 1, "", "filters"], [38, 4, 1, "", "from_config"], [38, 5, 1, "", "interp_method"], [38, 5, 1, "", "stacks"], [38, 5, 1, "", "stem_filters"], [38, 3, 1, "", "stem_stack"], [38, 5, 1, "", "stem_stride"], [38, 5, 1, "", "up_blocks"]], "sleap.nn.architectures.hourglass.StemBlock": [[38, 5, 1, "", "filters"], [38, 5, 1, "", "first_conv_stride"], [38, 4, 1, "", "make_block"], [38, 5, 1, "", "output_filters"], [38, 5, 1, "", "pool"], [38, 5, 1, "", "pooling_stride"]], "sleap.nn.architectures.hourglass.UpsamplingBlock": [[38, 5, 1, "", "filters"], [38, 5, 1, "", "interp_method"], [38, 4, 1, "", "make_block"]], "sleap.nn.architectures.hrnet": [[39, 2, 1, "", "HigherHRNet"], [39, 1, 1, "", "adjust_prefix"], [39, 1, 1, "", "bottleneck_block"], [39, 1, 1, "", "simple_block"]], "sleap.nn.architectures.hrnet.HigherHRNet": [[39, 5, 1, "", "C"], [39, 5, 1, "", "bilinear_upsampling"], [39, 5, 1, "", "bottleneck"], [39, 5, 1, "", "deconv_filters"], [39, 3, 1, "", "down_blocks"], [39, 5, 1, "", "initial_downsampling_steps"], [39, 5, 1, "", "n_deconv_modules"], [39, 4, 1, "", "output"], [39, 3, 1, "", "output_scale"]], "sleap.nn.architectures.leap": [[40, 2, 1, "", "LeapCNN"]], "sleap.nn.architectures.leap.LeapCNN": [[40, 3, 1, "", "decoder_stack"], [40, 5, 1, "", "down_blocks"], [40, 5, 1, "", "down_convs_per_block"], [40, 3, 1, "", "encoder_stack"], [40, 5, 1, "", "filters"], [40, 5, 1, "", "filters_rate"], [40, 4, 1, "", "from_config"], [40, 5, 1, "", "up_blocks"], [40, 5, 1, "", "up_convs_per_block"], [40, 5, 1, "", "up_interpolate"]], "sleap.nn.architectures.pretrained_encoders": [[41, 2, 1, "", "UnetPretrainedEncoder"]], "sleap.nn.architectures.pretrained_encoders.UnetPretrainedEncoder": [[41, 5, 1, "", "decoder_filters"], [41, 3, 1, "", "down_blocks"], [41, 5, 1, "", "encoder"], [41, 4, 1, "", "from_config"], [41, 4, 1, "", "make_backbone"], [41, 3, 1, "", "maximum_stride"], [41, 3, 1, "", "output_stride"], [41, 5, 1, "", "pretrained"], [41, 3, 1, "", "up_blocks"]], "sleap.nn.architectures.resnet": [[42, 2, 1, "", "ResNet101"], [42, 2, 1, "", "ResNet152"], [42, 2, 1, "", "ResNet50"], [42, 2, 1, "", "ResNetv1"], [42, 1, 1, "", "block_v1"], [42, 1, 1, "", "imagenet_preproc_v1"], [42, 1, 1, "", "make_backbone_fn"], [42, 1, 1, "", "make_resnet_model"], [42, 1, 1, "", "stack_v1"], [42, 1, 1, "", "tile_channels"]], "sleap.nn.architectures.resnet.ResNet101": [[42, 5, 1, "", "features_output_stride"], [42, 5, 1, "", "frozen"], [42, 5, 1, "", "pretrained"], [42, 5, 1, "", "skip_connections"], [42, 5, 1, "", "upsampling_stack"]], "sleap.nn.architectures.resnet.ResNet152": [[42, 5, 1, "", "features_output_stride"], [42, 5, 1, "", "frozen"], [42, 5, 1, "", "pretrained"], [42, 5, 1, "", "skip_connections"], [42, 5, 1, "", "upsampling_stack"]], "sleap.nn.architectures.resnet.ResNet50": [[42, 5, 1, "", "features_output_stride"], [42, 5, 1, "", "frozen"], [42, 5, 1, "", "pretrained"], [42, 5, 1, "", "skip_connections"], [42, 5, 1, "", "upsampling_stack"]], "sleap.nn.architectures.resnet.ResNetv1": [[42, 3, 1, "", "down_blocks"], [42, 5, 1, "", "features_output_stride"], [42, 4, 1, "", "from_config"], [42, 5, 1, "", "frozen"], [42, 4, 1, "", "make_backbone"], [42, 3, 1, "", "maximum_stride"], [42, 5, 1, "", "model_name"], [42, 3, 1, "", "output_scale"], [42, 3, 1, "", "output_stride"], [42, 5, 1, "", "pretrained"], [42, 5, 1, "", "skip_connections"], [42, 5, 1, "", "stack_configs"], [42, 5, 1, "", "upsampling_stack"]], "sleap.nn.architectures.unet": [[43, 2, 1, "", "PoolingBlock"], [43, 2, 1, "", "UNet"]], "sleap.nn.architectures.unet.PoolingBlock": [[43, 4, 1, "", "make_block"], [43, 5, 1, "", "pool"], [43, 5, 1, "", "pooling_stride"]], "sleap.nn.architectures.unet.UNet": [[43, 5, 1, "", "block_contraction"], [43, 5, 1, "", "convs_per_block"], [43, 3, 1, "", "decoder_stack"], [43, 5, 1, "", "down_blocks"], [43, 3, 1, "", "encoder_stack"], [43, 5, 1, "", "filters"], [43, 5, 1, "", "filters_rate"], [43, 4, 1, "", "from_config"], [43, 5, 1, "", "kernel_size"], [43, 5, 1, "", "middle_block"], [43, 5, 1, "", "stem_blocks"], [43, 5, 1, "", "stem_kernel_size"], [43, 3, 1, "", "stem_stack"], [43, 5, 1, "", "up_blocks"], [43, 5, 1, "", "up_interpolate"]], "sleap.nn.architectures.upsampling": [[44, 2, 1, "", "UpsamplingStack"]], "sleap.nn.architectures.upsampling.UpsamplingStack": [[44, 4, 1, "", "from_config"], [44, 5, 1, "", "make_skip_connection"], [44, 4, 1, "", "make_stack"], [44, 5, 1, "", "output_stride"], [44, 5, 1, "", "refine_convs"], [44, 5, 1, "", "refine_convs_batchnorm"], [44, 5, 1, "", "refine_convs_filters"], [44, 5, 1, "", "refine_convs_filters_rate"], [44, 5, 1, "", "skip_add"], [44, 5, 1, "", "transposed_conv"], [44, 5, 1, "", "transposed_conv_batchnorm"], [44, 5, 1, "", "transposed_conv_filters"], [44, 5, 1, "", "transposed_conv_filters_rate"], [44, 5, 1, "", "transposed_conv_kernel_size"], [44, 5, 1, "", "upsampling_stride"]], "sleap.nn": [[45, 0, 0, "-", "callbacks"], [69, 0, 0, "-", "evals"], [70, 0, 0, "-", "heads"], [71, 0, 0, "-", "identity"], [72, 0, 0, "-", "inference"], [73, 0, 0, "-", "losses"], [74, 0, 0, "-", "model"], [75, 0, 0, "-", "paf_grouping"], [76, 0, 0, "-", "peak_finding"], [77, 0, 0, "-", "system"], [80, 0, 0, "-", "tracking"], [81, 0, 0, "-", "training"], [82, 0, 0, "-", "utils"], [83, 0, 0, "-", "viz"]], "sleap.nn.callbacks": [[45, 2, 1, "", "MatplotlibSaver"], [45, 2, 1, "", "ModelCheckpointOnEvent"], [45, 2, 1, "", "ProgressReporterZMQ"], [45, 2, 1, "", "TensorBoardMatplotlibWriter"], [45, 2, 1, "", "TrainingControllerZMQ"]], "sleap.nn.callbacks.MatplotlibSaver": [[45, 4, 1, "", "on_epoch_end"], [45, 5, 1, "", "plot_fn"], [45, 5, 1, "", "prefix"], [45, 5, 1, "", "save_folder"]], "sleap.nn.callbacks.ModelCheckpointOnEvent": [[45, 5, 1, "", "event"], [45, 5, 1, "", "filepath"], [45, 4, 1, "", "on_epoch_end"], [45, 4, 1, "", "on_train_begin"], [45, 4, 1, "", "on_train_end"]], "sleap.nn.callbacks.ProgressReporterZMQ": [[45, 4, 1, "", "on_batch_begin"], [45, 4, 1, "", "on_batch_end"], [45, 4, 1, "", "on_epoch_begin"], [45, 4, 1, "", "on_epoch_end"], [45, 4, 1, "", "on_train_begin"], [45, 4, 1, "", "on_train_end"]], "sleap.nn.callbacks.TensorBoardMatplotlibWriter": [[45, 5, 1, "", "logdir"], [45, 4, 1, "", "on_epoch_end"], [45, 5, 1, "", "plot_fn"], [45, 5, 1, "", "tag"]], "sleap.nn.callbacks.TrainingControllerZMQ": [[45, 4, 1, "", "on_batch_end"], [45, 4, 1, "", "set_lr"]], "sleap.nn.config": [[46, 0, 0, "-", "data"], [47, 0, 0, "-", "model"], [48, 0, 0, "-", "optimization"], [49, 0, 0, "-", "outputs"], [50, 0, 0, "-", "training_job"], [51, 0, 0, "-", "utils"]], "sleap.nn.config.data": [[46, 2, 1, "", "DataConfig"], [46, 2, 1, "", "InstanceCroppingConfig"], [46, 2, 1, "", "LabelsConfig"], [46, 2, 1, "", "PreprocessingConfig"]], "sleap.nn.config.data.InstanceCroppingConfig": [[46, 5, 1, "", "center_on_part"], [46, 5, 1, "", "crop_size"], [46, 5, 1, "", "crop_size_detection_padding"]], "sleap.nn.config.data.LabelsConfig": [[46, 5, 1, "", "search_path_hints"], [46, 5, 1, "", "skeletons"], [46, 5, 1, "", "split_by_inds"], [46, 5, 1, "", "test_inds"], [46, 5, 1, "", "test_labels"], [46, 5, 1, "", "training_inds"], [46, 5, 1, "", "training_labels"], [46, 5, 1, "", "validation_fraction"], [46, 5, 1, "", "validation_inds"], [46, 5, 1, "", "validation_labels"]], "sleap.nn.config.data.PreprocessingConfig": [[46, 5, 1, "", "ensure_grayscale"], [46, 5, 1, "", "ensure_rgb"], [46, 5, 1, "", "imagenet_mode"], [46, 5, 1, "", "input_scale"], [46, 5, 1, "", "pad_to_stride"], [46, 5, 1, "", "resize_and_pad_to_target"], [46, 5, 1, "", "target_height"], [46, 5, 1, "", "target_width"]], "sleap.nn.config.model": [[47, 2, 1, "", "BackboneConfig"], [47, 2, 1, "", "CenteredInstanceConfmapsHeadConfig"], [47, 2, 1, "", "CentroidsHeadConfig"], [47, 2, 1, "", "ClassMapsHeadConfig"], [47, 2, 1, "", "ClassVectorsHeadConfig"], [47, 2, 1, "", "HeadsConfig"], [47, 2, 1, "", "HourglassConfig"], [47, 2, 1, "", "LEAPConfig"], [47, 2, 1, "", "ModelConfig"], [47, 2, 1, "", "MultiClassBottomUpConfig"], [47, 2, 1, "", "MultiClassTopDownConfig"], [47, 2, 1, "", "MultiInstanceConfig"], [47, 2, 1, "", "MultiInstanceConfmapsHeadConfig"], [47, 2, 1, "", "PartAffinityFieldsHeadConfig"], [47, 2, 1, "", "PretrainedEncoderConfig"], [47, 2, 1, "", "ResNetConfig"], [47, 2, 1, "", "SingleInstanceConfmapsHeadConfig"], [47, 2, 1, "", "UNetConfig"], [47, 2, 1, "", "UpsamplingConfig"]], "sleap.nn.config.model.BackboneConfig": [[47, 5, 1, "", "hourglass"], [47, 5, 1, "", "leap"], [47, 5, 1, "", "resnet"], [47, 5, 1, "", "unet"]], "sleap.nn.config.model.CenteredInstanceConfmapsHeadConfig": [[47, 5, 1, "", "anchor_part"], [47, 5, 1, "", "loss_weight"], [47, 5, 1, "", "offset_refinement"], [47, 5, 1, "", "output_stride"], [47, 5, 1, "", "part_names"], [47, 5, 1, "", "sigma"]], "sleap.nn.config.model.CentroidsHeadConfig": [[47, 5, 1, "", "anchor_part"], [47, 5, 1, "", "loss_weight"], [47, 5, 1, "", "offset_refinement"], [47, 5, 1, "", "output_stride"], [47, 5, 1, "", "sigma"]], "sleap.nn.config.model.ClassMapsHeadConfig": [[47, 5, 1, "", "classes"], [47, 5, 1, "", "loss_weight"], [47, 5, 1, "", "output_stride"], [47, 5, 1, "", "sigma"]], "sleap.nn.config.model.ClassVectorsHeadConfig": [[47, 5, 1, "", "classes"], [47, 5, 1, "", "loss_weight"], [47, 5, 1, "", "num_fc_layers"], [47, 5, 1, "", "num_fc_units"], [47, 5, 1, "", "output_stride"]], "sleap.nn.config.model.HeadsConfig": [[47, 5, 1, "", "centered_instance"], [47, 5, 1, "", "centroid"], [47, 5, 1, "", "multi_class_bottomup"], [47, 5, 1, "", "multi_class_topdown"], [47, 5, 1, "", "multi_instance"], [47, 5, 1, "", "single_instance"]], "sleap.nn.config.model.HourglassConfig": [[47, 5, 1, "", "filters"], [47, 5, 1, "", "filters_increase"], [47, 5, 1, "", "max_stride"], [47, 5, 1, "", "output_stride"], [47, 5, 1, "", "stacks"], [47, 5, 1, "", "stem_stride"]], "sleap.nn.config.model.LEAPConfig": [[47, 5, 1, "", "filters"], [47, 5, 1, "", "filters_rate"], [47, 5, 1, "", "max_stride"], [47, 5, 1, "", "output_stride"], [47, 5, 1, "", "stacks"], [47, 5, 1, "", "up_interpolate"]], "sleap.nn.config.model.ModelConfig": [[47, 5, 1, "", "backbone"], [47, 5, 1, "", "base_checkpoint"], [47, 5, 1, "", "heads"]], "sleap.nn.config.model.MultiClassBottomUpConfig": [[47, 5, 1, "", "class_maps"], [47, 5, 1, "", "confmaps"]], "sleap.nn.config.model.MultiClassTopDownConfig": [[47, 5, 1, "", "class_vectors"], [47, 5, 1, "", "confmaps"]], "sleap.nn.config.model.MultiInstanceConfig": [[47, 5, 1, "", "confmaps"], [47, 5, 1, "", "pafs"]], "sleap.nn.config.model.MultiInstanceConfmapsHeadConfig": [[47, 5, 1, "", "loss_weight"], [47, 5, 1, "", "offset_refinement"], [47, 5, 1, "", "output_stride"], [47, 5, 1, "", "part_names"], [47, 5, 1, "", "sigma"]], "sleap.nn.config.model.PartAffinityFieldsHeadConfig": [[47, 5, 1, "", "edges"], [47, 5, 1, "", "loss_weight"], [47, 5, 1, "", "output_stride"], [47, 5, 1, "", "sigma"]], "sleap.nn.config.model.PretrainedEncoderConfig": [[47, 5, 1, "", "decoder_batchnorm"], [47, 5, 1, "", "decoder_filters"], [47, 5, 1, "", "decoder_filters_rate"], [47, 5, 1, "", "encoder"], [47, 5, 1, "", "output_stride"], [47, 5, 1, "", "pretrained"]], "sleap.nn.config.model.ResNetConfig": [[47, 5, 1, "", "max_stride"], [47, 5, 1, "", "output_stride"], [47, 5, 1, "", "upsampling"], [47, 5, 1, "", "version"], [47, 5, 1, "", "weights"]], "sleap.nn.config.model.SingleInstanceConfmapsHeadConfig": [[47, 5, 1, "", "loss_weight"], [47, 5, 1, "", "offset_refinement"], [47, 5, 1, "", "output_stride"], [47, 5, 1, "", "part_names"], [47, 5, 1, "", "sigma"]], "sleap.nn.config.model.UNetConfig": [[47, 5, 1, "", "filters"], [47, 5, 1, "", "filters_rate"], [47, 5, 1, "", "max_stride"], [47, 5, 1, "", "middle_block"], [47, 5, 1, "", "output_stride"], [47, 5, 1, "", "stacks"], [47, 5, 1, "", "stem_stride"], [47, 5, 1, "", "up_interpolate"]], "sleap.nn.config.model.UpsamplingConfig": [[47, 5, 1, "", "block_stride"], [47, 5, 1, "", "conv_batchnorm"], [47, 5, 1, "", "filters"], [47, 5, 1, "", "filters_rate"], [47, 5, 1, "", "method"], [47, 5, 1, "", "refine_convs"], [47, 5, 1, "", "skip_connections"], [47, 5, 1, "", "transposed_conv_kernel_size"]], "sleap.nn.config.optimization": [[48, 2, 1, "", "AugmentationConfig"], [48, 2, 1, "", "EarlyStoppingConfig"], [48, 2, 1, "", "HardKeypointMiningConfig"], [48, 2, 1, "", "LearningRateScheduleConfig"], [48, 2, 1, "", "OptimizationConfig"]], "sleap.nn.config.optimization.AugmentationConfig": [[48, 5, 1, "", "brightness"], [48, 5, 1, "", "brightness_max_val"], [48, 5, 1, "", "brightness_min_val"], [48, 5, 1, "", "contrast"], [48, 5, 1, "", "contrast_max_gamma"], [48, 5, 1, "", "contrast_min_gamma"], [48, 5, 1, "", "flip_horizontal"], [48, 5, 1, "", "gaussian_noise"], [48, 5, 1, "", "gaussian_noise_mean"], [48, 5, 1, "", "gaussian_noise_stddev"], [48, 5, 1, "", "random_crop"], [48, 5, 1, "", "random_crop_height"], [48, 5, 1, "", "random_crop_width"], [48, 5, 1, "", "random_flip"], [48, 5, 1, "", "rotate"], [48, 5, 1, "", "rotation_max_angle"], [48, 5, 1, "", "rotation_min_angle"], [48, 5, 1, "", "scale"], [48, 5, 1, "", "scale_max"], [48, 5, 1, "", "scale_min"], [48, 5, 1, "", "translate"], [48, 5, 1, "", "translate_max"], [48, 5, 1, "", "translate_min"], [48, 5, 1, "", "uniform_noise"], [48, 5, 1, "", "uniform_noise_max_val"], [48, 5, 1, "", "uniform_noise_min_val"]], "sleap.nn.config.optimization.EarlyStoppingConfig": [[48, 5, 1, "", "plateau_min_delta"], [48, 5, 1, "", "plateau_patience"], [48, 5, 1, "", "stop_training_on_plateau"]], "sleap.nn.config.optimization.HardKeypointMiningConfig": [[48, 5, 1, "", "hard_to_easy_ratio"], [48, 5, 1, "", "loss_scale"], [48, 5, 1, "", "max_hard_keypoints"], [48, 5, 1, "", "min_hard_keypoints"], [48, 5, 1, "", "online_mining"]], "sleap.nn.config.optimization.LearningRateScheduleConfig": [[48, 5, 1, "", "min_learning_rate"], [48, 5, 1, "", "plateau_cooldown"], [48, 5, 1, "", "plateau_min_delta"], [48, 5, 1, "", "plateau_patience"], [48, 5, 1, "", "reduce_on_plateau"], [48, 5, 1, "", "reduction_factor"]], "sleap.nn.config.optimization.OptimizationConfig": [[48, 5, 1, "", "augmentation_config"], [48, 5, 1, "", "batch_size"], [48, 5, 1, "", "batches_per_epoch"], [48, 5, 1, "", "early_stopping"], [48, 5, 1, "", "epochs"], [48, 5, 1, "", "hard_keypoint_mining"], [48, 5, 1, "", "initial_learning_rate"], [48, 5, 1, "", "learning_rate_schedule"], [48, 5, 1, "", "min_batches_per_epoch"], [48, 5, 1, "", "min_val_batches_per_epoch"], [48, 5, 1, "", "online_shuffling"], [48, 5, 1, "", "optimizer"], [48, 5, 1, "", "prefetch"], [48, 5, 1, "", "preload_data"], [48, 5, 1, "", "shuffle_buffer_size"], [48, 5, 1, "", "val_batches_per_epoch"]], "sleap.nn.config.outputs": [[49, 2, 1, "", "CheckpointingConfig"], [49, 2, 1, "", "OutputsConfig"], [49, 2, 1, "", "TensorBoardConfig"], [49, 2, 1, "", "ZMQConfig"]], "sleap.nn.config.outputs.CheckpointingConfig": [[49, 5, 1, "", "best_model"], [49, 5, 1, "", "every_epoch"], [49, 5, 1, "", "final_model"], [49, 5, 1, "", "initial_model"], [49, 5, 1, "", "latest_model"]], "sleap.nn.config.outputs.OutputsConfig": [[49, 5, 1, "", "checkpointing"], [49, 5, 1, "", "keep_viz_images"], [49, 5, 1, "", "log_to_csv"], [49, 5, 1, "", "run_name"], [49, 5, 1, "", "run_name_prefix"], [49, 5, 1, "", "run_name_suffix"], [49, 3, 1, "", "run_path"], [49, 5, 1, "", "runs_folder"], [49, 5, 1, "", "save_outputs"], [49, 5, 1, "", "save_visualizations"], [49, 5, 1, "", "tags"], [49, 5, 1, "", "tensorboard"], [49, 5, 1, "", "zip_outputs"], [49, 5, 1, "", "zmq"]], "sleap.nn.config.outputs.TensorBoardConfig": [[49, 5, 1, "", "architecture_graph"], [49, 5, 1, "", "loss_frequency"], [49, 5, 1, "", "profile_graph"], [49, 5, 1, "", "visualizations"], [49, 5, 1, "", "write_logs"]], "sleap.nn.config.outputs.ZMQConfig": [[49, 5, 1, "", "controller_address"], [49, 5, 1, "", "controller_polling_timeout"], [49, 5, 1, "", "publish_address"], [49, 5, 1, "", "publish_updates"], [49, 5, 1, "", "subscribe_to_controller"]], "sleap.nn.config.training_job": [[50, 2, 1, "", "TrainingJobConfig"], [50, 1, 1, "", "load_config"]], "sleap.nn.config.training_job.TrainingJobConfig": [[50, 5, 1, "", "data"], [50, 5, 1, "", "description"], [50, 5, 1, "", "filename"], [50, 4, 1, "", "from_json"], [50, 4, 1, "", "from_json_dicts"], [50, 4, 1, "", "load_json"], [50, 5, 1, "", "model"], [50, 5, 1, "", "name"], [50, 5, 1, "", "optimization"], [50, 5, 1, "", "outputs"], [50, 4, 1, "", "save_json"], [50, 5, 1, "", "sleap_version"], [50, 4, 1, "", "to_json"]], "sleap.nn.config.utils": [[51, 1, 1, "", "oneof"]], "sleap.nn.data": [[52, 0, 0, "-", "augmentation"], [53, 0, 0, "-", "confidence_maps"], [54, 0, 0, "-", "dataset_ops"], [55, 0, 0, "-", "edge_maps"], [56, 0, 0, "-", "general"], [57, 0, 0, "-", "grouping"], [58, 0, 0, "-", "identity"], [59, 0, 0, "-", "inference"], [60, 0, 0, "-", "instance_centroids"], [61, 0, 0, "-", "instance_cropping"], [62, 0, 0, "-", "normalization"], [63, 0, 0, "-", "offset_regression"], [64, 0, 0, "-", "pipelines"], [65, 0, 0, "-", "providers"], [66, 0, 0, "-", "resizing"], [67, 0, 0, "-", "training"], [68, 0, 0, "-", "utils"]], "sleap.nn.data.augmentation": [[52, 2, 1, "", "AlbumentationsAugmenter"], [52, 2, 1, "", "RandomCropper"], [52, 2, 1, "", "RandomFlipper"], [52, 1, 1, "", "flip_instances_lr"], [52, 1, 1, "", "flip_instances_ud"]], "sleap.nn.data.augmentation.AlbumentationsAugmenter": [[52, 5, 1, "", "augmenter"], [52, 4, 1, "", "from_config"], [52, 5, 1, "", "image_key"], [52, 3, 1, "", "input_keys"], [52, 5, 1, "", "instances_key"], [52, 3, 1, "", "output_keys"], [52, 4, 1, "", "transform_dataset"]], "sleap.nn.data.augmentation.RandomCropper": [[52, 5, 1, "", "crop_height"], [52, 5, 1, "", "crop_width"], [52, 4, 1, "", "transform_dataset"]], "sleap.nn.data.augmentation.RandomFlipper": [[52, 4, 1, "", "from_skeleton"], [52, 5, 1, "", "horizontal"], [52, 5, 1, "", "probability"], [52, 5, 1, "", "symmetric_inds"], [52, 4, 1, "", "transform_dataset"]], "sleap.nn.data.confidence_maps": [[53, 2, 1, "", "InstanceConfidenceMapGenerator"], [53, 2, 1, "", "MultiConfidenceMapGenerator"], [53, 2, 1, "", "SingleInstanceConfidenceMapGenerator"], [53, 1, 1, "", "make_confmaps"], [53, 1, 1, "", "make_multi_confmaps"], [53, 1, 1, "", "make_multi_confmaps_with_offsets"]], "sleap.nn.data.confidence_maps.InstanceConfidenceMapGenerator": [[53, 5, 1, "", "all_instances"], [53, 5, 1, "", "flatten_offsets"], [53, 3, 1, "", "input_keys"], [53, 5, 1, "", "offsets_threshold"], [53, 3, 1, "", "output_keys"], [53, 5, 1, "", "output_stride"], [53, 5, 1, "", "sigma"], [53, 4, 1, "", "transform_dataset"], [53, 5, 1, "", "with_offsets"]], "sleap.nn.data.confidence_maps.MultiConfidenceMapGenerator": [[53, 5, 1, "", "centroids"], [53, 5, 1, "", "flatten_offsets"], [53, 3, 1, "", "input_keys"], [53, 5, 1, "", "offsets_threshold"], [53, 3, 1, "", "output_keys"], [53, 5, 1, "", "output_stride"], [53, 5, 1, "", "sigma"], [53, 4, 1, "", "transform_dataset"], [53, 5, 1, "", "with_offsets"]], "sleap.nn.data.confidence_maps.SingleInstanceConfidenceMapGenerator": [[53, 5, 1, "", "flatten_offsets"], [53, 3, 1, "", "input_keys"], [53, 5, 1, "", "offsets_threshold"], [53, 3, 1, "", "output_keys"], [53, 5, 1, "", "output_stride"], [53, 5, 1, "", "sigma"], [53, 4, 1, "", "transform_dataset"], [53, 5, 1, "", "with_offsets"]], "sleap.nn.data.dataset_ops": [[54, 2, 1, "", "Batcher"], [54, 2, 1, "", "LambdaFilter"], [54, 2, 1, "", "Prefetcher"], [54, 2, 1, "", "Preloader"], [54, 2, 1, "", "Repeater"], [54, 2, 1, "", "Shuffler"], [54, 2, 1, "", "Unbatcher"]], "sleap.nn.data.dataset_ops.Batcher": [[54, 5, 1, "", "batch_size"], [54, 5, 1, "", "drop_remainder"], [54, 3, 1, "", "input_keys"], [54, 3, 1, "", "output_keys"], [54, 4, 1, "", "transform_dataset"], [54, 5, 1, "", "unrag"]], "sleap.nn.data.dataset_ops.LambdaFilter": [[54, 5, 1, "", "filter_fn"], [54, 3, 1, "", "input_keys"], [54, 3, 1, "", "output_keys"], [54, 4, 1, "", "transform_dataset"]], "sleap.nn.data.dataset_ops.Prefetcher": [[54, 5, 1, "", "buffer_size"], [54, 3, 1, "", "input_keys"], [54, 3, 1, "", "output_keys"], [54, 5, 1, "", "prefetch"], [54, 4, 1, "", "transform_dataset"]], "sleap.nn.data.dataset_ops.Preloader": [[54, 5, 1, "", "examples"], [54, 3, 1, "", "input_keys"], [54, 3, 1, "", "output_keys"], [54, 4, 1, "", "transform_dataset"]], "sleap.nn.data.dataset_ops.Repeater": [[54, 5, 1, "", "epochs"], [54, 3, 1, "", "input_keys"], [54, 3, 1, "", "output_keys"], [54, 5, 1, "", "repeat"], [54, 4, 1, "", "transform_dataset"]], "sleap.nn.data.dataset_ops.Shuffler": [[54, 5, 1, "", "buffer_size"], [54, 3, 1, "", "input_keys"], [54, 3, 1, "", "output_keys"], [54, 5, 1, "", "reshuffle_each_iteration"], [54, 5, 1, "", "shuffle"], [54, 4, 1, "", "transform_dataset"]], "sleap.nn.data.dataset_ops.Unbatcher": [[54, 3, 1, "", "input_keys"], [54, 3, 1, "", "output_keys"], [54, 4, 1, "", "transform_dataset"]], "sleap.nn.data.edge_maps": [[55, 2, 1, "", "PartAffinityFieldsGenerator"], [55, 1, 1, "", "distance_to_edge"], [55, 1, 1, "", "get_edge_points"], [55, 1, 1, "", "make_edge_maps"], [55, 1, 1, "", "make_multi_pafs"], [55, 1, 1, "", "make_pafs"]], "sleap.nn.data.edge_maps.PartAffinityFieldsGenerator": [[55, 5, 1, "", "flatten_channels"], [55, 3, 1, "", "input_keys"], [55, 3, 1, "", "output_keys"], [55, 5, 1, "", "output_stride"], [55, 5, 1, "", "sigma"], [55, 5, 1, "", "skeletons"], [55, 4, 1, "", "transform_dataset"]], "sleap.nn.data.general": [[56, 2, 1, "", "KeyDeviceMover"], [56, 2, 1, "", "KeyFilter"], [56, 2, 1, "", "KeyRenamer"], [56, 2, 1, "", "LambdaMap"]], "sleap.nn.data.general.KeyDeviceMover": [[56, 3, 1, "", "input_keys"], [56, 3, 1, "", "output_keys"], [56, 4, 1, "", "transform_dataset"]], "sleap.nn.data.general.KeyFilter": [[56, 3, 1, "", "input_keys"], [56, 3, 1, "", "output_keys"], [56, 4, 1, "", "transform_dataset"]], "sleap.nn.data.general.KeyRenamer": [[56, 3, 1, "", "input_keys"], [56, 3, 1, "", "output_keys"], [56, 4, 1, "", "transform_dataset"]], "sleap.nn.data.general.LambdaMap": [[56, 5, 1, "", "func"], [56, 5, 1, "", "input_key_names"], [56, 3, 1, "", "input_keys"], [56, 5, 1, "", "output_key_names"], [56, 3, 1, "", "output_keys"], [56, 4, 1, "", "transform_dataset"]], "sleap.nn.data.grouping": [[57, 1, 1, "", "group_examples"], [57, 1, 1, "", "group_examples_iter"]], "sleap.nn.data.identity": [[58, 2, 1, "", "ClassMapGenerator"], [58, 2, 1, "", "ClassVectorGenerator"], [58, 1, 1, "", "make_class_maps"], [58, 1, 1, "", "make_class_vectors"]], "sleap.nn.data.identity.ClassMapGenerator": [[58, 5, 1, "", "centroids"], [58, 5, 1, "", "class_map_threshold"], [58, 3, 1, "", "input_keys"], [58, 3, 1, "", "output_keys"], [58, 5, 1, "", "output_stride"], [58, 5, 1, "", "sigma"], [58, 4, 1, "", "transform_dataset"]], "sleap.nn.data.identity.ClassVectorGenerator": [[58, 3, 1, "", "input_keys"], [58, 3, 1, "", "output_keys"], [58, 4, 1, "", "transform_dataset"]], "sleap.nn.data.inference": [[59, 2, 1, "", "GlobalPeakFinder"], [59, 2, 1, "", "KerasModelPredictor"], [59, 2, 1, "", "LocalPeakFinder"], [59, 2, 1, "", "MockGlobalPeakFinder"], [59, 2, 1, "", "PredictedCenterInstanceNormalizer"]], "sleap.nn.data.inference.PredictedCenterInstanceNormalizer": [[59, 3, 1, "", "input_keys"], [59, 3, 1, "", "output_keys"], [59, 4, 1, "", "transform_dataset"]], "sleap.nn.data.instance_centroids": [[60, 2, 1, "", "InstanceCentroidFinder"], [60, 1, 1, "", "find_points_bbox_midpoint"], [60, 1, 1, "", "get_instance_anchors"]], "sleap.nn.data.instance_centroids.InstanceCentroidFinder": [[60, 5, 1, "", "anchor_part_names"], [60, 5, 1, "", "center_on_anchor_part"], [60, 4, 1, "", "from_config"], [60, 3, 1, "", "input_keys"], [60, 5, 1, "", "instances_key"], [60, 3, 1, "", "output_keys"], [60, 5, 1, "", "skeletons"], [60, 4, 1, "", "transform_dataset"]], "sleap.nn.data.instance_cropping": [[61, 2, 1, "", "InstanceCropper"], [61, 1, 1, "", "crop_bboxes"], [61, 1, 1, "", "find_instance_crop_size"], [61, 1, 1, "", "make_centered_bboxes"], [61, 1, 1, "", "normalize_bboxes"], [61, 1, 1, "", "unnormalize_bboxes"]], "sleap.nn.data.instance_cropping.InstanceCropper": [[61, 5, 1, "", "centroids_key"], [61, 5, 1, "", "crop_height"], [61, 5, 1, "", "crop_width"], [61, 4, 1, "", "from_config"], [61, 5, 1, "", "image_key"], [61, 3, 1, "", "input_keys"], [61, 5, 1, "", "instances_key"], [61, 5, 1, "", "keep_full_image"], [61, 5, 1, "", "mock_centroid_confidence"], [61, 3, 1, "", "output_keys"], [61, 4, 1, "", "transform_dataset"], [61, 5, 1, "", "unbatch"]], "sleap.nn.data.normalization": [[62, 2, 1, "", "Normalizer"], [62, 1, 1, "", "convert_rgb_to_bgr"], [62, 1, 1, "", "ensure_float"], [62, 1, 1, "", "ensure_grayscale"], [62, 1, 1, "", "ensure_int"], [62, 1, 1, "", "ensure_min_image_rank"], [62, 1, 1, "", "ensure_rgb"], [62, 1, 1, "", "scale_image_range"], [62, 1, 1, "", "scale_to_imagenet_caffe_mode"], [62, 1, 1, "", "scale_to_imagenet_tf_mode"], [62, 1, 1, "", "scale_to_imagenet_torch_mode"]], "sleap.nn.data.normalization.Normalizer": [[62, 5, 1, "", "ensure_float"], [62, 5, 1, "", "ensure_grayscale"], [62, 5, 1, "", "ensure_rgb"], [62, 4, 1, "", "from_config"], [62, 5, 1, "", "image_key"], [62, 5, 1, "", "imagenet_mode"], [62, 3, 1, "", "input_keys"], [62, 3, 1, "", "output_keys"], [62, 4, 1, "", "transform_dataset"]], "sleap.nn.data.offset_regression": [[63, 1, 1, "", "make_offsets"], [63, 1, 1, "", "mask_offsets"]], "sleap.nn.data.pipelines": [[64, 2, 1, "", "BottomUpMultiClassPipeline"], [64, 2, 1, "", "BottomUpPipeline"], [64, 2, 1, "", "CentroidConfmapsPipeline"], [64, 2, 1, "", "Pipeline"], [64, 2, 1, "", "SingleInstanceConfmapsPipeline"], [64, 2, 1, "", "TopDownMultiClassPipeline"], [64, 2, 1, "", "TopdownConfmapsPipeline"]], "sleap.nn.data.pipelines.BottomUpMultiClassPipeline": [[64, 5, 1, "", "class_maps_head"], [64, 5, 1, "", "confmaps_head"], [64, 5, 1, "", "data_config"], [64, 4, 1, "", "make_base_pipeline"], [64, 4, 1, "", "make_training_pipeline"], [64, 4, 1, "", "make_viz_pipeline"], [64, 5, 1, "", "offsets_head"], [64, 5, 1, "", "optimization_config"]], "sleap.nn.data.pipelines.BottomUpPipeline": [[64, 5, 1, "", "confmaps_head"], [64, 5, 1, "", "data_config"], [64, 4, 1, "", "make_base_pipeline"], [64, 4, 1, "", "make_training_pipeline"], [64, 4, 1, "", "make_viz_pipeline"], [64, 5, 1, "", "offsets_head"], [64, 5, 1, "", "optimization_config"], [64, 5, 1, "", "pafs_head"]], "sleap.nn.data.pipelines.CentroidConfmapsPipeline": [[64, 5, 1, "", "centroid_confmap_head"], [64, 5, 1, "", "data_config"], [64, 4, 1, "", "make_base_pipeline"], [64, 4, 1, "", "make_training_pipeline"], [64, 4, 1, "", "make_viz_pipeline"], [64, 5, 1, "", "offsets_head"], [64, 5, 1, "", "optimization_config"]], "sleap.nn.data.pipelines.Pipeline": [[64, 4, 1, "", "append"], [64, 4, 1, "", "describe"], [64, 4, 1, "", "from_blocks"], [64, 4, 1, "", "from_pipelines"], [64, 4, 1, "", "make_dataset"], [64, 3, 1, "", "output_keys"], [64, 4, 1, "", "peek"], [64, 5, 1, "", "providers"], [64, 4, 1, "", "run"], [64, 5, 1, "", "transformers"], [64, 4, 1, "", "validate_pipeline"]], "sleap.nn.data.pipelines.SingleInstanceConfmapsPipeline": [[64, 5, 1, "", "data_config"], [64, 4, 1, "", "make_base_pipeline"], [64, 4, 1, "", "make_training_pipeline"], [64, 4, 1, "", "make_viz_pipeline"], [64, 5, 1, "", "offsets_head"], [64, 5, 1, "", "optimization_config"], [64, 5, 1, "", "single_instance_confmap_head"]], "sleap.nn.data.pipelines.TopDownMultiClassPipeline": [[64, 5, 1, "", "class_vectors_head"], [64, 5, 1, "", "confmaps_head"], [64, 5, 1, "", "data_config"], [64, 4, 1, "", "make_base_pipeline"], [64, 4, 1, "", "make_training_pipeline"], [64, 4, 1, "", "make_viz_pipeline"], [64, 5, 1, "", "offsets_head"], [64, 5, 1, "", "optimization_config"]], "sleap.nn.data.pipelines.TopdownConfmapsPipeline": [[64, 5, 1, "", "data_config"], [64, 5, 1, "", "instance_confmap_head"], [64, 4, 1, "", "make_base_pipeline"], [64, 4, 1, "", "make_training_pipeline"], [64, 4, 1, "", "make_viz_pipeline"], [64, 5, 1, "", "offsets_head"], [64, 5, 1, "", "optimization_config"]], "sleap.nn.data.providers": [[65, 2, 1, "", "LabelsReader"], [65, 2, 1, "", "VideoReader"]], "sleap.nn.data.providers.LabelsReader": [[65, 5, 1, "", "example_indices"], [65, 4, 1, "", "from_filename"], [65, 4, 1, "", "from_unlabeled_suggestions"], [65, 4, 1, "", "from_user_instances"], [65, 4, 1, "", "from_user_labeled_frames"], [65, 3, 1, "", "is_from_multi_size_videos"], [65, 5, 1, "", "labels"], [65, 4, 1, "", "make_dataset"], [65, 3, 1, "", "max_height_and_width"], [65, 3, 1, "", "output_keys"], [65, 3, 1, "", "tracks"], [65, 5, 1, "", "user_instances_only"], [65, 3, 1, "", "videos"], [65, 5, 1, "", "with_track_only"]], "sleap.nn.data.providers.VideoReader": [[65, 5, 1, "", "example_indices"], [65, 4, 1, "", "from_filepath"], [65, 4, 1, "", "make_dataset"], [65, 3, 1, "", "max_height_and_width"], [65, 3, 1, "", "output_keys"], [65, 5, 1, "", "video"], [65, 5, 1, "", "video_ind"], [65, 3, 1, "", "videos"]], "sleap.nn.data.resizing": [[66, 2, 1, "", "PointsRescaler"], [66, 2, 1, "", "Resizer"], [66, 2, 1, "", "SizeMatcher"], [66, 1, 1, "", "find_padding_for_stride"], [66, 1, 1, "", "pad_to_stride"], [66, 1, 1, "", "resize_image"]], "sleap.nn.data.resizing.PointsRescaler": [[66, 3, 1, "", "input_keys"], [66, 3, 1, "", "output_keys"], [66, 4, 1, "", "transform_dataset"]], "sleap.nn.data.resizing.Resizer": [[66, 4, 1, "", "from_config"], [66, 5, 1, "", "full_image_key"], [66, 5, 1, "", "image_key"], [66, 3, 1, "", "input_keys"], [66, 5, 1, "", "keep_full_image"], [66, 3, 1, "", "output_keys"], [66, 5, 1, "", "pad_to_stride"], [66, 5, 1, "", "points_key"], [66, 5, 1, "", "scale"], [66, 5, 1, "", "scale_key"], [66, 4, 1, "", "transform_dataset"]], "sleap.nn.data.resizing.SizeMatcher": [[66, 5, 1, "", "center_pad"], [66, 4, 1, "", "from_config"], [66, 5, 1, "", "full_image_key"], [66, 5, 1, "", "image_key"], [66, 3, 1, "", "input_keys"], [66, 5, 1, "", "keep_full_image"], [66, 5, 1, "", "max_image_height"], [66, 5, 1, "", "max_image_width"], [66, 3, 1, "", "output_keys"], [66, 5, 1, "", "points_key"], [66, 5, 1, "", "scale_key"], [66, 4, 1, "", "transform_dataset"]], "sleap.nn.data.training": [[67, 2, 1, "", "KeyMapper"], [67, 1, 1, "", "split_labels"], [67, 1, 1, "", "split_labels_reader"], [67, 1, 1, "", "split_labels_train_val"]], "sleap.nn.data.training.KeyMapper": [[67, 3, 1, "", "input_keys"], [67, 5, 1, "", "key_maps"], [67, 3, 1, "", "output_keys"], [67, 4, 1, "", "transform_dataset"]], "sleap.nn.data.utils": [[68, 1, 1, "", "describe_tensors"], [68, 1, 1, "", "ensure_list"], [68, 1, 1, "", "expand_to_rank"], [68, 1, 1, "", "gaussian_pdf"], [68, 1, 1, "", "make_grid_vectors"], [68, 1, 1, "", "unrag_example"], [68, 1, 1, "", "unrag_tensor"]], "sleap.nn.evals": [[69, 1, 1, "", "compute_dist_metrics"], [69, 1, 1, "", "compute_dists"], [69, 1, 1, "", "compute_generalized_voc_metrics"], [69, 1, 1, "", "compute_instance_area"], [69, 1, 1, "", "compute_oks"], [69, 1, 1, "", "compute_pck_metrics"], [69, 1, 1, "", "compute_visibility_conf"], [69, 1, 1, "", "evaluate"], [69, 1, 1, "", "evaluate_model"], [69, 1, 1, "", "find_frame_pairs"], [69, 1, 1, "", "load_metrics"], [69, 1, 1, "", "match_frame_pairs"], [69, 1, 1, "", "match_instances"], [69, 1, 1, "", "replace_path"]], "sleap.nn.heads": [[70, 2, 1, "", "CenteredInstanceConfmapsHead"], [70, 2, 1, "", "CentroidConfmapsHead"], [70, 2, 1, "", "ClassMapsHead"], [70, 2, 1, "", "ClassVectorsHead"], [70, 2, 1, "", "Head"], [70, 2, 1, "", "MultiInstanceConfmapsHead"], [70, 2, 1, "", "OffsetRefinementHead"], [70, 2, 1, "", "PartAffinityFieldsHead"], [70, 2, 1, "", "SingleInstanceConfmapsHead"]], "sleap.nn.heads.CenteredInstanceConfmapsHead": [[70, 5, 1, "", "anchor_part"], [70, 3, 1, "", "channels"], [70, 5, 1, "", "config"], [70, 4, 1, "", "from_config"], [70, 5, 1, "", "loss_weight"], [70, 5, 1, "", "output_stride"], [70, 5, 1, "id0", "part_names"], [70, 5, 1, "", "sigma"]], "sleap.nn.heads.CentroidConfmapsHead": [[70, 5, 1, "", "anchor_part"], [70, 3, 1, "", "channels"], [70, 5, 1, "", "config"], [70, 4, 1, "", "from_config"], [70, 5, 1, "", "loss_weight"], [70, 5, 1, "", "output_stride"], [70, 5, 1, "", "sigma"]], "sleap.nn.heads.ClassMapsHead": [[70, 3, 1, "", "activation"], [70, 3, 1, "", "channels"], [70, 5, 1, "id1", "classes"], [70, 5, 1, "", "config"], [70, 4, 1, "", "from_config"], [70, 5, 1, "", "loss_weight"], [70, 5, 1, "", "output_stride"], [70, 5, 1, "", "sigma"]], "sleap.nn.heads.ClassVectorsHead": [[70, 3, 1, "", "activation"], [70, 3, 1, "", "channels"], [70, 5, 1, "id2", "classes"], [70, 5, 1, "", "config"], [70, 4, 1, "", "from_config"], [70, 3, 1, "", "loss_function"], [70, 5, 1, "", "loss_weight"], [70, 4, 1, "", "make_head"], [70, 5, 1, "", "num_fc_layers"], [70, 5, 1, "", "num_fc_units"], [70, 5, 1, "", "output_stride"]], "sleap.nn.heads.Head": [[70, 3, 1, "", "activation"], [70, 3, 1, "", "channels"], [70, 3, 1, "", "loss_function"], [70, 4, 1, "", "make_head"]], "sleap.nn.heads.MultiInstanceConfmapsHead": [[70, 3, 1, "", "channels"], [70, 5, 1, "", "config"], [70, 4, 1, "", "from_config"], [70, 5, 1, "", "loss_weight"], [70, 5, 1, "", "output_stride"], [70, 5, 1, "id3", "part_names"], [70, 5, 1, "", "sigma"]], "sleap.nn.heads.OffsetRefinementHead": [[70, 3, 1, "", "channels"], [70, 5, 1, "", "config"], [70, 4, 1, "", "from_config"], [70, 5, 1, "id6", "loss_weight"], [70, 5, 1, "", "output_stride"], [70, 5, 1, "id4", "part_names"], [70, 5, 1, "id5", "sigma_threshold"]], "sleap.nn.heads.PartAffinityFieldsHead": [[70, 3, 1, "", "channels"], [70, 5, 1, "", "config"], [70, 5, 1, "id7", "edges"], [70, 4, 1, "", "from_config"], [70, 5, 1, "", "loss_weight"], [70, 5, 1, "", "output_stride"], [70, 5, 1, "", "sigma"]], "sleap.nn.heads.SingleInstanceConfmapsHead": [[70, 3, 1, "", "channels"], [70, 5, 1, "", "config"], [70, 4, 1, "", "from_config"], [70, 5, 1, "", "loss_weight"], [70, 5, 1, "", "output_stride"], [70, 5, 1, "id8", "part_names"], [70, 5, 1, "", "sigma"]], "sleap.nn.identity": [[71, 1, 1, "", "classify_peaks_from_maps"], [71, 1, 1, "", "classify_peaks_from_vectors"], [71, 1, 1, "", "group_class_peaks"]], "sleap.nn.inference": [[72, 2, 1, "", "BottomUpInferenceLayer"], [72, 2, 1, "", "BottomUpInferenceModel"], [72, 2, 1, "", "BottomUpMultiClassInferenceLayer"], [72, 2, 1, "", "BottomUpMultiClassInferenceModel"], [72, 2, 1, "", "BottomUpMultiClassPredictor"], [72, 2, 1, "", "BottomUpPredictor"], [72, 2, 1, "", "CentroidCrop"], [72, 2, 1, "", "CentroidCropGroundTruth"], [72, 2, 1, "", "CentroidInferenceModel"], [72, 2, 1, "", "FindInstancePeaks"], [72, 2, 1, "", "FindInstancePeaksGroundTruth"], [72, 2, 1, "", "InferenceLayer"], [72, 2, 1, "", "InferenceModel"], [72, 2, 1, "", "MoveNetInferenceLayer"], [72, 2, 1, "", "MoveNetInferenceModel"], [72, 2, 1, "", "MoveNetPredictor"], [72, 2, 1, "", "Predictor"], [72, 2, 1, "", "RateColumn"], [72, 2, 1, "", "SingleInstanceInferenceLayer"], [72, 2, 1, "", "SingleInstanceInferenceModel"], [72, 2, 1, "", "SingleInstancePredictor"], [72, 2, 1, "", "TopDownInferenceModel"], [72, 2, 1, "", "TopDownMultiClassFindPeaks"], [72, 2, 1, "", "TopDownMultiClassInferenceModel"], [72, 2, 1, "", "TopDownMultiClassPredictor"], [72, 2, 1, "", "TopDownPredictor"], [72, 2, 1, "", "VisualPredictor"], [72, 1, 1, "", "export_cli"], [72, 1, 1, "", "export_model"], [72, 1, 1, "", "find_head"], [72, 1, 1, "", "get_keras_model_path"], [72, 1, 1, "", "get_model_output_stride"], [72, 1, 1, "", "load_model"], [72, 1, 1, "", "main"], [72, 1, 1, "", "make_model_movenet"]], "sleap.nn.inference.BottomUpInferenceLayer": [[72, 4, 1, "", "call"], [72, 5, 1, "", "cm_output_stride"], [72, 5, 1, "", "confmaps_ind"], [72, 4, 1, "", "find_peaks"], [72, 4, 1, "", "forward_pass"], [72, 5, 1, "", "input_scale"], [72, 5, 1, "", "integral_patch_size"], [72, 5, 1, "", "keras_model"], [72, 5, 1, "", "offsets_ind"], [72, 5, 1, "", "paf_output_stride"], [72, 5, 1, "", "paf_scorer"], [72, 5, 1, "", "pafs_ind"], [72, 5, 1, "", "peak_threshold"], [72, 5, 1, "", "refinement"], [72, 5, 1, "", "return_confmaps"], [72, 5, 1, "", "return_paf_graph"], [72, 5, 1, "", "return_pafs"]], "sleap.nn.inference.BottomUpInferenceModel": [[72, 5, 1, "", "bottomup_layer"], [72, 4, 1, "", "call"]], "sleap.nn.inference.BottomUpMultiClassInferenceLayer": [[72, 4, 1, "", "call"], [72, 5, 1, "", "class_maps_ind"], [72, 5, 1, "", "class_maps_output_stride"], [72, 5, 1, "", "cm_output_stride"], [72, 5, 1, "", "confmaps_ind"], [72, 4, 1, "", "find_peaks"], [72, 4, 1, "", "forward_pass"], [72, 5, 1, "", "input_scale"], [72, 5, 1, "", "integral_patch_size"], [72, 5, 1, "", "keras_model"], [72, 5, 1, "", "offsets_ind"], [72, 5, 1, "", "peak_threshold"], [72, 5, 1, "", "refinement"], [72, 5, 1, "", "return_class_maps"], [72, 5, 1, "", "return_confmaps"]], "sleap.nn.inference.BottomUpMultiClassInferenceModel": [[72, 4, 1, "", "call"], [72, 5, 1, "", "inference_layer"]], "sleap.nn.inference.BottomUpMultiClassPredictor": [[72, 5, 1, "", "batch_size"], [72, 5, 1, "", "config"], [72, 4, 1, "", "from_trained_models"], [72, 5, 1, "", "inference_model"], [72, 5, 1, "", "integral_patch_size"], [72, 5, 1, "", "integral_refinement"], [72, 3, 1, "", "is_grayscale"], [72, 5, 1, "", "model"], [72, 5, 1, "", "peak_threshold"], [72, 5, 1, "", "pipeline"], [72, 5, 1, "", "tracks"]], "sleap.nn.inference.BottomUpPredictor": [[72, 5, 1, "", "batch_size"], [72, 5, 1, "", "bottomup_config"], [72, 5, 1, "", "bottomup_model"], [72, 5, 1, "", "dist_penalty_weight"], [72, 4, 1, "", "from_trained_models"], [72, 5, 1, "", "inference_model"], [72, 5, 1, "", "integral_patch_size"], [72, 5, 1, "", "integral_refinement"], [72, 3, 1, "", "is_grayscale"], [72, 5, 1, "", "max_edge_length_ratio"], [72, 5, 1, "", "max_instances"], [72, 5, 1, "", "min_line_scores"], [72, 5, 1, "", "paf_line_points"], [72, 5, 1, "", "peak_threshold"], [72, 5, 1, "", "pipeline"], [72, 5, 1, "", "tracker"]], "sleap.nn.inference.CentroidCrop": [[72, 4, 1, "", "call"], [72, 5, 1, "", "confmaps_ind"], [72, 5, 1, "", "crop_size"], [72, 5, 1, "", "input_scale"], [72, 5, 1, "", "integral_patch_size"], [72, 5, 1, "", "keras_model"], [72, 5, 1, "", "max_instances"], [72, 5, 1, "", "offsets_ind"], [72, 5, 1, "", "output_stride"], [72, 5, 1, "", "pad_to_stride"], [72, 5, 1, "", "peak_threshold"], [72, 5, 1, "", "refinement"], [72, 5, 1, "", "return_confmaps"], [72, 5, 1, "", "return_crops"]], "sleap.nn.inference.CentroidCropGroundTruth": [[72, 4, 1, "", "call"], [72, 5, 1, "", "crop_size"]], "sleap.nn.inference.CentroidInferenceModel": [[72, 4, 1, "", "call"], [72, 5, 1, "", "centroid_crop"]], "sleap.nn.inference.FindInstancePeaks": [[72, 4, 1, "", "call"], [72, 5, 1, "", "confmaps_ind"], [72, 5, 1, "", "input_scale"], [72, 5, 1, "", "integral_patch_size"], [72, 5, 1, "", "keras_model"], [72, 5, 1, "", "offsets_ind"], [72, 5, 1, "", "output_stride"], [72, 5, 1, "", "peak_threshold"], [72, 5, 1, "", "refinement"], [72, 5, 1, "", "return_confmaps"]], "sleap.nn.inference.FindInstancePeaksGroundTruth": [[72, 4, 1, "", "call"]], "sleap.nn.inference.InferenceLayer": [[72, 4, 1, "", "call"], [72, 5, 1, "", "ensure_float"], [72, 5, 1, "", "ensure_grayscale"], [72, 5, 1, "", "input_scale"], [72, 5, 1, "", "keras_model"], [72, 5, 1, "", "pad_to_stride"], [72, 4, 1, "", "preprocess"]], "sleap.nn.inference.InferenceModel": [[72, 4, 1, "", "export_model"], [72, 4, 1, "", "predict"], [72, 4, 1, "", "predict_on_batch"]], "sleap.nn.inference.MoveNetInferenceLayer": [[72, 4, 1, "", "call"], [72, 5, 1, "", "ensure_float"], [72, 5, 1, "", "ensure_grayscale"], [72, 5, 1, "", "input_scale"], [72, 5, 1, "", "keras_model"], [72, 5, 1, "", "model_name"], [72, 5, 1, "", "pad_to_stride"]], "sleap.nn.inference.MoveNetInferenceModel": [[72, 4, 1, "", "call"], [72, 5, 1, "", "inference_layer"]], "sleap.nn.inference.MoveNetPredictor": [[72, 5, 1, "", "batch_size"], [72, 4, 1, "", "from_trained_models"], [72, 5, 1, "", "inference_model"], [72, 3, 1, "", "is_grayscale"], [72, 5, 1, "", "model_name"], [72, 5, 1, "", "peak_threshold"], [72, 5, 1, "", "pipeline"]], "sleap.nn.inference.Predictor": [[72, 4, 1, "", "export_model"], [72, 4, 1, "", "from_model_paths"], [72, 3, 1, "", "is_grayscale"], [72, 4, 1, "", "make_pipeline"], [72, 4, 1, "", "predict"], [72, 3, 1, "", "report_period"]], "sleap.nn.inference.RateColumn": [[72, 4, 1, "", "render"]], "sleap.nn.inference.SingleInstanceInferenceLayer": [[72, 4, 1, "", "call"], [72, 5, 1, "", "confmaps_ind"], [72, 5, 1, "", "input_scale"], [72, 5, 1, "", "integral_patch_size"], [72, 5, 1, "", "keras_model"], [72, 5, 1, "", "offsets_ind"], [72, 5, 1, "", "output_stride"], [72, 5, 1, "", "pad_to_stride"], [72, 5, 1, "", "peak_threshold"], [72, 5, 1, "", "refinement"], [72, 5, 1, "", "return_confmaps"]], "sleap.nn.inference.SingleInstanceInferenceModel": [[72, 4, 1, "", "call"], [72, 5, 1, "", "single_instance_layer"]], "sleap.nn.inference.SingleInstancePredictor": [[72, 5, 1, "", "batch_size"], [72, 5, 1, "", "confmap_config"], [72, 5, 1, "", "confmap_model"], [72, 4, 1, "", "export_model"], [72, 4, 1, "", "from_trained_models"], [72, 5, 1, "", "inference_model"], [72, 5, 1, "", "integral_patch_size"], [72, 5, 1, "", "integral_refinement"], [72, 3, 1, "", "is_grayscale"], [72, 5, 1, "", "peak_threshold"], [72, 5, 1, "", "pipeline"]], "sleap.nn.inference.TopDownInferenceModel": [[72, 4, 1, "", "call"], [72, 5, 1, "", "centroid_crop"], [72, 5, 1, "", "instance_peaks"]], "sleap.nn.inference.TopDownMultiClassFindPeaks": [[72, 4, 1, "", "call"], [72, 5, 1, "", "class_vectors_ind"], [72, 5, 1, "", "confmaps_ind"], [72, 5, 1, "", "input_scale"], [72, 5, 1, "", "integral_patch_size"], [72, 5, 1, "", "keras_model"], [72, 5, 1, "", "offsets_ind"], [72, 5, 1, "", "optimal_grouping"], [72, 5, 1, "", "output_stride"], [72, 5, 1, "", "peak_threshold"], [72, 5, 1, "", "refinement"], [72, 5, 1, "", "return_class_vectors"], [72, 5, 1, "", "return_confmaps"]], "sleap.nn.inference.TopDownMultiClassInferenceModel": [[72, 4, 1, "", "call"], [72, 5, 1, "", "centroid_crop"], [72, 4, 1, "", "export_model"], [72, 5, 1, "", "instance_peaks"]], "sleap.nn.inference.TopDownMultiClassPredictor": [[72, 5, 1, "", "batch_size"], [72, 5, 1, "", "centroid_config"], [72, 5, 1, "", "centroid_model"], [72, 5, 1, "", "confmap_config"], [72, 5, 1, "", "confmap_model"], [72, 4, 1, "", "export_model"], [72, 4, 1, "", "from_trained_models"], [72, 5, 1, "", "inference_model"], [72, 5, 1, "", "integral_patch_size"], [72, 5, 1, "", "integral_refinement"], [72, 3, 1, "", "is_grayscale"], [72, 4, 1, "", "make_pipeline"], [72, 5, 1, "", "peak_threshold"], [72, 5, 1, "", "pipeline"], [72, 5, 1, "", "tracker"], [72, 5, 1, "", "tracks"]], "sleap.nn.inference.TopDownPredictor": [[72, 5, 1, "", "batch_size"], [72, 5, 1, "", "centroid_config"], [72, 5, 1, "", "centroid_model"], [72, 5, 1, "", "confmap_config"], [72, 5, 1, "", "confmap_model"], [72, 4, 1, "", "export_model"], [72, 4, 1, "", "from_trained_models"], [72, 5, 1, "", "inference_model"], [72, 5, 1, "", "integral_patch_size"], [72, 5, 1, "", "integral_refinement"], [72, 3, 1, "", "is_grayscale"], [72, 4, 1, "", "make_pipeline"], [72, 5, 1, "", "max_instances"], [72, 5, 1, "", "peak_threshold"], [72, 5, 1, "", "pipeline"], [72, 5, 1, "", "tracker"]], "sleap.nn.inference.VisualPredictor": [[72, 4, 1, "", "make_pipeline"], [72, 4, 1, "", "predict"], [72, 4, 1, "", "safely_generate"]], "sleap.nn.losses": [[73, 2, 1, "", "OHKMLoss"], [73, 2, 1, "", "PartLoss"], [73, 1, 1, "", "compute_ohkm_loss"]], "sleap.nn.losses.OHKMLoss": [[73, 4, 1, "", "call"], [73, 4, 1, "", "from_config"], [73, 5, 1, "", "hard_to_easy_ratio"], [73, 5, 1, "", "loss_scale"], [73, 5, 1, "", "max_hard_keypoints"], [73, 5, 1, "", "min_hard_keypoints"]], "sleap.nn.losses.PartLoss": [[73, 5, 1, "", "channel_ind"], [73, 5, 1, "", "name"], [73, 4, 1, "", "result"], [73, 4, 1, "", "update_state"]], "sleap.nn.model": [[74, 2, 1, "", "Model"]], "sleap.nn.model.Model": [[74, 5, 1, "", "backbone"], [74, 4, 1, "", "from_config"], [74, 5, 1, "", "heads"], [74, 5, 1, "", "keras_model"], [74, 4, 1, "", "make_model"], [74, 3, 1, "", "maximum_stride"]], "sleap.nn.paf_grouping": [[75, 2, 1, "", "EdgeConnection"], [75, 2, 1, "", "EdgeType"], [75, 2, 1, "", "PAFScorer"], [75, 2, 1, "", "PeakID"], [75, 1, 1, "", "assign_connections_to_instances"], [75, 1, 1, "", "compute_distance_penalty"], [75, 1, 1, "", "get_connection_candidates"], [75, 1, 1, "", "get_paf_lines"], [75, 1, 1, "", "group_instances_batch"], [75, 1, 1, "", "group_instances_sample"], [75, 1, 1, "", "make_line_subs"], [75, 1, 1, "", "make_predicted_instances"], [75, 1, 1, "", "match_candidates_batch"], [75, 1, 1, "", "match_candidates_sample"], [75, 1, 1, "", "score_paf_lines"], [75, 1, 1, "", "score_paf_lines_batch"], [75, 1, 1, "", "toposort_edges"]], "sleap.nn.paf_grouping.EdgeConnection": [[75, 5, 1, "", "dst_peak_ind"], [75, 5, 1, "", "score"], [75, 5, 1, "", "src_peak_ind"]], "sleap.nn.paf_grouping.EdgeType": [[75, 5, 1, "", "dst_node_ind"], [75, 5, 1, "", "src_node_ind"]], "sleap.nn.paf_grouping.PAFScorer": [[75, 5, 1, "", "dist_penalty_weight"], [75, 5, 1, "", "edge_inds"], [75, 5, 1, "", "edge_types"], [75, 5, 1, "", "edges"], [75, 4, 1, "", "from_config"], [75, 4, 1, "", "group_instances"], [75, 4, 1, "", "match_candidates"], [75, 5, 1, "", "max_edge_length_ratio"], [75, 5, 1, "", "min_instance_peaks"], [75, 5, 1, "", "min_line_scores"], [75, 5, 1, "", "n_edges"], [75, 5, 1, "", "n_nodes"], [75, 5, 1, "", "n_points"], [75, 5, 1, "", "pafs_stride"], [75, 5, 1, "", "part_names"], [75, 4, 1, "", "predict"], [75, 4, 1, "", "score_paf_lines"], [75, 5, 1, "", "sorted_edge_inds"]], "sleap.nn.paf_grouping.PeakID": [[75, 5, 1, "", "node_ind"], [75, 5, 1, "", "peak_ind"]], "sleap.nn.peak_finding": [[76, 1, 1, "", "crop_bboxes"], [76, 1, 1, "", "find_global_peaks"], [76, 1, 1, "", "find_global_peaks_integral"], [76, 1, 1, "", "find_global_peaks_rough"], [76, 1, 1, "", "find_global_peaks_with_offsets"], [76, 1, 1, "", "find_local_peaks"], [76, 1, 1, "", "find_local_peaks_integral"], [76, 1, 1, "", "find_local_peaks_rough"], [76, 1, 1, "", "find_local_peaks_with_offsets"], [76, 1, 1, "", "find_offsets_local_direction"], [76, 1, 1, "", "integral_regression"], [76, 1, 1, "", "make_gaussian_kernel"], [76, 1, 1, "", "smooth_imgs"]], "sleap.nn.system": [[77, 1, 1, "", "best_logical_device_name"], [77, 1, 1, "", "disable_preallocation"], [77, 1, 1, "", "enable_preallocation"], [77, 1, 1, "", "get_all_gpus"], [77, 1, 1, "", "get_available_gpus"], [77, 1, 1, "", "get_current_gpu"], [77, 1, 1, "", "get_gpu_memory"], [77, 1, 1, "", "initialize_devices"], [77, 1, 1, "", "is_gpu_system"], [77, 1, 1, "", "is_initialized"], [77, 1, 1, "", "summary"], [77, 1, 1, "", "use_cpu_only"], [77, 1, 1, "", "use_first_gpu"], [77, 1, 1, "", "use_gpu"], [77, 1, 1, "", "use_last_gpu"]], "sleap.nn.tracker": [[78, 0, 0, "-", "components"], [79, 0, 0, "-", "kalman"]], "sleap.nn.tracker.components": [[78, 2, 1, "", "FrameMatches"], [78, 2, 1, "", "Match"], [78, 1, 1, "", "centroid_distance"], [78, 1, 1, "", "connect_single_track_breaks"], [78, 1, 1, "", "cull_frame_instances"], [78, 1, 1, "", "cull_instances"], [78, 1, 1, "", "factory_object_keypoint_similarity"], [78, 1, 1, "", "first_choice_matching"], [78, 1, 1, "", "greedy_matching"], [78, 1, 1, "", "hungarian_matching"], [78, 1, 1, "", "instance_iou"], [78, 1, 1, "", "instance_similarity"], [78, 1, 1, "", "nms_fast"], [78, 1, 1, "", "normalized_instance_similarity"]], "sleap.nn.tracker.components.FrameMatches": [[78, 5, 1, "", "cost_matrix"], [78, 4, 1, "", "from_candidate_instances"], [78, 3, 1, "", "has_only_first_choice_matches"], [78, 5, 1, "", "matches"], [78, 5, 1, "", "unmatched_instances"]], "sleap.nn.tracker.kalman": [[79, 1, 1, "", "get_track_instance_matches"], [79, 1, 1, "", "match_dict_from_match_function"], [79, 1, 1, "", "remove_second_bests_from_cost_matrix"]], "sleap.nn.tracking": [[80, 2, 1, "", "BaseTracker"], [80, 2, 1, "", "FlowCandidateMaker"], [80, 2, 1, "", "FlowMaxTracker"], [80, 2, 1, "", "FlowMaxTracksCandidateMaker"], [80, 2, 1, "", "FlowTracker"], [80, 2, 1, "", "KalmanTracker"], [80, 2, 1, "", "SimpleCandidateMaker"], [80, 2, 1, "", "SimpleMaxTracker"], [80, 2, 1, "", "SimpleMaxTracksCandidateMaker"], [80, 2, 1, "", "SimpleTracker"], [80, 2, 1, "", "TrackCleaner"], [80, 2, 1, "", "Tracker"], [80, 1, 1, "", "run_tracker"]], "sleap.nn.tracking.FlowCandidateMaker": [[80, 4, 1, "", "flow_shift_instances"], [80, 4, 1, "", "get_shifted_instances"], [80, 4, 1, "", "get_shifted_instances_from_earlier_time"], [80, 5, 1, "", "img_scale"], [80, 5, 1, "", "min_points"], [80, 5, 1, "", "of_max_levels"], [80, 5, 1, "", "of_window_size"], [80, 4, 1, "", "prune_shifted_instances"], [80, 5, 1, "", "save_shifted_instances"], [80, 5, 1, "", "track_window"]], "sleap.nn.tracking.FlowMaxTracker": [[80, 4, 1, "", "matching_function"], [80, 4, 1, "", "similarity_function"]], "sleap.nn.tracking.FlowMaxTracksCandidateMaker": [[80, 4, 1, "", "get_ref_instances"], [80, 5, 1, "", "max_tracks"]], "sleap.nn.tracking.KalmanTracker": [[80, 3, 1, "", "is_valid"], [80, 4, 1, "", "make_tracker"], [80, 4, 1, "", "track"]], "sleap.nn.tracking.TrackCleaner": [[80, 5, 1, "", "instance_count"], [80, 5, 1, "", "iou_threshold"]], "sleap.nn.tracking.Tracker": [[80, 5, 1, "", "candidate_maker"], [80, 5, 1, "", "cleaner"], [80, 4, 1, "", "final_pass"], [80, 5, 1, "", "matching_function"], [80, 5, 1, "", "max_tracking"], [80, 5, 1, "", "min_new_track_points"], [80, 5, 1, "", "robust_best_instance"], [80, 5, 1, "", "similarity_function"], [80, 4, 1, "", "track"], [80, 5, 1, "", "track_window"], [80, 3, 1, "", "unique_tracks_in_queue"]], "sleap.nn.training": [[81, 2, 1, "", "BottomUpModelTrainer"], [81, 2, 1, "", "BottomUpMultiClassModelTrainer"], [81, 2, 1, "", "CentroidConfmapsModelTrainer"], [81, 2, 1, "", "DataReaders"], [81, 2, 1, "", "SingleInstanceModelTrainer"], [81, 2, 1, "", "TopDownMultiClassModelTrainer"], [81, 2, 1, "", "TopdownConfmapsModelTrainer"], [81, 2, 1, "", "Trainer"], [81, 1, 1, "", "create_trainer_using_cli"], [81, 1, 1, "", "get_timestamp"], [81, 1, 1, "", "main"], [81, 1, 1, "", "sanitize_scope_name"], [81, 1, 1, "", "setup_checkpointing"], [81, 1, 1, "", "setup_losses"], [81, 1, 1, "", "setup_metrics"], [81, 1, 1, "", "setup_new_run_folder"], [81, 1, 1, "", "setup_optimization_callbacks"], [81, 1, 1, "", "setup_optimizer"], [81, 1, 1, "", "setup_output_callbacks"], [81, 1, 1, "", "setup_tensorboard"], [81, 1, 1, "", "setup_visualization"], [81, 1, 1, "", "setup_zmq_callbacks"]], "sleap.nn.training.BottomUpModelTrainer": [[81, 3, 1, "", "has_offsets"], [81, 3, 1, "", "input_keys"], [81, 3, 1, "", "output_keys"]], "sleap.nn.training.BottomUpMultiClassModelTrainer": [[81, 3, 1, "", "has_offsets"], [81, 3, 1, "", "input_keys"], [81, 3, 1, "", "output_keys"]], "sleap.nn.training.CentroidConfmapsModelTrainer": [[81, 3, 1, "", "has_offsets"], [81, 3, 1, "", "input_keys"], [81, 3, 1, "", "output_keys"]], "sleap.nn.training.DataReaders": [[81, 4, 1, "", "from_config"], [81, 4, 1, "", "from_labels"], [81, 3, 1, "", "test_labels"], [81, 5, 1, "", "test_labels_reader"], [81, 3, 1, "", "training_labels"], [81, 5, 1, "", "training_labels_reader"], [81, 3, 1, "", "validation_labels"], [81, 5, 1, "", "validation_labels_reader"]], "sleap.nn.training.SingleInstanceModelTrainer": [[81, 3, 1, "", "has_offsets"], [81, 3, 1, "", "input_keys"], [81, 3, 1, "", "output_keys"]], "sleap.nn.training.TopDownMultiClassModelTrainer": [[81, 3, 1, "", "has_offsets"], [81, 3, 1, "", "input_keys"], [81, 3, 1, "", "output_keys"]], "sleap.nn.training.TopdownConfmapsModelTrainer": [[81, 3, 1, "", "has_offsets"], [81, 3, 1, "", "input_keys"], [81, 3, 1, "", "output_keys"]], "sleap.nn.training.Trainer": [[81, 3, 1, "", "callbacks"], [81, 4, 1, "", "cleanup"], [81, 5, 1, "", "config"], [81, 5, 1, "", "data_readers"], [81, 4, 1, "", "evaluate"], [81, 4, 1, "", "from_config"], [81, 5, 1, "", "initial_config"], [81, 3, 1, "", "input_keys"], [81, 3, 1, "", "keras_model"], [81, 5, 1, "", "model"], [81, 5, 1, "", "optimization_callbacks"], [81, 5, 1, "", "output_callbacks"], [81, 3, 1, "", "output_keys"], [81, 4, 1, "", "package"], [81, 5, 1, "", "pipeline_builder"], [81, 5, 1, "", "run_path"], [81, 4, 1, "", "setup"], [81, 4, 1, "", "train"], [81, 5, 1, "", "training_pipeline"], [81, 5, 1, "", "training_viz_pipeline"], [81, 5, 1, "", "validation_pipeline"], [81, 5, 1, "", "validation_viz_pipeline"], [81, 5, 1, "", "visualization_callbacks"]], "sleap.nn.utils": [[82, 1, 1, "", "compute_iou"], [82, 1, 1, "", "group_array"], [82, 1, 1, "", "match_points"], [82, 1, 1, "", "reset_input_layer"], [82, 1, 1, "", "tf_linear_sum_assignment"]], "sleap.nn.viz": [[83, 1, 1, "", "generate_skeleton_preview_image"], [83, 1, 1, "", "imgfig"], [83, 1, 1, "", "plot_confmaps"], [83, 1, 1, "", "plot_img"], [83, 1, 1, "", "plot_instance"], [83, 1, 1, "", "plot_instances"], [83, 1, 1, "", "plot_pafs"], [83, 1, 1, "", "plot_peaks"]], "sleap.skeleton": [[84, 2, 1, "", "EdgeType"], [84, 2, 1, "", "Node"], [84, 2, 1, "", "Skeleton"], [84, 2, 1, "", "SkeletonDecoder"], [84, 2, 1, "", "SkeletonEncoder"]], "sleap.skeleton.Node": [[84, 4, 1, "", "as_node"], [84, 4, 1, "", "from_names"], [84, 4, 1, "", "matches"], [84, 5, 1, "", "name"], [84, 5, 1, "", "weight"]], "sleap.skeleton.Skeleton": [[84, 5, 1, "", "_is_template"], [84, 5, 1, "", "_skeleton_idx"], [84, 4, 1, "", "add_edge"], [84, 4, 1, "", "add_node"], [84, 4, 1, "", "add_nodes"], [84, 4, 1, "", "add_symmetry"], [84, 4, 1, "", "clear_edges"], [84, 4, 1, "", "delete_edge"], [84, 4, 1, "", "delete_node"], [84, 4, 1, "", "delete_symmetry"], [84, 5, 1, "", "description"], [84, 3, 1, "", "edge_inds"], [84, 3, 1, "", "edge_names"], [84, 4, 1, "", "edge_to_index"], [84, 3, 1, "", "edges"], [84, 3, 1, "", "edges_full"], [84, 4, 1, "", "find_neighbors"], [84, 4, 1, "", "find_node"], [84, 4, 1, "", "find_unique_nodes"], [84, 4, 1, "", "from_dict"], [84, 4, 1, "", "from_json"], [84, 4, 1, "", "from_names_and_edge_inds"], [84, 4, 1, "", "get_symmetry"], [84, 4, 1, "", "get_symmetry_name"], [84, 3, 1, "", "graph"], [84, 3, 1, "", "graph_symmetry"], [84, 4, 1, "", "has_edge"], [84, 4, 1, "", "has_node"], [84, 4, 1, "", "has_nodes"], [84, 3, 1, "", "is_arborescence"], [84, 3, 1, "", "is_template"], [84, 4, 1, "", "load_all_hdf5"], [84, 4, 1, "", "load_hdf5"], [84, 4, 1, "", "load_json"], [84, 4, 1, "", "load_mat"], [84, 4, 1, "", "make_cattr"], [84, 4, 1, "", "matches"], [84, 3, 1, "", "name"], [84, 3, 1, "", "node_names"], [84, 4, 1, "", "node_to_index"], [84, 3, 1, "", "nodes"], [84, 5, 1, "", "preview_image"], [84, 4, 1, "", "relabel_node"], [84, 4, 1, "", "relabel_nodes"], [84, 4, 1, "", "rename_skeleton"], [84, 4, 1, "", "save_all_hdf5"], [84, 4, 1, "", "save_hdf5"], [84, 4, 1, "", "save_json"], [84, 3, 1, "", "symmetric_inds"], [84, 3, 1, "", "symmetries"], [84, 3, 1, "", "symmetries_full"], [84, 3, 1, "", "symmetry_names"], [84, 4, 1, "", "to_dict"], [84, 4, 1, "", "to_json"]], "sleap.skeleton.SkeletonDecoder": [[84, 4, 1, "", "decode"], [84, 4, 1, "", "decode_preview_image"]], "sleap.skeleton.SkeletonEncoder": [[84, 4, 1, "", "encode"]], "sleap.util": [[85, 1, 1, "", "attr_to_dtype"], [85, 1, 1, "", "dict_cut"], [85, 1, 1, "", "find_files_by_suffix"], [85, 1, 1, "", "frame_list"], [85, 1, 1, "", "get_config_file"], [85, 1, 1, "", "get_package_file"], [85, 1, 1, "", "json_dumps"], [85, 1, 1, "", "json_loads"], [85, 1, 1, "", "make_scoped_dictionary"], [85, 1, 1, "", "parse_uri_path"], [85, 1, 1, "", "save_dict_to_hdf5"], [85, 1, 1, "", "uniquify"], [85, 1, 1, "", "usable_cpu_count"], [85, 1, 1, "", "weak_filename_match"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:property", "4": "py:method", "5": "py:attribute"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "property", "Python property"], "4": ["py", "method", "Python method"], "5": ["py", "attribute", "Python attribute"]}, "titleterms": {"contributor": [0, 101], "coven": 0, "code": [0, 1], "conduct": [0, 1], "our": 0, "pledg": 0, "standard": 0, "respons": 0, "scope": 0, "enforc": 0, "attribut": 0, "contribut": 1, "sleap": [1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 87, 89, 93, 96, 100, 101, 104, 105, 106, 108, 109, 110, 112, 118], "tabl": 1, "Of": 1, "content": [1, 102], "issu": 1, "discuss": 1, "pull": 1, "request": 1, "style": 1, "guid": [1, 93], "thank": 1, "you": 1, "develop": 2, "api": 2, "info": [3, 4, 5, 6, 7, 8, 9], "align": 3, "feature_suggest": 4, "label": [5, 89, 92, 94, 115, 116], "metric": 6, "summari": 7, "trackclean": 8, "write_tracking_h5": 9, "instanc": [10, 87, 110, 119], "note": [10, 12, 45, 49, 52, 53, 55, 58, 60, 61, 62, 64, 65, 69, 71, 72, 75, 76, 77, 80, 82, 110], "io": [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34], "convert": [11, 89], "dataset": [12, 86, 89, 109, 112], "format": [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 100], "adaptor": 13, "alphatrack": 14, "coco": 15, "csv": 16, "deeplabcut": 17, "deepposekit": 18, "dispatch": 19, "filehandl": 20, "genericjson": 21, "hdf5": 22, "labels_json": 23, "leap_matlab": 24, "main": 25, "ndx_pose": 26, "nix": 27, "sleap_analysi": 28, "text": 29, "legaci": 30, "pathutil": 31, "video": [32, 103, 110, 118], "videowrit": 33, "visual": [34, 103], "messag": 35, "nn": [36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83], "architectur": [36, 37, 38, 39, 40, 41, 42, 43, 44], "common": 36, "encoder_decod": 37, "hourglass": 38, "hrnet": 39, "leap": [40, 101], "pretrained_encod": 41, "resnet": 42, "unet": 43, "upsampl": 44, "callback": 45, "config": [46, 47, 48, 49, 50, 51], "data": [46, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 90, 95, 100, 103, 104, 105, 106, 108, 109, 110, 112, 114], "model": [47, 74, 87, 88, 107, 109, 110, 112], "optim": 48, "output": [49, 100], "training_job": 50, "util": [51, 68, 82, 85], "augment": 52, "confidence_map": 53, "dataset_op": 54, "edge_map": 55, "gener": [56, 93], "group": 57, "ident": [58, 71], "infer": [59, 72, 89, 90, 96, 104, 105, 108, 109, 110, 112, 117], "instance_centroid": 60, "instance_crop": 61, "normal": 62, "offset_regress": 63, "pipelin": 64, "provid": 65, "resiz": 66, "train": [67, 81, 87, 89, 90, 91, 95, 96, 98, 106, 109, 110, 112, 117], "eval": 69, "head": 70, "loss": 73, "paf_group": 75, "peak_find": 76, "system": [77, 100], "tracker": [78, 79], "compon": 78, "kalman": 79, "track": [80, 89, 95, 108, 110, 112, 119], "viz": 83, "skeleton": [84, 97, 118], "fly32": 86, "flies13": 86, "mice_of": 86, "mice_hc": 86, "bee": 86, "gerbil": 86, "us": [87, 100, 110, 112], "bonsai": [87, 93], "export": [87, 89, 110, 114], "instal": [87, 100, 101, 102, 108, 109, 110], "necessari": 87, "packag": [87, 102, 110], "modul": 87, "top": [87, 110], "down": [87, 110], "id": 87, "singl": 87, "connect": 87, "configur": 88, "type": 88, "hyperparamet": 88, "command": 89, "line": 89, "interfac": 89, "gui": [89, 92, 98, 102], "exampl": [89, 103, 109, 112], "file": [89, 92], "inspect": [89, 108], "render": 89, "debug": 89, "diagnost": 89, "run": [90, 93, 96, 110], "colab": [90, 109, 110], "about": 90, "move": 90, "from": 90, "creat": [91, 110, 118], "custom": 91, "profil": [91, 110], "menu": 92, "go": 92, "view": 92, "predict": [92, 94, 100, 110, 115], "help": [92, 100, 102], "applic": 92, "mous": 92, "navig": 92, "kei": 92, "select": [92, 116], "seekbar": 92, "suggest": [92, 110], "get": [93, 100, 101, 102], "better": 93, "result": [93, 100], "remot": [93, 96], "import": [94, 102, 110], "proofread": [95, 119], "method": [95, 102], "more": [95, 100, 103, 116], "The": 95, "clean": 95, "script": 95, "color": [95, 103], "palett": 95, "orient": 95, "design": 97, "tip": 97, "troubleshoot": 99, "workflow": 99, "i": 100, "can": 100, "t": 100, "comput": 100, "without": 100, "gpu": [100, 102], "what": 100, "alreadi": 100, "have": 100, "cuda": 100, "set": 100, "up": 100, "my": 100, "usag": [100, 112], "how": 100, "do": 100, "doe": 100, "need": 100, "particular": 100, "strang": 100, "where": 100, "pose": [100, 101], "appear": 100, "correct": 100, "shift": 100, "rel": 100, "imag": 100, "out": 100, "ve": 100, "found": 100, "bug": 100, "anoth": 100, "problem": 100, "just": 100, "talk": 100, "someon": 100, "improv": 100, "social": 101, "estim": 101, "anim": 101, "featur": 101, "some": 101, "quick": 101, "learn": 101, "refer": 101, "contact": 101, "licens": 101, "document": 101, "manag": 102, "miniforg": 102, "recommend": 102, "miniconda": 102, "test": [102, 108], "thing": 102, "ar": 102, "work": 102, "support": 102, "upgrad": 102, "uninstal": 102, "analysi": [103, 112, 114], "load": 103, "fill": 103, "miss": 103, "valu": 103, "thorax": 103, "movement": 103, "across": [103, 119], "advanc": [103, 112], "x": 103, "y": 103, "dynam": 103, "veloc": 103, "fly": 103, "0": 103, "magnitud": 103, "speed": 103, "find": 103, "covari": 103, "between": 103, "1": [103, 104, 105, 106, 108], "cluster": 103, "structur": [104, 112], "setup": [104, 105, 106, 108], "2": [104, 105, 106, 108], "interact": [105, 106, 112], "realtim": [105, 112], "3": [105, 106, 108], "4": [105, 106, 108], "perform": 105, "resum": [106, 112], "job": [106, 110], "5": 106, "continu": 106, "evalu": [107, 112], "post": [108, 112], "save": [108, 116], "an": [109, 112], "download": 109, "sampl": 109, "your": [110, 112], "own": [110, 112], "googl": [110, 112], "drive": [110, 112], "upload": 110, "mount": 110, "process": 110, "frame": [110, 116, 119], "notebook": 112, "basic": 112, "overview": 113, "For": 114, "matlab": 114, "python": 114, "assist": 115, "review": 115, "fix": 115, "initi": 116, "first": 116, "option": 117, "start": [117, 118], "project": 118, "open": 118, "tutori": 120}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 8, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx": 57}, "alltitles": {"Contributor Covenant Code of Conduct": [[0, "contributor-covenant-code-of-conduct"]], "Our Pledge": [[0, "our-pledge"]], "Our Standards": [[0, "our-standards"]], "Our Responsibilities": [[0, "our-responsibilities"]], "Scope": [[0, "scope"]], "Enforcement": [[0, "enforcement"]], "Attribution": [[0, "attribution"]], "Contributing to SLEAP": [[1, "contributing-to-sleap"]], "Table Of Contents": [[1, "table-of-contents"]], "Code of Conduct": [[1, "code-of-conduct"]], "Contributing": [[1, "contributing"]], "Issues": [[1, "issues"]], "Discussions": [[1, "discussions"]], "Pull Requests": [[1, "pull-requests"]], "Style Guides": [[1, "style-guides"]], "Thank you for contributing to SLEAP!": [[1, "thank-you-for-contributing-to-sleap"]], "Developer API": [[2, "developer-api"]], "sleap.info.align": [[3, "module-sleap.info.align"]], "sleap.info.feature_suggestions": [[4, "module-sleap.info.feature_suggestions"]], "sleap.info.labels": [[5, "module-sleap.info.labels"]], "sleap.info.metrics": [[6, "module-sleap.info.metrics"]], "sleap.info.summary": [[7, "module-sleap.info.summary"]], "sleap.info.trackcleaner": [[8, "module-sleap.info.trackcleaner"]], "sleap.info.write_tracking_h5": [[9, "module-sleap.info.write_tracking_h5"]], "sleap.instance": [[10, "module-sleap.instance"]], "Notes": [[10, null], [10, null], [10, null], [10, null], [12, null], [12, null], [12, null], [12, null], [12, null], [12, null], [12, null], [12, null], [12, null], [12, null], [12, null], [45, null], [49, null], [52, null], [53, null], [53, null], [53, null], [53, null], [53, null], [55, null], [58, null], [60, null], [61, null], [61, null], [62, null], [62, null], [62, null], [64, null], [64, null], [64, null], [64, null], [64, null], [64, null], [65, null], [69, null], [69, null], [71, null], [72, null], [72, null], [72, null], [72, null], [72, null], [72, null], [72, null], [75, null], [75, null], [75, null], [75, null], [75, null], [75, null], [75, null], [75, null], [75, null], [75, null], [75, null], [75, null], [75, null], [76, null], [76, null], [77, null], [77, null], [80, null], [82, null]], "sleap.io.convert": [[11, "module-sleap.io.convert"]], "sleap.io.dataset": [[12, "module-sleap.io.dataset"]], "sleap.io.format.adaptor": [[13, "module-sleap.io.format.adaptor"]], "sleap.io.format.alphatracker": [[14, "module-sleap.io.format.alphatracker"]], "sleap.io.format.coco": [[15, "module-sleap.io.format.coco"]], "sleap.io.format.csv": [[16, "module-sleap.io.format.csv"]], "sleap.io.format.deeplabcut": [[17, "module-sleap.io.format.deeplabcut"]], "sleap.io.format.deepposekit": [[18, "module-sleap.io.format.deepposekit"]], "sleap.io.format.dispatch": [[19, "module-sleap.io.format.dispatch"]], "sleap.io.format.filehandle": [[20, "module-sleap.io.format.filehandle"]], "sleap.io.format.genericjson": [[21, "module-sleap.io.format.genericjson"]], "sleap.io.format.hdf5": [[22, "module-sleap.io.format.hdf5"]], "sleap.io.format.labels_json": [[23, "module-sleap.io.format.labels_json"]], "sleap.io.format.leap_matlab": [[24, "module-sleap.io.format.leap_matlab"]], "sleap.io.format.main": [[25, "module-sleap.io.format.main"]], "sleap.io.format.ndx_pose": [[26, "module-sleap.io.format.ndx_pose"]], "sleap.io.format.nix": [[27, "module-sleap.io.format.nix"]], "sleap.io.format.sleap_analysis": [[28, "module-sleap.io.format.sleap_analysis"]], "sleap.io.format.text": [[29, "module-sleap.io.format.text"]], "sleap.io.legacy": [[30, "module-sleap.io.legacy"]], "sleap.io.pathutils": [[31, "module-sleap.io.pathutils"]], "sleap.io.video": [[32, "module-sleap.io.video"]], "sleap.io.videowriter": [[33, "module-sleap.io.videowriter"]], "sleap.io.visuals": [[34, "module-sleap.io.visuals"]], "sleap.message": [[35, "module-sleap.message"]], "sleap.nn.architectures.common": [[36, "module-sleap.nn.architectures.common"]], "sleap.nn.architectures.encoder_decoder": [[37, "module-sleap.nn.architectures.encoder_decoder"]], "sleap.nn.architectures.hourglass": [[38, "module-sleap.nn.architectures.hourglass"]], "sleap.nn.architectures.hrnet": [[39, "module-sleap.nn.architectures.hrnet"]], "sleap.nn.architectures.leap": [[40, "module-sleap.nn.architectures.leap"]], "sleap.nn.architectures.pretrained_encoders": [[41, "module-sleap.nn.architectures.pretrained_encoders"]], "sleap.nn.architectures.resnet": [[42, "module-sleap.nn.architectures.resnet"]], "sleap.nn.architectures.unet": [[43, "module-sleap.nn.architectures.unet"]], "sleap.nn.architectures.upsampling": [[44, "module-sleap.nn.architectures.upsampling"]], "sleap.nn.callbacks": [[45, "module-sleap.nn.callbacks"]], "sleap.nn.config.data": [[46, "module-sleap.nn.config.data"]], "sleap.nn.config.model": [[47, "module-sleap.nn.config.model"]], "sleap.nn.config.optimization": [[48, "module-sleap.nn.config.optimization"]], "sleap.nn.config.outputs": [[49, "module-sleap.nn.config.outputs"]], "sleap.nn.config.training_job": [[50, "module-sleap.nn.config.training_job"]], "sleap.nn.config.utils": [[51, "module-sleap.nn.config.utils"]], "sleap.nn.data.augmentation": [[52, "module-sleap.nn.data.augmentation"]], "sleap.nn.data.confidence_maps": [[53, "module-sleap.nn.data.confidence_maps"]], "sleap.nn.data.dataset_ops": [[54, "module-sleap.nn.data.dataset_ops"]], "sleap.nn.data.edge_maps": [[55, "module-sleap.nn.data.edge_maps"]], "sleap.nn.data.general": [[56, "module-sleap.nn.data.general"]], "sleap.nn.data.grouping": [[57, "module-sleap.nn.data.grouping"]], "sleap.nn.data.identity": [[58, "module-sleap.nn.data.identity"]], "sleap.nn.data.inference": [[59, "module-sleap.nn.data.inference"]], "sleap.nn.data.instance_centroids": [[60, "module-sleap.nn.data.instance_centroids"]], "sleap.nn.data.instance_cropping": [[61, "module-sleap.nn.data.instance_cropping"]], "sleap.nn.data.normalization": [[62, "module-sleap.nn.data.normalization"]], "sleap.nn.data.offset_regression": [[63, "module-sleap.nn.data.offset_regression"]], "sleap.nn.data.pipelines": [[64, "module-sleap.nn.data.pipelines"]], "sleap.nn.data.providers": [[65, "module-sleap.nn.data.providers"]], "sleap.nn.data.resizing": [[66, "module-sleap.nn.data.resizing"]], "sleap.nn.data.training": [[67, "module-sleap.nn.data.training"]], "sleap.nn.data.utils": [[68, "module-sleap.nn.data.utils"]], "sleap.nn.evals": [[69, "module-sleap.nn.evals"]], "sleap.nn.heads": [[70, "module-sleap.nn.heads"]], "sleap.nn.identity": [[71, "module-sleap.nn.identity"]], "sleap.nn.inference": [[72, "module-sleap.nn.inference"]], "sleap.nn.losses": [[73, "module-sleap.nn.losses"]], "sleap.nn.model": [[74, "module-sleap.nn.model"]], "sleap.nn.paf_grouping": [[75, "module-sleap.nn.paf_grouping"]], "sleap.nn.peak_finding": [[76, "module-sleap.nn.peak_finding"]], "sleap.nn.system": [[77, "module-sleap.nn.system"]], "sleap.nn.tracker.components": [[78, "module-sleap.nn.tracker.components"]], "sleap.nn.tracker.kalman": [[79, "module-sleap.nn.tracker.kalman"]], "sleap.nn.tracking": [[80, "module-sleap.nn.tracking"]], "sleap.nn.training": [[81, "module-sleap.nn.training"]], "sleap.nn.utils": [[82, "module-sleap.nn.utils"]], "sleap.nn.viz": [[83, "module-sleap.nn.viz"]], "sleap.skeleton": [[84, "module-sleap.skeleton"]], "sleap.util": [[85, "module-sleap.util"]], "Datasets": [[86, "datasets"]], "fly32": [[86, "fly32"]], "flies13": [[86, "flies13"]], "mice_of": [[86, "mice-of"]], "mice_hc": [[86, "mice-hc"]], "bees": [[86, "bees"]], "gerbils": [[86, "gerbils"]], "Using Bonsai with SLEAP": [[87, "using-bonsai-with-sleap"]], "Exporting a SLEAP trained model": [[87, "exporting-a-sleap-trained-model"]], "Installing Bonsai and necessary packages": [[87, "installing-bonsai-and-necessary-packages"]], "Using Bonsai SLEAP modules": [[87, "using-bonsai-sleap-modules"]], "Top-down model": [[87, "top-down-model"]], "Top-Down-ID model": [[87, "top-down-id-model"]], "Single instance model": [[87, "single-instance-model"]], "Connecting the modules": [[87, "connecting-the-modules"]], "Configuring models": [[88, "configuring-models"]], "Model type": [[88, "model-type"]], "Hyperparameters": [[88, "hyperparameters"]], "Command line interfaces": [[89, "command-line-interfaces"]], "GUI": [[89, "gui"], [92, "gui"]], "sleap-label": [[89, "sleap-label"]], "Training": [[89, "training"]], "sleap-train": [[89, "sleap-train"]], "sleap-export": [[89, "sleap-export"]], "Inference and Tracking": [[89, "inference-and-tracking"]], "sleap-track": [[89, "sleap-track"]], "Examples:": [[89, "examples"]], "Dataset files": [[89, "dataset-files"]], "sleap-convert": [[89, "sleap-convert"]], "sleap-inspect": [[89, "sleap-inspect"]], "Rendering": [[89, "rendering"]], "sleap-render": [[89, "sleap-render"]], "Debugging": [[89, "debugging"]], "sleap-diagnostic": [[89, "sleap-diagnostic"]], "Run training and inference on Colab": [[90, "run-training-and-inference-on-colab"]], "About Colab": [[90, "about-colab"]], "Moving Data to/from Colab": [[90, "moving-data-to-from-colab"]], "Creating a custom training profile": [[91, "creating-a-custom-training-profile"]], "Menus": [[92, "menus"]], "File": [[92, "file"]], "Go": [[92, "go"]], "View": [[92, "view"]], "Labels": [[92, "labels"]], "Predict": [[92, "predict"]], "Help": [[92, "help"], [100, "help"]], "Application GUI": [[92, "application-gui"]], "Mouse": [[92, "mouse"]], "Navigation Keys": [[92, "navigation-keys"]], "Selection Keys": [[92, "selection-keys"]], "Seekbar": [[92, "seekbar"]], "Labeling Suggestions": [[92, "labeling-suggestions"]], "Guides": [[93, "guides"]], "General": [[93, "general"]], "Getting better results": [[93, "getting-better-results"]], "Running remotely": [[93, "running-remotely"]], "SLEAP with Bonsai": [[93, "sleap-with-bonsai"]], "Importing predictions for labeling": [[94, "importing-predictions-for-labeling"]], "Tracking and proofreading": [[95, "tracking-and-proofreading"]], "Tracking methods": [[95, "tracking-methods"]], "More training data?": [[95, "more-training-data"]], "The \u201ctrack cleaning\u201d script": [[95, "the-track-cleaning-script"]], "Color palettes": [[95, "color-palettes"]], "Proofreading": [[95, "id1"]], "Orientation": [[95, "orientation"]], "Running SLEAP remotely": [[96, "running-sleap-remotely"]], "Remote training": [[96, "remote-training"]], "Remote inference": [[96, "remote-inference"]], "Skeleton design": [[97, "skeleton-design"]], "Tips": [[97, "tips"]], "Training with GUI": [[98, "training-with-gui"]], "Troubleshooting workflows": [[99, "troubleshooting-workflows"]], "Installation": [[100, "installation"], [102, "installation"]], "I can\u2019t get SLEAP to install!": [[100, "i-cant-get-sleap-to-install"]], "Can I install it on a computer without a GPU?": [[100, "can-i-install-it-on-a-computer-without-a-gpu"]], "What if I already have CUDA set up on my system?": [[100, "what-if-i-already-have-cuda-set-up-on-my-system"]], "Usage": [[100, "usage"]], "How do I use SLEAP?": [[100, "how-do-i-use-sleap"]], "Does my data need to be in a particular format?": [[100, "does-my-data-need-to-be-in-a-particular-format"]], "I get strange results where the poses appear to be correct but shifted relative to the image.": [[100, "i-get-strange-results-where-the-poses-appear-to-be-correct-but-shifted-relative-to-the-image"]], "How do I get predictions out?": [[100, "how-do-i-get-predictions-out"]], "What do I do with the output of SLEAP?": [[100, "what-do-i-do-with-the-output-of-sleap"]], "Getting more help": [[100, "getting-more-help"]], "I\u2019ve found a bug or have another problem!": [[100, "ive-found-a-bug-or-have-another-problem"]], "Can I just talk to someone?": [[100, "can-i-just-talk-to-someone"]], "Improving SLEAP": [[100, "improving-sleap"]], "How can I help improve SLEAP?": [[100, "how-can-i-help-improve-sleap"]], "What is usage data?": [[100, "what-is-usage-data"]], "Social LEAP Estimates Animal Poses (SLEAP)": [[101, "social-leap-estimates-animal-poses-sleap"]], "Features": [[101, "features"]], "Get some SLEAP": [[101, "get-some-sleap"]], "Quick install": [[101, "quick-install"]], "Learn to SLEAP": [[101, "learn-to-sleap"]], "References": [[101, "references"]], "Contact": [[101, "contact"]], "Contributors": [[101, "contributors"]], "License": [[101, "license"]], "SLEAP Documentation": [[101, "sleap-documentation"]], "Contents": [[102, "contents"]], "Package Manager": [[102, "package-manager"]], "Miniforge (recommended)": [[102, "miniforge-recommended"]], "Miniconda": [[102, "miniconda"]], "Installation methods": [[102, "installation-methods"]], "Testing that things are working": [[102, "testing-that-things-are-working"]], "GUI support": [[102, "gui-support"]], "Importing": [[102, "importing"]], "GPU support": [[102, "gpu-support"]], "Upgrading and uninstalling": [[102, "upgrading-and-uninstalling"]], "Getting help": [[102, "getting-help"]], "Analysis examples": [[103, "analysis-examples"], [112, "id4"]], "Example analysis data": [[103, "example-analysis-data"]], "Loading the data": [[103, "loading-the-data"]], "Fill missing values": [[103, "fill-missing-values"]], "Visualize thorax movement across video": [[103, "visualize-thorax-movement-across-video"]], "More advanced visualizations": [[103, "more-advanced-visualizations"]], "Visualizing thorax x-y dynamics and velocity for fly 0": [[103, "visualizing-thorax-x-y-dynamics-and-velocity-for-fly-0"]], "Visualize thorax colored by magnitude of fly speed": [[103, "visualize-thorax-colored-by-magnitude-of-fly-speed"]], "Find covariance in thorax velocities between fly-0 and fly-1": [[103, "find-covariance-in-thorax-velocities-between-fly-0-and-fly-1"]], "Clustering": [[103, "clustering"]], "Data structures": [[104, "data-structures"], [112, "id5"]], "1. Setup SLEAP and data": [[104, "setup-sleap-and-data"]], "2. Data structures and inference": [[104, "data-structures-and-inference"]], "Interactive and realtime inference": [[105, "interactive-and-realtime-inference"], [112, "id8"]], "1. Setup SLEAP": [[105, "setup-sleap"], [106, "setup-sleap"], [108, "setup-sleap"]], "2. Setup data": [[105, "setup-data"], [108, "setup-data"]], "3. Interactive inference": [[105, "interactive-inference"]], "4. Realtime performance": [[105, "realtime-performance"]], "Interactive and resumable training": [[106, "interactive-and-resumable-training"], [112, "id7"]], "2. Setup training data": [[106, "setup-training-data"]], "3. Setup training job": [[106, "setup-training-job"]], "4. Training": [[106, "training"]], "5. Continuing training": [[106, "continuing-training"]], "Model evaluation": [[107, "model-evaluation"], [112, "id9"]], "Post-inference tracking": [[108, "post-inference-tracking"], [112, "id6"]], "Install": [[108, "install"]], "Test": [[108, "test"]], "3. Track": [[108, "track"]], "4. Inspect and save": [[108, "inspect-and-save"]], "Training and inference on an example dataset": [[109, "training-and-inference-on-an-example-dataset"], [112, "id2"]], "Install SLEAP": [[109, "install-sleap"], [110, "install-sleap"]], "Download sample training data into Colab": [[109, "download-sample-training-data-into-colab"]], "Train models": [[109, "train-models"]], "Inference": [[109, "inference"], [117, "inference"]], "Training and inference on your own data using Google Drive": [[110, "training-and-inference-on-your-own-data-using-google-drive"], [112, "id3"]], "Import training data into Colab with Google Drive": [[110, "import-training-data-into-colab-with-google-drive"]], "Create and export the training job package": [[110, "create-and-export-the-training-job-package"]], "Upload training job package to Google Drive": [[110, "upload-training-job-package-to-google-drive"]], "Mount your Google Drive": [[110, "mount-your-google-drive"]], "Train a model": [[110, "train-a-model"]], "Note on training profiles": [[110, "note-on-training-profiles"]], "Note on training process": [[110, "note-on-training-process"]], "Run inference to predict instances": [[110, "run-inference-to-predict-instances"]], "Predicting instances in suggested frames": [[110, "predicting-instances-in-suggested-frames"]], "Predicting and tracking instances in uploaded video": [[110, "predicting-and-tracking-instances-in-uploaded-video"]], "Inference with top-down models": [[110, "inference-with-top-down-models"]], "Notebooks": [[112, "notebooks"]], "Basic usage": [[112, "basic-usage"]], "Advanced SLEAPing": [[112, "advanced-sleaping"]], "Overview": [[113, "overview"]], "Export Data For Analysis": [[114, "export-data-for-analysis"]], "MATLAB": [[114, "matlab"]], "Python": [[114, "python"]], "Prediction-assisted labeling": [[115, "prediction-assisted-labeling"]], "Reviewing and fixing predictions": [[115, "reviewing-and-fixing-predictions"]], "Initial Labeling": [[116, "initial-labeling"]], "Selecting frames to label": [[116, "selecting-frames-to-label"]], "Labeling the first frame": [[116, "labeling-the-first-frame"]], "Saving": [[116, "saving"]], "Labeling more frames": [[116, "labeling-more-frames"]], "Training and Inference": [[117, "training-and-inference"]], "Training Options": [[117, "training-options"]], "Start Training": [[117, "start-training"]], "Creating a project": [[118, "creating-a-project"]], "Starting SLEAP": [[118, "starting-sleap"]], "Opening a video": [[118, "opening-a-video"]], "Creating a Skeleton": [[118, "creating-a-skeleton"]], "Tracking instances across frames": [[119, "tracking-instances-across-frames"]], "Track proofreading": [[119, "track-proofreading"]], "Tutorial": [[120, "tutorial"]]}, "indexentries": {"align_instance_points() (in module sleap.info.align)": [[3, "sleap.info.align.align_instance_points"]], "align_instances() (in module sleap.info.align)": [[3, "sleap.info.align.align_instances"]], "align_instances_on_most_stable() (in module sleap.info.align)": [[3, "sleap.info.align.align_instances_on_most_stable"]], "get_instances_points() (in module sleap.info.align)": [[3, "sleap.info.align.get_instances_points"]], "get_mean_and_std_for_points() (in module sleap.info.align)": [[3, "sleap.info.align.get_mean_and_std_for_points"]], "get_most_stable_node_pair() (in module sleap.info.align)": [[3, "sleap.info.align.get_most_stable_node_pair"]], "get_stable_node_pairs() (in module sleap.info.align)": [[3, "sleap.info.align.get_stable_node_pairs"]], "get_template_points_array() (in module sleap.info.align)": [[3, "sleap.info.align.get_template_points_array"]], "module": [[3, "module-sleap.info.align"], [4, "module-sleap.info.feature_suggestions"], [5, "module-sleap.info.labels"], [6, "module-sleap.info.metrics"], [7, "module-sleap.info.summary"], [8, "module-sleap.info.trackcleaner"], [9, "module-sleap.info.write_tracking_h5"], [10, "module-sleap.instance"], [11, "module-sleap.io.convert"], [12, "module-sleap.io.dataset"], [13, "module-sleap.io.format.adaptor"], [14, "module-sleap.io.format.alphatracker"], [15, "module-sleap.io.format.coco"], [16, "module-sleap.io.format.csv"], [17, "module-sleap.io.format.deeplabcut"], [18, "module-sleap.io.format.deepposekit"], [19, "module-sleap.io.format.dispatch"], [20, "module-sleap.io.format.filehandle"], [21, "module-sleap.io.format.genericjson"], [22, "module-sleap.io.format.hdf5"], [23, "module-sleap.io.format.labels_json"], [24, "module-sleap.io.format.leap_matlab"], [25, "module-sleap.io.format.main"], [26, "module-sleap.io.format.ndx_pose"], [27, "module-sleap.io.format.nix"], [28, "module-sleap.io.format.sleap_analysis"], [29, "module-sleap.io.format.text"], [30, "module-sleap.io.legacy"], [31, "module-sleap.io.pathutils"], [32, "module-sleap.io.video"], [33, "module-sleap.io.videowriter"], [34, "module-sleap.io.visuals"], [35, "module-sleap.message"], [36, "module-sleap.nn.architectures.common"], [37, "module-sleap.nn.architectures.encoder_decoder"], [38, "module-sleap.nn.architectures.hourglass"], [39, "module-sleap.nn.architectures.hrnet"], [40, "module-sleap.nn.architectures.leap"], [41, "module-sleap.nn.architectures.pretrained_encoders"], [42, "module-sleap.nn.architectures.resnet"], [43, "module-sleap.nn.architectures.unet"], [44, "module-sleap.nn.architectures.upsampling"], [45, "module-sleap.nn.callbacks"], [46, "module-sleap.nn.config.data"], [47, "module-sleap.nn.config.model"], [48, "module-sleap.nn.config.optimization"], [49, "module-sleap.nn.config.outputs"], [50, "module-sleap.nn.config.training_job"], [51, "module-sleap.nn.config.utils"], [52, "module-sleap.nn.data.augmentation"], [53, "module-sleap.nn.data.confidence_maps"], [54, "module-sleap.nn.data.dataset_ops"], [55, "module-sleap.nn.data.edge_maps"], [56, "module-sleap.nn.data.general"], [57, "module-sleap.nn.data.grouping"], [58, "module-sleap.nn.data.identity"], [59, "module-sleap.nn.data.inference"], [60, "module-sleap.nn.data.instance_centroids"], [61, "module-sleap.nn.data.instance_cropping"], [62, "module-sleap.nn.data.normalization"], [63, "module-sleap.nn.data.offset_regression"], [64, "module-sleap.nn.data.pipelines"], [65, "module-sleap.nn.data.providers"], [66, "module-sleap.nn.data.resizing"], [67, "module-sleap.nn.data.training"], [68, "module-sleap.nn.data.utils"], [69, "module-sleap.nn.evals"], [70, "module-sleap.nn.heads"], [71, "module-sleap.nn.identity"], [72, "module-sleap.nn.inference"], [73, "module-sleap.nn.losses"], [74, "module-sleap.nn.model"], [75, "module-sleap.nn.paf_grouping"], [76, "module-sleap.nn.peak_finding"], [77, "module-sleap.nn.system"], [78, "module-sleap.nn.tracker.components"], [79, "module-sleap.nn.tracker.kalman"], [80, "module-sleap.nn.tracking"], [81, "module-sleap.nn.training"], [82, "module-sleap.nn.utils"], [83, "module-sleap.nn.viz"], [84, "module-sleap.skeleton"], [85, "module-sleap.util"]], "sleap.info.align": [[3, "module-sleap.info.align"]], "framegroupset (class in sleap.info.feature_suggestions)": [[4, "sleap.info.feature_suggestions.FrameGroupSet"]], "frameitem (class in sleap.info.feature_suggestions)": [[4, "sleap.info.feature_suggestions.FrameItem"]], "itemstack (class in sleap.info.feature_suggestions)": [[4, "sleap.info.feature_suggestions.ItemStack"]], "parallelfeaturepipeline (class in sleap.info.feature_suggestions)": [[4, "sleap.info.feature_suggestions.ParallelFeaturePipeline"]], "all_items (sleap.info.feature_suggestions.framegroupset property)": [[4, "sleap.info.feature_suggestions.FrameGroupSet.all_items"]], "append_to_group() (sleap.info.feature_suggestions.framegroupset method)": [[4, "sleap.info.feature_suggestions.FrameGroupSet.append_to_group"]], "brisk_bag_of_features() (sleap.info.feature_suggestions.itemstack method)": [[4, "sleap.info.feature_suggestions.ItemStack.brisk_bag_of_features"]], "current_groupset (sleap.info.feature_suggestions.itemstack property)": [[4, "sleap.info.feature_suggestions.ItemStack.current_groupset"]], "data (sleap.info.feature_suggestions.itemstack attribute)": [[4, "sleap.info.feature_suggestions.ItemStack.data"]], "extend_group_items() (sleap.info.feature_suggestions.framegroupset method)": [[4, "sleap.info.feature_suggestions.FrameGroupSet.extend_group_items"]], "extend_ownership() (sleap.info.feature_suggestions.itemstack method)": [[4, "sleap.info.feature_suggestions.ItemStack.extend_ownership"]], "flatten() (sleap.info.feature_suggestions.itemstack method)": [[4, "sleap.info.feature_suggestions.ItemStack.flatten"]], "get() (sleap.info.feature_suggestions.parallelfeaturepipeline method)": [[4, "sleap.info.feature_suggestions.ParallelFeaturePipeline.get"]], "get_all_items_from_group() (sleap.info.feature_suggestions.itemstack method)": [[4, "sleap.info.feature_suggestions.ItemStack.get_all_items_from_group"]], "get_item_data() (sleap.info.feature_suggestions.itemstack method)": [[4, "sleap.info.feature_suggestions.ItemStack.get_item_data"]], "get_item_data_idxs() (sleap.info.feature_suggestions.itemstack method)": [[4, "sleap.info.feature_suggestions.ItemStack.get_item_data_idxs"]], "get_item_group() (sleap.info.feature_suggestions.framegroupset method)": [[4, "sleap.info.feature_suggestions.FrameGroupSet.get_item_group"]], "get_raw_images() (sleap.info.feature_suggestions.itemstack method)": [[4, "sleap.info.feature_suggestions.ItemStack.get_raw_images"]], "group_data (sleap.info.feature_suggestions.framegroupset attribute)": [[4, "sleap.info.feature_suggestions.FrameGroupSet.group_data"]], "group_sets (sleap.info.feature_suggestions.itemstack attribute)": [[4, "sleap.info.feature_suggestions.ItemStack.group_sets"]], "groups (sleap.info.feature_suggestions.framegroupset property)": [[4, "sleap.info.feature_suggestions.FrameGroupSet.groups"]], "groupset_data (sleap.info.feature_suggestions.framegroupset attribute)": [[4, "sleap.info.feature_suggestions.FrameGroupSet.groupset_data"]], "hog_bag_of_features() (sleap.info.feature_suggestions.itemstack method)": [[4, "sleap.info.feature_suggestions.ItemStack.hog_bag_of_features"]], "item_group (sleap.info.feature_suggestions.framegroupset attribute)": [[4, "sleap.info.feature_suggestions.FrameGroupSet.item_group"]], "items (sleap.info.feature_suggestions.itemstack attribute)": [[4, "sleap.info.feature_suggestions.ItemStack.items"]], "kmeans() (sleap.info.feature_suggestions.itemstack method)": [[4, "sleap.info.feature_suggestions.ItemStack.kmeans"]], "make() (sleap.info.feature_suggestions.parallelfeaturepipeline class method)": [[4, "sleap.info.feature_suggestions.ParallelFeaturePipeline.make"]], "make_sample_group() (sleap.info.feature_suggestions.itemstack method)": [[4, "sleap.info.feature_suggestions.ItemStack.make_sample_group"]], "meta (sleap.info.feature_suggestions.itemstack attribute)": [[4, "sleap.info.feature_suggestions.ItemStack.meta"]], "method (sleap.info.feature_suggestions.framegroupset attribute)": [[4, "sleap.info.feature_suggestions.FrameGroupSet.method"]], "ownership (sleap.info.feature_suggestions.itemstack attribute)": [[4, "sleap.info.feature_suggestions.ItemStack.ownership"]], "pca() (sleap.info.feature_suggestions.itemstack method)": [[4, "sleap.info.feature_suggestions.ItemStack.pca"]], "run() (sleap.info.feature_suggestions.parallelfeaturepipeline class method)": [[4, "sleap.info.feature_suggestions.ParallelFeaturePipeline.run"]], "sample() (sleap.info.feature_suggestions.framegroupset method)": [[4, "sleap.info.feature_suggestions.FrameGroupSet.sample"]], "sample_groups() (sleap.info.feature_suggestions.itemstack method)": [[4, "sleap.info.feature_suggestions.ItemStack.sample_groups"]], "sleap.info.feature_suggestions": [[4, "module-sleap.info.feature_suggestions"]], "tuples_to_suggestions() (sleap.info.feature_suggestions.parallelfeaturepipeline class method)": [[4, "sleap.info.feature_suggestions.ParallelFeaturePipeline.tuples_to_suggestions"]], "sleap.info.labels": [[5, "module-sleap.info.labels"]], "calculate_pairwise_cost() (in module sleap.info.metrics)": [[6, "sleap.info.metrics.calculate_pairwise_cost"]], "compare_instance_lists() (in module sleap.info.metrics)": [[6, "sleap.info.metrics.compare_instance_lists"]], "list_points_array() (in module sleap.info.metrics)": [[6, "sleap.info.metrics.list_points_array"]], "match_instance_lists() (in module sleap.info.metrics)": [[6, "sleap.info.metrics.match_instance_lists"]], "match_instance_lists_nodewise() (in module sleap.info.metrics)": [[6, "sleap.info.metrics.match_instance_lists_nodewise"]], "matched_instance_distances() (in module sleap.info.metrics)": [[6, "sleap.info.metrics.matched_instance_distances"]], "nodeless_point_dist() (in module sleap.info.metrics)": [[6, "sleap.info.metrics.nodeless_point_dist"]], "point_dist() (in module sleap.info.metrics)": [[6, "sleap.info.metrics.point_dist"]], "point_match_count() (in module sleap.info.metrics)": [[6, "sleap.info.metrics.point_match_count"]], "point_nonmatch_count() (in module sleap.info.metrics)": [[6, "sleap.info.metrics.point_nonmatch_count"]], "sleap.info.metrics": [[6, "module-sleap.info.metrics"]], "statisticseries (class in sleap.info.summary)": [[7, "sleap.info.summary.StatisticSeries"]], "get_instance_score_series() (sleap.info.summary.statisticseries method)": [[7, "sleap.info.summary.StatisticSeries.get_instance_score_series"]], "get_point_count_series() (sleap.info.summary.statisticseries method)": [[7, "sleap.info.summary.StatisticSeries.get_point_count_series"]], "get_point_displacement_series() (sleap.info.summary.statisticseries method)": [[7, "sleap.info.summary.StatisticSeries.get_point_displacement_series"]], "get_point_score_series() (sleap.info.summary.statisticseries method)": [[7, "sleap.info.summary.StatisticSeries.get_point_score_series"]], "get_primary_point_displacement_series() (sleap.info.summary.statisticseries method)": [[7, "sleap.info.summary.StatisticSeries.get_primary_point_displacement_series"]], "get_tracking_score_series() (sleap.info.summary.statisticseries method)": [[7, "sleap.info.summary.StatisticSeries.get_tracking_score_series"]], "sleap.info.summary": [[7, "module-sleap.info.summary"]], "fit_tracks() (in module sleap.info.trackcleaner)": [[8, "sleap.info.trackcleaner.fit_tracks"]], "sleap.info.trackcleaner": [[8, "module-sleap.info.trackcleaner"]], "get_edges_as_np_strings() (in module sleap.info.write_tracking_h5)": [[9, "sleap.info.write_tracking_h5.get_edges_as_np_strings"]], "get_nodes_as_np_strings() (in module sleap.info.write_tracking_h5)": [[9, "sleap.info.write_tracking_h5.get_nodes_as_np_strings"]], "get_occupancy_and_points_matrices() (in module sleap.info.write_tracking_h5)": [[9, "sleap.info.write_tracking_h5.get_occupancy_and_points_matrices"]], "get_tracks_as_np_strings() (in module sleap.info.write_tracking_h5)": [[9, "sleap.info.write_tracking_h5.get_tracks_as_np_strings"]], "main() (in module sleap.info.write_tracking_h5)": [[9, "sleap.info.write_tracking_h5.main"]], "remove_empty_tracks_from_matrices() (in module sleap.info.write_tracking_h5)": [[9, "sleap.info.write_tracking_h5.remove_empty_tracks_from_matrices"]], "sleap.info.write_tracking_h5": [[9, "module-sleap.info.write_tracking_h5"]], "write_csv_file() (in module sleap.info.write_tracking_h5)": [[9, "sleap.info.write_tracking_h5.write_csv_file"]], "write_occupancy_file() (in module sleap.info.write_tracking_h5)": [[9, "sleap.info.write_tracking_h5.write_occupancy_file"]], "instance (class in sleap.instance)": [[10, "sleap.instance.Instance"]], "instanceslist (class in sleap.instance)": [[10, "sleap.instance.InstancesList"]], "labeledframe (class in sleap.instance)": [[10, "sleap.instance.LabeledFrame"]], "point (class in sleap.instance)": [[10, "sleap.instance.Point"]], "pointarray (class in sleap.instance)": [[10, "sleap.instance.PointArray"]], "predictedinstance (class in sleap.instance)": [[10, "sleap.instance.PredictedInstance"]], "predictedpoint (class in sleap.instance)": [[10, "sleap.instance.PredictedPoint"]], "predictedpointarray (class in sleap.instance)": [[10, "sleap.instance.PredictedPointArray"]], "track (class in sleap.instance)": [[10, "sleap.instance.Track"]], "append() (sleap.instance.instanceslist method)": [[10, "sleap.instance.InstancesList.append"]], "bounding_box (sleap.instance.instance property)": [[10, "sleap.instance.Instance.bounding_box"]], "centroid (sleap.instance.instance property)": [[10, "sleap.instance.Instance.centroid"]], "clear() (sleap.instance.instanceslist method)": [[10, "sleap.instance.InstancesList.clear"]], "complex_frame_merge() (sleap.instance.labeledframe class method)": [[10, "sleap.instance.LabeledFrame.complex_frame_merge"]], "complex_merge_between() (sleap.instance.labeledframe class method)": [[10, "sleap.instance.LabeledFrame.complex_merge_between"]], "copy() (sleap.instance.instanceslist method)": [[10, "sleap.instance.InstancesList.copy"]], "dtype (sleap.instance.point attribute)": [[10, "sleap.instance.Point.dtype"]], "dtype (sleap.instance.predictedpoint attribute)": [[10, "sleap.instance.PredictedPoint.dtype"]], "extend() (sleap.instance.instanceslist method)": [[10, "sleap.instance.InstancesList.extend"]], "fill_missing() (sleap.instance.instance method)": [[10, "sleap.instance.Instance.fill_missing"]], "find() (sleap.instance.labeledframe method)": [[10, "sleap.instance.LabeledFrame.find"]], "frame_idx (sleap.instance.instance property)": [[10, "sleap.instance.Instance.frame_idx"]], "from_array() (sleap.instance.pointarray class method)": [[10, "sleap.instance.PointArray.from_array"]], "from_arrays() (sleap.instance.predictedinstance class method)": [[10, "sleap.instance.PredictedInstance.from_arrays"]], "from_instance() (sleap.instance.predictedinstance class method)": [[10, "sleap.instance.PredictedInstance.from_instance"]], "from_numpy() (sleap.instance.instance class method)": [[10, "sleap.instance.Instance.from_numpy"]], "from_numpy() (sleap.instance.predictedinstance class method)": [[10, "sleap.instance.PredictedInstance.from_numpy"]], "from_point() (sleap.instance.predictedpoint class method)": [[10, "sleap.instance.PredictedPoint.from_point"]], "from_pointsarray() (sleap.instance.instance class method)": [[10, "sleap.instance.Instance.from_pointsarray"]], "from_pointsarray() (sleap.instance.predictedinstance class method)": [[10, "sleap.instance.PredictedInstance.from_pointsarray"]], "get_points_array() (sleap.instance.instance method)": [[10, "sleap.instance.Instance.get_points_array"]], "has_predicted_instances (sleap.instance.labeledframe property)": [[10, "sleap.instance.LabeledFrame.has_predicted_instances"]], "has_tracked_instances (sleap.instance.labeledframe property)": [[10, "sleap.instance.LabeledFrame.has_tracked_instances"]], "has_user_instances (sleap.instance.labeledframe property)": [[10, "sleap.instance.LabeledFrame.has_user_instances"]], "image (sleap.instance.labeledframe property)": [[10, "sleap.instance.LabeledFrame.image"]], "index() (sleap.instance.labeledframe method)": [[10, "sleap.instance.LabeledFrame.index"]], "insert() (sleap.instance.instanceslist method)": [[10, "sleap.instance.InstancesList.insert"]], "insert() (sleap.instance.labeledframe method)": [[10, "sleap.instance.LabeledFrame.insert"]], "instances (sleap.instance.labeledframe property)": [[10, "sleap.instance.LabeledFrame.instances"]], "instances_to_show (sleap.instance.labeledframe property)": [[10, "sleap.instance.LabeledFrame.instances_to_show"]], "isnan() (sleap.instance.point method)": [[10, "sleap.instance.Point.isnan"]], "labeled_frame (sleap.instance.instanceslist property)": [[10, "sleap.instance.InstancesList.labeled_frame"]], "make_default() (sleap.instance.pointarray class method)": [[10, "sleap.instance.PointArray.make_default"]], "make_instance_cattr() (in module sleap.instance)": [[10, "sleap.instance.make_instance_cattr"]], "matches() (sleap.instance.instance method)": [[10, "sleap.instance.Instance.matches"]], "matches() (sleap.instance.track method)": [[10, "sleap.instance.Track.matches"]], "merge_frames() (sleap.instance.labeledframe static method)": [[10, "sleap.instance.LabeledFrame.merge_frames"]], "midpoint (sleap.instance.instance property)": [[10, "sleap.instance.Instance.midpoint"]], "n_predicted_instances (sleap.instance.labeledframe property)": [[10, "sleap.instance.LabeledFrame.n_predicted_instances"]], "n_tracked_instances (sleap.instance.labeledframe property)": [[10, "sleap.instance.LabeledFrame.n_tracked_instances"]], "n_user_instances (sleap.instance.labeledframe property)": [[10, "sleap.instance.LabeledFrame.n_user_instances"]], "n_visible_points (sleap.instance.instance property)": [[10, "sleap.instance.Instance.n_visible_points"]], "nodes (sleap.instance.instance property)": [[10, "sleap.instance.Instance.nodes"]], "nodes_points (sleap.instance.instance property)": [[10, "sleap.instance.Instance.nodes_points"]], "numpy() (sleap.instance.instance method)": [[10, "sleap.instance.Instance.numpy"]], "numpy() (sleap.instance.labeledframe method)": [[10, "sleap.instance.LabeledFrame.numpy"]], "numpy() (sleap.instance.point method)": [[10, "sleap.instance.Point.numpy"]], "plot() (sleap.instance.labeledframe method)": [[10, "sleap.instance.LabeledFrame.plot"]], "plot_predicted() (sleap.instance.labeledframe method)": [[10, "sleap.instance.LabeledFrame.plot_predicted"]], "points (sleap.instance.instance property)": [[10, "sleap.instance.Instance.points"]], "points_and_scores_array (sleap.instance.predictedinstance property)": [[10, "sleap.instance.PredictedInstance.points_and_scores_array"]], "points_array (sleap.instance.instance property)": [[10, "sleap.instance.Instance.points_array"]], "pop() (sleap.instance.instanceslist method)": [[10, "sleap.instance.InstancesList.pop"]], "predicted_instances (sleap.instance.labeledframe property)": [[10, "sleap.instance.LabeledFrame.predicted_instances"]], "remove() (sleap.instance.instanceslist method)": [[10, "sleap.instance.InstancesList.remove"]], "remove_empty_instances() (sleap.instance.labeledframe method)": [[10, "sleap.instance.LabeledFrame.remove_empty_instances"]], "remove_untracked() (sleap.instance.labeledframe method)": [[10, "sleap.instance.LabeledFrame.remove_untracked"]], "scores (sleap.instance.predictedinstance property)": [[10, "sleap.instance.PredictedInstance.scores"]], "sleap.instance": [[10, "module-sleap.instance"]], "to_array() (sleap.instance.predictedpointarray class method)": [[10, "sleap.instance.PredictedPointArray.to_array"]], "tracked_instances (sleap.instance.labeledframe property)": [[10, "sleap.instance.LabeledFrame.tracked_instances"]], "training_instances (sleap.instance.labeledframe property)": [[10, "sleap.instance.LabeledFrame.training_instances"]], "transform_points() (sleap.instance.instance method)": [[10, "sleap.instance.Instance.transform_points"]], "unused_predictions (sleap.instance.labeledframe property)": [[10, "sleap.instance.LabeledFrame.unused_predictions"]], "user_instances (sleap.instance.labeledframe property)": [[10, "sleap.instance.LabeledFrame.user_instances"]], "video (sleap.instance.instance property)": [[10, "sleap.instance.Instance.video"]], "main() (in module sleap.io.convert)": [[11, "sleap.io.convert.main"]], "sleap.io.convert": [[11, "module-sleap.io.convert"]], "labels (class in sleap.io.dataset)": [[12, "sleap.io.dataset.Labels"]], "labelsdatacache (class in sleap.io.dataset)": [[12, "sleap.io.dataset.LabelsDataCache"]], "add_instance() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.add_instance"]], "add_instance() (sleap.io.dataset.labelsdatacache method)": [[12, "sleap.io.dataset.LabelsDataCache.add_instance"]], "add_suggestion() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.add_suggestion"]], "add_track() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.add_track"]], "add_track() (sleap.io.dataset.labelsdatacache method)": [[12, "sleap.io.dataset.LabelsDataCache.add_track"]], "add_video() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.add_video"]], "all_instances (sleap.io.dataset.labels property)": [[12, "sleap.io.dataset.Labels.all_instances"]], "append() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.append"]], "append_suggestions() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.append_suggestions"]], "clear_suggestions() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.clear_suggestions"]], "complex_merge_between() (sleap.io.dataset.labels class method)": [[12, "sleap.io.dataset.Labels.complex_merge_between"]], "copy() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.copy"]], "delete_suggestions() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.delete_suggestions"]], "describe() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.describe"]], "export() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.export"]], "export_csv() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.export_csv"]], "export_nwb() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.export_nwb"]], "extend_from() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.extend_from"]], "extract() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.extract"]], "find() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.find"]], "find_fancy_frame_idxs() (sleap.io.dataset.labelsdatacache method)": [[12, "sleap.io.dataset.LabelsDataCache.find_fancy_frame_idxs"]], "find_first() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.find_first"]], "find_frames() (sleap.io.dataset.labelsdatacache method)": [[12, "sleap.io.dataset.LabelsDataCache.find_frames"]], "find_last() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.find_last"]], "find_path_using_paths() (in module sleap.io.dataset)": [[12, "sleap.io.dataset.find_path_using_paths"]], "find_suggestion() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.find_suggestion"]], "find_track_occupancy() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.find_track_occupancy"]], "finish_complex_merge() (sleap.io.dataset.labels static method)": [[12, "sleap.io.dataset.Labels.finish_complex_merge"]], "frames() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.frames"]], "get() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.get"]], "get_filtered_frame_idxs() (sleap.io.dataset.labelsdatacache method)": [[12, "sleap.io.dataset.LabelsDataCache.get_filtered_frame_idxs"]], "get_frame_count() (sleap.io.dataset.labelsdatacache method)": [[12, "sleap.io.dataset.LabelsDataCache.get_frame_count"]], "get_next_suggestion() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.get_next_suggestion"]], "get_suggestions() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.get_suggestions"]], "get_track_count() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.get_track_count"]], "get_track_occupancy() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.get_track_occupancy"]], "get_track_occupancy() (sleap.io.dataset.labelsdatacache method)": [[12, "sleap.io.dataset.LabelsDataCache.get_track_occupancy"]], "get_unlabeled_suggestion_inds() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.get_unlabeled_suggestion_inds"]], "get_video_suggestions() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.get_video_suggestions"]], "get_video_track_occupancy() (sleap.io.dataset.labelsdatacache method)": [[12, "sleap.io.dataset.LabelsDataCache.get_video_track_occupancy"]], "has_frame() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.has_frame"]], "has_missing_videos (sleap.io.dataset.labels property)": [[12, "sleap.io.dataset.Labels.has_missing_videos"]], "index() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.index"]], "insert() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.insert"]], "instance_count() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.instance_count"]], "instances() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.instances"]], "is_multi_instance (sleap.io.dataset.labels property)": [[12, "sleap.io.dataset.Labels.is_multi_instance"]], "labeled_frames (sleap.io.dataset.labels attribute)": [[12, "sleap.io.dataset.Labels.labeled_frames"]], "labels (sleap.io.dataset.labels property)": [[12, "sleap.io.dataset.Labels.labels"]], "load_file() (in module sleap.io.dataset)": [[12, "sleap.io.dataset.load_file"]], "load_file() (sleap.io.dataset.labels class method)": [[12, "sleap.io.dataset.Labels.load_file"]], "make_video_callback() (sleap.io.dataset.labels class method)": [[12, "sleap.io.dataset.Labels.make_video_callback"]], "merge_container_dicts() (sleap.io.dataset.labels static method)": [[12, "sleap.io.dataset.Labels.merge_container_dicts"]], "merge_matching_frames() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.merge_matching_frames"]], "merge_nodes() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.merge_nodes"]], "negative_anchors (sleap.io.dataset.labels attribute)": [[12, "sleap.io.dataset.Labels.negative_anchors"]], "numpy() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.numpy"]], "predicted_instances (sleap.io.dataset.labels property)": [[12, "sleap.io.dataset.Labels.predicted_instances"]], "provenance (sleap.io.dataset.labels attribute)": [[12, "sleap.io.dataset.Labels.provenance"]], "remove() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.remove"]], "remove_all_tracks() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.remove_all_tracks"]], "remove_empty_frames() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.remove_empty_frames"]], "remove_empty_instances() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.remove_empty_instances"]], "remove_frame() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.remove_frame"]], "remove_frame() (sleap.io.dataset.labelsdatacache method)": [[12, "sleap.io.dataset.LabelsDataCache.remove_frame"]], "remove_frames() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.remove_frames"]], "remove_instance() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.remove_instance"]], "remove_instance() (sleap.io.dataset.labelsdatacache method)": [[12, "sleap.io.dataset.LabelsDataCache.remove_instance"]], "remove_predictions() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.remove_predictions"]], "remove_suggestion() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.remove_suggestion"]], "remove_track() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.remove_track"]], "remove_untracked_instances() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.remove_untracked_instances"]], "remove_unused_tracks() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.remove_unused_tracks"]], "remove_user_instances() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.remove_user_instances"]], "remove_video() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.remove_video"]], "remove_video() (sleap.io.dataset.labelsdatacache method)": [[12, "sleap.io.dataset.LabelsDataCache.remove_video"]], "save() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.save"]], "save_file() (sleap.io.dataset.labels class method)": [[12, "sleap.io.dataset.Labels.save_file"]], "save_frame_data_hdf5() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.save_frame_data_hdf5"]], "save_frame_data_imgstore() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.save_frame_data_imgstore"]], "set_suggestions() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.set_suggestions"]], "skeleton (sleap.io.dataset.labels property)": [[12, "sleap.io.dataset.Labels.skeleton"]], "skeletons (sleap.io.dataset.labels attribute)": [[12, "sleap.io.dataset.Labels.skeletons"]], "sleap.io.dataset": [[12, "module-sleap.io.dataset"]], "split() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.split"]], "suggestions (sleap.io.dataset.labels attribute)": [[12, "sleap.io.dataset.Labels.suggestions"]], "to_dict() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.to_dict"]], "to_json() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.to_json"]], "to_pipeline() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.to_pipeline"]], "track_set_instance() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.track_set_instance"]], "track_swap() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.track_swap"]], "track_swap() (sleap.io.dataset.labelsdatacache method)": [[12, "sleap.io.dataset.LabelsDataCache.track_swap"]], "tracks (sleap.io.dataset.labels attribute)": [[12, "sleap.io.dataset.Labels.tracks"]], "unlabeled_suggestions (sleap.io.dataset.labels property)": [[12, "sleap.io.dataset.Labels.unlabeled_suggestions"]], "update() (sleap.io.dataset.labelsdatacache method)": [[12, "sleap.io.dataset.LabelsDataCache.update"]], "update_counts_for_frame() (sleap.io.dataset.labelsdatacache method)": [[12, "sleap.io.dataset.LabelsDataCache.update_counts_for_frame"]], "user_instances (sleap.io.dataset.labels property)": [[12, "sleap.io.dataset.Labels.user_instances"]], "user_labeled_frame_inds (sleap.io.dataset.labels property)": [[12, "sleap.io.dataset.Labels.user_labeled_frame_inds"]], "user_labeled_frames (sleap.io.dataset.labels property)": [[12, "sleap.io.dataset.Labels.user_labeled_frames"]], "video (sleap.io.dataset.labels property)": [[12, "sleap.io.dataset.Labels.video"]], "videos (sleap.io.dataset.labels attribute)": [[12, "sleap.io.dataset.Labels.videos"]], "with_user_labels_only() (sleap.io.dataset.labels method)": [[12, "sleap.io.dataset.Labels.with_user_labels_only"]], "adaptor (class in sleap.io.format.adaptor)": [[13, "sleap.io.format.adaptor.Adaptor"]], "sleapobjecttype (class in sleap.io.format.adaptor)": [[13, "sleap.io.format.adaptor.SleapObjectType"]], "all_exts (sleap.io.format.adaptor.adaptor property)": [[13, "sleap.io.format.adaptor.Adaptor.all_exts"]], "can_read_file() (sleap.io.format.adaptor.adaptor method)": [[13, "sleap.io.format.adaptor.Adaptor.can_read_file"]], "can_write_filename() (sleap.io.format.adaptor.adaptor method)": [[13, "sleap.io.format.adaptor.Adaptor.can_write_filename"]], "default_ext (sleap.io.format.adaptor.adaptor property)": [[13, "sleap.io.format.adaptor.Adaptor.default_ext"]], "does_match_ext() (sleap.io.format.adaptor.adaptor method)": [[13, "sleap.io.format.adaptor.Adaptor.does_match_ext"]], "does_read() (sleap.io.format.adaptor.adaptor method)": [[13, "sleap.io.format.adaptor.Adaptor.does_read"]], "does_write() (sleap.io.format.adaptor.adaptor method)": [[13, "sleap.io.format.adaptor.Adaptor.does_write"]], "formatted_ext_options (sleap.io.format.adaptor.adaptor property)": [[13, "sleap.io.format.adaptor.Adaptor.formatted_ext_options"]], "handles (sleap.io.format.adaptor.adaptor property)": [[13, "sleap.io.format.adaptor.Adaptor.handles"]], "name (sleap.io.format.adaptor.adaptor property)": [[13, "sleap.io.format.adaptor.Adaptor.name"]], "read() (sleap.io.format.adaptor.adaptor method)": [[13, "sleap.io.format.adaptor.Adaptor.read"]], "sleap.io.format.adaptor": [[13, "module-sleap.io.format.adaptor"]], "write() (sleap.io.format.adaptor.adaptor method)": [[13, "sleap.io.format.adaptor.Adaptor.write"]], "alphatrackeradaptor (class in sleap.io.format.alphatracker)": [[14, "sleap.io.format.alphatracker.AlphaTrackerAdaptor"]], "all_exts (sleap.io.format.alphatracker.alphatrackeradaptor property)": [[14, "sleap.io.format.alphatracker.AlphaTrackerAdaptor.all_exts"]], "can_read_file() (sleap.io.format.alphatracker.alphatrackeradaptor method)": [[14, "sleap.io.format.alphatracker.AlphaTrackerAdaptor.can_read_file"]], "can_write_filename() (sleap.io.format.alphatracker.alphatrackeradaptor method)": [[14, "sleap.io.format.alphatracker.AlphaTrackerAdaptor.can_write_filename"]], "default_ext (sleap.io.format.alphatracker.alphatrackeradaptor property)": [[14, "sleap.io.format.alphatracker.AlphaTrackerAdaptor.default_ext"]], "does_match_ext() (sleap.io.format.alphatracker.alphatrackeradaptor method)": [[14, "sleap.io.format.alphatracker.AlphaTrackerAdaptor.does_match_ext"]], "does_read() (sleap.io.format.alphatracker.alphatrackeradaptor method)": [[14, "sleap.io.format.alphatracker.AlphaTrackerAdaptor.does_read"]], "does_write() (sleap.io.format.alphatracker.alphatrackeradaptor method)": [[14, "sleap.io.format.alphatracker.AlphaTrackerAdaptor.does_write"]], "formatted_ext_options (sleap.io.format.alphatracker.alphatrackeradaptor property)": [[14, "sleap.io.format.alphatracker.AlphaTrackerAdaptor.formatted_ext_options"]], "get_alpha_tracker_frame_dict() (sleap.io.format.alphatracker.alphatrackeradaptor method)": [[14, "sleap.io.format.alphatracker.AlphaTrackerAdaptor.get_alpha_tracker_frame_dict"]], "get_alpha_tracker_instance_dict() (sleap.io.format.alphatracker.alphatrackeradaptor method)": [[14, "sleap.io.format.alphatracker.AlphaTrackerAdaptor.get_alpha_tracker_instance_dict"]], "get_alpha_tracker_point_dict() (sleap.io.format.alphatracker.alphatrackeradaptor method)": [[14, "sleap.io.format.alphatracker.AlphaTrackerAdaptor.get_alpha_tracker_point_dict"]], "handles (sleap.io.format.alphatracker.alphatrackeradaptor property)": [[14, "sleap.io.format.alphatracker.AlphaTrackerAdaptor.handles"]], "make_video_for_image_list() (sleap.io.format.alphatracker.alphatrackeradaptor method)": [[14, "sleap.io.format.alphatracker.AlphaTrackerAdaptor.make_video_for_image_list"]], "name (sleap.io.format.alphatracker.alphatrackeradaptor property)": [[14, "sleap.io.format.alphatracker.AlphaTrackerAdaptor.name"]], "read() (sleap.io.format.alphatracker.alphatrackeradaptor method)": [[14, "sleap.io.format.alphatracker.AlphaTrackerAdaptor.read"]], "sleap.io.format.alphatracker": [[14, "module-sleap.io.format.alphatracker"]], "write() (sleap.io.format.alphatracker.alphatrackeradaptor method)": [[14, "sleap.io.format.alphatracker.AlphaTrackerAdaptor.write"]], "labelscocoadaptor (class in sleap.io.format.coco)": [[15, "sleap.io.format.coco.LabelsCocoAdaptor"]], "all_exts (sleap.io.format.coco.labelscocoadaptor property)": [[15, "sleap.io.format.coco.LabelsCocoAdaptor.all_exts"]], "can_read_file() (sleap.io.format.coco.labelscocoadaptor method)": [[15, "sleap.io.format.coco.LabelsCocoAdaptor.can_read_file"]], "can_write_filename() (sleap.io.format.coco.labelscocoadaptor method)": [[15, "sleap.io.format.coco.LabelsCocoAdaptor.can_write_filename"]], "default_ext (sleap.io.format.coco.labelscocoadaptor property)": [[15, "sleap.io.format.coco.LabelsCocoAdaptor.default_ext"]], "does_read() (sleap.io.format.coco.labelscocoadaptor method)": [[15, "sleap.io.format.coco.LabelsCocoAdaptor.does_read"]], "does_write() (sleap.io.format.coco.labelscocoadaptor method)": [[15, "sleap.io.format.coco.LabelsCocoAdaptor.does_write"]], "handles (sleap.io.format.coco.labelscocoadaptor property)": [[15, "sleap.io.format.coco.LabelsCocoAdaptor.handles"]], "name (sleap.io.format.coco.labelscocoadaptor property)": [[15, "sleap.io.format.coco.LabelsCocoAdaptor.name"]], "read() (sleap.io.format.coco.labelscocoadaptor class method)": [[15, "sleap.io.format.coco.LabelsCocoAdaptor.read"]], "sleap.io.format.coco": [[15, "module-sleap.io.format.coco"]], "csvadaptor (class in sleap.io.format.csv)": [[16, "sleap.io.format.csv.CSVAdaptor"]], "all_exts (sleap.io.format.csv.csvadaptor property)": [[16, "sleap.io.format.csv.CSVAdaptor.all_exts"]], "can_read_file() (sleap.io.format.csv.csvadaptor method)": [[16, "sleap.io.format.csv.CSVAdaptor.can_read_file"]], "can_write_filename() (sleap.io.format.csv.csvadaptor method)": [[16, "sleap.io.format.csv.CSVAdaptor.can_write_filename"]], "default_ext (sleap.io.format.csv.csvadaptor property)": [[16, "sleap.io.format.csv.CSVAdaptor.default_ext"]], "does_read() (sleap.io.format.csv.csvadaptor method)": [[16, "sleap.io.format.csv.CSVAdaptor.does_read"]], "does_write() (sleap.io.format.csv.csvadaptor method)": [[16, "sleap.io.format.csv.CSVAdaptor.does_write"]], "handles (sleap.io.format.csv.csvadaptor property)": [[16, "sleap.io.format.csv.CSVAdaptor.handles"]], "name (sleap.io.format.csv.csvadaptor property)": [[16, "sleap.io.format.csv.CSVAdaptor.name"]], "sleap.io.format.csv": [[16, "module-sleap.io.format.csv"]], "write() (sleap.io.format.csv.csvadaptor class method)": [[16, "sleap.io.format.csv.CSVAdaptor.write"]], "labelsdeeplabcutcsvadaptor (class in sleap.io.format.deeplabcut)": [[17, "sleap.io.format.deeplabcut.LabelsDeepLabCutCsvAdaptor"]], "labelsdeeplabcutyamladaptor (class in sleap.io.format.deeplabcut)": [[17, "sleap.io.format.deeplabcut.LabelsDeepLabCutYamlAdaptor"]], "all_exts (sleap.io.format.deeplabcut.labelsdeeplabcutcsvadaptor property)": [[17, "sleap.io.format.deeplabcut.LabelsDeepLabCutCsvAdaptor.all_exts"]], "all_exts (sleap.io.format.deeplabcut.labelsdeeplabcutyamladaptor property)": [[17, "sleap.io.format.deeplabcut.LabelsDeepLabCutYamlAdaptor.all_exts"]], "can_read_file() (sleap.io.format.deeplabcut.labelsdeeplabcutcsvadaptor method)": [[17, "sleap.io.format.deeplabcut.LabelsDeepLabCutCsvAdaptor.can_read_file"]], "can_read_file() (sleap.io.format.deeplabcut.labelsdeeplabcutyamladaptor method)": [[17, "sleap.io.format.deeplabcut.LabelsDeepLabCutYamlAdaptor.can_read_file"]], "can_write_filename() (sleap.io.format.deeplabcut.labelsdeeplabcutcsvadaptor method)": [[17, "sleap.io.format.deeplabcut.LabelsDeepLabCutCsvAdaptor.can_write_filename"]], "can_write_filename() (sleap.io.format.deeplabcut.labelsdeeplabcutyamladaptor method)": [[17, "sleap.io.format.deeplabcut.LabelsDeepLabCutYamlAdaptor.can_write_filename"]], "default_ext (sleap.io.format.deeplabcut.labelsdeeplabcutcsvadaptor property)": [[17, "sleap.io.format.deeplabcut.LabelsDeepLabCutCsvAdaptor.default_ext"]], "default_ext (sleap.io.format.deeplabcut.labelsdeeplabcutyamladaptor property)": [[17, "sleap.io.format.deeplabcut.LabelsDeepLabCutYamlAdaptor.default_ext"]], "does_read() (sleap.io.format.deeplabcut.labelsdeeplabcutcsvadaptor method)": [[17, "sleap.io.format.deeplabcut.LabelsDeepLabCutCsvAdaptor.does_read"]], "does_read() (sleap.io.format.deeplabcut.labelsdeeplabcutyamladaptor method)": [[17, "sleap.io.format.deeplabcut.LabelsDeepLabCutYamlAdaptor.does_read"]], "does_write() (sleap.io.format.deeplabcut.labelsdeeplabcutcsvadaptor method)": [[17, "sleap.io.format.deeplabcut.LabelsDeepLabCutCsvAdaptor.does_write"]], "does_write() (sleap.io.format.deeplabcut.labelsdeeplabcutyamladaptor method)": [[17, "sleap.io.format.deeplabcut.LabelsDeepLabCutYamlAdaptor.does_write"]], "handles (sleap.io.format.deeplabcut.labelsdeeplabcutcsvadaptor property)": [[17, "sleap.io.format.deeplabcut.LabelsDeepLabCutCsvAdaptor.handles"]], "handles (sleap.io.format.deeplabcut.labelsdeeplabcutyamladaptor property)": [[17, "sleap.io.format.deeplabcut.LabelsDeepLabCutYamlAdaptor.handles"]], "make_video_for_image_list() (sleap.io.format.deeplabcut.labelsdeeplabcutcsvadaptor class method)": [[17, "sleap.io.format.deeplabcut.LabelsDeepLabCutCsvAdaptor.make_video_for_image_list"]], "name (sleap.io.format.deeplabcut.labelsdeeplabcutcsvadaptor property)": [[17, "sleap.io.format.deeplabcut.LabelsDeepLabCutCsvAdaptor.name"]], "name (sleap.io.format.deeplabcut.labelsdeeplabcutyamladaptor property)": [[17, "sleap.io.format.deeplabcut.LabelsDeepLabCutYamlAdaptor.name"]], "read() (sleap.io.format.deeplabcut.labelsdeeplabcutcsvadaptor class method)": [[17, "sleap.io.format.deeplabcut.LabelsDeepLabCutCsvAdaptor.read"]], "read() (sleap.io.format.deeplabcut.labelsdeeplabcutyamladaptor class method)": [[17, "sleap.io.format.deeplabcut.LabelsDeepLabCutYamlAdaptor.read"]], "sleap.io.format.deeplabcut": [[17, "module-sleap.io.format.deeplabcut"]], "labelsdeepposekitadaptor (class in sleap.io.format.deepposekit)": [[18, "sleap.io.format.deepposekit.LabelsDeepPoseKitAdaptor"]], "all_exts (sleap.io.format.deepposekit.labelsdeepposekitadaptor property)": [[18, "sleap.io.format.deepposekit.LabelsDeepPoseKitAdaptor.all_exts"]], "can_read_file() (sleap.io.format.deepposekit.labelsdeepposekitadaptor method)": [[18, "sleap.io.format.deepposekit.LabelsDeepPoseKitAdaptor.can_read_file"]], "can_write_filename() (sleap.io.format.deepposekit.labelsdeepposekitadaptor method)": [[18, "sleap.io.format.deepposekit.LabelsDeepPoseKitAdaptor.can_write_filename"]], "default_ext (sleap.io.format.deepposekit.labelsdeepposekitadaptor property)": [[18, "sleap.io.format.deepposekit.LabelsDeepPoseKitAdaptor.default_ext"]], "does_read() (sleap.io.format.deepposekit.labelsdeepposekitadaptor method)": [[18, "sleap.io.format.deepposekit.LabelsDeepPoseKitAdaptor.does_read"]], "does_write() (sleap.io.format.deepposekit.labelsdeepposekitadaptor method)": [[18, "sleap.io.format.deepposekit.LabelsDeepPoseKitAdaptor.does_write"]], "handles (sleap.io.format.deepposekit.labelsdeepposekitadaptor property)": [[18, "sleap.io.format.deepposekit.LabelsDeepPoseKitAdaptor.handles"]], "name (sleap.io.format.deepposekit.labelsdeepposekitadaptor property)": [[18, "sleap.io.format.deepposekit.LabelsDeepPoseKitAdaptor.name"]], "read() (sleap.io.format.deepposekit.labelsdeepposekitadaptor class method)": [[18, "sleap.io.format.deepposekit.LabelsDeepPoseKitAdaptor.read"]], "sleap.io.format.deepposekit": [[18, "module-sleap.io.format.deepposekit"]], "sleap.io.format.dispatch": [[19, "module-sleap.io.format.dispatch"]], "filehandle (class in sleap.io.format.filehandle)": [[20, "sleap.io.format.filehandle.FileHandle"]], "close() (sleap.io.format.filehandle.filehandle method)": [[20, "sleap.io.format.filehandle.FileHandle.close"]], "file (sleap.io.format.filehandle.filehandle property)": [[20, "sleap.io.format.filehandle.FileHandle.file"]], "format_id (sleap.io.format.filehandle.filehandle property)": [[20, "sleap.io.format.filehandle.FileHandle.format_id"]], "is_hdf5 (sleap.io.format.filehandle.filehandle property)": [[20, "sleap.io.format.filehandle.FileHandle.is_hdf5"]], "is_json (sleap.io.format.filehandle.filehandle property)": [[20, "sleap.io.format.filehandle.FileHandle.is_json"]], "json (sleap.io.format.filehandle.filehandle property)": [[20, "sleap.io.format.filehandle.FileHandle.json"]], "open() (sleap.io.format.filehandle.filehandle method)": [[20, "sleap.io.format.filehandle.FileHandle.open"]], "sleap.io.format.filehandle": [[20, "module-sleap.io.format.filehandle"]], "text (sleap.io.format.filehandle.filehandle property)": [[20, "sleap.io.format.filehandle.FileHandle.text"]], "genericjsonadaptor (class in sleap.io.format.genericjson)": [[21, "sleap.io.format.genericjson.GenericJsonAdaptor"]], "all_exts (sleap.io.format.genericjson.genericjsonadaptor property)": [[21, "sleap.io.format.genericjson.GenericJsonAdaptor.all_exts"]], "can_read_file() (sleap.io.format.genericjson.genericjsonadaptor method)": [[21, "sleap.io.format.genericjson.GenericJsonAdaptor.can_read_file"]], "can_write_filename() (sleap.io.format.genericjson.genericjsonadaptor method)": [[21, "sleap.io.format.genericjson.GenericJsonAdaptor.can_write_filename"]], "default_ext (sleap.io.format.genericjson.genericjsonadaptor property)": [[21, "sleap.io.format.genericjson.GenericJsonAdaptor.default_ext"]], "does_read() (sleap.io.format.genericjson.genericjsonadaptor method)": [[21, "sleap.io.format.genericjson.GenericJsonAdaptor.does_read"]], "does_write() (sleap.io.format.genericjson.genericjsonadaptor method)": [[21, "sleap.io.format.genericjson.GenericJsonAdaptor.does_write"]], "handles (sleap.io.format.genericjson.genericjsonadaptor property)": [[21, "sleap.io.format.genericjson.GenericJsonAdaptor.handles"]], "name (sleap.io.format.genericjson.genericjsonadaptor property)": [[21, "sleap.io.format.genericjson.GenericJsonAdaptor.name"]], "read() (sleap.io.format.genericjson.genericjsonadaptor method)": [[21, "sleap.io.format.genericjson.GenericJsonAdaptor.read"]], "sleap.io.format.genericjson": [[21, "module-sleap.io.format.genericjson"]], "write() (sleap.io.format.genericjson.genericjsonadaptor method)": [[21, "sleap.io.format.genericjson.GenericJsonAdaptor.write"]], "labelsv1adaptor (class in sleap.io.format.hdf5)": [[22, "sleap.io.format.hdf5.LabelsV1Adaptor"]], "all_exts (sleap.io.format.hdf5.labelsv1adaptor property)": [[22, "sleap.io.format.hdf5.LabelsV1Adaptor.all_exts"]], "can_read_file() (sleap.io.format.hdf5.labelsv1adaptor method)": [[22, "sleap.io.format.hdf5.LabelsV1Adaptor.can_read_file"]], "can_write_filename() (sleap.io.format.hdf5.labelsv1adaptor method)": [[22, "sleap.io.format.hdf5.LabelsV1Adaptor.can_write_filename"]], "default_ext (sleap.io.format.hdf5.labelsv1adaptor property)": [[22, "sleap.io.format.hdf5.LabelsV1Adaptor.default_ext"]], "does_read() (sleap.io.format.hdf5.labelsv1adaptor method)": [[22, "sleap.io.format.hdf5.LabelsV1Adaptor.does_read"]], "does_write() (sleap.io.format.hdf5.labelsv1adaptor method)": [[22, "sleap.io.format.hdf5.LabelsV1Adaptor.does_write"]], "handles (sleap.io.format.hdf5.labelsv1adaptor property)": [[22, "sleap.io.format.hdf5.LabelsV1Adaptor.handles"]], "name (sleap.io.format.hdf5.labelsv1adaptor property)": [[22, "sleap.io.format.hdf5.LabelsV1Adaptor.name"]], "read() (sleap.io.format.hdf5.labelsv1adaptor class method)": [[22, "sleap.io.format.hdf5.LabelsV1Adaptor.read"]], "sleap.io.format.hdf5": [[22, "module-sleap.io.format.hdf5"]], "write() (sleap.io.format.hdf5.labelsv1adaptor class method)": [[22, "sleap.io.format.hdf5.LabelsV1Adaptor.write"]], "labelsjsonadaptor (class in sleap.io.format.labels_json)": [[23, "sleap.io.format.labels_json.LabelsJsonAdaptor"]], "all_exts (sleap.io.format.labels_json.labelsjsonadaptor property)": [[23, "sleap.io.format.labels_json.LabelsJsonAdaptor.all_exts"]], "can_read_file() (sleap.io.format.labels_json.labelsjsonadaptor method)": [[23, "sleap.io.format.labels_json.LabelsJsonAdaptor.can_read_file"]], "can_write_filename() (sleap.io.format.labels_json.labelsjsonadaptor method)": [[23, "sleap.io.format.labels_json.LabelsJsonAdaptor.can_write_filename"]], "default_ext (sleap.io.format.labels_json.labelsjsonadaptor property)": [[23, "sleap.io.format.labels_json.LabelsJsonAdaptor.default_ext"]], "does_read() (sleap.io.format.labels_json.labelsjsonadaptor method)": [[23, "sleap.io.format.labels_json.LabelsJsonAdaptor.does_read"]], "does_write() (sleap.io.format.labels_json.labelsjsonadaptor method)": [[23, "sleap.io.format.labels_json.LabelsJsonAdaptor.does_write"]], "from_json_data() (sleap.io.format.labels_json.labelsjsonadaptor class method)": [[23, "sleap.io.format.labels_json.LabelsJsonAdaptor.from_json_data"]], "handles (sleap.io.format.labels_json.labelsjsonadaptor property)": [[23, "sleap.io.format.labels_json.LabelsJsonAdaptor.handles"]], "name (sleap.io.format.labels_json.labelsjsonadaptor property)": [[23, "sleap.io.format.labels_json.LabelsJsonAdaptor.name"]], "read() (sleap.io.format.labels_json.labelsjsonadaptor class method)": [[23, "sleap.io.format.labels_json.LabelsJsonAdaptor.read"]], "sleap.io.format.labels_json": [[23, "module-sleap.io.format.labels_json"]], "write() (sleap.io.format.labels_json.labelsjsonadaptor class method)": [[23, "sleap.io.format.labels_json.LabelsJsonAdaptor.write"]], "labelsleapmatlabadaptor (class in sleap.io.format.leap_matlab)": [[24, "sleap.io.format.leap_matlab.LabelsLeapMatlabAdaptor"]], "all_exts (sleap.io.format.leap_matlab.labelsleapmatlabadaptor property)": [[24, "sleap.io.format.leap_matlab.LabelsLeapMatlabAdaptor.all_exts"]], "can_read_file() (sleap.io.format.leap_matlab.labelsleapmatlabadaptor method)": [[24, "sleap.io.format.leap_matlab.LabelsLeapMatlabAdaptor.can_read_file"]], "can_write_filename() (sleap.io.format.leap_matlab.labelsleapmatlabadaptor method)": [[24, "sleap.io.format.leap_matlab.LabelsLeapMatlabAdaptor.can_write_filename"]], "default_ext (sleap.io.format.leap_matlab.labelsleapmatlabadaptor property)": [[24, "sleap.io.format.leap_matlab.LabelsLeapMatlabAdaptor.default_ext"]], "does_read() (sleap.io.format.leap_matlab.labelsleapmatlabadaptor method)": [[24, "sleap.io.format.leap_matlab.LabelsLeapMatlabAdaptor.does_read"]], "does_write() (sleap.io.format.leap_matlab.labelsleapmatlabadaptor method)": [[24, "sleap.io.format.leap_matlab.LabelsLeapMatlabAdaptor.does_write"]], "handles (sleap.io.format.leap_matlab.labelsleapmatlabadaptor property)": [[24, "sleap.io.format.leap_matlab.LabelsLeapMatlabAdaptor.handles"]], "name (sleap.io.format.leap_matlab.labelsleapmatlabadaptor property)": [[24, "sleap.io.format.leap_matlab.LabelsLeapMatlabAdaptor.name"]], "read() (sleap.io.format.leap_matlab.labelsleapmatlabadaptor class method)": [[24, "sleap.io.format.leap_matlab.LabelsLeapMatlabAdaptor.read"]], "sleap.io.format.leap_matlab": [[24, "module-sleap.io.format.leap_matlab"]], "read() (in module sleap.io.format.main)": [[25, "sleap.io.format.main.read"]], "sleap.io.format.main": [[25, "module-sleap.io.format.main"]], "write() (in module sleap.io.format.main)": [[25, "sleap.io.format.main.write"]], "ndxposeadaptor (class in sleap.io.format.ndx_pose)": [[26, "sleap.io.format.ndx_pose.NDXPoseAdaptor"]], "all_exts (sleap.io.format.ndx_pose.ndxposeadaptor property)": [[26, "sleap.io.format.ndx_pose.NDXPoseAdaptor.all_exts"]], "can_read_file() (sleap.io.format.ndx_pose.ndxposeadaptor method)": [[26, "sleap.io.format.ndx_pose.NDXPoseAdaptor.can_read_file"]], "can_write_filename() (sleap.io.format.ndx_pose.ndxposeadaptor method)": [[26, "sleap.io.format.ndx_pose.NDXPoseAdaptor.can_write_filename"]], "default_ext (sleap.io.format.ndx_pose.ndxposeadaptor property)": [[26, "sleap.io.format.ndx_pose.NDXPoseAdaptor.default_ext"]], "does_read() (sleap.io.format.ndx_pose.ndxposeadaptor method)": [[26, "sleap.io.format.ndx_pose.NDXPoseAdaptor.does_read"]], "does_write() (sleap.io.format.ndx_pose.ndxposeadaptor method)": [[26, "sleap.io.format.ndx_pose.NDXPoseAdaptor.does_write"]], "handles (sleap.io.format.ndx_pose.ndxposeadaptor property)": [[26, "sleap.io.format.ndx_pose.NDXPoseAdaptor.handles"]], "name (sleap.io.format.ndx_pose.ndxposeadaptor property)": [[26, "sleap.io.format.ndx_pose.NDXPoseAdaptor.name"]], "read() (sleap.io.format.ndx_pose.ndxposeadaptor method)": [[26, "sleap.io.format.ndx_pose.NDXPoseAdaptor.read"]], "sleap.io.format.ndx_pose": [[26, "module-sleap.io.format.ndx_pose"]], "write() (sleap.io.format.ndx_pose.ndxposeadaptor method)": [[26, "sleap.io.format.ndx_pose.NDXPoseAdaptor.write"]], "nixadaptor (class in sleap.io.format.nix)": [[27, "sleap.io.format.nix.NixAdaptor"]], "all_exts (sleap.io.format.nix.nixadaptor property)": [[27, "sleap.io.format.nix.NixAdaptor.all_exts"]], "can_read_file() (sleap.io.format.nix.nixadaptor class method)": [[27, "sleap.io.format.nix.NixAdaptor.can_read_file"]], "can_write_filename() (sleap.io.format.nix.nixadaptor method)": [[27, "sleap.io.format.nix.NixAdaptor.can_write_filename"]], "default_ext (sleap.io.format.nix.nixadaptor property)": [[27, "sleap.io.format.nix.NixAdaptor.default_ext"]], "does_read() (sleap.io.format.nix.nixadaptor class method)": [[27, "sleap.io.format.nix.NixAdaptor.does_read"]], "does_write() (sleap.io.format.nix.nixadaptor class method)": [[27, "sleap.io.format.nix.NixAdaptor.does_write"]], "handles (sleap.io.format.nix.nixadaptor property)": [[27, "sleap.io.format.nix.NixAdaptor.handles"]], "name (sleap.io.format.nix.nixadaptor property)": [[27, "sleap.io.format.nix.NixAdaptor.name"]], "read() (sleap.io.format.nix.nixadaptor class method)": [[27, "sleap.io.format.nix.NixAdaptor.read"]], "sleap.io.format.nix": [[27, "module-sleap.io.format.nix"]], "write() (sleap.io.format.nix.nixadaptor class method)": [[27, "sleap.io.format.nix.NixAdaptor.write"]], "sleapanalysisadaptor (class in sleap.io.format.sleap_analysis)": [[28, "sleap.io.format.sleap_analysis.SleapAnalysisAdaptor"]], "all_exts (sleap.io.format.sleap_analysis.sleapanalysisadaptor property)": [[28, "sleap.io.format.sleap_analysis.SleapAnalysisAdaptor.all_exts"]], "can_read_file() (sleap.io.format.sleap_analysis.sleapanalysisadaptor method)": [[28, "sleap.io.format.sleap_analysis.SleapAnalysisAdaptor.can_read_file"]], "can_write_filename() (sleap.io.format.sleap_analysis.sleapanalysisadaptor method)": [[28, "sleap.io.format.sleap_analysis.SleapAnalysisAdaptor.can_write_filename"]], "default_ext (sleap.io.format.sleap_analysis.sleapanalysisadaptor property)": [[28, "sleap.io.format.sleap_analysis.SleapAnalysisAdaptor.default_ext"]], "does_read() (sleap.io.format.sleap_analysis.sleapanalysisadaptor method)": [[28, "sleap.io.format.sleap_analysis.SleapAnalysisAdaptor.does_read"]], "does_write() (sleap.io.format.sleap_analysis.sleapanalysisadaptor method)": [[28, "sleap.io.format.sleap_analysis.SleapAnalysisAdaptor.does_write"]], "handles (sleap.io.format.sleap_analysis.sleapanalysisadaptor property)": [[28, "sleap.io.format.sleap_analysis.SleapAnalysisAdaptor.handles"]], "name (sleap.io.format.sleap_analysis.sleapanalysisadaptor property)": [[28, "sleap.io.format.sleap_analysis.SleapAnalysisAdaptor.name"]], "read() (sleap.io.format.sleap_analysis.sleapanalysisadaptor class method)": [[28, "sleap.io.format.sleap_analysis.SleapAnalysisAdaptor.read"]], "sleap.io.format.sleap_analysis": [[28, "module-sleap.io.format.sleap_analysis"]], "write() (sleap.io.format.sleap_analysis.sleapanalysisadaptor class method)": [[28, "sleap.io.format.sleap_analysis.SleapAnalysisAdaptor.write"]], "textadaptor (class in sleap.io.format.text)": [[29, "sleap.io.format.text.TextAdaptor"]], "all_exts (sleap.io.format.text.textadaptor property)": [[29, "sleap.io.format.text.TextAdaptor.all_exts"]], "can_read_file() (sleap.io.format.text.textadaptor method)": [[29, "sleap.io.format.text.TextAdaptor.can_read_file"]], "can_write_filename() (sleap.io.format.text.textadaptor method)": [[29, "sleap.io.format.text.TextAdaptor.can_write_filename"]], "default_ext (sleap.io.format.text.textadaptor property)": [[29, "sleap.io.format.text.TextAdaptor.default_ext"]], "does_read() (sleap.io.format.text.textadaptor method)": [[29, "sleap.io.format.text.TextAdaptor.does_read"]], "does_write() (sleap.io.format.text.textadaptor method)": [[29, "sleap.io.format.text.TextAdaptor.does_write"]], "handles (sleap.io.format.text.textadaptor property)": [[29, "sleap.io.format.text.TextAdaptor.handles"]], "name (sleap.io.format.text.textadaptor property)": [[29, "sleap.io.format.text.TextAdaptor.name"]], "read() (sleap.io.format.text.textadaptor method)": [[29, "sleap.io.format.text.TextAdaptor.read"]], "sleap.io.format.text": [[29, "module-sleap.io.format.text"]], "write() (sleap.io.format.text.textadaptor method)": [[29, "sleap.io.format.text.TextAdaptor.write"]], "load_labels_json_old() (in module sleap.io.legacy)": [[30, "sleap.io.legacy.load_labels_json_old"]], "load_predicted_labels_json_old() (in module sleap.io.legacy)": [[30, "sleap.io.legacy.load_predicted_labels_json_old"]], "sleap.io.legacy": [[30, "module-sleap.io.legacy"]], "filenames_prefix_change() (in module sleap.io.pathutils)": [[31, "sleap.io.pathutils.filenames_prefix_change"]], "find_changed_subpath() (in module sleap.io.pathutils)": [[31, "sleap.io.pathutils.find_changed_subpath"]], "list_file_missing() (in module sleap.io.pathutils)": [[31, "sleap.io.pathutils.list_file_missing"]], "sleap.io.pathutils": [[31, "module-sleap.io.pathutils"]], "dummyvideo (class in sleap.io.video)": [[32, "sleap.io.video.DummyVideo"]], "hdf5video (class in sleap.io.video)": [[32, "sleap.io.video.HDF5Video"]], "imgstorevideo (class in sleap.io.video)": [[32, "sleap.io.video.ImgStoreVideo"]], "mediavideo (class in sleap.io.video)": [[32, "sleap.io.video.MediaVideo"]], "numpyvideo (class in sleap.io.video)": [[32, "sleap.io.video.NumpyVideo"]], "singleimagevideo (class in sleap.io.video)": [[32, "sleap.io.video.SingleImageVideo"]], "video (class in sleap.io.video)": [[32, "sleap.io.video.Video"]], "available_video_exts() (in module sleap.io.video)": [[32, "sleap.io.video.available_video_exts"]], "cattr() (sleap.io.video.video static method)": [[32, "sleap.io.video.Video.cattr"]], "channels (sleap.io.video.hdf5video property)": [[32, "sleap.io.video.HDF5Video.channels"]], "channels (sleap.io.video.imgstorevideo property)": [[32, "sleap.io.video.ImgStoreVideo.channels"]], "channels (sleap.io.video.mediavideo property)": [[32, "sleap.io.video.MediaVideo.channels"]], "channels (sleap.io.video.numpyvideo property)": [[32, "sleap.io.video.NumpyVideo.channels"]], "channels (sleap.io.video.singleimagevideo property)": [[32, "sleap.io.video.SingleImageVideo.channels"]], "check() (sleap.io.video.hdf5video method)": [[32, "sleap.io.video.HDF5Video.check"]], "close() (sleap.io.video.hdf5video method)": [[32, "sleap.io.video.HDF5Video.close"]], "close() (sleap.io.video.imgstorevideo method)": [[32, "sleap.io.video.ImgStoreVideo.close"]], "dtype (sleap.io.video.hdf5video property)": [[32, "sleap.io.video.HDF5Video.dtype"]], "dtype (sleap.io.video.imgstorevideo property)": [[32, "sleap.io.video.ImgStoreVideo.dtype"]], "dtype (sleap.io.video.mediavideo property)": [[32, "sleap.io.video.MediaVideo.dtype"]], "dtype (sleap.io.video.numpyvideo property)": [[32, "sleap.io.video.NumpyVideo.dtype"]], "dtype (sleap.io.video.singleimagevideo property)": [[32, "sleap.io.video.SingleImageVideo.dtype"]], "embedded_frame_inds (sleap.io.video.hdf5video property)": [[32, "sleap.io.video.HDF5Video.embedded_frame_inds"]], "enable_source_video (sleap.io.video.hdf5video property)": [[32, "sleap.io.video.HDF5Video.enable_source_video"]], "fixup_path() (sleap.io.video.video static method)": [[32, "sleap.io.video.Video.fixup_path"]], "fps (sleap.io.video.mediavideo property)": [[32, "sleap.io.video.MediaVideo.fps"]], "frames (sleap.io.video.hdf5video property)": [[32, "sleap.io.video.HDF5Video.frames"]], "frames (sleap.io.video.imgstorevideo property)": [[32, "sleap.io.video.ImgStoreVideo.frames"]], "frames (sleap.io.video.mediavideo property)": [[32, "sleap.io.video.MediaVideo.frames"]], "frames (sleap.io.video.numpyvideo property)": [[32, "sleap.io.video.NumpyVideo.frames"]], "frames (sleap.io.video.singleimagevideo property)": [[32, "sleap.io.video.SingleImageVideo.frames"]], "from_filename() (sleap.io.video.video class method)": [[32, "sleap.io.video.Video.from_filename"]], "from_hdf5() (sleap.io.video.video class method)": [[32, "sleap.io.video.Video.from_hdf5"]], "from_image_filenames() (sleap.io.video.video class method)": [[32, "sleap.io.video.Video.from_image_filenames"]], "from_media() (sleap.io.video.video class method)": [[32, "sleap.io.video.Video.from_media"]], "from_numpy() (sleap.io.video.video class method)": [[32, "sleap.io.video.Video.from_numpy"]], "get_frame() (sleap.io.video.hdf5video method)": [[32, "sleap.io.video.HDF5Video.get_frame"]], "get_frame() (sleap.io.video.imgstorevideo method)": [[32, "sleap.io.video.ImgStoreVideo.get_frame"]], "get_frame() (sleap.io.video.mediavideo method)": [[32, "sleap.io.video.MediaVideo.get_frame"]], "get_frame() (sleap.io.video.numpyvideo method)": [[32, "sleap.io.video.NumpyVideo.get_frame"]], "get_frame() (sleap.io.video.singleimagevideo method)": [[32, "sleap.io.video.SingleImageVideo.get_frame"]], "get_frame() (sleap.io.video.video method)": [[32, "sleap.io.video.Video.get_frame"]], "get_frames() (sleap.io.video.video method)": [[32, "sleap.io.video.Video.get_frames"]], "get_frames_safely() (sleap.io.video.video method)": [[32, "sleap.io.video.Video.get_frames_safely"]], "has_embedded_images (sleap.io.video.hdf5video property)": [[32, "sleap.io.video.HDF5Video.has_embedded_images"]], "height (sleap.io.video.hdf5video property)": [[32, "sleap.io.video.HDF5Video.height"]], "height (sleap.io.video.imgstorevideo property)": [[32, "sleap.io.video.ImgStoreVideo.height"]], "height (sleap.io.video.mediavideo property)": [[32, "sleap.io.video.MediaVideo.height"]], "height (sleap.io.video.numpyvideo property)": [[32, "sleap.io.video.NumpyVideo.height"]], "height (sleap.io.video.singleimagevideo property)": [[32, "sleap.io.video.SingleImageVideo.height"]], "imgstore (sleap.io.video.imgstorevideo property)": [[32, "sleap.io.video.ImgStoreVideo.imgstore"]], "imgstore_from_filenames() (sleap.io.video.video class method)": [[32, "sleap.io.video.Video.imgstore_from_filenames"]], "is_missing (sleap.io.video.numpyvideo property)": [[32, "sleap.io.video.NumpyVideo.is_missing"]], "is_missing (sleap.io.video.video property)": [[32, "sleap.io.video.Video.is_missing"]], "last_frame_idx (sleap.io.video.hdf5video property)": [[32, "sleap.io.video.HDF5Video.last_frame_idx"]], "last_frame_idx (sleap.io.video.imgstorevideo property)": [[32, "sleap.io.video.ImgStoreVideo.last_frame_idx"]], "last_frame_idx (sleap.io.video.video property)": [[32, "sleap.io.video.Video.last_frame_idx"]], "load_video() (in module sleap.io.video)": [[32, "sleap.io.video.load_video"]], "matches() (sleap.io.video.hdf5video method)": [[32, "sleap.io.video.HDF5Video.matches"]], "matches() (sleap.io.video.imgstorevideo method)": [[32, "sleap.io.video.ImgStoreVideo.matches"]], "matches() (sleap.io.video.mediavideo method)": [[32, "sleap.io.video.MediaVideo.matches"]], "matches() (sleap.io.video.numpyvideo method)": [[32, "sleap.io.video.NumpyVideo.matches"]], "matches() (sleap.io.video.singleimagevideo method)": [[32, "sleap.io.video.SingleImageVideo.matches"]], "num_frames (sleap.io.video.video property)": [[32, "sleap.io.video.Video.num_frames"]], "open() (sleap.io.video.imgstorevideo method)": [[32, "sleap.io.video.ImgStoreVideo.open"]], "reset() (sleap.io.video.hdf5video method)": [[32, "sleap.io.video.HDF5Video.reset"]], "reset() (sleap.io.video.imgstorevideo method)": [[32, "sleap.io.video.ImgStoreVideo.reset"]], "reset() (sleap.io.video.mediavideo method)": [[32, "sleap.io.video.MediaVideo.reset"]], "reset() (sleap.io.video.numpyvideo method)": [[32, "sleap.io.video.NumpyVideo.reset"]], "reset() (sleap.io.video.singleimagevideo method)": [[32, "sleap.io.video.SingleImageVideo.reset"]], "shape (sleap.io.video.video property)": [[32, "sleap.io.video.Video.shape"]], "sleap.io.video": [[32, "module-sleap.io.video"]], "source_video (sleap.io.video.hdf5video property)": [[32, "sleap.io.video.HDF5Video.source_video"]], "source_video_available (sleap.io.video.hdf5video property)": [[32, "sleap.io.video.HDF5Video.source_video_available"]], "to_hdf5() (sleap.io.video.video method)": [[32, "sleap.io.video.Video.to_hdf5"]], "to_imgstore() (sleap.io.video.video method)": [[32, "sleap.io.video.Video.to_imgstore"]], "to_pipeline() (sleap.io.video.video method)": [[32, "sleap.io.video.Video.to_pipeline"]], "width (sleap.io.video.hdf5video property)": [[32, "sleap.io.video.HDF5Video.width"]], "width (sleap.io.video.imgstorevideo property)": [[32, "sleap.io.video.ImgStoreVideo.width"]], "width (sleap.io.video.mediavideo property)": [[32, "sleap.io.video.MediaVideo.width"]], "width (sleap.io.video.numpyvideo property)": [[32, "sleap.io.video.NumpyVideo.width"]], "width (sleap.io.video.singleimagevideo property)": [[32, "sleap.io.video.SingleImageVideo.width"]], "videowriter (class in sleap.io.videowriter)": [[33, "sleap.io.videowriter.VideoWriter"]], "videowriterimageio (class in sleap.io.videowriter)": [[33, "sleap.io.videowriter.VideoWriterImageio"]], "videowriteropencv (class in sleap.io.videowriter)": [[33, "sleap.io.videowriter.VideoWriterOpenCV"]], "can_use_ffmpeg() (sleap.io.videowriter.videowriter static method)": [[33, "sleap.io.videowriter.VideoWriter.can_use_ffmpeg"]], "crf (sleap.io.videowriter.videowriterimageio attribute)": [[33, "sleap.io.videowriter.VideoWriterImageio.crf"]], "filename (sleap.io.videowriter.videowriterimageio attribute)": [[33, "sleap.io.videowriter.VideoWriterImageio.filename"]], "fps (sleap.io.videowriter.videowriterimageio attribute)": [[33, "sleap.io.videowriter.VideoWriterImageio.fps"]], "height (sleap.io.videowriter.videowriterimageio attribute)": [[33, "sleap.io.videowriter.VideoWriterImageio.height"]], "preset (sleap.io.videowriter.videowriterimageio attribute)": [[33, "sleap.io.videowriter.VideoWriterImageio.preset"]], "safe_builder() (sleap.io.videowriter.videowriter static method)": [[33, "sleap.io.videowriter.VideoWriter.safe_builder"]], "sleap.io.videowriter": [[33, "module-sleap.io.videowriter"]], "width (sleap.io.videowriter.videowriterimageio attribute)": [[33, "sleap.io.videowriter.VideoWriterImageio.width"]], "videomarkerthread (class in sleap.io.visuals)": [[34, "sleap.io.visuals.VideoMarkerThread"]], "img_to_cv() (in module sleap.io.visuals)": [[34, "sleap.io.visuals.img_to_cv"]], "reader() (in module sleap.io.visuals)": [[34, "sleap.io.visuals.reader"]], "resize_image() (in module sleap.io.visuals)": [[34, "sleap.io.visuals.resize_image"]], "run() (sleap.io.visuals.videomarkerthread method)": [[34, "sleap.io.visuals.VideoMarkerThread.run"]], "save_labeled_video() (in module sleap.io.visuals)": [[34, "sleap.io.visuals.save_labeled_video"]], "sleap.io.visuals": [[34, "module-sleap.io.visuals"]], "writer() (in module sleap.io.visuals)": [[34, "sleap.io.visuals.writer"]], "basemessageparticipant (class in sleap.message)": [[35, "sleap.message.BaseMessageParticipant"]], "receiver (class in sleap.message)": [[35, "sleap.message.Receiver"]], "sender (class in sleap.message)": [[35, "sleap.message.Sender"]], "check_message() (sleap.message.receiver method)": [[35, "sleap.message.Receiver.check_message"]], "check_messages() (sleap.message.receiver method)": [[35, "sleap.message.Receiver.check_messages"]], "push_back_message() (sleap.message.receiver method)": [[35, "sleap.message.Receiver.push_back_message"]], "send_array() (sleap.message.sender method)": [[35, "sleap.message.Sender.send_array"]], "send_dict() (sleap.message.sender method)": [[35, "sleap.message.Sender.send_dict"]], "sleap.message": [[35, "module-sleap.message"]], "intermediatefeature (class in sleap.nn.architectures.common)": [[36, "sleap.nn.architectures.common.IntermediateFeature"]], "scale (sleap.nn.architectures.common.intermediatefeature property)": [[36, "sleap.nn.architectures.common.IntermediateFeature.scale"]], "sleap.nn.architectures.common": [[36, "module-sleap.nn.architectures.common"]], "stride (sleap.nn.architectures.common.intermediatefeature attribute)": [[36, "sleap.nn.architectures.common.IntermediateFeature.stride"]], "tensor (sleap.nn.architectures.common.intermediatefeature attribute)": [[36, "sleap.nn.architectures.common.IntermediateFeature.tensor"]], "decoderblock (class in sleap.nn.architectures.encoder_decoder)": [[37, "sleap.nn.architectures.encoder_decoder.DecoderBlock"]], "encoderblock (class in sleap.nn.architectures.encoder_decoder)": [[37, "sleap.nn.architectures.encoder_decoder.EncoderBlock"]], "encoderdecoder (class in sleap.nn.architectures.encoder_decoder)": [[37, "sleap.nn.architectures.encoder_decoder.EncoderDecoder"]], "simpleconvblock (class in sleap.nn.architectures.encoder_decoder)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleConvBlock"]], "simpleupsamplingblock (class in sleap.nn.architectures.encoder_decoder)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleUpsamplingBlock"]], "activation (sleap.nn.architectures.encoder_decoder.simpleconvblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleConvBlock.activation"]], "batch_norm (sleap.nn.architectures.encoder_decoder.simpleconvblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleConvBlock.batch_norm"]], "batch_norm_before_activation (sleap.nn.architectures.encoder_decoder.simpleconvblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleConvBlock.batch_norm_before_activation"]], "block_prefix (sleap.nn.architectures.encoder_decoder.simpleconvblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleConvBlock.block_prefix"]], "decoder_features_stride (sleap.nn.architectures.encoder_decoder.encoderdecoder property)": [[37, "sleap.nn.architectures.encoder_decoder.EncoderDecoder.decoder_features_stride"]], "decoder_stack (sleap.nn.architectures.encoder_decoder.encoderdecoder property)": [[37, "sleap.nn.architectures.encoder_decoder.EncoderDecoder.decoder_stack"]], "encoder_features_stride (sleap.nn.architectures.encoder_decoder.encoderdecoder property)": [[37, "sleap.nn.architectures.encoder_decoder.EncoderDecoder.encoder_features_stride"]], "encoder_stack (sleap.nn.architectures.encoder_decoder.encoderdecoder property)": [[37, "sleap.nn.architectures.encoder_decoder.EncoderDecoder.encoder_stack"]], "filters (sleap.nn.architectures.encoder_decoder.simpleconvblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleConvBlock.filters"]], "interp_method (sleap.nn.architectures.encoder_decoder.simpleupsamplingblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleUpsamplingBlock.interp_method"]], "kernel_size (sleap.nn.architectures.encoder_decoder.simpleconvblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleConvBlock.kernel_size"]], "make_backbone() (sleap.nn.architectures.encoder_decoder.encoderdecoder method)": [[37, "sleap.nn.architectures.encoder_decoder.EncoderDecoder.make_backbone"]], "make_block() (sleap.nn.architectures.encoder_decoder.decoderblock method)": [[37, "sleap.nn.architectures.encoder_decoder.DecoderBlock.make_block"]], "make_block() (sleap.nn.architectures.encoder_decoder.encoderblock method)": [[37, "sleap.nn.architectures.encoder_decoder.EncoderBlock.make_block"]], "make_block() (sleap.nn.architectures.encoder_decoder.simpleconvblock method)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleConvBlock.make_block"]], "make_block() (sleap.nn.architectures.encoder_decoder.simpleupsamplingblock method)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleUpsamplingBlock.make_block"]], "make_decoder() (sleap.nn.architectures.encoder_decoder.encoderdecoder method)": [[37, "sleap.nn.architectures.encoder_decoder.EncoderDecoder.make_decoder"]], "make_encoder() (sleap.nn.architectures.encoder_decoder.encoderdecoder method)": [[37, "sleap.nn.architectures.encoder_decoder.EncoderDecoder.make_encoder"]], "make_stem() (sleap.nn.architectures.encoder_decoder.encoderdecoder method)": [[37, "sleap.nn.architectures.encoder_decoder.EncoderDecoder.make_stem"]], "maximum_stride (sleap.nn.architectures.encoder_decoder.encoderdecoder property)": [[37, "sleap.nn.architectures.encoder_decoder.EncoderDecoder.maximum_stride"]], "num_convs (sleap.nn.architectures.encoder_decoder.simpleconvblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleConvBlock.num_convs"]], "output_stride (sleap.nn.architectures.encoder_decoder.encoderdecoder property)": [[37, "sleap.nn.architectures.encoder_decoder.EncoderDecoder.output_stride"]], "pool (sleap.nn.architectures.encoder_decoder.encoderblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.EncoderBlock.pool"]], "pool (sleap.nn.architectures.encoder_decoder.simpleconvblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleConvBlock.pool"]], "pool_before_convs (sleap.nn.architectures.encoder_decoder.simpleconvblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleConvBlock.pool_before_convs"]], "pooling_stride (sleap.nn.architectures.encoder_decoder.encoderblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.EncoderBlock.pooling_stride"]], "pooling_stride (sleap.nn.architectures.encoder_decoder.simpleconvblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleConvBlock.pooling_stride"]], "refine_convs (sleap.nn.architectures.encoder_decoder.simpleupsamplingblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleUpsamplingBlock.refine_convs"]], "refine_convs_activation (sleap.nn.architectures.encoder_decoder.simpleupsamplingblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleUpsamplingBlock.refine_convs_activation"]], "refine_convs_batch_norm (sleap.nn.architectures.encoder_decoder.simpleupsamplingblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleUpsamplingBlock.refine_convs_batch_norm"]], "refine_convs_batch_norm_before_activation (sleap.nn.architectures.encoder_decoder.simpleupsamplingblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleUpsamplingBlock.refine_convs_batch_norm_before_activation"]], "refine_convs_filters (sleap.nn.architectures.encoder_decoder.simpleupsamplingblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleUpsamplingBlock.refine_convs_filters"]], "refine_convs_first_filters (sleap.nn.architectures.encoder_decoder.simpleupsamplingblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleUpsamplingBlock.refine_convs_first_filters"]], "refine_convs_kernel_size (sleap.nn.architectures.encoder_decoder.simpleupsamplingblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleUpsamplingBlock.refine_convs_kernel_size"]], "refine_convs_use_bias (sleap.nn.architectures.encoder_decoder.simpleupsamplingblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleUpsamplingBlock.refine_convs_use_bias"]], "skip_add (sleap.nn.architectures.encoder_decoder.simpleupsamplingblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleUpsamplingBlock.skip_add"]], "skip_connection (sleap.nn.architectures.encoder_decoder.simpleupsamplingblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleUpsamplingBlock.skip_connection"]], "sleap.nn.architectures.encoder_decoder": [[37, "module-sleap.nn.architectures.encoder_decoder"]], "stacks (sleap.nn.architectures.encoder_decoder.encoderdecoder attribute)": [[37, "sleap.nn.architectures.encoder_decoder.EncoderDecoder.stacks"]], "stem_features_stride (sleap.nn.architectures.encoder_decoder.encoderdecoder property)": [[37, "sleap.nn.architectures.encoder_decoder.EncoderDecoder.stem_features_stride"]], "stem_stack (sleap.nn.architectures.encoder_decoder.encoderdecoder property)": [[37, "sleap.nn.architectures.encoder_decoder.EncoderDecoder.stem_stack"]], "transposed_conv (sleap.nn.architectures.encoder_decoder.simpleupsamplingblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleUpsamplingBlock.transposed_conv"]], "transposed_conv_activation (sleap.nn.architectures.encoder_decoder.simpleupsamplingblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleUpsamplingBlock.transposed_conv_activation"]], "transposed_conv_batch_norm (sleap.nn.architectures.encoder_decoder.simpleupsamplingblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleUpsamplingBlock.transposed_conv_batch_norm"]], "transposed_conv_batch_norm_before_activation (sleap.nn.architectures.encoder_decoder.simpleupsamplingblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleUpsamplingBlock.transposed_conv_batch_norm_before_activation"]], "transposed_conv_filters (sleap.nn.architectures.encoder_decoder.simpleupsamplingblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleUpsamplingBlock.transposed_conv_filters"]], "transposed_conv_kernel_size (sleap.nn.architectures.encoder_decoder.simpleupsamplingblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleUpsamplingBlock.transposed_conv_kernel_size"]], "transposed_conv_use_bias (sleap.nn.architectures.encoder_decoder.simpleupsamplingblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleUpsamplingBlock.transposed_conv_use_bias"]], "upsampling_stride (sleap.nn.architectures.encoder_decoder.decoderblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.DecoderBlock.upsampling_stride"]], "upsampling_stride (sleap.nn.architectures.encoder_decoder.simpleupsamplingblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleUpsamplingBlock.upsampling_stride"]], "use_bias (sleap.nn.architectures.encoder_decoder.simpleconvblock attribute)": [[37, "sleap.nn.architectures.encoder_decoder.SimpleConvBlock.use_bias"]], "downsamplingblock (class in sleap.nn.architectures.hourglass)": [[38, "sleap.nn.architectures.hourglass.DownsamplingBlock"]], "hourglass (class in sleap.nn.architectures.hourglass)": [[38, "sleap.nn.architectures.hourglass.Hourglass"]], "stemblock (class in sleap.nn.architectures.hourglass)": [[38, "sleap.nn.architectures.hourglass.StemBlock"]], "upsamplingblock (class in sleap.nn.architectures.hourglass)": [[38, "sleap.nn.architectures.hourglass.UpsamplingBlock"]], "conv() (in module sleap.nn.architectures.hourglass)": [[38, "sleap.nn.architectures.hourglass.conv"]], "decoder_stack (sleap.nn.architectures.hourglass.hourglass property)": [[38, "sleap.nn.architectures.hourglass.Hourglass.decoder_stack"]], "down_blocks (sleap.nn.architectures.hourglass.hourglass attribute)": [[38, "sleap.nn.architectures.hourglass.Hourglass.down_blocks"]], "encoder_stack (sleap.nn.architectures.hourglass.hourglass property)": [[38, "sleap.nn.architectures.hourglass.Hourglass.encoder_stack"]], "filter_increase (sleap.nn.architectures.hourglass.hourglass attribute)": [[38, "sleap.nn.architectures.hourglass.Hourglass.filter_increase"]], "filters (sleap.nn.architectures.hourglass.downsamplingblock attribute)": [[38, "sleap.nn.architectures.hourglass.DownsamplingBlock.filters"]], "filters (sleap.nn.architectures.hourglass.hourglass attribute)": [[38, "sleap.nn.architectures.hourglass.Hourglass.filters"]], "filters (sleap.nn.architectures.hourglass.stemblock attribute)": [[38, "sleap.nn.architectures.hourglass.StemBlock.filters"]], "filters (sleap.nn.architectures.hourglass.upsamplingblock attribute)": [[38, "sleap.nn.architectures.hourglass.UpsamplingBlock.filters"]], "first_conv_stride (sleap.nn.architectures.hourglass.stemblock attribute)": [[38, "sleap.nn.architectures.hourglass.StemBlock.first_conv_stride"]], "from_config() (sleap.nn.architectures.hourglass.hourglass class method)": [[38, "sleap.nn.architectures.hourglass.Hourglass.from_config"]], "interp_method (sleap.nn.architectures.hourglass.hourglass attribute)": [[38, "sleap.nn.architectures.hourglass.Hourglass.interp_method"]], "interp_method (sleap.nn.architectures.hourglass.upsamplingblock attribute)": [[38, "sleap.nn.architectures.hourglass.UpsamplingBlock.interp_method"]], "make_block() (sleap.nn.architectures.hourglass.downsamplingblock method)": [[38, "sleap.nn.architectures.hourglass.DownsamplingBlock.make_block"]], "make_block() (sleap.nn.architectures.hourglass.stemblock method)": [[38, "sleap.nn.architectures.hourglass.StemBlock.make_block"]], "make_block() (sleap.nn.architectures.hourglass.upsamplingblock method)": [[38, "sleap.nn.architectures.hourglass.UpsamplingBlock.make_block"]], "output_filters (sleap.nn.architectures.hourglass.stemblock attribute)": [[38, "sleap.nn.architectures.hourglass.StemBlock.output_filters"]], "pool (sleap.nn.architectures.hourglass.stemblock attribute)": [[38, "sleap.nn.architectures.hourglass.StemBlock.pool"]], "pooling_stride (sleap.nn.architectures.hourglass.stemblock attribute)": [[38, "sleap.nn.architectures.hourglass.StemBlock.pooling_stride"]], "sleap.nn.architectures.hourglass": [[38, "module-sleap.nn.architectures.hourglass"]], "stacks (sleap.nn.architectures.hourglass.hourglass attribute)": [[38, "sleap.nn.architectures.hourglass.Hourglass.stacks"]], "stem_filters (sleap.nn.architectures.hourglass.hourglass attribute)": [[38, "sleap.nn.architectures.hourglass.Hourglass.stem_filters"]], "stem_stack (sleap.nn.architectures.hourglass.hourglass property)": [[38, "sleap.nn.architectures.hourglass.Hourglass.stem_stack"]], "stem_stride (sleap.nn.architectures.hourglass.hourglass attribute)": [[38, "sleap.nn.architectures.hourglass.Hourglass.stem_stride"]], "up_blocks (sleap.nn.architectures.hourglass.hourglass attribute)": [[38, "sleap.nn.architectures.hourglass.Hourglass.up_blocks"]], "c (sleap.nn.architectures.hrnet.higherhrnet attribute)": [[39, "sleap.nn.architectures.hrnet.HigherHRNet.C"]], "higherhrnet (class in sleap.nn.architectures.hrnet)": [[39, "sleap.nn.architectures.hrnet.HigherHRNet"]], "adjust_prefix() (in module sleap.nn.architectures.hrnet)": [[39, "sleap.nn.architectures.hrnet.adjust_prefix"]], "bilinear_upsampling (sleap.nn.architectures.hrnet.higherhrnet attribute)": [[39, "sleap.nn.architectures.hrnet.HigherHRNet.bilinear_upsampling"]], "bottleneck (sleap.nn.architectures.hrnet.higherhrnet attribute)": [[39, "sleap.nn.architectures.hrnet.HigherHRNet.bottleneck"]], "bottleneck_block() (in module sleap.nn.architectures.hrnet)": [[39, "sleap.nn.architectures.hrnet.bottleneck_block"]], "deconv_filters (sleap.nn.architectures.hrnet.higherhrnet attribute)": [[39, "sleap.nn.architectures.hrnet.HigherHRNet.deconv_filters"]], "down_blocks (sleap.nn.architectures.hrnet.higherhrnet property)": [[39, "sleap.nn.architectures.hrnet.HigherHRNet.down_blocks"]], "initial_downsampling_steps (sleap.nn.architectures.hrnet.higherhrnet attribute)": [[39, "sleap.nn.architectures.hrnet.HigherHRNet.initial_downsampling_steps"]], "n_deconv_modules (sleap.nn.architectures.hrnet.higherhrnet attribute)": [[39, "sleap.nn.architectures.hrnet.HigherHRNet.n_deconv_modules"]], "output() (sleap.nn.architectures.hrnet.higherhrnet method)": [[39, "sleap.nn.architectures.hrnet.HigherHRNet.output"]], "output_scale (sleap.nn.architectures.hrnet.higherhrnet property)": [[39, "sleap.nn.architectures.hrnet.HigherHRNet.output_scale"]], "simple_block() (in module sleap.nn.architectures.hrnet)": [[39, "sleap.nn.architectures.hrnet.simple_block"]], "sleap.nn.architectures.hrnet": [[39, "module-sleap.nn.architectures.hrnet"]], "leapcnn (class in sleap.nn.architectures.leap)": [[40, "sleap.nn.architectures.leap.LeapCNN"]], "decoder_stack (sleap.nn.architectures.leap.leapcnn property)": [[40, "sleap.nn.architectures.leap.LeapCNN.decoder_stack"]], "down_blocks (sleap.nn.architectures.leap.leapcnn attribute)": [[40, "sleap.nn.architectures.leap.LeapCNN.down_blocks"]], "down_convs_per_block (sleap.nn.architectures.leap.leapcnn attribute)": [[40, "sleap.nn.architectures.leap.LeapCNN.down_convs_per_block"]], "encoder_stack (sleap.nn.architectures.leap.leapcnn property)": [[40, "sleap.nn.architectures.leap.LeapCNN.encoder_stack"]], "filters (sleap.nn.architectures.leap.leapcnn attribute)": [[40, "sleap.nn.architectures.leap.LeapCNN.filters"]], "filters_rate (sleap.nn.architectures.leap.leapcnn attribute)": [[40, "sleap.nn.architectures.leap.LeapCNN.filters_rate"]], "from_config() (sleap.nn.architectures.leap.leapcnn class method)": [[40, "sleap.nn.architectures.leap.LeapCNN.from_config"]], "sleap.nn.architectures.leap": [[40, "module-sleap.nn.architectures.leap"]], "up_blocks (sleap.nn.architectures.leap.leapcnn attribute)": [[40, "sleap.nn.architectures.leap.LeapCNN.up_blocks"]], "up_convs_per_block (sleap.nn.architectures.leap.leapcnn attribute)": [[40, "sleap.nn.architectures.leap.LeapCNN.up_convs_per_block"]], "up_interpolate (sleap.nn.architectures.leap.leapcnn attribute)": [[40, "sleap.nn.architectures.leap.LeapCNN.up_interpolate"]], "unetpretrainedencoder (class in sleap.nn.architectures.pretrained_encoders)": [[41, "sleap.nn.architectures.pretrained_encoders.UnetPretrainedEncoder"]], "decoder_filters (sleap.nn.architectures.pretrained_encoders.unetpretrainedencoder attribute)": [[41, "sleap.nn.architectures.pretrained_encoders.UnetPretrainedEncoder.decoder_filters"]], "down_blocks (sleap.nn.architectures.pretrained_encoders.unetpretrainedencoder property)": [[41, "sleap.nn.architectures.pretrained_encoders.UnetPretrainedEncoder.down_blocks"]], "encoder (sleap.nn.architectures.pretrained_encoders.unetpretrainedencoder attribute)": [[41, "sleap.nn.architectures.pretrained_encoders.UnetPretrainedEncoder.encoder"]], "from_config() (sleap.nn.architectures.pretrained_encoders.unetpretrainedencoder class method)": [[41, "sleap.nn.architectures.pretrained_encoders.UnetPretrainedEncoder.from_config"]], "make_backbone() (sleap.nn.architectures.pretrained_encoders.unetpretrainedencoder method)": [[41, "sleap.nn.architectures.pretrained_encoders.UnetPretrainedEncoder.make_backbone"]], "maximum_stride (sleap.nn.architectures.pretrained_encoders.unetpretrainedencoder property)": [[41, "sleap.nn.architectures.pretrained_encoders.UnetPretrainedEncoder.maximum_stride"]], "output_stride (sleap.nn.architectures.pretrained_encoders.unetpretrainedencoder property)": [[41, "sleap.nn.architectures.pretrained_encoders.UnetPretrainedEncoder.output_stride"]], "pretrained (sleap.nn.architectures.pretrained_encoders.unetpretrainedencoder attribute)": [[41, "sleap.nn.architectures.pretrained_encoders.UnetPretrainedEncoder.pretrained"]], "sleap.nn.architectures.pretrained_encoders": [[41, "module-sleap.nn.architectures.pretrained_encoders"]], "up_blocks (sleap.nn.architectures.pretrained_encoders.unetpretrainedencoder property)": [[41, "sleap.nn.architectures.pretrained_encoders.UnetPretrainedEncoder.up_blocks"]], "resnet101 (class in sleap.nn.architectures.resnet)": [[42, "sleap.nn.architectures.resnet.ResNet101"]], "resnet152 (class in sleap.nn.architectures.resnet)": [[42, "sleap.nn.architectures.resnet.ResNet152"]], "resnet50 (class in sleap.nn.architectures.resnet)": [[42, "sleap.nn.architectures.resnet.ResNet50"]], "resnetv1 (class in sleap.nn.architectures.resnet)": [[42, "sleap.nn.architectures.resnet.ResNetv1"]], "block_v1() (in module sleap.nn.architectures.resnet)": [[42, "sleap.nn.architectures.resnet.block_v1"]], "down_blocks (sleap.nn.architectures.resnet.resnetv1 property)": [[42, "sleap.nn.architectures.resnet.ResNetv1.down_blocks"]], "features_output_stride (sleap.nn.architectures.resnet.resnet101 attribute)": [[42, "sleap.nn.architectures.resnet.ResNet101.features_output_stride"]], "features_output_stride (sleap.nn.architectures.resnet.resnet152 attribute)": [[42, "sleap.nn.architectures.resnet.ResNet152.features_output_stride"]], "features_output_stride (sleap.nn.architectures.resnet.resnet50 attribute)": [[42, "sleap.nn.architectures.resnet.ResNet50.features_output_stride"]], "features_output_stride (sleap.nn.architectures.resnet.resnetv1 attribute)": [[42, "sleap.nn.architectures.resnet.ResNetv1.features_output_stride"]], "from_config() (sleap.nn.architectures.resnet.resnetv1 class method)": [[42, "sleap.nn.architectures.resnet.ResNetv1.from_config"]], "frozen (sleap.nn.architectures.resnet.resnet101 attribute)": [[42, "sleap.nn.architectures.resnet.ResNet101.frozen"]], "frozen (sleap.nn.architectures.resnet.resnet152 attribute)": [[42, "sleap.nn.architectures.resnet.ResNet152.frozen"]], "frozen (sleap.nn.architectures.resnet.resnet50 attribute)": [[42, "sleap.nn.architectures.resnet.ResNet50.frozen"]], "frozen (sleap.nn.architectures.resnet.resnetv1 attribute)": [[42, "sleap.nn.architectures.resnet.ResNetv1.frozen"]], "imagenet_preproc_v1() (in module sleap.nn.architectures.resnet)": [[42, "sleap.nn.architectures.resnet.imagenet_preproc_v1"]], "make_backbone() (sleap.nn.architectures.resnet.resnetv1 method)": [[42, "sleap.nn.architectures.resnet.ResNetv1.make_backbone"]], "make_backbone_fn() (in module sleap.nn.architectures.resnet)": [[42, "sleap.nn.architectures.resnet.make_backbone_fn"]], "make_resnet_model() (in module sleap.nn.architectures.resnet)": [[42, "sleap.nn.architectures.resnet.make_resnet_model"]], "maximum_stride (sleap.nn.architectures.resnet.resnetv1 property)": [[42, "sleap.nn.architectures.resnet.ResNetv1.maximum_stride"]], "model_name (sleap.nn.architectures.resnet.resnetv1 attribute)": [[42, "sleap.nn.architectures.resnet.ResNetv1.model_name"]], "output_scale (sleap.nn.architectures.resnet.resnetv1 property)": [[42, "sleap.nn.architectures.resnet.ResNetv1.output_scale"]], "output_stride (sleap.nn.architectures.resnet.resnetv1 property)": [[42, "sleap.nn.architectures.resnet.ResNetv1.output_stride"]], "pretrained (sleap.nn.architectures.resnet.resnet101 attribute)": [[42, "sleap.nn.architectures.resnet.ResNet101.pretrained"]], "pretrained (sleap.nn.architectures.resnet.resnet152 attribute)": [[42, "sleap.nn.architectures.resnet.ResNet152.pretrained"]], "pretrained (sleap.nn.architectures.resnet.resnet50 attribute)": [[42, "sleap.nn.architectures.resnet.ResNet50.pretrained"]], "pretrained (sleap.nn.architectures.resnet.resnetv1 attribute)": [[42, "sleap.nn.architectures.resnet.ResNetv1.pretrained"]], "skip_connections (sleap.nn.architectures.resnet.resnet101 attribute)": [[42, "sleap.nn.architectures.resnet.ResNet101.skip_connections"]], "skip_connections (sleap.nn.architectures.resnet.resnet152 attribute)": [[42, "sleap.nn.architectures.resnet.ResNet152.skip_connections"]], "skip_connections (sleap.nn.architectures.resnet.resnet50 attribute)": [[42, "sleap.nn.architectures.resnet.ResNet50.skip_connections"]], "skip_connections (sleap.nn.architectures.resnet.resnetv1 attribute)": [[42, "sleap.nn.architectures.resnet.ResNetv1.skip_connections"]], "sleap.nn.architectures.resnet": [[42, "module-sleap.nn.architectures.resnet"]], "stack_configs (sleap.nn.architectures.resnet.resnetv1 attribute)": [[42, "sleap.nn.architectures.resnet.ResNetv1.stack_configs"]], "stack_v1() (in module sleap.nn.architectures.resnet)": [[42, "sleap.nn.architectures.resnet.stack_v1"]], "tile_channels() (in module sleap.nn.architectures.resnet)": [[42, "sleap.nn.architectures.resnet.tile_channels"]], "upsampling_stack (sleap.nn.architectures.resnet.resnet101 attribute)": [[42, "sleap.nn.architectures.resnet.ResNet101.upsampling_stack"]], "upsampling_stack (sleap.nn.architectures.resnet.resnet152 attribute)": [[42, "sleap.nn.architectures.resnet.ResNet152.upsampling_stack"]], "upsampling_stack (sleap.nn.architectures.resnet.resnet50 attribute)": [[42, "sleap.nn.architectures.resnet.ResNet50.upsampling_stack"]], "upsampling_stack (sleap.nn.architectures.resnet.resnetv1 attribute)": [[42, "sleap.nn.architectures.resnet.ResNetv1.upsampling_stack"]], "poolingblock (class in sleap.nn.architectures.unet)": [[43, "sleap.nn.architectures.unet.PoolingBlock"]], "unet (class in sleap.nn.architectures.unet)": [[43, "sleap.nn.architectures.unet.UNet"]], "block_contraction (sleap.nn.architectures.unet.unet attribute)": [[43, "sleap.nn.architectures.unet.UNet.block_contraction"]], "convs_per_block (sleap.nn.architectures.unet.unet attribute)": [[43, "sleap.nn.architectures.unet.UNet.convs_per_block"]], "decoder_stack (sleap.nn.architectures.unet.unet property)": [[43, "sleap.nn.architectures.unet.UNet.decoder_stack"]], "down_blocks (sleap.nn.architectures.unet.unet attribute)": [[43, "sleap.nn.architectures.unet.UNet.down_blocks"]], "encoder_stack (sleap.nn.architectures.unet.unet property)": [[43, "sleap.nn.architectures.unet.UNet.encoder_stack"]], "filters (sleap.nn.architectures.unet.unet attribute)": [[43, "sleap.nn.architectures.unet.UNet.filters"]], "filters_rate (sleap.nn.architectures.unet.unet attribute)": [[43, "sleap.nn.architectures.unet.UNet.filters_rate"]], "from_config() (sleap.nn.architectures.unet.unet class method)": [[43, "sleap.nn.architectures.unet.UNet.from_config"]], "kernel_size (sleap.nn.architectures.unet.unet attribute)": [[43, "sleap.nn.architectures.unet.UNet.kernel_size"]], "make_block() (sleap.nn.architectures.unet.poolingblock method)": [[43, "sleap.nn.architectures.unet.PoolingBlock.make_block"]], "middle_block (sleap.nn.architectures.unet.unet attribute)": [[43, "sleap.nn.architectures.unet.UNet.middle_block"]], "pool (sleap.nn.architectures.unet.poolingblock attribute)": [[43, "sleap.nn.architectures.unet.PoolingBlock.pool"]], "pooling_stride (sleap.nn.architectures.unet.poolingblock attribute)": [[43, "sleap.nn.architectures.unet.PoolingBlock.pooling_stride"]], "sleap.nn.architectures.unet": [[43, "module-sleap.nn.architectures.unet"]], "stem_blocks (sleap.nn.architectures.unet.unet attribute)": [[43, "sleap.nn.architectures.unet.UNet.stem_blocks"]], "stem_kernel_size (sleap.nn.architectures.unet.unet attribute)": [[43, "sleap.nn.architectures.unet.UNet.stem_kernel_size"]], "stem_stack (sleap.nn.architectures.unet.unet property)": [[43, "sleap.nn.architectures.unet.UNet.stem_stack"]], "up_blocks (sleap.nn.architectures.unet.unet attribute)": [[43, "sleap.nn.architectures.unet.UNet.up_blocks"]], "up_interpolate (sleap.nn.architectures.unet.unet attribute)": [[43, "sleap.nn.architectures.unet.UNet.up_interpolate"]], "upsamplingstack (class in sleap.nn.architectures.upsampling)": [[44, "sleap.nn.architectures.upsampling.UpsamplingStack"]], "from_config() (sleap.nn.architectures.upsampling.upsamplingstack class method)": [[44, "sleap.nn.architectures.upsampling.UpsamplingStack.from_config"]], "make_skip_connection (sleap.nn.architectures.upsampling.upsamplingstack attribute)": [[44, "sleap.nn.architectures.upsampling.UpsamplingStack.make_skip_connection"]], "make_stack() (sleap.nn.architectures.upsampling.upsamplingstack method)": [[44, "sleap.nn.architectures.upsampling.UpsamplingStack.make_stack"]], "output_stride (sleap.nn.architectures.upsampling.upsamplingstack attribute)": [[44, "sleap.nn.architectures.upsampling.UpsamplingStack.output_stride"]], "refine_convs (sleap.nn.architectures.upsampling.upsamplingstack attribute)": [[44, "sleap.nn.architectures.upsampling.UpsamplingStack.refine_convs"]], "refine_convs_batchnorm (sleap.nn.architectures.upsampling.upsamplingstack attribute)": [[44, "sleap.nn.architectures.upsampling.UpsamplingStack.refine_convs_batchnorm"]], "refine_convs_filters (sleap.nn.architectures.upsampling.upsamplingstack attribute)": [[44, "sleap.nn.architectures.upsampling.UpsamplingStack.refine_convs_filters"]], "refine_convs_filters_rate (sleap.nn.architectures.upsampling.upsamplingstack attribute)": [[44, "sleap.nn.architectures.upsampling.UpsamplingStack.refine_convs_filters_rate"]], "skip_add (sleap.nn.architectures.upsampling.upsamplingstack attribute)": [[44, "sleap.nn.architectures.upsampling.UpsamplingStack.skip_add"]], "sleap.nn.architectures.upsampling": [[44, "module-sleap.nn.architectures.upsampling"]], "transposed_conv (sleap.nn.architectures.upsampling.upsamplingstack attribute)": [[44, "sleap.nn.architectures.upsampling.UpsamplingStack.transposed_conv"]], "transposed_conv_batchnorm (sleap.nn.architectures.upsampling.upsamplingstack attribute)": [[44, "sleap.nn.architectures.upsampling.UpsamplingStack.transposed_conv_batchnorm"]], "transposed_conv_filters (sleap.nn.architectures.upsampling.upsamplingstack attribute)": [[44, "sleap.nn.architectures.upsampling.UpsamplingStack.transposed_conv_filters"]], "transposed_conv_filters_rate (sleap.nn.architectures.upsampling.upsamplingstack attribute)": [[44, "sleap.nn.architectures.upsampling.UpsamplingStack.transposed_conv_filters_rate"]], "transposed_conv_kernel_size (sleap.nn.architectures.upsampling.upsamplingstack attribute)": [[44, "sleap.nn.architectures.upsampling.UpsamplingStack.transposed_conv_kernel_size"]], "upsampling_stride (sleap.nn.architectures.upsampling.upsamplingstack attribute)": [[44, "sleap.nn.architectures.upsampling.UpsamplingStack.upsampling_stride"]], "matplotlibsaver (class in sleap.nn.callbacks)": [[45, "sleap.nn.callbacks.MatplotlibSaver"]], "modelcheckpointonevent (class in sleap.nn.callbacks)": [[45, "sleap.nn.callbacks.ModelCheckpointOnEvent"]], "progressreporterzmq (class in sleap.nn.callbacks)": [[45, "sleap.nn.callbacks.ProgressReporterZMQ"]], "tensorboardmatplotlibwriter (class in sleap.nn.callbacks)": [[45, "sleap.nn.callbacks.TensorBoardMatplotlibWriter"]], "trainingcontrollerzmq (class in sleap.nn.callbacks)": [[45, "sleap.nn.callbacks.TrainingControllerZMQ"]], "event (sleap.nn.callbacks.modelcheckpointonevent attribute)": [[45, "sleap.nn.callbacks.ModelCheckpointOnEvent.event"]], "filepath (sleap.nn.callbacks.modelcheckpointonevent attribute)": [[45, "sleap.nn.callbacks.ModelCheckpointOnEvent.filepath"]], "logdir (sleap.nn.callbacks.tensorboardmatplotlibwriter attribute)": [[45, "sleap.nn.callbacks.TensorBoardMatplotlibWriter.logdir"]], "on_batch_begin() (sleap.nn.callbacks.progressreporterzmq method)": [[45, "sleap.nn.callbacks.ProgressReporterZMQ.on_batch_begin"]], "on_batch_end() (sleap.nn.callbacks.progressreporterzmq method)": [[45, "sleap.nn.callbacks.ProgressReporterZMQ.on_batch_end"]], "on_batch_end() (sleap.nn.callbacks.trainingcontrollerzmq method)": [[45, "sleap.nn.callbacks.TrainingControllerZMQ.on_batch_end"]], "on_epoch_begin() (sleap.nn.callbacks.progressreporterzmq method)": [[45, "sleap.nn.callbacks.ProgressReporterZMQ.on_epoch_begin"]], "on_epoch_end() (sleap.nn.callbacks.matplotlibsaver method)": [[45, "sleap.nn.callbacks.MatplotlibSaver.on_epoch_end"]], "on_epoch_end() (sleap.nn.callbacks.modelcheckpointonevent method)": [[45, "sleap.nn.callbacks.ModelCheckpointOnEvent.on_epoch_end"]], "on_epoch_end() (sleap.nn.callbacks.progressreporterzmq method)": [[45, "sleap.nn.callbacks.ProgressReporterZMQ.on_epoch_end"]], "on_epoch_end() (sleap.nn.callbacks.tensorboardmatplotlibwriter method)": [[45, "sleap.nn.callbacks.TensorBoardMatplotlibWriter.on_epoch_end"]], "on_train_begin() (sleap.nn.callbacks.modelcheckpointonevent method)": [[45, "sleap.nn.callbacks.ModelCheckpointOnEvent.on_train_begin"]], "on_train_begin() (sleap.nn.callbacks.progressreporterzmq method)": [[45, "sleap.nn.callbacks.ProgressReporterZMQ.on_train_begin"]], "on_train_end() (sleap.nn.callbacks.modelcheckpointonevent method)": [[45, "sleap.nn.callbacks.ModelCheckpointOnEvent.on_train_end"]], "on_train_end() (sleap.nn.callbacks.progressreporterzmq method)": [[45, "sleap.nn.callbacks.ProgressReporterZMQ.on_train_end"]], "plot_fn (sleap.nn.callbacks.matplotlibsaver attribute)": [[45, "sleap.nn.callbacks.MatplotlibSaver.plot_fn"]], "plot_fn (sleap.nn.callbacks.tensorboardmatplotlibwriter attribute)": [[45, "sleap.nn.callbacks.TensorBoardMatplotlibWriter.plot_fn"]], "prefix (sleap.nn.callbacks.matplotlibsaver attribute)": [[45, "sleap.nn.callbacks.MatplotlibSaver.prefix"]], "save_folder (sleap.nn.callbacks.matplotlibsaver attribute)": [[45, "sleap.nn.callbacks.MatplotlibSaver.save_folder"]], "set_lr() (sleap.nn.callbacks.trainingcontrollerzmq method)": [[45, "sleap.nn.callbacks.TrainingControllerZMQ.set_lr"]], "sleap.nn.callbacks": [[45, "module-sleap.nn.callbacks"]], "tag (sleap.nn.callbacks.tensorboardmatplotlibwriter attribute)": [[45, "sleap.nn.callbacks.TensorBoardMatplotlibWriter.tag"]], "dataconfig (class in sleap.nn.config.data)": [[46, "sleap.nn.config.data.DataConfig"]], "instancecroppingconfig (class in sleap.nn.config.data)": [[46, "sleap.nn.config.data.InstanceCroppingConfig"]], "labelsconfig (class in sleap.nn.config.data)": [[46, "sleap.nn.config.data.LabelsConfig"]], "preprocessingconfig (class in sleap.nn.config.data)": [[46, "sleap.nn.config.data.PreprocessingConfig"]], "center_on_part (sleap.nn.config.data.instancecroppingconfig attribute)": [[46, "sleap.nn.config.data.InstanceCroppingConfig.center_on_part"]], "crop_size (sleap.nn.config.data.instancecroppingconfig attribute)": [[46, "sleap.nn.config.data.InstanceCroppingConfig.crop_size"]], "crop_size_detection_padding (sleap.nn.config.data.instancecroppingconfig attribute)": [[46, "sleap.nn.config.data.InstanceCroppingConfig.crop_size_detection_padding"]], "ensure_grayscale (sleap.nn.config.data.preprocessingconfig attribute)": [[46, "sleap.nn.config.data.PreprocessingConfig.ensure_grayscale"]], "ensure_rgb (sleap.nn.config.data.preprocessingconfig attribute)": [[46, "sleap.nn.config.data.PreprocessingConfig.ensure_rgb"]], "imagenet_mode (sleap.nn.config.data.preprocessingconfig attribute)": [[46, "sleap.nn.config.data.PreprocessingConfig.imagenet_mode"]], "input_scale (sleap.nn.config.data.preprocessingconfig attribute)": [[46, "sleap.nn.config.data.PreprocessingConfig.input_scale"]], "pad_to_stride (sleap.nn.config.data.preprocessingconfig attribute)": [[46, "sleap.nn.config.data.PreprocessingConfig.pad_to_stride"]], "resize_and_pad_to_target (sleap.nn.config.data.preprocessingconfig attribute)": [[46, "sleap.nn.config.data.PreprocessingConfig.resize_and_pad_to_target"]], "search_path_hints (sleap.nn.config.data.labelsconfig attribute)": [[46, "sleap.nn.config.data.LabelsConfig.search_path_hints"]], "skeletons (sleap.nn.config.data.labelsconfig attribute)": [[46, "sleap.nn.config.data.LabelsConfig.skeletons"]], "sleap.nn.config.data": [[46, "module-sleap.nn.config.data"]], "split_by_inds (sleap.nn.config.data.labelsconfig attribute)": [[46, "sleap.nn.config.data.LabelsConfig.split_by_inds"]], "target_height (sleap.nn.config.data.preprocessingconfig attribute)": [[46, "sleap.nn.config.data.PreprocessingConfig.target_height"]], "target_width (sleap.nn.config.data.preprocessingconfig attribute)": [[46, "sleap.nn.config.data.PreprocessingConfig.target_width"]], "test_inds (sleap.nn.config.data.labelsconfig attribute)": [[46, "sleap.nn.config.data.LabelsConfig.test_inds"]], "test_labels (sleap.nn.config.data.labelsconfig attribute)": [[46, "sleap.nn.config.data.LabelsConfig.test_labels"]], "training_inds (sleap.nn.config.data.labelsconfig attribute)": [[46, "sleap.nn.config.data.LabelsConfig.training_inds"]], "training_labels (sleap.nn.config.data.labelsconfig attribute)": [[46, "sleap.nn.config.data.LabelsConfig.training_labels"]], "validation_fraction (sleap.nn.config.data.labelsconfig attribute)": [[46, "sleap.nn.config.data.LabelsConfig.validation_fraction"]], "validation_inds (sleap.nn.config.data.labelsconfig attribute)": [[46, "sleap.nn.config.data.LabelsConfig.validation_inds"]], "validation_labels (sleap.nn.config.data.labelsconfig attribute)": [[46, "sleap.nn.config.data.LabelsConfig.validation_labels"]], "backboneconfig (class in sleap.nn.config.model)": [[47, "sleap.nn.config.model.BackboneConfig"]], "centeredinstanceconfmapsheadconfig (class in sleap.nn.config.model)": [[47, "sleap.nn.config.model.CenteredInstanceConfmapsHeadConfig"]], "centroidsheadconfig (class in sleap.nn.config.model)": [[47, "sleap.nn.config.model.CentroidsHeadConfig"]], "classmapsheadconfig (class in sleap.nn.config.model)": [[47, "sleap.nn.config.model.ClassMapsHeadConfig"]], "classvectorsheadconfig (class in sleap.nn.config.model)": [[47, "sleap.nn.config.model.ClassVectorsHeadConfig"]], "headsconfig (class in sleap.nn.config.model)": [[47, "sleap.nn.config.model.HeadsConfig"]], "hourglassconfig (class in sleap.nn.config.model)": [[47, "sleap.nn.config.model.HourglassConfig"]], "leapconfig (class in sleap.nn.config.model)": [[47, "sleap.nn.config.model.LEAPConfig"]], "modelconfig (class in sleap.nn.config.model)": [[47, "sleap.nn.config.model.ModelConfig"]], "multiclassbottomupconfig (class in sleap.nn.config.model)": [[47, "sleap.nn.config.model.MultiClassBottomUpConfig"]], "multiclasstopdownconfig (class in sleap.nn.config.model)": [[47, "sleap.nn.config.model.MultiClassTopDownConfig"]], "multiinstanceconfig (class in sleap.nn.config.model)": [[47, "sleap.nn.config.model.MultiInstanceConfig"]], "multiinstanceconfmapsheadconfig (class in sleap.nn.config.model)": [[47, "sleap.nn.config.model.MultiInstanceConfmapsHeadConfig"]], "partaffinityfieldsheadconfig (class in sleap.nn.config.model)": [[47, "sleap.nn.config.model.PartAffinityFieldsHeadConfig"]], "pretrainedencoderconfig (class in sleap.nn.config.model)": [[47, "sleap.nn.config.model.PretrainedEncoderConfig"]], "resnetconfig (class in sleap.nn.config.model)": [[47, "sleap.nn.config.model.ResNetConfig"]], "singleinstanceconfmapsheadconfig (class in sleap.nn.config.model)": [[47, "sleap.nn.config.model.SingleInstanceConfmapsHeadConfig"]], "unetconfig (class in sleap.nn.config.model)": [[47, "sleap.nn.config.model.UNetConfig"]], "upsamplingconfig (class in sleap.nn.config.model)": [[47, "sleap.nn.config.model.UpsamplingConfig"]], "anchor_part (sleap.nn.config.model.centeredinstanceconfmapsheadconfig attribute)": [[47, "sleap.nn.config.model.CenteredInstanceConfmapsHeadConfig.anchor_part"]], "anchor_part (sleap.nn.config.model.centroidsheadconfig attribute)": [[47, "sleap.nn.config.model.CentroidsHeadConfig.anchor_part"]], "backbone (sleap.nn.config.model.modelconfig attribute)": [[47, "sleap.nn.config.model.ModelConfig.backbone"]], "base_checkpoint (sleap.nn.config.model.modelconfig attribute)": [[47, "sleap.nn.config.model.ModelConfig.base_checkpoint"]], "block_stride (sleap.nn.config.model.upsamplingconfig attribute)": [[47, "sleap.nn.config.model.UpsamplingConfig.block_stride"]], "centered_instance (sleap.nn.config.model.headsconfig attribute)": [[47, "sleap.nn.config.model.HeadsConfig.centered_instance"]], "centroid (sleap.nn.config.model.headsconfig attribute)": [[47, "sleap.nn.config.model.HeadsConfig.centroid"]], "class_maps (sleap.nn.config.model.multiclassbottomupconfig attribute)": [[47, "sleap.nn.config.model.MultiClassBottomUpConfig.class_maps"]], "class_vectors (sleap.nn.config.model.multiclasstopdownconfig attribute)": [[47, "sleap.nn.config.model.MultiClassTopDownConfig.class_vectors"]], "classes (sleap.nn.config.model.classmapsheadconfig attribute)": [[47, "sleap.nn.config.model.ClassMapsHeadConfig.classes"]], "classes (sleap.nn.config.model.classvectorsheadconfig attribute)": [[47, "sleap.nn.config.model.ClassVectorsHeadConfig.classes"]], "confmaps (sleap.nn.config.model.multiclassbottomupconfig attribute)": [[47, "sleap.nn.config.model.MultiClassBottomUpConfig.confmaps"]], "confmaps (sleap.nn.config.model.multiclasstopdownconfig attribute)": [[47, "sleap.nn.config.model.MultiClassTopDownConfig.confmaps"]], "confmaps (sleap.nn.config.model.multiinstanceconfig attribute)": [[47, "sleap.nn.config.model.MultiInstanceConfig.confmaps"]], "conv_batchnorm (sleap.nn.config.model.upsamplingconfig attribute)": [[47, "sleap.nn.config.model.UpsamplingConfig.conv_batchnorm"]], "decoder_batchnorm (sleap.nn.config.model.pretrainedencoderconfig attribute)": [[47, "sleap.nn.config.model.PretrainedEncoderConfig.decoder_batchnorm"]], "decoder_filters (sleap.nn.config.model.pretrainedencoderconfig attribute)": [[47, "sleap.nn.config.model.PretrainedEncoderConfig.decoder_filters"]], "decoder_filters_rate (sleap.nn.config.model.pretrainedencoderconfig attribute)": [[47, "sleap.nn.config.model.PretrainedEncoderConfig.decoder_filters_rate"]], "edges (sleap.nn.config.model.partaffinityfieldsheadconfig attribute)": [[47, "sleap.nn.config.model.PartAffinityFieldsHeadConfig.edges"]], "encoder (sleap.nn.config.model.pretrainedencoderconfig attribute)": [[47, "sleap.nn.config.model.PretrainedEncoderConfig.encoder"]], "filters (sleap.nn.config.model.hourglassconfig attribute)": [[47, "sleap.nn.config.model.HourglassConfig.filters"]], "filters (sleap.nn.config.model.leapconfig attribute)": [[47, "sleap.nn.config.model.LEAPConfig.filters"]], "filters (sleap.nn.config.model.unetconfig attribute)": [[47, "sleap.nn.config.model.UNetConfig.filters"]], "filters (sleap.nn.config.model.upsamplingconfig attribute)": [[47, "sleap.nn.config.model.UpsamplingConfig.filters"]], "filters_increase (sleap.nn.config.model.hourglassconfig attribute)": [[47, "sleap.nn.config.model.HourglassConfig.filters_increase"]], "filters_rate (sleap.nn.config.model.leapconfig attribute)": [[47, "sleap.nn.config.model.LEAPConfig.filters_rate"]], "filters_rate (sleap.nn.config.model.unetconfig attribute)": [[47, "sleap.nn.config.model.UNetConfig.filters_rate"]], "filters_rate (sleap.nn.config.model.upsamplingconfig attribute)": [[47, "sleap.nn.config.model.UpsamplingConfig.filters_rate"]], "heads (sleap.nn.config.model.modelconfig attribute)": [[47, "sleap.nn.config.model.ModelConfig.heads"]], "hourglass (sleap.nn.config.model.backboneconfig attribute)": [[47, "sleap.nn.config.model.BackboneConfig.hourglass"]], "leap (sleap.nn.config.model.backboneconfig attribute)": [[47, "sleap.nn.config.model.BackboneConfig.leap"]], "loss_weight (sleap.nn.config.model.centeredinstanceconfmapsheadconfig attribute)": [[47, "sleap.nn.config.model.CenteredInstanceConfmapsHeadConfig.loss_weight"]], "loss_weight (sleap.nn.config.model.centroidsheadconfig attribute)": [[47, "sleap.nn.config.model.CentroidsHeadConfig.loss_weight"]], "loss_weight (sleap.nn.config.model.classmapsheadconfig attribute)": [[47, "sleap.nn.config.model.ClassMapsHeadConfig.loss_weight"]], "loss_weight (sleap.nn.config.model.classvectorsheadconfig attribute)": [[47, "sleap.nn.config.model.ClassVectorsHeadConfig.loss_weight"]], "loss_weight (sleap.nn.config.model.multiinstanceconfmapsheadconfig attribute)": [[47, "sleap.nn.config.model.MultiInstanceConfmapsHeadConfig.loss_weight"]], "loss_weight (sleap.nn.config.model.partaffinityfieldsheadconfig attribute)": [[47, "sleap.nn.config.model.PartAffinityFieldsHeadConfig.loss_weight"]], "loss_weight (sleap.nn.config.model.singleinstanceconfmapsheadconfig attribute)": [[47, "sleap.nn.config.model.SingleInstanceConfmapsHeadConfig.loss_weight"]], "max_stride (sleap.nn.config.model.hourglassconfig attribute)": [[47, "sleap.nn.config.model.HourglassConfig.max_stride"]], "max_stride (sleap.nn.config.model.leapconfig attribute)": [[47, "sleap.nn.config.model.LEAPConfig.max_stride"]], "max_stride (sleap.nn.config.model.resnetconfig attribute)": [[47, "sleap.nn.config.model.ResNetConfig.max_stride"]], "max_stride (sleap.nn.config.model.unetconfig attribute)": [[47, "sleap.nn.config.model.UNetConfig.max_stride"]], "method (sleap.nn.config.model.upsamplingconfig attribute)": [[47, "sleap.nn.config.model.UpsamplingConfig.method"]], "middle_block (sleap.nn.config.model.unetconfig attribute)": [[47, "sleap.nn.config.model.UNetConfig.middle_block"]], "multi_class_bottomup (sleap.nn.config.model.headsconfig attribute)": [[47, "sleap.nn.config.model.HeadsConfig.multi_class_bottomup"]], "multi_class_topdown (sleap.nn.config.model.headsconfig attribute)": [[47, "sleap.nn.config.model.HeadsConfig.multi_class_topdown"]], "multi_instance (sleap.nn.config.model.headsconfig attribute)": [[47, "sleap.nn.config.model.HeadsConfig.multi_instance"]], "num_fc_layers (sleap.nn.config.model.classvectorsheadconfig attribute)": [[47, "sleap.nn.config.model.ClassVectorsHeadConfig.num_fc_layers"]], "num_fc_units (sleap.nn.config.model.classvectorsheadconfig attribute)": [[47, "sleap.nn.config.model.ClassVectorsHeadConfig.num_fc_units"]], "offset_refinement (sleap.nn.config.model.centeredinstanceconfmapsheadconfig attribute)": [[47, "sleap.nn.config.model.CenteredInstanceConfmapsHeadConfig.offset_refinement"]], "offset_refinement (sleap.nn.config.model.centroidsheadconfig attribute)": [[47, "sleap.nn.config.model.CentroidsHeadConfig.offset_refinement"]], "offset_refinement (sleap.nn.config.model.multiinstanceconfmapsheadconfig attribute)": [[47, "sleap.nn.config.model.MultiInstanceConfmapsHeadConfig.offset_refinement"]], "offset_refinement (sleap.nn.config.model.singleinstanceconfmapsheadconfig attribute)": [[47, "sleap.nn.config.model.SingleInstanceConfmapsHeadConfig.offset_refinement"]], "output_stride (sleap.nn.config.model.centeredinstanceconfmapsheadconfig attribute)": [[47, "sleap.nn.config.model.CenteredInstanceConfmapsHeadConfig.output_stride"]], "output_stride (sleap.nn.config.model.centroidsheadconfig attribute)": [[47, "sleap.nn.config.model.CentroidsHeadConfig.output_stride"]], "output_stride (sleap.nn.config.model.classmapsheadconfig attribute)": [[47, "sleap.nn.config.model.ClassMapsHeadConfig.output_stride"]], "output_stride (sleap.nn.config.model.classvectorsheadconfig attribute)": [[47, "sleap.nn.config.model.ClassVectorsHeadConfig.output_stride"]], "output_stride (sleap.nn.config.model.hourglassconfig attribute)": [[47, "sleap.nn.config.model.HourglassConfig.output_stride"]], "output_stride (sleap.nn.config.model.leapconfig attribute)": [[47, "sleap.nn.config.model.LEAPConfig.output_stride"]], "output_stride (sleap.nn.config.model.multiinstanceconfmapsheadconfig attribute)": [[47, "sleap.nn.config.model.MultiInstanceConfmapsHeadConfig.output_stride"]], "output_stride (sleap.nn.config.model.partaffinityfieldsheadconfig attribute)": [[47, "sleap.nn.config.model.PartAffinityFieldsHeadConfig.output_stride"]], "output_stride (sleap.nn.config.model.pretrainedencoderconfig attribute)": [[47, "sleap.nn.config.model.PretrainedEncoderConfig.output_stride"]], "output_stride (sleap.nn.config.model.resnetconfig attribute)": [[47, "sleap.nn.config.model.ResNetConfig.output_stride"]], "output_stride (sleap.nn.config.model.singleinstanceconfmapsheadconfig attribute)": [[47, "sleap.nn.config.model.SingleInstanceConfmapsHeadConfig.output_stride"]], "output_stride (sleap.nn.config.model.unetconfig attribute)": [[47, "sleap.nn.config.model.UNetConfig.output_stride"]], "pafs (sleap.nn.config.model.multiinstanceconfig attribute)": [[47, "sleap.nn.config.model.MultiInstanceConfig.pafs"]], "part_names (sleap.nn.config.model.centeredinstanceconfmapsheadconfig attribute)": [[47, "sleap.nn.config.model.CenteredInstanceConfmapsHeadConfig.part_names"]], "part_names (sleap.nn.config.model.multiinstanceconfmapsheadconfig attribute)": [[47, "sleap.nn.config.model.MultiInstanceConfmapsHeadConfig.part_names"]], "part_names (sleap.nn.config.model.singleinstanceconfmapsheadconfig attribute)": [[47, "sleap.nn.config.model.SingleInstanceConfmapsHeadConfig.part_names"]], "pretrained (sleap.nn.config.model.pretrainedencoderconfig attribute)": [[47, "sleap.nn.config.model.PretrainedEncoderConfig.pretrained"]], "refine_convs (sleap.nn.config.model.upsamplingconfig attribute)": [[47, "sleap.nn.config.model.UpsamplingConfig.refine_convs"]], "resnet (sleap.nn.config.model.backboneconfig attribute)": [[47, "sleap.nn.config.model.BackboneConfig.resnet"]], "sigma (sleap.nn.config.model.centeredinstanceconfmapsheadconfig attribute)": [[47, "sleap.nn.config.model.CenteredInstanceConfmapsHeadConfig.sigma"]], "sigma (sleap.nn.config.model.centroidsheadconfig attribute)": [[47, "sleap.nn.config.model.CentroidsHeadConfig.sigma"]], "sigma (sleap.nn.config.model.classmapsheadconfig attribute)": [[47, "sleap.nn.config.model.ClassMapsHeadConfig.sigma"]], "sigma (sleap.nn.config.model.multiinstanceconfmapsheadconfig attribute)": [[47, "sleap.nn.config.model.MultiInstanceConfmapsHeadConfig.sigma"]], "sigma (sleap.nn.config.model.partaffinityfieldsheadconfig attribute)": [[47, "sleap.nn.config.model.PartAffinityFieldsHeadConfig.sigma"]], "sigma (sleap.nn.config.model.singleinstanceconfmapsheadconfig attribute)": [[47, "sleap.nn.config.model.SingleInstanceConfmapsHeadConfig.sigma"]], "single_instance (sleap.nn.config.model.headsconfig attribute)": [[47, "sleap.nn.config.model.HeadsConfig.single_instance"]], "skip_connections (sleap.nn.config.model.upsamplingconfig attribute)": [[47, "sleap.nn.config.model.UpsamplingConfig.skip_connections"]], "sleap.nn.config.model": [[47, "module-sleap.nn.config.model"]], "stacks (sleap.nn.config.model.hourglassconfig attribute)": [[47, "sleap.nn.config.model.HourglassConfig.stacks"]], "stacks (sleap.nn.config.model.leapconfig attribute)": [[47, "sleap.nn.config.model.LEAPConfig.stacks"]], "stacks (sleap.nn.config.model.unetconfig attribute)": [[47, "sleap.nn.config.model.UNetConfig.stacks"]], "stem_stride (sleap.nn.config.model.hourglassconfig attribute)": [[47, "sleap.nn.config.model.HourglassConfig.stem_stride"]], "stem_stride (sleap.nn.config.model.unetconfig attribute)": [[47, "sleap.nn.config.model.UNetConfig.stem_stride"]], "transposed_conv_kernel_size (sleap.nn.config.model.upsamplingconfig attribute)": [[47, "sleap.nn.config.model.UpsamplingConfig.transposed_conv_kernel_size"]], "unet (sleap.nn.config.model.backboneconfig attribute)": [[47, "sleap.nn.config.model.BackboneConfig.unet"]], "up_interpolate (sleap.nn.config.model.leapconfig attribute)": [[47, "sleap.nn.config.model.LEAPConfig.up_interpolate"]], "up_interpolate (sleap.nn.config.model.unetconfig attribute)": [[47, "sleap.nn.config.model.UNetConfig.up_interpolate"]], "upsampling (sleap.nn.config.model.resnetconfig attribute)": [[47, "sleap.nn.config.model.ResNetConfig.upsampling"]], "version (sleap.nn.config.model.resnetconfig attribute)": [[47, "sleap.nn.config.model.ResNetConfig.version"]], "weights (sleap.nn.config.model.resnetconfig attribute)": [[47, "sleap.nn.config.model.ResNetConfig.weights"]], "augmentationconfig (class in sleap.nn.config.optimization)": [[48, "sleap.nn.config.optimization.AugmentationConfig"]], "earlystoppingconfig (class in sleap.nn.config.optimization)": [[48, "sleap.nn.config.optimization.EarlyStoppingConfig"]], "hardkeypointminingconfig (class in sleap.nn.config.optimization)": [[48, "sleap.nn.config.optimization.HardKeypointMiningConfig"]], "learningratescheduleconfig (class in sleap.nn.config.optimization)": [[48, "sleap.nn.config.optimization.LearningRateScheduleConfig"]], "optimizationconfig (class in sleap.nn.config.optimization)": [[48, "sleap.nn.config.optimization.OptimizationConfig"]], "augmentation_config (sleap.nn.config.optimization.optimizationconfig attribute)": [[48, "sleap.nn.config.optimization.OptimizationConfig.augmentation_config"]], "batch_size (sleap.nn.config.optimization.optimizationconfig attribute)": [[48, "sleap.nn.config.optimization.OptimizationConfig.batch_size"]], "batches_per_epoch (sleap.nn.config.optimization.optimizationconfig attribute)": [[48, "sleap.nn.config.optimization.OptimizationConfig.batches_per_epoch"]], "brightness (sleap.nn.config.optimization.augmentationconfig attribute)": [[48, "sleap.nn.config.optimization.AugmentationConfig.brightness"]], "brightness_max_val (sleap.nn.config.optimization.augmentationconfig attribute)": [[48, "sleap.nn.config.optimization.AugmentationConfig.brightness_max_val"]], "brightness_min_val (sleap.nn.config.optimization.augmentationconfig attribute)": [[48, "sleap.nn.config.optimization.AugmentationConfig.brightness_min_val"]], "contrast (sleap.nn.config.optimization.augmentationconfig attribute)": [[48, "sleap.nn.config.optimization.AugmentationConfig.contrast"]], "contrast_max_gamma (sleap.nn.config.optimization.augmentationconfig attribute)": [[48, "sleap.nn.config.optimization.AugmentationConfig.contrast_max_gamma"]], "contrast_min_gamma (sleap.nn.config.optimization.augmentationconfig attribute)": [[48, "sleap.nn.config.optimization.AugmentationConfig.contrast_min_gamma"]], "early_stopping (sleap.nn.config.optimization.optimizationconfig attribute)": [[48, "sleap.nn.config.optimization.OptimizationConfig.early_stopping"]], "epochs (sleap.nn.config.optimization.optimizationconfig attribute)": [[48, "sleap.nn.config.optimization.OptimizationConfig.epochs"]], "flip_horizontal (sleap.nn.config.optimization.augmentationconfig attribute)": [[48, "sleap.nn.config.optimization.AugmentationConfig.flip_horizontal"]], "gaussian_noise (sleap.nn.config.optimization.augmentationconfig attribute)": [[48, "sleap.nn.config.optimization.AugmentationConfig.gaussian_noise"]], "gaussian_noise_mean (sleap.nn.config.optimization.augmentationconfig attribute)": [[48, "sleap.nn.config.optimization.AugmentationConfig.gaussian_noise_mean"]], "gaussian_noise_stddev (sleap.nn.config.optimization.augmentationconfig attribute)": [[48, "sleap.nn.config.optimization.AugmentationConfig.gaussian_noise_stddev"]], "hard_keypoint_mining (sleap.nn.config.optimization.optimizationconfig attribute)": [[48, "sleap.nn.config.optimization.OptimizationConfig.hard_keypoint_mining"]], "hard_to_easy_ratio (sleap.nn.config.optimization.hardkeypointminingconfig attribute)": [[48, "sleap.nn.config.optimization.HardKeypointMiningConfig.hard_to_easy_ratio"]], "initial_learning_rate (sleap.nn.config.optimization.optimizationconfig attribute)": [[48, "sleap.nn.config.optimization.OptimizationConfig.initial_learning_rate"]], "learning_rate_schedule (sleap.nn.config.optimization.optimizationconfig attribute)": [[48, "sleap.nn.config.optimization.OptimizationConfig.learning_rate_schedule"]], "loss_scale (sleap.nn.config.optimization.hardkeypointminingconfig attribute)": [[48, "sleap.nn.config.optimization.HardKeypointMiningConfig.loss_scale"]], "max_hard_keypoints (sleap.nn.config.optimization.hardkeypointminingconfig attribute)": [[48, "sleap.nn.config.optimization.HardKeypointMiningConfig.max_hard_keypoints"]], "min_batches_per_epoch (sleap.nn.config.optimization.optimizationconfig attribute)": [[48, "sleap.nn.config.optimization.OptimizationConfig.min_batches_per_epoch"]], "min_hard_keypoints (sleap.nn.config.optimization.hardkeypointminingconfig attribute)": [[48, "sleap.nn.config.optimization.HardKeypointMiningConfig.min_hard_keypoints"]], "min_learning_rate (sleap.nn.config.optimization.learningratescheduleconfig attribute)": [[48, "sleap.nn.config.optimization.LearningRateScheduleConfig.min_learning_rate"]], "min_val_batches_per_epoch (sleap.nn.config.optimization.optimizationconfig attribute)": [[48, "sleap.nn.config.optimization.OptimizationConfig.min_val_batches_per_epoch"]], "online_mining (sleap.nn.config.optimization.hardkeypointminingconfig attribute)": [[48, "sleap.nn.config.optimization.HardKeypointMiningConfig.online_mining"]], "online_shuffling (sleap.nn.config.optimization.optimizationconfig attribute)": [[48, "sleap.nn.config.optimization.OptimizationConfig.online_shuffling"]], "optimizer (sleap.nn.config.optimization.optimizationconfig attribute)": [[48, "sleap.nn.config.optimization.OptimizationConfig.optimizer"]], "plateau_cooldown (sleap.nn.config.optimization.learningratescheduleconfig attribute)": [[48, "sleap.nn.config.optimization.LearningRateScheduleConfig.plateau_cooldown"]], "plateau_min_delta (sleap.nn.config.optimization.earlystoppingconfig attribute)": [[48, "sleap.nn.config.optimization.EarlyStoppingConfig.plateau_min_delta"]], "plateau_min_delta (sleap.nn.config.optimization.learningratescheduleconfig attribute)": [[48, "sleap.nn.config.optimization.LearningRateScheduleConfig.plateau_min_delta"]], "plateau_patience (sleap.nn.config.optimization.earlystoppingconfig attribute)": [[48, "sleap.nn.config.optimization.EarlyStoppingConfig.plateau_patience"]], "plateau_patience (sleap.nn.config.optimization.learningratescheduleconfig attribute)": [[48, "sleap.nn.config.optimization.LearningRateScheduleConfig.plateau_patience"]], "prefetch (sleap.nn.config.optimization.optimizationconfig attribute)": [[48, "sleap.nn.config.optimization.OptimizationConfig.prefetch"]], "preload_data (sleap.nn.config.optimization.optimizationconfig attribute)": [[48, "sleap.nn.config.optimization.OptimizationConfig.preload_data"]], "random_crop (sleap.nn.config.optimization.augmentationconfig attribute)": [[48, "sleap.nn.config.optimization.AugmentationConfig.random_crop"]], "random_crop_height (sleap.nn.config.optimization.augmentationconfig attribute)": [[48, "sleap.nn.config.optimization.AugmentationConfig.random_crop_height"]], "random_crop_width (sleap.nn.config.optimization.augmentationconfig attribute)": [[48, "sleap.nn.config.optimization.AugmentationConfig.random_crop_width"]], "random_flip (sleap.nn.config.optimization.augmentationconfig attribute)": [[48, "sleap.nn.config.optimization.AugmentationConfig.random_flip"]], "reduce_on_plateau (sleap.nn.config.optimization.learningratescheduleconfig attribute)": [[48, "sleap.nn.config.optimization.LearningRateScheduleConfig.reduce_on_plateau"]], "reduction_factor (sleap.nn.config.optimization.learningratescheduleconfig attribute)": [[48, "sleap.nn.config.optimization.LearningRateScheduleConfig.reduction_factor"]], "rotate (sleap.nn.config.optimization.augmentationconfig attribute)": [[48, "sleap.nn.config.optimization.AugmentationConfig.rotate"]], "rotation_max_angle (sleap.nn.config.optimization.augmentationconfig attribute)": [[48, "sleap.nn.config.optimization.AugmentationConfig.rotation_max_angle"]], "rotation_min_angle (sleap.nn.config.optimization.augmentationconfig attribute)": [[48, "sleap.nn.config.optimization.AugmentationConfig.rotation_min_angle"]], "scale (sleap.nn.config.optimization.augmentationconfig attribute)": [[48, "sleap.nn.config.optimization.AugmentationConfig.scale"]], "scale_max (sleap.nn.config.optimization.augmentationconfig attribute)": [[48, "sleap.nn.config.optimization.AugmentationConfig.scale_max"]], "scale_min (sleap.nn.config.optimization.augmentationconfig attribute)": [[48, "sleap.nn.config.optimization.AugmentationConfig.scale_min"]], "shuffle_buffer_size (sleap.nn.config.optimization.optimizationconfig attribute)": [[48, "sleap.nn.config.optimization.OptimizationConfig.shuffle_buffer_size"]], "sleap.nn.config.optimization": [[48, "module-sleap.nn.config.optimization"]], "stop_training_on_plateau (sleap.nn.config.optimization.earlystoppingconfig attribute)": [[48, "sleap.nn.config.optimization.EarlyStoppingConfig.stop_training_on_plateau"]], "translate (sleap.nn.config.optimization.augmentationconfig attribute)": [[48, "sleap.nn.config.optimization.AugmentationConfig.translate"]], "translate_max (sleap.nn.config.optimization.augmentationconfig attribute)": [[48, "sleap.nn.config.optimization.AugmentationConfig.translate_max"]], "translate_min (sleap.nn.config.optimization.augmentationconfig attribute)": [[48, "sleap.nn.config.optimization.AugmentationConfig.translate_min"]], "uniform_noise (sleap.nn.config.optimization.augmentationconfig attribute)": [[48, "sleap.nn.config.optimization.AugmentationConfig.uniform_noise"]], "uniform_noise_max_val (sleap.nn.config.optimization.augmentationconfig attribute)": [[48, "sleap.nn.config.optimization.AugmentationConfig.uniform_noise_max_val"]], "uniform_noise_min_val (sleap.nn.config.optimization.augmentationconfig attribute)": [[48, "sleap.nn.config.optimization.AugmentationConfig.uniform_noise_min_val"]], "val_batches_per_epoch (sleap.nn.config.optimization.optimizationconfig attribute)": [[48, "sleap.nn.config.optimization.OptimizationConfig.val_batches_per_epoch"]], "checkpointingconfig (class in sleap.nn.config.outputs)": [[49, "sleap.nn.config.outputs.CheckpointingConfig"]], "outputsconfig (class in sleap.nn.config.outputs)": [[49, "sleap.nn.config.outputs.OutputsConfig"]], "tensorboardconfig (class in sleap.nn.config.outputs)": [[49, "sleap.nn.config.outputs.TensorBoardConfig"]], "zmqconfig (class in sleap.nn.config.outputs)": [[49, "sleap.nn.config.outputs.ZMQConfig"]], "architecture_graph (sleap.nn.config.outputs.tensorboardconfig attribute)": [[49, "sleap.nn.config.outputs.TensorBoardConfig.architecture_graph"]], "best_model (sleap.nn.config.outputs.checkpointingconfig attribute)": [[49, "sleap.nn.config.outputs.CheckpointingConfig.best_model"]], "checkpointing (sleap.nn.config.outputs.outputsconfig attribute)": [[49, "sleap.nn.config.outputs.OutputsConfig.checkpointing"]], "controller_address (sleap.nn.config.outputs.zmqconfig attribute)": [[49, "sleap.nn.config.outputs.ZMQConfig.controller_address"]], "controller_polling_timeout (sleap.nn.config.outputs.zmqconfig attribute)": [[49, "sleap.nn.config.outputs.ZMQConfig.controller_polling_timeout"]], "every_epoch (sleap.nn.config.outputs.checkpointingconfig attribute)": [[49, "sleap.nn.config.outputs.CheckpointingConfig.every_epoch"]], "final_model (sleap.nn.config.outputs.checkpointingconfig attribute)": [[49, "sleap.nn.config.outputs.CheckpointingConfig.final_model"]], "initial_model (sleap.nn.config.outputs.checkpointingconfig attribute)": [[49, "sleap.nn.config.outputs.CheckpointingConfig.initial_model"]], "keep_viz_images (sleap.nn.config.outputs.outputsconfig attribute)": [[49, "sleap.nn.config.outputs.OutputsConfig.keep_viz_images"]], "latest_model (sleap.nn.config.outputs.checkpointingconfig attribute)": [[49, "sleap.nn.config.outputs.CheckpointingConfig.latest_model"]], "log_to_csv (sleap.nn.config.outputs.outputsconfig attribute)": [[49, "sleap.nn.config.outputs.OutputsConfig.log_to_csv"]], "loss_frequency (sleap.nn.config.outputs.tensorboardconfig attribute)": [[49, "sleap.nn.config.outputs.TensorBoardConfig.loss_frequency"]], "profile_graph (sleap.nn.config.outputs.tensorboardconfig attribute)": [[49, "sleap.nn.config.outputs.TensorBoardConfig.profile_graph"]], "publish_address (sleap.nn.config.outputs.zmqconfig attribute)": [[49, "sleap.nn.config.outputs.ZMQConfig.publish_address"]], "publish_updates (sleap.nn.config.outputs.zmqconfig attribute)": [[49, "sleap.nn.config.outputs.ZMQConfig.publish_updates"]], "run_name (sleap.nn.config.outputs.outputsconfig attribute)": [[49, "sleap.nn.config.outputs.OutputsConfig.run_name"]], "run_name_prefix (sleap.nn.config.outputs.outputsconfig attribute)": [[49, "sleap.nn.config.outputs.OutputsConfig.run_name_prefix"]], "run_name_suffix (sleap.nn.config.outputs.outputsconfig attribute)": [[49, "sleap.nn.config.outputs.OutputsConfig.run_name_suffix"]], "run_path (sleap.nn.config.outputs.outputsconfig property)": [[49, "sleap.nn.config.outputs.OutputsConfig.run_path"]], "runs_folder (sleap.nn.config.outputs.outputsconfig attribute)": [[49, "sleap.nn.config.outputs.OutputsConfig.runs_folder"]], "save_outputs (sleap.nn.config.outputs.outputsconfig attribute)": [[49, "sleap.nn.config.outputs.OutputsConfig.save_outputs"]], "save_visualizations (sleap.nn.config.outputs.outputsconfig attribute)": [[49, "sleap.nn.config.outputs.OutputsConfig.save_visualizations"]], "sleap.nn.config.outputs": [[49, "module-sleap.nn.config.outputs"]], "subscribe_to_controller (sleap.nn.config.outputs.zmqconfig attribute)": [[49, "sleap.nn.config.outputs.ZMQConfig.subscribe_to_controller"]], "tags (sleap.nn.config.outputs.outputsconfig attribute)": [[49, "sleap.nn.config.outputs.OutputsConfig.tags"]], "tensorboard (sleap.nn.config.outputs.outputsconfig attribute)": [[49, "sleap.nn.config.outputs.OutputsConfig.tensorboard"]], "visualizations (sleap.nn.config.outputs.tensorboardconfig attribute)": [[49, "sleap.nn.config.outputs.TensorBoardConfig.visualizations"]], "write_logs (sleap.nn.config.outputs.tensorboardconfig attribute)": [[49, "sleap.nn.config.outputs.TensorBoardConfig.write_logs"]], "zip_outputs (sleap.nn.config.outputs.outputsconfig attribute)": [[49, "sleap.nn.config.outputs.OutputsConfig.zip_outputs"]], "zmq (sleap.nn.config.outputs.outputsconfig attribute)": [[49, "sleap.nn.config.outputs.OutputsConfig.zmq"]], "trainingjobconfig (class in sleap.nn.config.training_job)": [[50, "sleap.nn.config.training_job.TrainingJobConfig"]], "data (sleap.nn.config.training_job.trainingjobconfig attribute)": [[50, "sleap.nn.config.training_job.TrainingJobConfig.data"]], "description (sleap.nn.config.training_job.trainingjobconfig attribute)": [[50, "sleap.nn.config.training_job.TrainingJobConfig.description"]], "filename (sleap.nn.config.training_job.trainingjobconfig attribute)": [[50, "sleap.nn.config.training_job.TrainingJobConfig.filename"]], "from_json() (sleap.nn.config.training_job.trainingjobconfig class method)": [[50, "sleap.nn.config.training_job.TrainingJobConfig.from_json"]], "from_json_dicts() (sleap.nn.config.training_job.trainingjobconfig class method)": [[50, "sleap.nn.config.training_job.TrainingJobConfig.from_json_dicts"]], "load_config() (in module sleap.nn.config.training_job)": [[50, "sleap.nn.config.training_job.load_config"]], "load_json() (sleap.nn.config.training_job.trainingjobconfig class method)": [[50, "sleap.nn.config.training_job.TrainingJobConfig.load_json"]], "model (sleap.nn.config.training_job.trainingjobconfig attribute)": [[50, "sleap.nn.config.training_job.TrainingJobConfig.model"]], "name (sleap.nn.config.training_job.trainingjobconfig attribute)": [[50, "sleap.nn.config.training_job.TrainingJobConfig.name"]], "optimization (sleap.nn.config.training_job.trainingjobconfig attribute)": [[50, "sleap.nn.config.training_job.TrainingJobConfig.optimization"]], "outputs (sleap.nn.config.training_job.trainingjobconfig attribute)": [[50, "sleap.nn.config.training_job.TrainingJobConfig.outputs"]], "save_json() (sleap.nn.config.training_job.trainingjobconfig method)": [[50, "sleap.nn.config.training_job.TrainingJobConfig.save_json"]], "sleap.nn.config.training_job": [[50, "module-sleap.nn.config.training_job"]], "sleap_version (sleap.nn.config.training_job.trainingjobconfig attribute)": [[50, "sleap.nn.config.training_job.TrainingJobConfig.sleap_version"]], "to_json() (sleap.nn.config.training_job.trainingjobconfig method)": [[50, "sleap.nn.config.training_job.TrainingJobConfig.to_json"]], "oneof() (in module sleap.nn.config.utils)": [[51, "sleap.nn.config.utils.oneof"]], "sleap.nn.config.utils": [[51, "module-sleap.nn.config.utils"]], "albumentationsaugmenter (class in sleap.nn.data.augmentation)": [[52, "sleap.nn.data.augmentation.AlbumentationsAugmenter"]], "randomcropper (class in sleap.nn.data.augmentation)": [[52, "sleap.nn.data.augmentation.RandomCropper"]], "randomflipper (class in sleap.nn.data.augmentation)": [[52, "sleap.nn.data.augmentation.RandomFlipper"]], "augmenter (sleap.nn.data.augmentation.albumentationsaugmenter attribute)": [[52, "sleap.nn.data.augmentation.AlbumentationsAugmenter.augmenter"]], "crop_height (sleap.nn.data.augmentation.randomcropper attribute)": [[52, "sleap.nn.data.augmentation.RandomCropper.crop_height"]], "crop_width (sleap.nn.data.augmentation.randomcropper attribute)": [[52, "sleap.nn.data.augmentation.RandomCropper.crop_width"]], "flip_instances_lr() (in module sleap.nn.data.augmentation)": [[52, "sleap.nn.data.augmentation.flip_instances_lr"]], "flip_instances_ud() (in module sleap.nn.data.augmentation)": [[52, "sleap.nn.data.augmentation.flip_instances_ud"]], "from_config() (sleap.nn.data.augmentation.albumentationsaugmenter class method)": [[52, "sleap.nn.data.augmentation.AlbumentationsAugmenter.from_config"]], "from_skeleton() (sleap.nn.data.augmentation.randomflipper class method)": [[52, "sleap.nn.data.augmentation.RandomFlipper.from_skeleton"]], "horizontal (sleap.nn.data.augmentation.randomflipper attribute)": [[52, "sleap.nn.data.augmentation.RandomFlipper.horizontal"]], "image_key (sleap.nn.data.augmentation.albumentationsaugmenter attribute)": [[52, "sleap.nn.data.augmentation.AlbumentationsAugmenter.image_key"]], "input_keys (sleap.nn.data.augmentation.albumentationsaugmenter property)": [[52, "sleap.nn.data.augmentation.AlbumentationsAugmenter.input_keys"]], "instances_key (sleap.nn.data.augmentation.albumentationsaugmenter attribute)": [[52, "sleap.nn.data.augmentation.AlbumentationsAugmenter.instances_key"]], "output_keys (sleap.nn.data.augmentation.albumentationsaugmenter property)": [[52, "sleap.nn.data.augmentation.AlbumentationsAugmenter.output_keys"]], "probability (sleap.nn.data.augmentation.randomflipper attribute)": [[52, "sleap.nn.data.augmentation.RandomFlipper.probability"]], "sleap.nn.data.augmentation": [[52, "module-sleap.nn.data.augmentation"]], "symmetric_inds (sleap.nn.data.augmentation.randomflipper attribute)": [[52, "sleap.nn.data.augmentation.RandomFlipper.symmetric_inds"]], "transform_dataset() (sleap.nn.data.augmentation.albumentationsaugmenter method)": [[52, "sleap.nn.data.augmentation.AlbumentationsAugmenter.transform_dataset"]], "transform_dataset() (sleap.nn.data.augmentation.randomcropper method)": [[52, "sleap.nn.data.augmentation.RandomCropper.transform_dataset"]], "transform_dataset() (sleap.nn.data.augmentation.randomflipper method)": [[52, "sleap.nn.data.augmentation.RandomFlipper.transform_dataset"]], "instanceconfidencemapgenerator (class in sleap.nn.data.confidence_maps)": [[53, "sleap.nn.data.confidence_maps.InstanceConfidenceMapGenerator"]], "multiconfidencemapgenerator (class in sleap.nn.data.confidence_maps)": [[53, "sleap.nn.data.confidence_maps.MultiConfidenceMapGenerator"]], "singleinstanceconfidencemapgenerator (class in sleap.nn.data.confidence_maps)": [[53, "sleap.nn.data.confidence_maps.SingleInstanceConfidenceMapGenerator"]], "all_instances (sleap.nn.data.confidence_maps.instanceconfidencemapgenerator attribute)": [[53, "sleap.nn.data.confidence_maps.InstanceConfidenceMapGenerator.all_instances"]], "centroids (sleap.nn.data.confidence_maps.multiconfidencemapgenerator attribute)": [[53, "sleap.nn.data.confidence_maps.MultiConfidenceMapGenerator.centroids"]], "flatten_offsets (sleap.nn.data.confidence_maps.instanceconfidencemapgenerator attribute)": [[53, "sleap.nn.data.confidence_maps.InstanceConfidenceMapGenerator.flatten_offsets"]], "flatten_offsets (sleap.nn.data.confidence_maps.multiconfidencemapgenerator attribute)": [[53, "sleap.nn.data.confidence_maps.MultiConfidenceMapGenerator.flatten_offsets"]], "flatten_offsets (sleap.nn.data.confidence_maps.singleinstanceconfidencemapgenerator attribute)": [[53, "sleap.nn.data.confidence_maps.SingleInstanceConfidenceMapGenerator.flatten_offsets"]], "input_keys (sleap.nn.data.confidence_maps.instanceconfidencemapgenerator property)": [[53, "sleap.nn.data.confidence_maps.InstanceConfidenceMapGenerator.input_keys"]], "input_keys (sleap.nn.data.confidence_maps.multiconfidencemapgenerator property)": [[53, "sleap.nn.data.confidence_maps.MultiConfidenceMapGenerator.input_keys"]], "input_keys (sleap.nn.data.confidence_maps.singleinstanceconfidencemapgenerator property)": [[53, "sleap.nn.data.confidence_maps.SingleInstanceConfidenceMapGenerator.input_keys"]], "make_confmaps() (in module sleap.nn.data.confidence_maps)": [[53, "sleap.nn.data.confidence_maps.make_confmaps"]], "make_multi_confmaps() (in module sleap.nn.data.confidence_maps)": [[53, "sleap.nn.data.confidence_maps.make_multi_confmaps"]], "make_multi_confmaps_with_offsets() (in module sleap.nn.data.confidence_maps)": [[53, "sleap.nn.data.confidence_maps.make_multi_confmaps_with_offsets"]], "offsets_threshold (sleap.nn.data.confidence_maps.instanceconfidencemapgenerator attribute)": [[53, "sleap.nn.data.confidence_maps.InstanceConfidenceMapGenerator.offsets_threshold"]], "offsets_threshold (sleap.nn.data.confidence_maps.multiconfidencemapgenerator attribute)": [[53, "sleap.nn.data.confidence_maps.MultiConfidenceMapGenerator.offsets_threshold"]], "offsets_threshold (sleap.nn.data.confidence_maps.singleinstanceconfidencemapgenerator attribute)": [[53, "sleap.nn.data.confidence_maps.SingleInstanceConfidenceMapGenerator.offsets_threshold"]], "output_keys (sleap.nn.data.confidence_maps.instanceconfidencemapgenerator property)": [[53, "sleap.nn.data.confidence_maps.InstanceConfidenceMapGenerator.output_keys"]], "output_keys (sleap.nn.data.confidence_maps.multiconfidencemapgenerator property)": [[53, "sleap.nn.data.confidence_maps.MultiConfidenceMapGenerator.output_keys"]], "output_keys (sleap.nn.data.confidence_maps.singleinstanceconfidencemapgenerator property)": [[53, "sleap.nn.data.confidence_maps.SingleInstanceConfidenceMapGenerator.output_keys"]], "output_stride (sleap.nn.data.confidence_maps.instanceconfidencemapgenerator attribute)": [[53, "sleap.nn.data.confidence_maps.InstanceConfidenceMapGenerator.output_stride"]], "output_stride (sleap.nn.data.confidence_maps.multiconfidencemapgenerator attribute)": [[53, "sleap.nn.data.confidence_maps.MultiConfidenceMapGenerator.output_stride"]], "output_stride (sleap.nn.data.confidence_maps.singleinstanceconfidencemapgenerator attribute)": [[53, "sleap.nn.data.confidence_maps.SingleInstanceConfidenceMapGenerator.output_stride"]], "sigma (sleap.nn.data.confidence_maps.instanceconfidencemapgenerator attribute)": [[53, "sleap.nn.data.confidence_maps.InstanceConfidenceMapGenerator.sigma"]], "sigma (sleap.nn.data.confidence_maps.multiconfidencemapgenerator attribute)": [[53, "sleap.nn.data.confidence_maps.MultiConfidenceMapGenerator.sigma"]], "sigma (sleap.nn.data.confidence_maps.singleinstanceconfidencemapgenerator attribute)": [[53, "sleap.nn.data.confidence_maps.SingleInstanceConfidenceMapGenerator.sigma"]], "sleap.nn.data.confidence_maps": [[53, "module-sleap.nn.data.confidence_maps"]], "transform_dataset() (sleap.nn.data.confidence_maps.instanceconfidencemapgenerator method)": [[53, "sleap.nn.data.confidence_maps.InstanceConfidenceMapGenerator.transform_dataset"]], "transform_dataset() (sleap.nn.data.confidence_maps.multiconfidencemapgenerator method)": [[53, "sleap.nn.data.confidence_maps.MultiConfidenceMapGenerator.transform_dataset"]], "transform_dataset() (sleap.nn.data.confidence_maps.singleinstanceconfidencemapgenerator method)": [[53, "sleap.nn.data.confidence_maps.SingleInstanceConfidenceMapGenerator.transform_dataset"]], "with_offsets (sleap.nn.data.confidence_maps.instanceconfidencemapgenerator attribute)": [[53, "sleap.nn.data.confidence_maps.InstanceConfidenceMapGenerator.with_offsets"]], "with_offsets (sleap.nn.data.confidence_maps.multiconfidencemapgenerator attribute)": [[53, "sleap.nn.data.confidence_maps.MultiConfidenceMapGenerator.with_offsets"]], "with_offsets (sleap.nn.data.confidence_maps.singleinstanceconfidencemapgenerator attribute)": [[53, "sleap.nn.data.confidence_maps.SingleInstanceConfidenceMapGenerator.with_offsets"]], "batcher (class in sleap.nn.data.dataset_ops)": [[54, "sleap.nn.data.dataset_ops.Batcher"]], "lambdafilter (class in sleap.nn.data.dataset_ops)": [[54, "sleap.nn.data.dataset_ops.LambdaFilter"]], "prefetcher (class in sleap.nn.data.dataset_ops)": [[54, "sleap.nn.data.dataset_ops.Prefetcher"]], "preloader (class in sleap.nn.data.dataset_ops)": [[54, "sleap.nn.data.dataset_ops.Preloader"]], "repeater (class in sleap.nn.data.dataset_ops)": [[54, "sleap.nn.data.dataset_ops.Repeater"]], "shuffler (class in sleap.nn.data.dataset_ops)": [[54, "sleap.nn.data.dataset_ops.Shuffler"]], "unbatcher (class in sleap.nn.data.dataset_ops)": [[54, "sleap.nn.data.dataset_ops.Unbatcher"]], "batch_size (sleap.nn.data.dataset_ops.batcher attribute)": [[54, "sleap.nn.data.dataset_ops.Batcher.batch_size"]], "buffer_size (sleap.nn.data.dataset_ops.prefetcher attribute)": [[54, "sleap.nn.data.dataset_ops.Prefetcher.buffer_size"]], "buffer_size (sleap.nn.data.dataset_ops.shuffler attribute)": [[54, "sleap.nn.data.dataset_ops.Shuffler.buffer_size"]], "drop_remainder (sleap.nn.data.dataset_ops.batcher attribute)": [[54, "sleap.nn.data.dataset_ops.Batcher.drop_remainder"]], "epochs (sleap.nn.data.dataset_ops.repeater attribute)": [[54, "sleap.nn.data.dataset_ops.Repeater.epochs"]], "examples (sleap.nn.data.dataset_ops.preloader attribute)": [[54, "sleap.nn.data.dataset_ops.Preloader.examples"]], "filter_fn (sleap.nn.data.dataset_ops.lambdafilter attribute)": [[54, "sleap.nn.data.dataset_ops.LambdaFilter.filter_fn"]], "input_keys (sleap.nn.data.dataset_ops.batcher property)": [[54, "sleap.nn.data.dataset_ops.Batcher.input_keys"]], "input_keys (sleap.nn.data.dataset_ops.lambdafilter property)": [[54, "sleap.nn.data.dataset_ops.LambdaFilter.input_keys"]], "input_keys (sleap.nn.data.dataset_ops.prefetcher property)": [[54, "sleap.nn.data.dataset_ops.Prefetcher.input_keys"]], "input_keys (sleap.nn.data.dataset_ops.preloader property)": [[54, "sleap.nn.data.dataset_ops.Preloader.input_keys"]], "input_keys (sleap.nn.data.dataset_ops.repeater property)": [[54, "sleap.nn.data.dataset_ops.Repeater.input_keys"]], "input_keys (sleap.nn.data.dataset_ops.shuffler property)": [[54, "sleap.nn.data.dataset_ops.Shuffler.input_keys"]], "input_keys (sleap.nn.data.dataset_ops.unbatcher property)": [[54, "sleap.nn.data.dataset_ops.Unbatcher.input_keys"]], "output_keys (sleap.nn.data.dataset_ops.batcher property)": [[54, "sleap.nn.data.dataset_ops.Batcher.output_keys"]], "output_keys (sleap.nn.data.dataset_ops.lambdafilter property)": [[54, "sleap.nn.data.dataset_ops.LambdaFilter.output_keys"]], "output_keys (sleap.nn.data.dataset_ops.prefetcher property)": [[54, "sleap.nn.data.dataset_ops.Prefetcher.output_keys"]], "output_keys (sleap.nn.data.dataset_ops.preloader property)": [[54, "sleap.nn.data.dataset_ops.Preloader.output_keys"]], "output_keys (sleap.nn.data.dataset_ops.repeater property)": [[54, "sleap.nn.data.dataset_ops.Repeater.output_keys"]], "output_keys (sleap.nn.data.dataset_ops.shuffler property)": [[54, "sleap.nn.data.dataset_ops.Shuffler.output_keys"]], "output_keys (sleap.nn.data.dataset_ops.unbatcher property)": [[54, "sleap.nn.data.dataset_ops.Unbatcher.output_keys"]], "prefetch (sleap.nn.data.dataset_ops.prefetcher attribute)": [[54, "sleap.nn.data.dataset_ops.Prefetcher.prefetch"]], "repeat (sleap.nn.data.dataset_ops.repeater attribute)": [[54, "sleap.nn.data.dataset_ops.Repeater.repeat"]], "reshuffle_each_iteration (sleap.nn.data.dataset_ops.shuffler attribute)": [[54, "sleap.nn.data.dataset_ops.Shuffler.reshuffle_each_iteration"]], "shuffle (sleap.nn.data.dataset_ops.shuffler attribute)": [[54, "sleap.nn.data.dataset_ops.Shuffler.shuffle"]], "sleap.nn.data.dataset_ops": [[54, "module-sleap.nn.data.dataset_ops"]], "transform_dataset() (sleap.nn.data.dataset_ops.batcher method)": [[54, "sleap.nn.data.dataset_ops.Batcher.transform_dataset"]], "transform_dataset() (sleap.nn.data.dataset_ops.lambdafilter method)": [[54, "sleap.nn.data.dataset_ops.LambdaFilter.transform_dataset"]], "transform_dataset() (sleap.nn.data.dataset_ops.prefetcher method)": [[54, "sleap.nn.data.dataset_ops.Prefetcher.transform_dataset"]], "transform_dataset() (sleap.nn.data.dataset_ops.preloader method)": [[54, "sleap.nn.data.dataset_ops.Preloader.transform_dataset"]], "transform_dataset() (sleap.nn.data.dataset_ops.repeater method)": [[54, "sleap.nn.data.dataset_ops.Repeater.transform_dataset"]], "transform_dataset() (sleap.nn.data.dataset_ops.shuffler method)": [[54, "sleap.nn.data.dataset_ops.Shuffler.transform_dataset"]], "transform_dataset() (sleap.nn.data.dataset_ops.unbatcher method)": [[54, "sleap.nn.data.dataset_ops.Unbatcher.transform_dataset"]], "unrag (sleap.nn.data.dataset_ops.batcher attribute)": [[54, "sleap.nn.data.dataset_ops.Batcher.unrag"]], "partaffinityfieldsgenerator (class in sleap.nn.data.edge_maps)": [[55, "sleap.nn.data.edge_maps.PartAffinityFieldsGenerator"]], "distance_to_edge() (in module sleap.nn.data.edge_maps)": [[55, "sleap.nn.data.edge_maps.distance_to_edge"]], "flatten_channels (sleap.nn.data.edge_maps.partaffinityfieldsgenerator attribute)": [[55, "sleap.nn.data.edge_maps.PartAffinityFieldsGenerator.flatten_channels"]], "get_edge_points() (in module sleap.nn.data.edge_maps)": [[55, "sleap.nn.data.edge_maps.get_edge_points"]], "input_keys (sleap.nn.data.edge_maps.partaffinityfieldsgenerator property)": [[55, "sleap.nn.data.edge_maps.PartAffinityFieldsGenerator.input_keys"]], "make_edge_maps() (in module sleap.nn.data.edge_maps)": [[55, "sleap.nn.data.edge_maps.make_edge_maps"]], "make_multi_pafs() (in module sleap.nn.data.edge_maps)": [[55, "sleap.nn.data.edge_maps.make_multi_pafs"]], "make_pafs() (in module sleap.nn.data.edge_maps)": [[55, "sleap.nn.data.edge_maps.make_pafs"]], "output_keys (sleap.nn.data.edge_maps.partaffinityfieldsgenerator property)": [[55, "sleap.nn.data.edge_maps.PartAffinityFieldsGenerator.output_keys"]], "output_stride (sleap.nn.data.edge_maps.partaffinityfieldsgenerator attribute)": [[55, "sleap.nn.data.edge_maps.PartAffinityFieldsGenerator.output_stride"]], "sigma (sleap.nn.data.edge_maps.partaffinityfieldsgenerator attribute)": [[55, "sleap.nn.data.edge_maps.PartAffinityFieldsGenerator.sigma"]], "skeletons (sleap.nn.data.edge_maps.partaffinityfieldsgenerator attribute)": [[55, "sleap.nn.data.edge_maps.PartAffinityFieldsGenerator.skeletons"]], "sleap.nn.data.edge_maps": [[55, "module-sleap.nn.data.edge_maps"]], "transform_dataset() (sleap.nn.data.edge_maps.partaffinityfieldsgenerator method)": [[55, "sleap.nn.data.edge_maps.PartAffinityFieldsGenerator.transform_dataset"]], "keydevicemover (class in sleap.nn.data.general)": [[56, "sleap.nn.data.general.KeyDeviceMover"]], "keyfilter (class in sleap.nn.data.general)": [[56, "sleap.nn.data.general.KeyFilter"]], "keyrenamer (class in sleap.nn.data.general)": [[56, "sleap.nn.data.general.KeyRenamer"]], "lambdamap (class in sleap.nn.data.general)": [[56, "sleap.nn.data.general.LambdaMap"]], "func (sleap.nn.data.general.lambdamap attribute)": [[56, "sleap.nn.data.general.LambdaMap.func"]], "input_key_names (sleap.nn.data.general.lambdamap attribute)": [[56, "sleap.nn.data.general.LambdaMap.input_key_names"]], "input_keys (sleap.nn.data.general.keydevicemover property)": [[56, "sleap.nn.data.general.KeyDeviceMover.input_keys"]], "input_keys (sleap.nn.data.general.keyfilter property)": [[56, "sleap.nn.data.general.KeyFilter.input_keys"]], "input_keys (sleap.nn.data.general.keyrenamer property)": [[56, "sleap.nn.data.general.KeyRenamer.input_keys"]], "input_keys (sleap.nn.data.general.lambdamap property)": [[56, "sleap.nn.data.general.LambdaMap.input_keys"]], "output_key_names (sleap.nn.data.general.lambdamap attribute)": [[56, "sleap.nn.data.general.LambdaMap.output_key_names"]], "output_keys (sleap.nn.data.general.keydevicemover property)": [[56, "sleap.nn.data.general.KeyDeviceMover.output_keys"]], "output_keys (sleap.nn.data.general.keyfilter property)": [[56, "sleap.nn.data.general.KeyFilter.output_keys"]], "output_keys (sleap.nn.data.general.keyrenamer property)": [[56, "sleap.nn.data.general.KeyRenamer.output_keys"]], "output_keys (sleap.nn.data.general.lambdamap property)": [[56, "sleap.nn.data.general.LambdaMap.output_keys"]], "sleap.nn.data.general": [[56, "module-sleap.nn.data.general"]], "transform_dataset() (sleap.nn.data.general.keydevicemover method)": [[56, "sleap.nn.data.general.KeyDeviceMover.transform_dataset"]], "transform_dataset() (sleap.nn.data.general.keyfilter method)": [[56, "sleap.nn.data.general.KeyFilter.transform_dataset"]], "transform_dataset() (sleap.nn.data.general.keyrenamer method)": [[56, "sleap.nn.data.general.KeyRenamer.transform_dataset"]], "transform_dataset() (sleap.nn.data.general.lambdamap method)": [[56, "sleap.nn.data.general.LambdaMap.transform_dataset"]], "group_examples() (in module sleap.nn.data.grouping)": [[57, "sleap.nn.data.grouping.group_examples"]], "group_examples_iter() (in module sleap.nn.data.grouping)": [[57, "sleap.nn.data.grouping.group_examples_iter"]], "sleap.nn.data.grouping": [[57, "module-sleap.nn.data.grouping"]], "classmapgenerator (class in sleap.nn.data.identity)": [[58, "sleap.nn.data.identity.ClassMapGenerator"]], "classvectorgenerator (class in sleap.nn.data.identity)": [[58, "sleap.nn.data.identity.ClassVectorGenerator"]], "centroids (sleap.nn.data.identity.classmapgenerator attribute)": [[58, "sleap.nn.data.identity.ClassMapGenerator.centroids"]], "class_map_threshold (sleap.nn.data.identity.classmapgenerator attribute)": [[58, "sleap.nn.data.identity.ClassMapGenerator.class_map_threshold"]], "input_keys (sleap.nn.data.identity.classmapgenerator property)": [[58, "sleap.nn.data.identity.ClassMapGenerator.input_keys"]], "input_keys (sleap.nn.data.identity.classvectorgenerator property)": [[58, "sleap.nn.data.identity.ClassVectorGenerator.input_keys"]], "make_class_maps() (in module sleap.nn.data.identity)": [[58, "sleap.nn.data.identity.make_class_maps"]], "make_class_vectors() (in module sleap.nn.data.identity)": [[58, "sleap.nn.data.identity.make_class_vectors"]], "output_keys (sleap.nn.data.identity.classmapgenerator property)": [[58, "sleap.nn.data.identity.ClassMapGenerator.output_keys"]], "output_keys (sleap.nn.data.identity.classvectorgenerator property)": [[58, "sleap.nn.data.identity.ClassVectorGenerator.output_keys"]], "output_stride (sleap.nn.data.identity.classmapgenerator attribute)": [[58, "sleap.nn.data.identity.ClassMapGenerator.output_stride"]], "sigma (sleap.nn.data.identity.classmapgenerator attribute)": [[58, "sleap.nn.data.identity.ClassMapGenerator.sigma"]], "sleap.nn.data.identity": [[58, "module-sleap.nn.data.identity"]], "transform_dataset() (sleap.nn.data.identity.classmapgenerator method)": [[58, "sleap.nn.data.identity.ClassMapGenerator.transform_dataset"]], "transform_dataset() (sleap.nn.data.identity.classvectorgenerator method)": [[58, "sleap.nn.data.identity.ClassVectorGenerator.transform_dataset"]], "globalpeakfinder (class in sleap.nn.data.inference)": [[59, "sleap.nn.data.inference.GlobalPeakFinder"]], "kerasmodelpredictor (class in sleap.nn.data.inference)": [[59, "sleap.nn.data.inference.KerasModelPredictor"]], "localpeakfinder (class in sleap.nn.data.inference)": [[59, "sleap.nn.data.inference.LocalPeakFinder"]], "mockglobalpeakfinder (class in sleap.nn.data.inference)": [[59, "sleap.nn.data.inference.MockGlobalPeakFinder"]], "predictedcenterinstancenormalizer (class in sleap.nn.data.inference)": [[59, "sleap.nn.data.inference.PredictedCenterInstanceNormalizer"]], "input_keys (sleap.nn.data.inference.predictedcenterinstancenormalizer property)": [[59, "sleap.nn.data.inference.PredictedCenterInstanceNormalizer.input_keys"]], "output_keys (sleap.nn.data.inference.predictedcenterinstancenormalizer property)": [[59, "sleap.nn.data.inference.PredictedCenterInstanceNormalizer.output_keys"]], "sleap.nn.data.inference": [[59, "module-sleap.nn.data.inference"]], "transform_dataset() (sleap.nn.data.inference.predictedcenterinstancenormalizer method)": [[59, "sleap.nn.data.inference.PredictedCenterInstanceNormalizer.transform_dataset"]], "instancecentroidfinder (class in sleap.nn.data.instance_centroids)": [[60, "sleap.nn.data.instance_centroids.InstanceCentroidFinder"]], "anchor_part_names (sleap.nn.data.instance_centroids.instancecentroidfinder attribute)": [[60, "sleap.nn.data.instance_centroids.InstanceCentroidFinder.anchor_part_names"]], "center_on_anchor_part (sleap.nn.data.instance_centroids.instancecentroidfinder attribute)": [[60, "sleap.nn.data.instance_centroids.InstanceCentroidFinder.center_on_anchor_part"]], "find_points_bbox_midpoint() (in module sleap.nn.data.instance_centroids)": [[60, "sleap.nn.data.instance_centroids.find_points_bbox_midpoint"]], "from_config() (sleap.nn.data.instance_centroids.instancecentroidfinder class method)": [[60, "sleap.nn.data.instance_centroids.InstanceCentroidFinder.from_config"]], "get_instance_anchors() (in module sleap.nn.data.instance_centroids)": [[60, "sleap.nn.data.instance_centroids.get_instance_anchors"]], "input_keys (sleap.nn.data.instance_centroids.instancecentroidfinder property)": [[60, "sleap.nn.data.instance_centroids.InstanceCentroidFinder.input_keys"]], "instances_key (sleap.nn.data.instance_centroids.instancecentroidfinder attribute)": [[60, "sleap.nn.data.instance_centroids.InstanceCentroidFinder.instances_key"]], "output_keys (sleap.nn.data.instance_centroids.instancecentroidfinder property)": [[60, "sleap.nn.data.instance_centroids.InstanceCentroidFinder.output_keys"]], "skeletons (sleap.nn.data.instance_centroids.instancecentroidfinder attribute)": [[60, "sleap.nn.data.instance_centroids.InstanceCentroidFinder.skeletons"]], "sleap.nn.data.instance_centroids": [[60, "module-sleap.nn.data.instance_centroids"]], "transform_dataset() (sleap.nn.data.instance_centroids.instancecentroidfinder method)": [[60, "sleap.nn.data.instance_centroids.InstanceCentroidFinder.transform_dataset"]], "instancecropper (class in sleap.nn.data.instance_cropping)": [[61, "sleap.nn.data.instance_cropping.InstanceCropper"]], "centroids_key (sleap.nn.data.instance_cropping.instancecropper attribute)": [[61, "sleap.nn.data.instance_cropping.InstanceCropper.centroids_key"]], "crop_bboxes() (in module sleap.nn.data.instance_cropping)": [[61, "sleap.nn.data.instance_cropping.crop_bboxes"]], "crop_height (sleap.nn.data.instance_cropping.instancecropper attribute)": [[61, "sleap.nn.data.instance_cropping.InstanceCropper.crop_height"]], "crop_width (sleap.nn.data.instance_cropping.instancecropper attribute)": [[61, "sleap.nn.data.instance_cropping.InstanceCropper.crop_width"]], "find_instance_crop_size() (in module sleap.nn.data.instance_cropping)": [[61, "sleap.nn.data.instance_cropping.find_instance_crop_size"]], "from_config() (sleap.nn.data.instance_cropping.instancecropper class method)": [[61, "sleap.nn.data.instance_cropping.InstanceCropper.from_config"]], "image_key (sleap.nn.data.instance_cropping.instancecropper attribute)": [[61, "sleap.nn.data.instance_cropping.InstanceCropper.image_key"]], "input_keys (sleap.nn.data.instance_cropping.instancecropper property)": [[61, "sleap.nn.data.instance_cropping.InstanceCropper.input_keys"]], "instances_key (sleap.nn.data.instance_cropping.instancecropper attribute)": [[61, "sleap.nn.data.instance_cropping.InstanceCropper.instances_key"]], "keep_full_image (sleap.nn.data.instance_cropping.instancecropper attribute)": [[61, "sleap.nn.data.instance_cropping.InstanceCropper.keep_full_image"]], "make_centered_bboxes() (in module sleap.nn.data.instance_cropping)": [[61, "sleap.nn.data.instance_cropping.make_centered_bboxes"]], "mock_centroid_confidence (sleap.nn.data.instance_cropping.instancecropper attribute)": [[61, "sleap.nn.data.instance_cropping.InstanceCropper.mock_centroid_confidence"]], "normalize_bboxes() (in module sleap.nn.data.instance_cropping)": [[61, "sleap.nn.data.instance_cropping.normalize_bboxes"]], "output_keys (sleap.nn.data.instance_cropping.instancecropper property)": [[61, "sleap.nn.data.instance_cropping.InstanceCropper.output_keys"]], "sleap.nn.data.instance_cropping": [[61, "module-sleap.nn.data.instance_cropping"]], "transform_dataset() (sleap.nn.data.instance_cropping.instancecropper method)": [[61, "sleap.nn.data.instance_cropping.InstanceCropper.transform_dataset"]], "unbatch (sleap.nn.data.instance_cropping.instancecropper attribute)": [[61, "sleap.nn.data.instance_cropping.InstanceCropper.unbatch"]], "unnormalize_bboxes() (in module sleap.nn.data.instance_cropping)": [[61, "sleap.nn.data.instance_cropping.unnormalize_bboxes"]], "normalizer (class in sleap.nn.data.normalization)": [[62, "sleap.nn.data.normalization.Normalizer"]], "convert_rgb_to_bgr() (in module sleap.nn.data.normalization)": [[62, "sleap.nn.data.normalization.convert_rgb_to_bgr"]], "ensure_float (sleap.nn.data.normalization.normalizer attribute)": [[62, "sleap.nn.data.normalization.Normalizer.ensure_float"]], "ensure_float() (in module sleap.nn.data.normalization)": [[62, "sleap.nn.data.normalization.ensure_float"]], "ensure_grayscale (sleap.nn.data.normalization.normalizer attribute)": [[62, "sleap.nn.data.normalization.Normalizer.ensure_grayscale"]], "ensure_grayscale() (in module sleap.nn.data.normalization)": [[62, "sleap.nn.data.normalization.ensure_grayscale"]], "ensure_int() (in module sleap.nn.data.normalization)": [[62, "sleap.nn.data.normalization.ensure_int"]], "ensure_min_image_rank() (in module sleap.nn.data.normalization)": [[62, "sleap.nn.data.normalization.ensure_min_image_rank"]], "ensure_rgb (sleap.nn.data.normalization.normalizer attribute)": [[62, "sleap.nn.data.normalization.Normalizer.ensure_rgb"]], "ensure_rgb() (in module sleap.nn.data.normalization)": [[62, "sleap.nn.data.normalization.ensure_rgb"]], "from_config() (sleap.nn.data.normalization.normalizer class method)": [[62, "sleap.nn.data.normalization.Normalizer.from_config"]], "image_key (sleap.nn.data.normalization.normalizer attribute)": [[62, "sleap.nn.data.normalization.Normalizer.image_key"]], "imagenet_mode (sleap.nn.data.normalization.normalizer attribute)": [[62, "sleap.nn.data.normalization.Normalizer.imagenet_mode"]], "input_keys (sleap.nn.data.normalization.normalizer property)": [[62, "sleap.nn.data.normalization.Normalizer.input_keys"]], "output_keys (sleap.nn.data.normalization.normalizer property)": [[62, "sleap.nn.data.normalization.Normalizer.output_keys"]], "scale_image_range() (in module sleap.nn.data.normalization)": [[62, "sleap.nn.data.normalization.scale_image_range"]], "scale_to_imagenet_caffe_mode() (in module sleap.nn.data.normalization)": [[62, "sleap.nn.data.normalization.scale_to_imagenet_caffe_mode"]], "scale_to_imagenet_tf_mode() (in module sleap.nn.data.normalization)": [[62, "sleap.nn.data.normalization.scale_to_imagenet_tf_mode"]], "scale_to_imagenet_torch_mode() (in module sleap.nn.data.normalization)": [[62, "sleap.nn.data.normalization.scale_to_imagenet_torch_mode"]], "sleap.nn.data.normalization": [[62, "module-sleap.nn.data.normalization"]], "transform_dataset() (sleap.nn.data.normalization.normalizer method)": [[62, "sleap.nn.data.normalization.Normalizer.transform_dataset"]], "make_offsets() (in module sleap.nn.data.offset_regression)": [[63, "sleap.nn.data.offset_regression.make_offsets"]], "mask_offsets() (in module sleap.nn.data.offset_regression)": [[63, "sleap.nn.data.offset_regression.mask_offsets"]], "sleap.nn.data.offset_regression": [[63, "module-sleap.nn.data.offset_regression"]], "bottomupmulticlasspipeline (class in sleap.nn.data.pipelines)": [[64, "sleap.nn.data.pipelines.BottomUpMultiClassPipeline"]], "bottomuppipeline (class in sleap.nn.data.pipelines)": [[64, "sleap.nn.data.pipelines.BottomUpPipeline"]], "centroidconfmapspipeline (class in sleap.nn.data.pipelines)": [[64, "sleap.nn.data.pipelines.CentroidConfmapsPipeline"]], "pipeline (class in sleap.nn.data.pipelines)": [[64, "sleap.nn.data.pipelines.Pipeline"]], "singleinstanceconfmapspipeline (class in sleap.nn.data.pipelines)": [[64, "sleap.nn.data.pipelines.SingleInstanceConfmapsPipeline"]], "topdownmulticlasspipeline (class in sleap.nn.data.pipelines)": [[64, "sleap.nn.data.pipelines.TopDownMultiClassPipeline"]], "topdownconfmapspipeline (class in sleap.nn.data.pipelines)": [[64, "sleap.nn.data.pipelines.TopdownConfmapsPipeline"]], "append() (sleap.nn.data.pipelines.pipeline method)": [[64, "sleap.nn.data.pipelines.Pipeline.append"]], "centroid_confmap_head (sleap.nn.data.pipelines.centroidconfmapspipeline attribute)": [[64, "sleap.nn.data.pipelines.CentroidConfmapsPipeline.centroid_confmap_head"]], "class_maps_head (sleap.nn.data.pipelines.bottomupmulticlasspipeline attribute)": [[64, "sleap.nn.data.pipelines.BottomUpMultiClassPipeline.class_maps_head"]], "class_vectors_head (sleap.nn.data.pipelines.topdownmulticlasspipeline attribute)": [[64, "sleap.nn.data.pipelines.TopDownMultiClassPipeline.class_vectors_head"]], "confmaps_head (sleap.nn.data.pipelines.bottomupmulticlasspipeline attribute)": [[64, "sleap.nn.data.pipelines.BottomUpMultiClassPipeline.confmaps_head"]], "confmaps_head (sleap.nn.data.pipelines.bottomuppipeline attribute)": [[64, "sleap.nn.data.pipelines.BottomUpPipeline.confmaps_head"]], "confmaps_head (sleap.nn.data.pipelines.topdownmulticlasspipeline attribute)": [[64, "sleap.nn.data.pipelines.TopDownMultiClassPipeline.confmaps_head"]], "data_config (sleap.nn.data.pipelines.bottomupmulticlasspipeline attribute)": [[64, "sleap.nn.data.pipelines.BottomUpMultiClassPipeline.data_config"]], "data_config (sleap.nn.data.pipelines.bottomuppipeline attribute)": [[64, "sleap.nn.data.pipelines.BottomUpPipeline.data_config"]], "data_config (sleap.nn.data.pipelines.centroidconfmapspipeline attribute)": [[64, "sleap.nn.data.pipelines.CentroidConfmapsPipeline.data_config"]], "data_config (sleap.nn.data.pipelines.singleinstanceconfmapspipeline attribute)": [[64, "sleap.nn.data.pipelines.SingleInstanceConfmapsPipeline.data_config"]], "data_config (sleap.nn.data.pipelines.topdownmulticlasspipeline attribute)": [[64, "sleap.nn.data.pipelines.TopDownMultiClassPipeline.data_config"]], "data_config (sleap.nn.data.pipelines.topdownconfmapspipeline attribute)": [[64, "sleap.nn.data.pipelines.TopdownConfmapsPipeline.data_config"]], "describe() (sleap.nn.data.pipelines.pipeline method)": [[64, "sleap.nn.data.pipelines.Pipeline.describe"]], "from_blocks() (sleap.nn.data.pipelines.pipeline class method)": [[64, "sleap.nn.data.pipelines.Pipeline.from_blocks"]], "from_pipelines() (sleap.nn.data.pipelines.pipeline class method)": [[64, "sleap.nn.data.pipelines.Pipeline.from_pipelines"]], "instance_confmap_head (sleap.nn.data.pipelines.topdownconfmapspipeline attribute)": [[64, "sleap.nn.data.pipelines.TopdownConfmapsPipeline.instance_confmap_head"]], "make_base_pipeline() (sleap.nn.data.pipelines.bottomupmulticlasspipeline method)": [[64, "sleap.nn.data.pipelines.BottomUpMultiClassPipeline.make_base_pipeline"]], "make_base_pipeline() (sleap.nn.data.pipelines.bottomuppipeline method)": [[64, "sleap.nn.data.pipelines.BottomUpPipeline.make_base_pipeline"]], "make_base_pipeline() (sleap.nn.data.pipelines.centroidconfmapspipeline method)": [[64, "sleap.nn.data.pipelines.CentroidConfmapsPipeline.make_base_pipeline"]], "make_base_pipeline() (sleap.nn.data.pipelines.singleinstanceconfmapspipeline method)": [[64, "sleap.nn.data.pipelines.SingleInstanceConfmapsPipeline.make_base_pipeline"]], "make_base_pipeline() (sleap.nn.data.pipelines.topdownmulticlasspipeline method)": [[64, "sleap.nn.data.pipelines.TopDownMultiClassPipeline.make_base_pipeline"]], "make_base_pipeline() (sleap.nn.data.pipelines.topdownconfmapspipeline method)": [[64, "sleap.nn.data.pipelines.TopdownConfmapsPipeline.make_base_pipeline"]], "make_dataset() (sleap.nn.data.pipelines.pipeline method)": [[64, "sleap.nn.data.pipelines.Pipeline.make_dataset"]], "make_training_pipeline() (sleap.nn.data.pipelines.bottomupmulticlasspipeline method)": [[64, "sleap.nn.data.pipelines.BottomUpMultiClassPipeline.make_training_pipeline"]], "make_training_pipeline() (sleap.nn.data.pipelines.bottomuppipeline method)": [[64, "sleap.nn.data.pipelines.BottomUpPipeline.make_training_pipeline"]], "make_training_pipeline() (sleap.nn.data.pipelines.centroidconfmapspipeline method)": [[64, "sleap.nn.data.pipelines.CentroidConfmapsPipeline.make_training_pipeline"]], "make_training_pipeline() (sleap.nn.data.pipelines.singleinstanceconfmapspipeline method)": [[64, "sleap.nn.data.pipelines.SingleInstanceConfmapsPipeline.make_training_pipeline"]], "make_training_pipeline() (sleap.nn.data.pipelines.topdownmulticlasspipeline method)": [[64, "sleap.nn.data.pipelines.TopDownMultiClassPipeline.make_training_pipeline"]], "make_training_pipeline() (sleap.nn.data.pipelines.topdownconfmapspipeline method)": [[64, "sleap.nn.data.pipelines.TopdownConfmapsPipeline.make_training_pipeline"]], "make_viz_pipeline() (sleap.nn.data.pipelines.bottomupmulticlasspipeline method)": [[64, "sleap.nn.data.pipelines.BottomUpMultiClassPipeline.make_viz_pipeline"]], "make_viz_pipeline() (sleap.nn.data.pipelines.bottomuppipeline method)": [[64, "sleap.nn.data.pipelines.BottomUpPipeline.make_viz_pipeline"]], "make_viz_pipeline() (sleap.nn.data.pipelines.centroidconfmapspipeline method)": [[64, "sleap.nn.data.pipelines.CentroidConfmapsPipeline.make_viz_pipeline"]], "make_viz_pipeline() (sleap.nn.data.pipelines.singleinstanceconfmapspipeline method)": [[64, "sleap.nn.data.pipelines.SingleInstanceConfmapsPipeline.make_viz_pipeline"]], "make_viz_pipeline() (sleap.nn.data.pipelines.topdownmulticlasspipeline method)": [[64, "sleap.nn.data.pipelines.TopDownMultiClassPipeline.make_viz_pipeline"]], "make_viz_pipeline() (sleap.nn.data.pipelines.topdownconfmapspipeline method)": [[64, "sleap.nn.data.pipelines.TopdownConfmapsPipeline.make_viz_pipeline"]], "offsets_head (sleap.nn.data.pipelines.bottomupmulticlasspipeline attribute)": [[64, "sleap.nn.data.pipelines.BottomUpMultiClassPipeline.offsets_head"]], "offsets_head (sleap.nn.data.pipelines.bottomuppipeline attribute)": [[64, "sleap.nn.data.pipelines.BottomUpPipeline.offsets_head"]], "offsets_head (sleap.nn.data.pipelines.centroidconfmapspipeline attribute)": [[64, "sleap.nn.data.pipelines.CentroidConfmapsPipeline.offsets_head"]], "offsets_head (sleap.nn.data.pipelines.singleinstanceconfmapspipeline attribute)": [[64, "sleap.nn.data.pipelines.SingleInstanceConfmapsPipeline.offsets_head"]], "offsets_head (sleap.nn.data.pipelines.topdownmulticlasspipeline attribute)": [[64, "sleap.nn.data.pipelines.TopDownMultiClassPipeline.offsets_head"]], "offsets_head (sleap.nn.data.pipelines.topdownconfmapspipeline attribute)": [[64, "sleap.nn.data.pipelines.TopdownConfmapsPipeline.offsets_head"]], "optimization_config (sleap.nn.data.pipelines.bottomupmulticlasspipeline attribute)": [[64, "sleap.nn.data.pipelines.BottomUpMultiClassPipeline.optimization_config"]], "optimization_config (sleap.nn.data.pipelines.bottomuppipeline attribute)": [[64, "sleap.nn.data.pipelines.BottomUpPipeline.optimization_config"]], "optimization_config (sleap.nn.data.pipelines.centroidconfmapspipeline attribute)": [[64, "sleap.nn.data.pipelines.CentroidConfmapsPipeline.optimization_config"]], "optimization_config (sleap.nn.data.pipelines.singleinstanceconfmapspipeline attribute)": [[64, "sleap.nn.data.pipelines.SingleInstanceConfmapsPipeline.optimization_config"]], "optimization_config (sleap.nn.data.pipelines.topdownmulticlasspipeline attribute)": [[64, "sleap.nn.data.pipelines.TopDownMultiClassPipeline.optimization_config"]], "optimization_config (sleap.nn.data.pipelines.topdownconfmapspipeline attribute)": [[64, "sleap.nn.data.pipelines.TopdownConfmapsPipeline.optimization_config"]], "output_keys (sleap.nn.data.pipelines.pipeline property)": [[64, "sleap.nn.data.pipelines.Pipeline.output_keys"]], "pafs_head (sleap.nn.data.pipelines.bottomuppipeline attribute)": [[64, "sleap.nn.data.pipelines.BottomUpPipeline.pafs_head"]], "peek() (sleap.nn.data.pipelines.pipeline method)": [[64, "sleap.nn.data.pipelines.Pipeline.peek"]], "providers (sleap.nn.data.pipelines.pipeline attribute)": [[64, "sleap.nn.data.pipelines.Pipeline.providers"]], "run() (sleap.nn.data.pipelines.pipeline method)": [[64, "sleap.nn.data.pipelines.Pipeline.run"]], "single_instance_confmap_head (sleap.nn.data.pipelines.singleinstanceconfmapspipeline attribute)": [[64, "sleap.nn.data.pipelines.SingleInstanceConfmapsPipeline.single_instance_confmap_head"]], "sleap.nn.data.pipelines": [[64, "module-sleap.nn.data.pipelines"]], "transformers (sleap.nn.data.pipelines.pipeline attribute)": [[64, "sleap.nn.data.pipelines.Pipeline.transformers"]], "validate_pipeline() (sleap.nn.data.pipelines.pipeline method)": [[64, "sleap.nn.data.pipelines.Pipeline.validate_pipeline"]], "labelsreader (class in sleap.nn.data.providers)": [[65, "sleap.nn.data.providers.LabelsReader"]], "videoreader (class in sleap.nn.data.providers)": [[65, "sleap.nn.data.providers.VideoReader"]], "example_indices (sleap.nn.data.providers.labelsreader attribute)": [[65, "sleap.nn.data.providers.LabelsReader.example_indices"]], "example_indices (sleap.nn.data.providers.videoreader attribute)": [[65, "sleap.nn.data.providers.VideoReader.example_indices"]], "from_filename() (sleap.nn.data.providers.labelsreader class method)": [[65, "sleap.nn.data.providers.LabelsReader.from_filename"]], "from_filepath() (sleap.nn.data.providers.videoreader class method)": [[65, "sleap.nn.data.providers.VideoReader.from_filepath"]], "from_unlabeled_suggestions() (sleap.nn.data.providers.labelsreader class method)": [[65, "sleap.nn.data.providers.LabelsReader.from_unlabeled_suggestions"]], "from_user_instances() (sleap.nn.data.providers.labelsreader class method)": [[65, "sleap.nn.data.providers.LabelsReader.from_user_instances"]], "from_user_labeled_frames() (sleap.nn.data.providers.labelsreader class method)": [[65, "sleap.nn.data.providers.LabelsReader.from_user_labeled_frames"]], "is_from_multi_size_videos (sleap.nn.data.providers.labelsreader property)": [[65, "sleap.nn.data.providers.LabelsReader.is_from_multi_size_videos"]], "labels (sleap.nn.data.providers.labelsreader attribute)": [[65, "sleap.nn.data.providers.LabelsReader.labels"]], "make_dataset() (sleap.nn.data.providers.labelsreader method)": [[65, "sleap.nn.data.providers.LabelsReader.make_dataset"]], "make_dataset() (sleap.nn.data.providers.videoreader method)": [[65, "sleap.nn.data.providers.VideoReader.make_dataset"]], "max_height_and_width (sleap.nn.data.providers.labelsreader property)": [[65, "sleap.nn.data.providers.LabelsReader.max_height_and_width"]], "max_height_and_width (sleap.nn.data.providers.videoreader property)": [[65, "sleap.nn.data.providers.VideoReader.max_height_and_width"]], "output_keys (sleap.nn.data.providers.labelsreader property)": [[65, "sleap.nn.data.providers.LabelsReader.output_keys"]], "output_keys (sleap.nn.data.providers.videoreader property)": [[65, "sleap.nn.data.providers.VideoReader.output_keys"]], "sleap.nn.data.providers": [[65, "module-sleap.nn.data.providers"]], "tracks (sleap.nn.data.providers.labelsreader property)": [[65, "sleap.nn.data.providers.LabelsReader.tracks"]], "user_instances_only (sleap.nn.data.providers.labelsreader attribute)": [[65, "sleap.nn.data.providers.LabelsReader.user_instances_only"]], "video (sleap.nn.data.providers.videoreader attribute)": [[65, "sleap.nn.data.providers.VideoReader.video"]], "video_ind (sleap.nn.data.providers.videoreader attribute)": [[65, "sleap.nn.data.providers.VideoReader.video_ind"]], "videos (sleap.nn.data.providers.labelsreader property)": [[65, "sleap.nn.data.providers.LabelsReader.videos"]], "videos (sleap.nn.data.providers.videoreader property)": [[65, "sleap.nn.data.providers.VideoReader.videos"]], "with_track_only (sleap.nn.data.providers.labelsreader attribute)": [[65, "sleap.nn.data.providers.LabelsReader.with_track_only"]], "pointsrescaler (class in sleap.nn.data.resizing)": [[66, "sleap.nn.data.resizing.PointsRescaler"]], "resizer (class in sleap.nn.data.resizing)": [[66, "sleap.nn.data.resizing.Resizer"]], "sizematcher (class in sleap.nn.data.resizing)": [[66, "sleap.nn.data.resizing.SizeMatcher"]], "center_pad (sleap.nn.data.resizing.sizematcher attribute)": [[66, "sleap.nn.data.resizing.SizeMatcher.center_pad"]], "find_padding_for_stride() (in module sleap.nn.data.resizing)": [[66, "sleap.nn.data.resizing.find_padding_for_stride"]], "from_config() (sleap.nn.data.resizing.resizer class method)": [[66, "sleap.nn.data.resizing.Resizer.from_config"]], "from_config() (sleap.nn.data.resizing.sizematcher class method)": [[66, "sleap.nn.data.resizing.SizeMatcher.from_config"]], "full_image_key (sleap.nn.data.resizing.resizer attribute)": [[66, "sleap.nn.data.resizing.Resizer.full_image_key"]], "full_image_key (sleap.nn.data.resizing.sizematcher attribute)": [[66, "sleap.nn.data.resizing.SizeMatcher.full_image_key"]], "image_key (sleap.nn.data.resizing.resizer attribute)": [[66, "sleap.nn.data.resizing.Resizer.image_key"]], "image_key (sleap.nn.data.resizing.sizematcher attribute)": [[66, "sleap.nn.data.resizing.SizeMatcher.image_key"]], "input_keys (sleap.nn.data.resizing.pointsrescaler property)": [[66, "sleap.nn.data.resizing.PointsRescaler.input_keys"]], "input_keys (sleap.nn.data.resizing.resizer property)": [[66, "sleap.nn.data.resizing.Resizer.input_keys"]], "input_keys (sleap.nn.data.resizing.sizematcher property)": [[66, "sleap.nn.data.resizing.SizeMatcher.input_keys"]], "keep_full_image (sleap.nn.data.resizing.resizer attribute)": [[66, "sleap.nn.data.resizing.Resizer.keep_full_image"]], "keep_full_image (sleap.nn.data.resizing.sizematcher attribute)": [[66, "sleap.nn.data.resizing.SizeMatcher.keep_full_image"]], "max_image_height (sleap.nn.data.resizing.sizematcher attribute)": [[66, "sleap.nn.data.resizing.SizeMatcher.max_image_height"]], "max_image_width (sleap.nn.data.resizing.sizematcher attribute)": [[66, "sleap.nn.data.resizing.SizeMatcher.max_image_width"]], "output_keys (sleap.nn.data.resizing.pointsrescaler property)": [[66, "sleap.nn.data.resizing.PointsRescaler.output_keys"]], "output_keys (sleap.nn.data.resizing.resizer property)": [[66, "sleap.nn.data.resizing.Resizer.output_keys"]], "output_keys (sleap.nn.data.resizing.sizematcher property)": [[66, "sleap.nn.data.resizing.SizeMatcher.output_keys"]], "pad_to_stride (sleap.nn.data.resizing.resizer attribute)": [[66, "sleap.nn.data.resizing.Resizer.pad_to_stride"]], "pad_to_stride() (in module sleap.nn.data.resizing)": [[66, "sleap.nn.data.resizing.pad_to_stride"]], "points_key (sleap.nn.data.resizing.resizer attribute)": [[66, "sleap.nn.data.resizing.Resizer.points_key"]], "points_key (sleap.nn.data.resizing.sizematcher attribute)": [[66, "sleap.nn.data.resizing.SizeMatcher.points_key"]], "resize_image() (in module sleap.nn.data.resizing)": [[66, "sleap.nn.data.resizing.resize_image"]], "scale (sleap.nn.data.resizing.resizer attribute)": [[66, "sleap.nn.data.resizing.Resizer.scale"]], "scale_key (sleap.nn.data.resizing.resizer attribute)": [[66, "sleap.nn.data.resizing.Resizer.scale_key"]], "scale_key (sleap.nn.data.resizing.sizematcher attribute)": [[66, "sleap.nn.data.resizing.SizeMatcher.scale_key"]], "sleap.nn.data.resizing": [[66, "module-sleap.nn.data.resizing"]], "transform_dataset() (sleap.nn.data.resizing.pointsrescaler method)": [[66, "sleap.nn.data.resizing.PointsRescaler.transform_dataset"]], "transform_dataset() (sleap.nn.data.resizing.resizer method)": [[66, "sleap.nn.data.resizing.Resizer.transform_dataset"]], "transform_dataset() (sleap.nn.data.resizing.sizematcher method)": [[66, "sleap.nn.data.resizing.SizeMatcher.transform_dataset"]], "keymapper (class in sleap.nn.data.training)": [[67, "sleap.nn.data.training.KeyMapper"]], "input_keys (sleap.nn.data.training.keymapper property)": [[67, "sleap.nn.data.training.KeyMapper.input_keys"]], "key_maps (sleap.nn.data.training.keymapper attribute)": [[67, "sleap.nn.data.training.KeyMapper.key_maps"]], "output_keys (sleap.nn.data.training.keymapper property)": [[67, "sleap.nn.data.training.KeyMapper.output_keys"]], "sleap.nn.data.training": [[67, "module-sleap.nn.data.training"]], "split_labels() (in module sleap.nn.data.training)": [[67, "sleap.nn.data.training.split_labels"]], "split_labels_reader() (in module sleap.nn.data.training)": [[67, "sleap.nn.data.training.split_labels_reader"]], "split_labels_train_val() (in module sleap.nn.data.training)": [[67, "sleap.nn.data.training.split_labels_train_val"]], "transform_dataset() (sleap.nn.data.training.keymapper method)": [[67, "sleap.nn.data.training.KeyMapper.transform_dataset"]], "describe_tensors() (in module sleap.nn.data.utils)": [[68, "sleap.nn.data.utils.describe_tensors"]], "ensure_list() (in module sleap.nn.data.utils)": [[68, "sleap.nn.data.utils.ensure_list"]], "expand_to_rank() (in module sleap.nn.data.utils)": [[68, "sleap.nn.data.utils.expand_to_rank"]], "gaussian_pdf() (in module sleap.nn.data.utils)": [[68, "sleap.nn.data.utils.gaussian_pdf"]], "make_grid_vectors() (in module sleap.nn.data.utils)": [[68, "sleap.nn.data.utils.make_grid_vectors"]], "sleap.nn.data.utils": [[68, "module-sleap.nn.data.utils"]], "unrag_example() (in module sleap.nn.data.utils)": [[68, "sleap.nn.data.utils.unrag_example"]], "unrag_tensor() (in module sleap.nn.data.utils)": [[68, "sleap.nn.data.utils.unrag_tensor"]], "compute_dist_metrics() (in module sleap.nn.evals)": [[69, "sleap.nn.evals.compute_dist_metrics"]], "compute_dists() (in module sleap.nn.evals)": [[69, "sleap.nn.evals.compute_dists"]], "compute_generalized_voc_metrics() (in module sleap.nn.evals)": [[69, "sleap.nn.evals.compute_generalized_voc_metrics"]], "compute_instance_area() (in module sleap.nn.evals)": [[69, "sleap.nn.evals.compute_instance_area"]], "compute_oks() (in module sleap.nn.evals)": [[69, "sleap.nn.evals.compute_oks"]], "compute_pck_metrics() (in module sleap.nn.evals)": [[69, "sleap.nn.evals.compute_pck_metrics"]], "compute_visibility_conf() (in module sleap.nn.evals)": [[69, "sleap.nn.evals.compute_visibility_conf"]], "evaluate() (in module sleap.nn.evals)": [[69, "sleap.nn.evals.evaluate"]], "evaluate_model() (in module sleap.nn.evals)": [[69, "sleap.nn.evals.evaluate_model"]], "find_frame_pairs() (in module sleap.nn.evals)": [[69, "sleap.nn.evals.find_frame_pairs"]], "load_metrics() (in module sleap.nn.evals)": [[69, "sleap.nn.evals.load_metrics"]], "match_frame_pairs() (in module sleap.nn.evals)": [[69, "sleap.nn.evals.match_frame_pairs"]], "match_instances() (in module sleap.nn.evals)": [[69, "sleap.nn.evals.match_instances"]], "replace_path() (in module sleap.nn.evals)": [[69, "sleap.nn.evals.replace_path"]], "sleap.nn.evals": [[69, "module-sleap.nn.evals"]], "centeredinstanceconfmapshead (class in sleap.nn.heads)": [[70, "sleap.nn.heads.CenteredInstanceConfmapsHead"]], "centroidconfmapshead (class in sleap.nn.heads)": [[70, "sleap.nn.heads.CentroidConfmapsHead"]], "classmapshead (class in sleap.nn.heads)": [[70, "sleap.nn.heads.ClassMapsHead"]], "classvectorshead (class in sleap.nn.heads)": [[70, "sleap.nn.heads.ClassVectorsHead"]], "head (class in sleap.nn.heads)": [[70, "sleap.nn.heads.Head"]], "multiinstanceconfmapshead (class in sleap.nn.heads)": [[70, "sleap.nn.heads.MultiInstanceConfmapsHead"]], "offsetrefinementhead (class in sleap.nn.heads)": [[70, "sleap.nn.heads.OffsetRefinementHead"]], "partaffinityfieldshead (class in sleap.nn.heads)": [[70, "sleap.nn.heads.PartAffinityFieldsHead"]], "singleinstanceconfmapshead (class in sleap.nn.heads)": [[70, "sleap.nn.heads.SingleInstanceConfmapsHead"]], "activation (sleap.nn.heads.classmapshead property)": [[70, "sleap.nn.heads.ClassMapsHead.activation"]], "activation (sleap.nn.heads.classvectorshead property)": [[70, "sleap.nn.heads.ClassVectorsHead.activation"]], "activation (sleap.nn.heads.head property)": [[70, "sleap.nn.heads.Head.activation"]], "anchor_part (sleap.nn.heads.centeredinstanceconfmapshead attribute)": [[70, "sleap.nn.heads.CenteredInstanceConfmapsHead.anchor_part"]], "anchor_part (sleap.nn.heads.centroidconfmapshead attribute)": [[70, "sleap.nn.heads.CentroidConfmapsHead.anchor_part"]], "channels (sleap.nn.heads.centeredinstanceconfmapshead property)": [[70, "sleap.nn.heads.CenteredInstanceConfmapsHead.channels"]], "channels (sleap.nn.heads.centroidconfmapshead property)": [[70, "sleap.nn.heads.CentroidConfmapsHead.channels"]], "channels (sleap.nn.heads.classmapshead property)": [[70, "sleap.nn.heads.ClassMapsHead.channels"]], "channels (sleap.nn.heads.classvectorshead property)": [[70, "sleap.nn.heads.ClassVectorsHead.channels"]], "channels (sleap.nn.heads.head property)": [[70, "sleap.nn.heads.Head.channels"]], "channels (sleap.nn.heads.multiinstanceconfmapshead property)": [[70, "sleap.nn.heads.MultiInstanceConfmapsHead.channels"]], "channels (sleap.nn.heads.offsetrefinementhead property)": [[70, "sleap.nn.heads.OffsetRefinementHead.channels"]], "channels (sleap.nn.heads.partaffinityfieldshead property)": [[70, "sleap.nn.heads.PartAffinityFieldsHead.channels"]], "channels (sleap.nn.heads.singleinstanceconfmapshead property)": [[70, "sleap.nn.heads.SingleInstanceConfmapsHead.channels"]], "classes (sleap.nn.heads.classmapshead attribute)": [[70, "id1"], [70, "sleap.nn.heads.ClassMapsHead.classes"]], "classes (sleap.nn.heads.classvectorshead attribute)": [[70, "id2"], [70, "sleap.nn.heads.ClassVectorsHead.classes"]], "config (sleap.nn.heads.centeredinstanceconfmapshead attribute)": [[70, "sleap.nn.heads.CenteredInstanceConfmapsHead.config"]], "config (sleap.nn.heads.centroidconfmapshead attribute)": [[70, "sleap.nn.heads.CentroidConfmapsHead.config"]], "config (sleap.nn.heads.classmapshead attribute)": [[70, "sleap.nn.heads.ClassMapsHead.config"]], "config (sleap.nn.heads.classvectorshead attribute)": [[70, "sleap.nn.heads.ClassVectorsHead.config"]], "config (sleap.nn.heads.multiinstanceconfmapshead attribute)": [[70, "sleap.nn.heads.MultiInstanceConfmapsHead.config"]], "config (sleap.nn.heads.offsetrefinementhead attribute)": [[70, "sleap.nn.heads.OffsetRefinementHead.config"]], "config (sleap.nn.heads.partaffinityfieldshead attribute)": [[70, "sleap.nn.heads.PartAffinityFieldsHead.config"]], "config (sleap.nn.heads.singleinstanceconfmapshead attribute)": [[70, "sleap.nn.heads.SingleInstanceConfmapsHead.config"]], "edges (sleap.nn.heads.partaffinityfieldshead attribute)": [[70, "id7"], [70, "sleap.nn.heads.PartAffinityFieldsHead.edges"]], "from_config() (sleap.nn.heads.centeredinstanceconfmapshead class method)": [[70, "sleap.nn.heads.CenteredInstanceConfmapsHead.from_config"]], "from_config() (sleap.nn.heads.centroidconfmapshead class method)": [[70, "sleap.nn.heads.CentroidConfmapsHead.from_config"]], "from_config() (sleap.nn.heads.classmapshead class method)": [[70, "sleap.nn.heads.ClassMapsHead.from_config"]], "from_config() (sleap.nn.heads.classvectorshead class method)": [[70, "sleap.nn.heads.ClassVectorsHead.from_config"]], "from_config() (sleap.nn.heads.multiinstanceconfmapshead class method)": [[70, "sleap.nn.heads.MultiInstanceConfmapsHead.from_config"]], "from_config() (sleap.nn.heads.offsetrefinementhead class method)": [[70, "sleap.nn.heads.OffsetRefinementHead.from_config"]], "from_config() (sleap.nn.heads.partaffinityfieldshead class method)": [[70, "sleap.nn.heads.PartAffinityFieldsHead.from_config"]], "from_config() (sleap.nn.heads.singleinstanceconfmapshead class method)": [[70, "sleap.nn.heads.SingleInstanceConfmapsHead.from_config"]], "loss_function (sleap.nn.heads.classvectorshead property)": [[70, "sleap.nn.heads.ClassVectorsHead.loss_function"]], "loss_function (sleap.nn.heads.head property)": [[70, "sleap.nn.heads.Head.loss_function"]], "loss_weight (sleap.nn.heads.centeredinstanceconfmapshead attribute)": [[70, "sleap.nn.heads.CenteredInstanceConfmapsHead.loss_weight"]], "loss_weight (sleap.nn.heads.centroidconfmapshead attribute)": [[70, "sleap.nn.heads.CentroidConfmapsHead.loss_weight"]], "loss_weight (sleap.nn.heads.classmapshead attribute)": [[70, "sleap.nn.heads.ClassMapsHead.loss_weight"]], "loss_weight (sleap.nn.heads.classvectorshead attribute)": [[70, "sleap.nn.heads.ClassVectorsHead.loss_weight"]], "loss_weight (sleap.nn.heads.multiinstanceconfmapshead attribute)": [[70, "sleap.nn.heads.MultiInstanceConfmapsHead.loss_weight"]], "loss_weight (sleap.nn.heads.offsetrefinementhead attribute)": [[70, "id6"], [70, "sleap.nn.heads.OffsetRefinementHead.loss_weight"]], "loss_weight (sleap.nn.heads.partaffinityfieldshead attribute)": [[70, "sleap.nn.heads.PartAffinityFieldsHead.loss_weight"]], "loss_weight (sleap.nn.heads.singleinstanceconfmapshead attribute)": [[70, "sleap.nn.heads.SingleInstanceConfmapsHead.loss_weight"]], "make_head() (sleap.nn.heads.classvectorshead method)": [[70, "sleap.nn.heads.ClassVectorsHead.make_head"]], "make_head() (sleap.nn.heads.head method)": [[70, "sleap.nn.heads.Head.make_head"]], "num_fc_layers (sleap.nn.heads.classvectorshead attribute)": [[70, "sleap.nn.heads.ClassVectorsHead.num_fc_layers"]], "num_fc_units (sleap.nn.heads.classvectorshead attribute)": [[70, "sleap.nn.heads.ClassVectorsHead.num_fc_units"]], "output_stride (sleap.nn.heads.centeredinstanceconfmapshead attribute)": [[70, "sleap.nn.heads.CenteredInstanceConfmapsHead.output_stride"]], "output_stride (sleap.nn.heads.centroidconfmapshead attribute)": [[70, "sleap.nn.heads.CentroidConfmapsHead.output_stride"]], "output_stride (sleap.nn.heads.classmapshead attribute)": [[70, "sleap.nn.heads.ClassMapsHead.output_stride"]], "output_stride (sleap.nn.heads.classvectorshead attribute)": [[70, "sleap.nn.heads.ClassVectorsHead.output_stride"]], "output_stride (sleap.nn.heads.multiinstanceconfmapshead attribute)": [[70, "sleap.nn.heads.MultiInstanceConfmapsHead.output_stride"]], "output_stride (sleap.nn.heads.offsetrefinementhead attribute)": [[70, "sleap.nn.heads.OffsetRefinementHead.output_stride"]], "output_stride (sleap.nn.heads.partaffinityfieldshead attribute)": [[70, "sleap.nn.heads.PartAffinityFieldsHead.output_stride"]], "output_stride (sleap.nn.heads.singleinstanceconfmapshead attribute)": [[70, "sleap.nn.heads.SingleInstanceConfmapsHead.output_stride"]], "part_names (sleap.nn.heads.centeredinstanceconfmapshead attribute)": [[70, "id0"], [70, "sleap.nn.heads.CenteredInstanceConfmapsHead.part_names"]], "part_names (sleap.nn.heads.multiinstanceconfmapshead attribute)": [[70, "id3"], [70, "sleap.nn.heads.MultiInstanceConfmapsHead.part_names"]], "part_names (sleap.nn.heads.offsetrefinementhead attribute)": [[70, "id4"], [70, "sleap.nn.heads.OffsetRefinementHead.part_names"]], "part_names (sleap.nn.heads.singleinstanceconfmapshead attribute)": [[70, "id8"], [70, "sleap.nn.heads.SingleInstanceConfmapsHead.part_names"]], "sigma (sleap.nn.heads.centeredinstanceconfmapshead attribute)": [[70, "sleap.nn.heads.CenteredInstanceConfmapsHead.sigma"]], "sigma (sleap.nn.heads.centroidconfmapshead attribute)": [[70, "sleap.nn.heads.CentroidConfmapsHead.sigma"]], "sigma (sleap.nn.heads.classmapshead attribute)": [[70, "sleap.nn.heads.ClassMapsHead.sigma"]], "sigma (sleap.nn.heads.multiinstanceconfmapshead attribute)": [[70, "sleap.nn.heads.MultiInstanceConfmapsHead.sigma"]], "sigma (sleap.nn.heads.partaffinityfieldshead attribute)": [[70, "sleap.nn.heads.PartAffinityFieldsHead.sigma"]], "sigma (sleap.nn.heads.singleinstanceconfmapshead attribute)": [[70, "sleap.nn.heads.SingleInstanceConfmapsHead.sigma"]], "sigma_threshold (sleap.nn.heads.offsetrefinementhead attribute)": [[70, "id5"], [70, "sleap.nn.heads.OffsetRefinementHead.sigma_threshold"]], "sleap.nn.heads": [[70, "module-sleap.nn.heads"]], "classify_peaks_from_maps() (in module sleap.nn.identity)": [[71, "sleap.nn.identity.classify_peaks_from_maps"]], "classify_peaks_from_vectors() (in module sleap.nn.identity)": [[71, "sleap.nn.identity.classify_peaks_from_vectors"]], "group_class_peaks() (in module sleap.nn.identity)": [[71, "sleap.nn.identity.group_class_peaks"]], "sleap.nn.identity": [[71, "module-sleap.nn.identity"]], "bottomupinferencelayer (class in sleap.nn.inference)": [[72, "sleap.nn.inference.BottomUpInferenceLayer"]], "bottomupinferencemodel (class in sleap.nn.inference)": [[72, "sleap.nn.inference.BottomUpInferenceModel"]], "bottomupmulticlassinferencelayer (class in sleap.nn.inference)": [[72, "sleap.nn.inference.BottomUpMultiClassInferenceLayer"]], "bottomupmulticlassinferencemodel (class in sleap.nn.inference)": [[72, "sleap.nn.inference.BottomUpMultiClassInferenceModel"]], "bottomupmulticlasspredictor (class in sleap.nn.inference)": [[72, "sleap.nn.inference.BottomUpMultiClassPredictor"]], "bottomuppredictor (class in sleap.nn.inference)": [[72, "sleap.nn.inference.BottomUpPredictor"]], "centroidcrop (class in sleap.nn.inference)": [[72, "sleap.nn.inference.CentroidCrop"]], "centroidcropgroundtruth (class in sleap.nn.inference)": [[72, "sleap.nn.inference.CentroidCropGroundTruth"]], "centroidinferencemodel (class in sleap.nn.inference)": [[72, "sleap.nn.inference.CentroidInferenceModel"]], "findinstancepeaks (class in sleap.nn.inference)": [[72, "sleap.nn.inference.FindInstancePeaks"]], "findinstancepeaksgroundtruth (class in sleap.nn.inference)": [[72, "sleap.nn.inference.FindInstancePeaksGroundTruth"]], "inferencelayer (class in sleap.nn.inference)": [[72, "sleap.nn.inference.InferenceLayer"]], "inferencemodel (class in sleap.nn.inference)": [[72, "sleap.nn.inference.InferenceModel"]], "movenetinferencelayer (class in sleap.nn.inference)": [[72, "sleap.nn.inference.MoveNetInferenceLayer"]], "movenetinferencemodel (class in sleap.nn.inference)": [[72, "sleap.nn.inference.MoveNetInferenceModel"]], "movenetpredictor (class in sleap.nn.inference)": [[72, "sleap.nn.inference.MoveNetPredictor"]], "predictor (class in sleap.nn.inference)": [[72, "sleap.nn.inference.Predictor"]], "ratecolumn (class in sleap.nn.inference)": [[72, "sleap.nn.inference.RateColumn"]], "singleinstanceinferencelayer (class in sleap.nn.inference)": [[72, "sleap.nn.inference.SingleInstanceInferenceLayer"]], "singleinstanceinferencemodel (class in sleap.nn.inference)": [[72, "sleap.nn.inference.SingleInstanceInferenceModel"]], "singleinstancepredictor (class in sleap.nn.inference)": [[72, "sleap.nn.inference.SingleInstancePredictor"]], "topdowninferencemodel (class in sleap.nn.inference)": [[72, "sleap.nn.inference.TopDownInferenceModel"]], "topdownmulticlassfindpeaks (class in sleap.nn.inference)": [[72, "sleap.nn.inference.TopDownMultiClassFindPeaks"]], "topdownmulticlassinferencemodel (class in sleap.nn.inference)": [[72, "sleap.nn.inference.TopDownMultiClassInferenceModel"]], "topdownmulticlasspredictor (class in sleap.nn.inference)": [[72, "sleap.nn.inference.TopDownMultiClassPredictor"]], "topdownpredictor (class in sleap.nn.inference)": [[72, "sleap.nn.inference.TopDownPredictor"]], "visualpredictor (class in sleap.nn.inference)": [[72, "sleap.nn.inference.VisualPredictor"]], "batch_size (sleap.nn.inference.bottomupmulticlasspredictor attribute)": [[72, "sleap.nn.inference.BottomUpMultiClassPredictor.batch_size"]], "batch_size (sleap.nn.inference.bottomuppredictor attribute)": [[72, "sleap.nn.inference.BottomUpPredictor.batch_size"]], "batch_size (sleap.nn.inference.movenetpredictor attribute)": [[72, "sleap.nn.inference.MoveNetPredictor.batch_size"]], "batch_size (sleap.nn.inference.singleinstancepredictor attribute)": [[72, "sleap.nn.inference.SingleInstancePredictor.batch_size"]], "batch_size (sleap.nn.inference.topdownmulticlasspredictor attribute)": [[72, "sleap.nn.inference.TopDownMultiClassPredictor.batch_size"]], "batch_size (sleap.nn.inference.topdownpredictor attribute)": [[72, "sleap.nn.inference.TopDownPredictor.batch_size"]], "bottomup_config (sleap.nn.inference.bottomuppredictor attribute)": [[72, "sleap.nn.inference.BottomUpPredictor.bottomup_config"]], "bottomup_layer (sleap.nn.inference.bottomupinferencemodel attribute)": [[72, "sleap.nn.inference.BottomUpInferenceModel.bottomup_layer"]], "bottomup_model (sleap.nn.inference.bottomuppredictor attribute)": [[72, "sleap.nn.inference.BottomUpPredictor.bottomup_model"]], "call() (sleap.nn.inference.bottomupinferencelayer method)": [[72, "sleap.nn.inference.BottomUpInferenceLayer.call"]], "call() (sleap.nn.inference.bottomupinferencemodel method)": [[72, "sleap.nn.inference.BottomUpInferenceModel.call"]], "call() (sleap.nn.inference.bottomupmulticlassinferencelayer method)": [[72, "sleap.nn.inference.BottomUpMultiClassInferenceLayer.call"]], "call() (sleap.nn.inference.bottomupmulticlassinferencemodel method)": [[72, "sleap.nn.inference.BottomUpMultiClassInferenceModel.call"]], "call() (sleap.nn.inference.centroidcrop method)": [[72, "sleap.nn.inference.CentroidCrop.call"]], "call() (sleap.nn.inference.centroidcropgroundtruth method)": [[72, "sleap.nn.inference.CentroidCropGroundTruth.call"]], "call() (sleap.nn.inference.centroidinferencemodel method)": [[72, "sleap.nn.inference.CentroidInferenceModel.call"]], "call() (sleap.nn.inference.findinstancepeaks method)": [[72, "sleap.nn.inference.FindInstancePeaks.call"]], "call() (sleap.nn.inference.findinstancepeaksgroundtruth method)": [[72, "sleap.nn.inference.FindInstancePeaksGroundTruth.call"]], "call() (sleap.nn.inference.inferencelayer method)": [[72, "sleap.nn.inference.InferenceLayer.call"]], "call() (sleap.nn.inference.movenetinferencelayer method)": [[72, "sleap.nn.inference.MoveNetInferenceLayer.call"]], "call() (sleap.nn.inference.movenetinferencemodel method)": [[72, "sleap.nn.inference.MoveNetInferenceModel.call"]], "call() (sleap.nn.inference.singleinstanceinferencelayer method)": [[72, "sleap.nn.inference.SingleInstanceInferenceLayer.call"]], "call() (sleap.nn.inference.singleinstanceinferencemodel method)": [[72, "sleap.nn.inference.SingleInstanceInferenceModel.call"]], "call() (sleap.nn.inference.topdowninferencemodel method)": [[72, "sleap.nn.inference.TopDownInferenceModel.call"]], "call() (sleap.nn.inference.topdownmulticlassfindpeaks method)": [[72, "sleap.nn.inference.TopDownMultiClassFindPeaks.call"]], "call() (sleap.nn.inference.topdownmulticlassinferencemodel method)": [[72, "sleap.nn.inference.TopDownMultiClassInferenceModel.call"]], "centroid_config (sleap.nn.inference.topdownmulticlasspredictor attribute)": [[72, "sleap.nn.inference.TopDownMultiClassPredictor.centroid_config"]], "centroid_config (sleap.nn.inference.topdownpredictor attribute)": [[72, "sleap.nn.inference.TopDownPredictor.centroid_config"]], "centroid_crop (sleap.nn.inference.centroidinferencemodel attribute)": [[72, "sleap.nn.inference.CentroidInferenceModel.centroid_crop"]], "centroid_crop (sleap.nn.inference.topdowninferencemodel attribute)": [[72, "sleap.nn.inference.TopDownInferenceModel.centroid_crop"]], "centroid_crop (sleap.nn.inference.topdownmulticlassinferencemodel attribute)": [[72, "sleap.nn.inference.TopDownMultiClassInferenceModel.centroid_crop"]], "centroid_model (sleap.nn.inference.topdownmulticlasspredictor attribute)": [[72, "sleap.nn.inference.TopDownMultiClassPredictor.centroid_model"]], "centroid_model (sleap.nn.inference.topdownpredictor attribute)": [[72, "sleap.nn.inference.TopDownPredictor.centroid_model"]], "class_maps_ind (sleap.nn.inference.bottomupmulticlassinferencelayer attribute)": [[72, "sleap.nn.inference.BottomUpMultiClassInferenceLayer.class_maps_ind"]], "class_maps_output_stride (sleap.nn.inference.bottomupmulticlassinferencelayer attribute)": [[72, "sleap.nn.inference.BottomUpMultiClassInferenceLayer.class_maps_output_stride"]], "class_vectors_ind (sleap.nn.inference.topdownmulticlassfindpeaks attribute)": [[72, "sleap.nn.inference.TopDownMultiClassFindPeaks.class_vectors_ind"]], "cm_output_stride (sleap.nn.inference.bottomupinferencelayer attribute)": [[72, "sleap.nn.inference.BottomUpInferenceLayer.cm_output_stride"]], "cm_output_stride (sleap.nn.inference.bottomupmulticlassinferencelayer attribute)": [[72, "sleap.nn.inference.BottomUpMultiClassInferenceLayer.cm_output_stride"]], "config (sleap.nn.inference.bottomupmulticlasspredictor attribute)": [[72, "sleap.nn.inference.BottomUpMultiClassPredictor.config"]], "confmap_config (sleap.nn.inference.singleinstancepredictor attribute)": [[72, "sleap.nn.inference.SingleInstancePredictor.confmap_config"]], "confmap_config (sleap.nn.inference.topdownmulticlasspredictor attribute)": [[72, "sleap.nn.inference.TopDownMultiClassPredictor.confmap_config"]], "confmap_config (sleap.nn.inference.topdownpredictor attribute)": [[72, "sleap.nn.inference.TopDownPredictor.confmap_config"]], "confmap_model (sleap.nn.inference.singleinstancepredictor attribute)": [[72, "sleap.nn.inference.SingleInstancePredictor.confmap_model"]], "confmap_model (sleap.nn.inference.topdownmulticlasspredictor attribute)": [[72, "sleap.nn.inference.TopDownMultiClassPredictor.confmap_model"]], "confmap_model (sleap.nn.inference.topdownpredictor attribute)": [[72, "sleap.nn.inference.TopDownPredictor.confmap_model"]], "confmaps_ind (sleap.nn.inference.bottomupinferencelayer attribute)": [[72, "sleap.nn.inference.BottomUpInferenceLayer.confmaps_ind"]], "confmaps_ind (sleap.nn.inference.bottomupmulticlassinferencelayer attribute)": [[72, "sleap.nn.inference.BottomUpMultiClassInferenceLayer.confmaps_ind"]], "confmaps_ind (sleap.nn.inference.centroidcrop attribute)": [[72, "sleap.nn.inference.CentroidCrop.confmaps_ind"]], "confmaps_ind (sleap.nn.inference.findinstancepeaks attribute)": [[72, "sleap.nn.inference.FindInstancePeaks.confmaps_ind"]], "confmaps_ind (sleap.nn.inference.singleinstanceinferencelayer attribute)": [[72, "sleap.nn.inference.SingleInstanceInferenceLayer.confmaps_ind"]], "confmaps_ind (sleap.nn.inference.topdownmulticlassfindpeaks attribute)": [[72, "sleap.nn.inference.TopDownMultiClassFindPeaks.confmaps_ind"]], "crop_size (sleap.nn.inference.centroidcrop attribute)": [[72, "sleap.nn.inference.CentroidCrop.crop_size"]], "crop_size (sleap.nn.inference.centroidcropgroundtruth attribute)": [[72, "sleap.nn.inference.CentroidCropGroundTruth.crop_size"]], "dist_penalty_weight (sleap.nn.inference.bottomuppredictor attribute)": [[72, "sleap.nn.inference.BottomUpPredictor.dist_penalty_weight"]], "ensure_float (sleap.nn.inference.inferencelayer attribute)": [[72, "sleap.nn.inference.InferenceLayer.ensure_float"]], "ensure_float (sleap.nn.inference.movenetinferencelayer attribute)": [[72, "sleap.nn.inference.MoveNetInferenceLayer.ensure_float"]], "ensure_grayscale (sleap.nn.inference.inferencelayer attribute)": [[72, "sleap.nn.inference.InferenceLayer.ensure_grayscale"]], "ensure_grayscale (sleap.nn.inference.movenetinferencelayer attribute)": [[72, "sleap.nn.inference.MoveNetInferenceLayer.ensure_grayscale"]], "export_cli() (in module sleap.nn.inference)": [[72, "sleap.nn.inference.export_cli"]], "export_model() (in module sleap.nn.inference)": [[72, "sleap.nn.inference.export_model"]], "export_model() (sleap.nn.inference.inferencemodel method)": [[72, "sleap.nn.inference.InferenceModel.export_model"]], "export_model() (sleap.nn.inference.predictor method)": [[72, "sleap.nn.inference.Predictor.export_model"]], "export_model() (sleap.nn.inference.singleinstancepredictor method)": [[72, "sleap.nn.inference.SingleInstancePredictor.export_model"]], "export_model() (sleap.nn.inference.topdownmulticlassinferencemodel method)": [[72, "sleap.nn.inference.TopDownMultiClassInferenceModel.export_model"]], "export_model() (sleap.nn.inference.topdownmulticlasspredictor method)": [[72, "sleap.nn.inference.TopDownMultiClassPredictor.export_model"]], "export_model() (sleap.nn.inference.topdownpredictor method)": [[72, "sleap.nn.inference.TopDownPredictor.export_model"]], "find_head() (in module sleap.nn.inference)": [[72, "sleap.nn.inference.find_head"]], "find_peaks() (sleap.nn.inference.bottomupinferencelayer method)": [[72, "sleap.nn.inference.BottomUpInferenceLayer.find_peaks"]], "find_peaks() (sleap.nn.inference.bottomupmulticlassinferencelayer method)": [[72, "sleap.nn.inference.BottomUpMultiClassInferenceLayer.find_peaks"]], "forward_pass() (sleap.nn.inference.bottomupinferencelayer method)": [[72, "sleap.nn.inference.BottomUpInferenceLayer.forward_pass"]], "forward_pass() (sleap.nn.inference.bottomupmulticlassinferencelayer method)": [[72, "sleap.nn.inference.BottomUpMultiClassInferenceLayer.forward_pass"]], "from_model_paths() (sleap.nn.inference.predictor class method)": [[72, "sleap.nn.inference.Predictor.from_model_paths"]], "from_trained_models() (sleap.nn.inference.bottomupmulticlasspredictor class method)": [[72, "sleap.nn.inference.BottomUpMultiClassPredictor.from_trained_models"]], "from_trained_models() (sleap.nn.inference.bottomuppredictor class method)": [[72, "sleap.nn.inference.BottomUpPredictor.from_trained_models"]], "from_trained_models() (sleap.nn.inference.movenetpredictor class method)": [[72, "sleap.nn.inference.MoveNetPredictor.from_trained_models"]], "from_trained_models() (sleap.nn.inference.singleinstancepredictor class method)": [[72, "sleap.nn.inference.SingleInstancePredictor.from_trained_models"]], "from_trained_models() (sleap.nn.inference.topdownmulticlasspredictor class method)": [[72, "sleap.nn.inference.TopDownMultiClassPredictor.from_trained_models"]], "from_trained_models() (sleap.nn.inference.topdownpredictor class method)": [[72, "sleap.nn.inference.TopDownPredictor.from_trained_models"]], "get_keras_model_path() (in module sleap.nn.inference)": [[72, "sleap.nn.inference.get_keras_model_path"]], "get_model_output_stride() (in module sleap.nn.inference)": [[72, "sleap.nn.inference.get_model_output_stride"]], "inference_layer (sleap.nn.inference.bottomupmulticlassinferencemodel attribute)": [[72, "sleap.nn.inference.BottomUpMultiClassInferenceModel.inference_layer"]], "inference_layer (sleap.nn.inference.movenetinferencemodel attribute)": [[72, "sleap.nn.inference.MoveNetInferenceModel.inference_layer"]], "inference_model (sleap.nn.inference.bottomupmulticlasspredictor attribute)": [[72, "sleap.nn.inference.BottomUpMultiClassPredictor.inference_model"]], "inference_model (sleap.nn.inference.bottomuppredictor attribute)": [[72, "sleap.nn.inference.BottomUpPredictor.inference_model"]], "inference_model (sleap.nn.inference.movenetpredictor attribute)": [[72, "sleap.nn.inference.MoveNetPredictor.inference_model"]], "inference_model (sleap.nn.inference.singleinstancepredictor attribute)": [[72, "sleap.nn.inference.SingleInstancePredictor.inference_model"]], "inference_model (sleap.nn.inference.topdownmulticlasspredictor attribute)": [[72, "sleap.nn.inference.TopDownMultiClassPredictor.inference_model"]], "inference_model (sleap.nn.inference.topdownpredictor attribute)": [[72, "sleap.nn.inference.TopDownPredictor.inference_model"]], "input_scale (sleap.nn.inference.bottomupinferencelayer attribute)": [[72, "sleap.nn.inference.BottomUpInferenceLayer.input_scale"]], "input_scale (sleap.nn.inference.bottomupmulticlassinferencelayer attribute)": [[72, "sleap.nn.inference.BottomUpMultiClassInferenceLayer.input_scale"]], "input_scale (sleap.nn.inference.centroidcrop attribute)": [[72, "sleap.nn.inference.CentroidCrop.input_scale"]], "input_scale (sleap.nn.inference.findinstancepeaks attribute)": [[72, "sleap.nn.inference.FindInstancePeaks.input_scale"]], "input_scale (sleap.nn.inference.inferencelayer attribute)": [[72, "sleap.nn.inference.InferenceLayer.input_scale"]], "input_scale (sleap.nn.inference.movenetinferencelayer attribute)": [[72, "sleap.nn.inference.MoveNetInferenceLayer.input_scale"]], "input_scale (sleap.nn.inference.singleinstanceinferencelayer attribute)": [[72, "sleap.nn.inference.SingleInstanceInferenceLayer.input_scale"]], "input_scale (sleap.nn.inference.topdownmulticlassfindpeaks attribute)": [[72, "sleap.nn.inference.TopDownMultiClassFindPeaks.input_scale"]], "instance_peaks (sleap.nn.inference.topdowninferencemodel attribute)": [[72, "sleap.nn.inference.TopDownInferenceModel.instance_peaks"]], "instance_peaks (sleap.nn.inference.topdownmulticlassinferencemodel attribute)": [[72, "sleap.nn.inference.TopDownMultiClassInferenceModel.instance_peaks"]], "integral_patch_size (sleap.nn.inference.bottomupinferencelayer attribute)": [[72, "sleap.nn.inference.BottomUpInferenceLayer.integral_patch_size"]], "integral_patch_size (sleap.nn.inference.bottomupmulticlassinferencelayer attribute)": [[72, "sleap.nn.inference.BottomUpMultiClassInferenceLayer.integral_patch_size"]], "integral_patch_size (sleap.nn.inference.bottomupmulticlasspredictor attribute)": [[72, "sleap.nn.inference.BottomUpMultiClassPredictor.integral_patch_size"]], "integral_patch_size (sleap.nn.inference.bottomuppredictor attribute)": [[72, "sleap.nn.inference.BottomUpPredictor.integral_patch_size"]], "integral_patch_size (sleap.nn.inference.centroidcrop attribute)": [[72, "sleap.nn.inference.CentroidCrop.integral_patch_size"]], "integral_patch_size (sleap.nn.inference.findinstancepeaks attribute)": [[72, "sleap.nn.inference.FindInstancePeaks.integral_patch_size"]], "integral_patch_size (sleap.nn.inference.singleinstanceinferencelayer attribute)": [[72, "sleap.nn.inference.SingleInstanceInferenceLayer.integral_patch_size"]], "integral_patch_size (sleap.nn.inference.singleinstancepredictor attribute)": [[72, "sleap.nn.inference.SingleInstancePredictor.integral_patch_size"]], "integral_patch_size (sleap.nn.inference.topdownmulticlassfindpeaks attribute)": [[72, "sleap.nn.inference.TopDownMultiClassFindPeaks.integral_patch_size"]], "integral_patch_size (sleap.nn.inference.topdownmulticlasspredictor attribute)": [[72, "sleap.nn.inference.TopDownMultiClassPredictor.integral_patch_size"]], "integral_patch_size (sleap.nn.inference.topdownpredictor attribute)": [[72, "sleap.nn.inference.TopDownPredictor.integral_patch_size"]], "integral_refinement (sleap.nn.inference.bottomupmulticlasspredictor attribute)": [[72, "sleap.nn.inference.BottomUpMultiClassPredictor.integral_refinement"]], "integral_refinement (sleap.nn.inference.bottomuppredictor attribute)": [[72, "sleap.nn.inference.BottomUpPredictor.integral_refinement"]], "integral_refinement (sleap.nn.inference.singleinstancepredictor attribute)": [[72, "sleap.nn.inference.SingleInstancePredictor.integral_refinement"]], "integral_refinement (sleap.nn.inference.topdownmulticlasspredictor attribute)": [[72, "sleap.nn.inference.TopDownMultiClassPredictor.integral_refinement"]], "integral_refinement (sleap.nn.inference.topdownpredictor attribute)": [[72, "sleap.nn.inference.TopDownPredictor.integral_refinement"]], "is_grayscale (sleap.nn.inference.bottomupmulticlasspredictor property)": [[72, "sleap.nn.inference.BottomUpMultiClassPredictor.is_grayscale"]], "is_grayscale (sleap.nn.inference.bottomuppredictor property)": [[72, "sleap.nn.inference.BottomUpPredictor.is_grayscale"]], "is_grayscale (sleap.nn.inference.movenetpredictor property)": [[72, "sleap.nn.inference.MoveNetPredictor.is_grayscale"]], "is_grayscale (sleap.nn.inference.predictor property)": [[72, "sleap.nn.inference.Predictor.is_grayscale"]], "is_grayscale (sleap.nn.inference.singleinstancepredictor property)": [[72, "sleap.nn.inference.SingleInstancePredictor.is_grayscale"]], "is_grayscale (sleap.nn.inference.topdownmulticlasspredictor property)": [[72, "sleap.nn.inference.TopDownMultiClassPredictor.is_grayscale"]], "is_grayscale (sleap.nn.inference.topdownpredictor property)": [[72, "sleap.nn.inference.TopDownPredictor.is_grayscale"]], "keras_model (sleap.nn.inference.bottomupinferencelayer attribute)": [[72, "sleap.nn.inference.BottomUpInferenceLayer.keras_model"]], "keras_model (sleap.nn.inference.bottomupmulticlassinferencelayer attribute)": [[72, "sleap.nn.inference.BottomUpMultiClassInferenceLayer.keras_model"]], "keras_model (sleap.nn.inference.centroidcrop attribute)": [[72, "sleap.nn.inference.CentroidCrop.keras_model"]], "keras_model (sleap.nn.inference.findinstancepeaks attribute)": [[72, "sleap.nn.inference.FindInstancePeaks.keras_model"]], "keras_model (sleap.nn.inference.inferencelayer attribute)": [[72, "sleap.nn.inference.InferenceLayer.keras_model"]], "keras_model (sleap.nn.inference.movenetinferencelayer attribute)": [[72, "sleap.nn.inference.MoveNetInferenceLayer.keras_model"]], "keras_model (sleap.nn.inference.singleinstanceinferencelayer attribute)": [[72, "sleap.nn.inference.SingleInstanceInferenceLayer.keras_model"]], "keras_model (sleap.nn.inference.topdownmulticlassfindpeaks attribute)": [[72, "sleap.nn.inference.TopDownMultiClassFindPeaks.keras_model"]], "load_model() (in module sleap.nn.inference)": [[72, "sleap.nn.inference.load_model"]], "main() (in module sleap.nn.inference)": [[72, "sleap.nn.inference.main"]], "make_model_movenet() (in module sleap.nn.inference)": [[72, "sleap.nn.inference.make_model_movenet"]], "make_pipeline() (sleap.nn.inference.predictor method)": [[72, "sleap.nn.inference.Predictor.make_pipeline"]], "make_pipeline() (sleap.nn.inference.topdownmulticlasspredictor method)": [[72, "sleap.nn.inference.TopDownMultiClassPredictor.make_pipeline"]], "make_pipeline() (sleap.nn.inference.topdownpredictor method)": [[72, "sleap.nn.inference.TopDownPredictor.make_pipeline"]], "make_pipeline() (sleap.nn.inference.visualpredictor method)": [[72, "sleap.nn.inference.VisualPredictor.make_pipeline"]], "max_edge_length_ratio (sleap.nn.inference.bottomuppredictor attribute)": [[72, "sleap.nn.inference.BottomUpPredictor.max_edge_length_ratio"]], "max_instances (sleap.nn.inference.bottomuppredictor attribute)": [[72, "sleap.nn.inference.BottomUpPredictor.max_instances"]], "max_instances (sleap.nn.inference.centroidcrop attribute)": [[72, "sleap.nn.inference.CentroidCrop.max_instances"]], "max_instances (sleap.nn.inference.topdownpredictor attribute)": [[72, "sleap.nn.inference.TopDownPredictor.max_instances"]], "min_line_scores (sleap.nn.inference.bottomuppredictor attribute)": [[72, "sleap.nn.inference.BottomUpPredictor.min_line_scores"]], "model (sleap.nn.inference.bottomupmulticlasspredictor attribute)": [[72, "sleap.nn.inference.BottomUpMultiClassPredictor.model"]], "model_name (sleap.nn.inference.movenetinferencelayer attribute)": [[72, "sleap.nn.inference.MoveNetInferenceLayer.model_name"]], "model_name (sleap.nn.inference.movenetpredictor attribute)": [[72, "sleap.nn.inference.MoveNetPredictor.model_name"]], "offsets_ind (sleap.nn.inference.bottomupinferencelayer attribute)": [[72, "sleap.nn.inference.BottomUpInferenceLayer.offsets_ind"]], "offsets_ind (sleap.nn.inference.bottomupmulticlassinferencelayer attribute)": [[72, "sleap.nn.inference.BottomUpMultiClassInferenceLayer.offsets_ind"]], "offsets_ind (sleap.nn.inference.centroidcrop attribute)": [[72, "sleap.nn.inference.CentroidCrop.offsets_ind"]], "offsets_ind (sleap.nn.inference.findinstancepeaks attribute)": [[72, "sleap.nn.inference.FindInstancePeaks.offsets_ind"]], "offsets_ind (sleap.nn.inference.singleinstanceinferencelayer attribute)": [[72, "sleap.nn.inference.SingleInstanceInferenceLayer.offsets_ind"]], "offsets_ind (sleap.nn.inference.topdownmulticlassfindpeaks attribute)": [[72, "sleap.nn.inference.TopDownMultiClassFindPeaks.offsets_ind"]], "optimal_grouping (sleap.nn.inference.topdownmulticlassfindpeaks attribute)": [[72, "sleap.nn.inference.TopDownMultiClassFindPeaks.optimal_grouping"]], "output_stride (sleap.nn.inference.centroidcrop attribute)": [[72, "sleap.nn.inference.CentroidCrop.output_stride"]], "output_stride (sleap.nn.inference.findinstancepeaks attribute)": [[72, "sleap.nn.inference.FindInstancePeaks.output_stride"]], "output_stride (sleap.nn.inference.singleinstanceinferencelayer attribute)": [[72, "sleap.nn.inference.SingleInstanceInferenceLayer.output_stride"]], "output_stride (sleap.nn.inference.topdownmulticlassfindpeaks attribute)": [[72, "sleap.nn.inference.TopDownMultiClassFindPeaks.output_stride"]], "pad_to_stride (sleap.nn.inference.centroidcrop attribute)": [[72, "sleap.nn.inference.CentroidCrop.pad_to_stride"]], "pad_to_stride (sleap.nn.inference.inferencelayer attribute)": [[72, "sleap.nn.inference.InferenceLayer.pad_to_stride"]], "pad_to_stride (sleap.nn.inference.movenetinferencelayer attribute)": [[72, "sleap.nn.inference.MoveNetInferenceLayer.pad_to_stride"]], "pad_to_stride (sleap.nn.inference.singleinstanceinferencelayer attribute)": [[72, "sleap.nn.inference.SingleInstanceInferenceLayer.pad_to_stride"]], "paf_line_points (sleap.nn.inference.bottomuppredictor attribute)": [[72, "sleap.nn.inference.BottomUpPredictor.paf_line_points"]], "paf_output_stride (sleap.nn.inference.bottomupinferencelayer attribute)": [[72, "sleap.nn.inference.BottomUpInferenceLayer.paf_output_stride"]], "paf_scorer (sleap.nn.inference.bottomupinferencelayer attribute)": [[72, "sleap.nn.inference.BottomUpInferenceLayer.paf_scorer"]], "pafs_ind (sleap.nn.inference.bottomupinferencelayer attribute)": [[72, "sleap.nn.inference.BottomUpInferenceLayer.pafs_ind"]], "peak_threshold (sleap.nn.inference.bottomupinferencelayer attribute)": [[72, "sleap.nn.inference.BottomUpInferenceLayer.peak_threshold"]], "peak_threshold (sleap.nn.inference.bottomupmulticlassinferencelayer attribute)": [[72, "sleap.nn.inference.BottomUpMultiClassInferenceLayer.peak_threshold"]], "peak_threshold (sleap.nn.inference.bottomupmulticlasspredictor attribute)": [[72, "sleap.nn.inference.BottomUpMultiClassPredictor.peak_threshold"]], "peak_threshold (sleap.nn.inference.bottomuppredictor attribute)": [[72, "sleap.nn.inference.BottomUpPredictor.peak_threshold"]], "peak_threshold (sleap.nn.inference.centroidcrop attribute)": [[72, "sleap.nn.inference.CentroidCrop.peak_threshold"]], "peak_threshold (sleap.nn.inference.findinstancepeaks attribute)": [[72, "sleap.nn.inference.FindInstancePeaks.peak_threshold"]], "peak_threshold (sleap.nn.inference.movenetpredictor attribute)": [[72, "sleap.nn.inference.MoveNetPredictor.peak_threshold"]], "peak_threshold (sleap.nn.inference.singleinstanceinferencelayer attribute)": [[72, "sleap.nn.inference.SingleInstanceInferenceLayer.peak_threshold"]], "peak_threshold (sleap.nn.inference.singleinstancepredictor attribute)": [[72, "sleap.nn.inference.SingleInstancePredictor.peak_threshold"]], "peak_threshold (sleap.nn.inference.topdownmulticlassfindpeaks attribute)": [[72, "sleap.nn.inference.TopDownMultiClassFindPeaks.peak_threshold"]], "peak_threshold (sleap.nn.inference.topdownmulticlasspredictor attribute)": [[72, "sleap.nn.inference.TopDownMultiClassPredictor.peak_threshold"]], "peak_threshold (sleap.nn.inference.topdownpredictor attribute)": [[72, "sleap.nn.inference.TopDownPredictor.peak_threshold"]], "pipeline (sleap.nn.inference.bottomupmulticlasspredictor attribute)": [[72, "sleap.nn.inference.BottomUpMultiClassPredictor.pipeline"]], "pipeline (sleap.nn.inference.bottomuppredictor attribute)": [[72, "sleap.nn.inference.BottomUpPredictor.pipeline"]], "pipeline (sleap.nn.inference.movenetpredictor attribute)": [[72, "sleap.nn.inference.MoveNetPredictor.pipeline"]], "pipeline (sleap.nn.inference.singleinstancepredictor attribute)": [[72, "sleap.nn.inference.SingleInstancePredictor.pipeline"]], "pipeline (sleap.nn.inference.topdownmulticlasspredictor attribute)": [[72, "sleap.nn.inference.TopDownMultiClassPredictor.pipeline"]], "pipeline (sleap.nn.inference.topdownpredictor attribute)": [[72, "sleap.nn.inference.TopDownPredictor.pipeline"]], "predict() (sleap.nn.inference.inferencemodel method)": [[72, "sleap.nn.inference.InferenceModel.predict"]], "predict() (sleap.nn.inference.predictor method)": [[72, "sleap.nn.inference.Predictor.predict"]], "predict() (sleap.nn.inference.visualpredictor method)": [[72, "sleap.nn.inference.VisualPredictor.predict"]], "predict_on_batch() (sleap.nn.inference.inferencemodel method)": [[72, "sleap.nn.inference.InferenceModel.predict_on_batch"]], "preprocess() (sleap.nn.inference.inferencelayer method)": [[72, "sleap.nn.inference.InferenceLayer.preprocess"]], "refinement (sleap.nn.inference.bottomupinferencelayer attribute)": [[72, "sleap.nn.inference.BottomUpInferenceLayer.refinement"]], "refinement (sleap.nn.inference.bottomupmulticlassinferencelayer attribute)": [[72, "sleap.nn.inference.BottomUpMultiClassInferenceLayer.refinement"]], "refinement (sleap.nn.inference.centroidcrop attribute)": [[72, "sleap.nn.inference.CentroidCrop.refinement"]], "refinement (sleap.nn.inference.findinstancepeaks attribute)": [[72, "sleap.nn.inference.FindInstancePeaks.refinement"]], "refinement (sleap.nn.inference.singleinstanceinferencelayer attribute)": [[72, "sleap.nn.inference.SingleInstanceInferenceLayer.refinement"]], "refinement (sleap.nn.inference.topdownmulticlassfindpeaks attribute)": [[72, "sleap.nn.inference.TopDownMultiClassFindPeaks.refinement"]], "render() (sleap.nn.inference.ratecolumn method)": [[72, "sleap.nn.inference.RateColumn.render"]], "report_period (sleap.nn.inference.predictor property)": [[72, "sleap.nn.inference.Predictor.report_period"]], "return_class_maps (sleap.nn.inference.bottomupmulticlassinferencelayer attribute)": [[72, "sleap.nn.inference.BottomUpMultiClassInferenceLayer.return_class_maps"]], "return_class_vectors (sleap.nn.inference.topdownmulticlassfindpeaks attribute)": [[72, "sleap.nn.inference.TopDownMultiClassFindPeaks.return_class_vectors"]], "return_confmaps (sleap.nn.inference.bottomupinferencelayer attribute)": [[72, "sleap.nn.inference.BottomUpInferenceLayer.return_confmaps"]], "return_confmaps (sleap.nn.inference.bottomupmulticlassinferencelayer attribute)": [[72, "sleap.nn.inference.BottomUpMultiClassInferenceLayer.return_confmaps"]], "return_confmaps (sleap.nn.inference.centroidcrop attribute)": [[72, "sleap.nn.inference.CentroidCrop.return_confmaps"]], "return_confmaps (sleap.nn.inference.findinstancepeaks attribute)": [[72, "sleap.nn.inference.FindInstancePeaks.return_confmaps"]], "return_confmaps (sleap.nn.inference.singleinstanceinferencelayer attribute)": [[72, "sleap.nn.inference.SingleInstanceInferenceLayer.return_confmaps"]], "return_confmaps (sleap.nn.inference.topdownmulticlassfindpeaks attribute)": [[72, "sleap.nn.inference.TopDownMultiClassFindPeaks.return_confmaps"]], "return_crops (sleap.nn.inference.centroidcrop attribute)": [[72, "sleap.nn.inference.CentroidCrop.return_crops"]], "return_paf_graph (sleap.nn.inference.bottomupinferencelayer attribute)": [[72, "sleap.nn.inference.BottomUpInferenceLayer.return_paf_graph"]], "return_pafs (sleap.nn.inference.bottomupinferencelayer attribute)": [[72, "sleap.nn.inference.BottomUpInferenceLayer.return_pafs"]], "safely_generate() (sleap.nn.inference.visualpredictor method)": [[72, "sleap.nn.inference.VisualPredictor.safely_generate"]], "single_instance_layer (sleap.nn.inference.singleinstanceinferencemodel attribute)": [[72, "sleap.nn.inference.SingleInstanceInferenceModel.single_instance_layer"]], "sleap.nn.inference": [[72, "module-sleap.nn.inference"]], "tracker (sleap.nn.inference.bottomuppredictor attribute)": [[72, "sleap.nn.inference.BottomUpPredictor.tracker"]], "tracker (sleap.nn.inference.topdownmulticlasspredictor attribute)": [[72, "sleap.nn.inference.TopDownMultiClassPredictor.tracker"]], "tracker (sleap.nn.inference.topdownpredictor attribute)": [[72, "sleap.nn.inference.TopDownPredictor.tracker"]], "tracks (sleap.nn.inference.bottomupmulticlasspredictor attribute)": [[72, "sleap.nn.inference.BottomUpMultiClassPredictor.tracks"]], "tracks (sleap.nn.inference.topdownmulticlasspredictor attribute)": [[72, "sleap.nn.inference.TopDownMultiClassPredictor.tracks"]], "ohkmloss (class in sleap.nn.losses)": [[73, "sleap.nn.losses.OHKMLoss"]], "partloss (class in sleap.nn.losses)": [[73, "sleap.nn.losses.PartLoss"]], "call() (sleap.nn.losses.ohkmloss method)": [[73, "sleap.nn.losses.OHKMLoss.call"]], "channel_ind (sleap.nn.losses.partloss attribute)": [[73, "sleap.nn.losses.PartLoss.channel_ind"]], "compute_ohkm_loss() (in module sleap.nn.losses)": [[73, "sleap.nn.losses.compute_ohkm_loss"]], "from_config() (sleap.nn.losses.ohkmloss class method)": [[73, "sleap.nn.losses.OHKMLoss.from_config"]], "hard_to_easy_ratio (sleap.nn.losses.ohkmloss attribute)": [[73, "sleap.nn.losses.OHKMLoss.hard_to_easy_ratio"]], "loss_scale (sleap.nn.losses.ohkmloss attribute)": [[73, "sleap.nn.losses.OHKMLoss.loss_scale"]], "max_hard_keypoints (sleap.nn.losses.ohkmloss attribute)": [[73, "sleap.nn.losses.OHKMLoss.max_hard_keypoints"]], "min_hard_keypoints (sleap.nn.losses.ohkmloss attribute)": [[73, "sleap.nn.losses.OHKMLoss.min_hard_keypoints"]], "name (sleap.nn.losses.partloss attribute)": [[73, "sleap.nn.losses.PartLoss.name"]], "result() (sleap.nn.losses.partloss method)": [[73, "sleap.nn.losses.PartLoss.result"]], "sleap.nn.losses": [[73, "module-sleap.nn.losses"]], "update_state() (sleap.nn.losses.partloss method)": [[73, "sleap.nn.losses.PartLoss.update_state"]], "model (class in sleap.nn.model)": [[74, "sleap.nn.model.Model"]], "backbone (sleap.nn.model.model attribute)": [[74, "sleap.nn.model.Model.backbone"]], "from_config() (sleap.nn.model.model class method)": [[74, "sleap.nn.model.Model.from_config"]], "heads (sleap.nn.model.model attribute)": [[74, "sleap.nn.model.Model.heads"]], "keras_model (sleap.nn.model.model attribute)": [[74, "sleap.nn.model.Model.keras_model"]], "make_model() (sleap.nn.model.model method)": [[74, "sleap.nn.model.Model.make_model"]], "maximum_stride (sleap.nn.model.model property)": [[74, "sleap.nn.model.Model.maximum_stride"]], "sleap.nn.model": [[74, "module-sleap.nn.model"]], "edgeconnection (class in sleap.nn.paf_grouping)": [[75, "sleap.nn.paf_grouping.EdgeConnection"]], "edgetype (class in sleap.nn.paf_grouping)": [[75, "sleap.nn.paf_grouping.EdgeType"]], "pafscorer (class in sleap.nn.paf_grouping)": [[75, "sleap.nn.paf_grouping.PAFScorer"]], "peakid (class in sleap.nn.paf_grouping)": [[75, "sleap.nn.paf_grouping.PeakID"]], "assign_connections_to_instances() (in module sleap.nn.paf_grouping)": [[75, "sleap.nn.paf_grouping.assign_connections_to_instances"]], "compute_distance_penalty() (in module sleap.nn.paf_grouping)": [[75, "sleap.nn.paf_grouping.compute_distance_penalty"]], "dist_penalty_weight (sleap.nn.paf_grouping.pafscorer attribute)": [[75, "sleap.nn.paf_grouping.PAFScorer.dist_penalty_weight"]], "dst_node_ind (sleap.nn.paf_grouping.edgetype attribute)": [[75, "sleap.nn.paf_grouping.EdgeType.dst_node_ind"]], "dst_peak_ind (sleap.nn.paf_grouping.edgeconnection attribute)": [[75, "sleap.nn.paf_grouping.EdgeConnection.dst_peak_ind"]], "edge_inds (sleap.nn.paf_grouping.pafscorer attribute)": [[75, "sleap.nn.paf_grouping.PAFScorer.edge_inds"]], "edge_types (sleap.nn.paf_grouping.pafscorer attribute)": [[75, "sleap.nn.paf_grouping.PAFScorer.edge_types"]], "edges (sleap.nn.paf_grouping.pafscorer attribute)": [[75, "sleap.nn.paf_grouping.PAFScorer.edges"]], "from_config() (sleap.nn.paf_grouping.pafscorer class method)": [[75, "sleap.nn.paf_grouping.PAFScorer.from_config"]], "get_connection_candidates() (in module sleap.nn.paf_grouping)": [[75, "sleap.nn.paf_grouping.get_connection_candidates"]], "get_paf_lines() (in module sleap.nn.paf_grouping)": [[75, "sleap.nn.paf_grouping.get_paf_lines"]], "group_instances() (sleap.nn.paf_grouping.pafscorer method)": [[75, "sleap.nn.paf_grouping.PAFScorer.group_instances"]], "group_instances_batch() (in module sleap.nn.paf_grouping)": [[75, "sleap.nn.paf_grouping.group_instances_batch"]], "group_instances_sample() (in module sleap.nn.paf_grouping)": [[75, "sleap.nn.paf_grouping.group_instances_sample"]], "make_line_subs() (in module sleap.nn.paf_grouping)": [[75, "sleap.nn.paf_grouping.make_line_subs"]], "make_predicted_instances() (in module sleap.nn.paf_grouping)": [[75, "sleap.nn.paf_grouping.make_predicted_instances"]], "match_candidates() (sleap.nn.paf_grouping.pafscorer method)": [[75, "sleap.nn.paf_grouping.PAFScorer.match_candidates"]], "match_candidates_batch() (in module sleap.nn.paf_grouping)": [[75, "sleap.nn.paf_grouping.match_candidates_batch"]], "match_candidates_sample() (in module sleap.nn.paf_grouping)": [[75, "sleap.nn.paf_grouping.match_candidates_sample"]], "max_edge_length_ratio (sleap.nn.paf_grouping.pafscorer attribute)": [[75, "sleap.nn.paf_grouping.PAFScorer.max_edge_length_ratio"]], "min_instance_peaks (sleap.nn.paf_grouping.pafscorer attribute)": [[75, "sleap.nn.paf_grouping.PAFScorer.min_instance_peaks"]], "min_line_scores (sleap.nn.paf_grouping.pafscorer attribute)": [[75, "sleap.nn.paf_grouping.PAFScorer.min_line_scores"]], "n_edges (sleap.nn.paf_grouping.pafscorer attribute)": [[75, "sleap.nn.paf_grouping.PAFScorer.n_edges"]], "n_nodes (sleap.nn.paf_grouping.pafscorer attribute)": [[75, "sleap.nn.paf_grouping.PAFScorer.n_nodes"]], "n_points (sleap.nn.paf_grouping.pafscorer attribute)": [[75, "sleap.nn.paf_grouping.PAFScorer.n_points"]], "node_ind (sleap.nn.paf_grouping.peakid attribute)": [[75, "sleap.nn.paf_grouping.PeakID.node_ind"]], "pafs_stride (sleap.nn.paf_grouping.pafscorer attribute)": [[75, "sleap.nn.paf_grouping.PAFScorer.pafs_stride"]], "part_names (sleap.nn.paf_grouping.pafscorer attribute)": [[75, "sleap.nn.paf_grouping.PAFScorer.part_names"]], "peak_ind (sleap.nn.paf_grouping.peakid attribute)": [[75, "sleap.nn.paf_grouping.PeakID.peak_ind"]], "predict() (sleap.nn.paf_grouping.pafscorer method)": [[75, "sleap.nn.paf_grouping.PAFScorer.predict"]], "score (sleap.nn.paf_grouping.edgeconnection attribute)": [[75, "sleap.nn.paf_grouping.EdgeConnection.score"]], "score_paf_lines() (in module sleap.nn.paf_grouping)": [[75, "sleap.nn.paf_grouping.score_paf_lines"]], "score_paf_lines() (sleap.nn.paf_grouping.pafscorer method)": [[75, "sleap.nn.paf_grouping.PAFScorer.score_paf_lines"]], "score_paf_lines_batch() (in module sleap.nn.paf_grouping)": [[75, "sleap.nn.paf_grouping.score_paf_lines_batch"]], "sleap.nn.paf_grouping": [[75, "module-sleap.nn.paf_grouping"]], "sorted_edge_inds (sleap.nn.paf_grouping.pafscorer attribute)": [[75, "sleap.nn.paf_grouping.PAFScorer.sorted_edge_inds"]], "src_node_ind (sleap.nn.paf_grouping.edgetype attribute)": [[75, "sleap.nn.paf_grouping.EdgeType.src_node_ind"]], "src_peak_ind (sleap.nn.paf_grouping.edgeconnection attribute)": [[75, "sleap.nn.paf_grouping.EdgeConnection.src_peak_ind"]], "toposort_edges() (in module sleap.nn.paf_grouping)": [[75, "sleap.nn.paf_grouping.toposort_edges"]], "crop_bboxes() (in module sleap.nn.peak_finding)": [[76, "sleap.nn.peak_finding.crop_bboxes"]], "find_global_peaks() (in module sleap.nn.peak_finding)": [[76, "sleap.nn.peak_finding.find_global_peaks"]], "find_global_peaks_integral() (in module sleap.nn.peak_finding)": [[76, "sleap.nn.peak_finding.find_global_peaks_integral"]], "find_global_peaks_rough() (in module sleap.nn.peak_finding)": [[76, "sleap.nn.peak_finding.find_global_peaks_rough"]], "find_global_peaks_with_offsets() (in module sleap.nn.peak_finding)": [[76, "sleap.nn.peak_finding.find_global_peaks_with_offsets"]], "find_local_peaks() (in module sleap.nn.peak_finding)": [[76, "sleap.nn.peak_finding.find_local_peaks"]], "find_local_peaks_integral() (in module sleap.nn.peak_finding)": [[76, "sleap.nn.peak_finding.find_local_peaks_integral"]], "find_local_peaks_rough() (in module sleap.nn.peak_finding)": [[76, "sleap.nn.peak_finding.find_local_peaks_rough"]], "find_local_peaks_with_offsets() (in module sleap.nn.peak_finding)": [[76, "sleap.nn.peak_finding.find_local_peaks_with_offsets"]], "find_offsets_local_direction() (in module sleap.nn.peak_finding)": [[76, "sleap.nn.peak_finding.find_offsets_local_direction"]], "integral_regression() (in module sleap.nn.peak_finding)": [[76, "sleap.nn.peak_finding.integral_regression"]], "make_gaussian_kernel() (in module sleap.nn.peak_finding)": [[76, "sleap.nn.peak_finding.make_gaussian_kernel"]], "sleap.nn.peak_finding": [[76, "module-sleap.nn.peak_finding"]], "smooth_imgs() (in module sleap.nn.peak_finding)": [[76, "sleap.nn.peak_finding.smooth_imgs"]], "best_logical_device_name() (in module sleap.nn.system)": [[77, "sleap.nn.system.best_logical_device_name"]], "disable_preallocation() (in module sleap.nn.system)": [[77, "sleap.nn.system.disable_preallocation"]], "enable_preallocation() (in module sleap.nn.system)": [[77, "sleap.nn.system.enable_preallocation"]], "get_all_gpus() (in module sleap.nn.system)": [[77, "sleap.nn.system.get_all_gpus"]], "get_available_gpus() (in module sleap.nn.system)": [[77, "sleap.nn.system.get_available_gpus"]], "get_current_gpu() (in module sleap.nn.system)": [[77, "sleap.nn.system.get_current_gpu"]], "get_gpu_memory() (in module sleap.nn.system)": [[77, "sleap.nn.system.get_gpu_memory"]], "initialize_devices() (in module sleap.nn.system)": [[77, "sleap.nn.system.initialize_devices"]], "is_gpu_system() (in module sleap.nn.system)": [[77, "sleap.nn.system.is_gpu_system"]], "is_initialized() (in module sleap.nn.system)": [[77, "sleap.nn.system.is_initialized"]], "sleap.nn.system": [[77, "module-sleap.nn.system"]], "summary() (in module sleap.nn.system)": [[77, "sleap.nn.system.summary"]], "use_cpu_only() (in module sleap.nn.system)": [[77, "sleap.nn.system.use_cpu_only"]], "use_first_gpu() (in module sleap.nn.system)": [[77, "sleap.nn.system.use_first_gpu"]], "use_gpu() (in module sleap.nn.system)": [[77, "sleap.nn.system.use_gpu"]], "use_last_gpu() (in module sleap.nn.system)": [[77, "sleap.nn.system.use_last_gpu"]], "framematches (class in sleap.nn.tracker.components)": [[78, "sleap.nn.tracker.components.FrameMatches"]], "match (class in sleap.nn.tracker.components)": [[78, "sleap.nn.tracker.components.Match"]], "centroid_distance() (in module sleap.nn.tracker.components)": [[78, "sleap.nn.tracker.components.centroid_distance"]], "connect_single_track_breaks() (in module sleap.nn.tracker.components)": [[78, "sleap.nn.tracker.components.connect_single_track_breaks"]], "cost_matrix (sleap.nn.tracker.components.framematches attribute)": [[78, "sleap.nn.tracker.components.FrameMatches.cost_matrix"]], "cull_frame_instances() (in module sleap.nn.tracker.components)": [[78, "sleap.nn.tracker.components.cull_frame_instances"]], "cull_instances() (in module sleap.nn.tracker.components)": [[78, "sleap.nn.tracker.components.cull_instances"]], "factory_object_keypoint_similarity() (in module sleap.nn.tracker.components)": [[78, "sleap.nn.tracker.components.factory_object_keypoint_similarity"]], "first_choice_matching() (in module sleap.nn.tracker.components)": [[78, "sleap.nn.tracker.components.first_choice_matching"]], "from_candidate_instances() (sleap.nn.tracker.components.framematches class method)": [[78, "sleap.nn.tracker.components.FrameMatches.from_candidate_instances"]], "greedy_matching() (in module sleap.nn.tracker.components)": [[78, "sleap.nn.tracker.components.greedy_matching"]], "has_only_first_choice_matches (sleap.nn.tracker.components.framematches property)": [[78, "sleap.nn.tracker.components.FrameMatches.has_only_first_choice_matches"]], "hungarian_matching() (in module sleap.nn.tracker.components)": [[78, "sleap.nn.tracker.components.hungarian_matching"]], "instance_iou() (in module sleap.nn.tracker.components)": [[78, "sleap.nn.tracker.components.instance_iou"]], "instance_similarity() (in module sleap.nn.tracker.components)": [[78, "sleap.nn.tracker.components.instance_similarity"]], "matches (sleap.nn.tracker.components.framematches attribute)": [[78, "sleap.nn.tracker.components.FrameMatches.matches"]], "nms_fast() (in module sleap.nn.tracker.components)": [[78, "sleap.nn.tracker.components.nms_fast"]], "normalized_instance_similarity() (in module sleap.nn.tracker.components)": [[78, "sleap.nn.tracker.components.normalized_instance_similarity"]], "sleap.nn.tracker.components": [[78, "module-sleap.nn.tracker.components"]], "unmatched_instances (sleap.nn.tracker.components.framematches attribute)": [[78, "sleap.nn.tracker.components.FrameMatches.unmatched_instances"]], "get_track_instance_matches() (in module sleap.nn.tracker.kalman)": [[79, "sleap.nn.tracker.kalman.get_track_instance_matches"]], "match_dict_from_match_function() (in module sleap.nn.tracker.kalman)": [[79, "sleap.nn.tracker.kalman.match_dict_from_match_function"]], "remove_second_bests_from_cost_matrix() (in module sleap.nn.tracker.kalman)": [[79, "sleap.nn.tracker.kalman.remove_second_bests_from_cost_matrix"]], "sleap.nn.tracker.kalman": [[79, "module-sleap.nn.tracker.kalman"]], "basetracker (class in sleap.nn.tracking)": [[80, "sleap.nn.tracking.BaseTracker"]], "flowcandidatemaker (class in sleap.nn.tracking)": [[80, "sleap.nn.tracking.FlowCandidateMaker"]], "flowmaxtracker (class in sleap.nn.tracking)": [[80, "sleap.nn.tracking.FlowMaxTracker"]], "flowmaxtrackscandidatemaker (class in sleap.nn.tracking)": [[80, "sleap.nn.tracking.FlowMaxTracksCandidateMaker"]], "flowtracker (class in sleap.nn.tracking)": [[80, "sleap.nn.tracking.FlowTracker"]], "kalmantracker (class in sleap.nn.tracking)": [[80, "sleap.nn.tracking.KalmanTracker"]], "simplecandidatemaker (class in sleap.nn.tracking)": [[80, "sleap.nn.tracking.SimpleCandidateMaker"]], "simplemaxtracker (class in sleap.nn.tracking)": [[80, "sleap.nn.tracking.SimpleMaxTracker"]], "simplemaxtrackscandidatemaker (class in sleap.nn.tracking)": [[80, "sleap.nn.tracking.SimpleMaxTracksCandidateMaker"]], "simpletracker (class in sleap.nn.tracking)": [[80, "sleap.nn.tracking.SimpleTracker"]], "trackcleaner (class in sleap.nn.tracking)": [[80, "sleap.nn.tracking.TrackCleaner"]], "tracker (class in sleap.nn.tracking)": [[80, "sleap.nn.tracking.Tracker"]], "candidate_maker (sleap.nn.tracking.tracker attribute)": [[80, "sleap.nn.tracking.Tracker.candidate_maker"]], "cleaner (sleap.nn.tracking.tracker attribute)": [[80, "sleap.nn.tracking.Tracker.cleaner"]], "final_pass() (sleap.nn.tracking.tracker method)": [[80, "sleap.nn.tracking.Tracker.final_pass"]], "flow_shift_instances() (sleap.nn.tracking.flowcandidatemaker static method)": [[80, "sleap.nn.tracking.FlowCandidateMaker.flow_shift_instances"]], "get_ref_instances() (sleap.nn.tracking.flowmaxtrackscandidatemaker static method)": [[80, "sleap.nn.tracking.FlowMaxTracksCandidateMaker.get_ref_instances"]], "get_shifted_instances() (sleap.nn.tracking.flowcandidatemaker method)": [[80, "sleap.nn.tracking.FlowCandidateMaker.get_shifted_instances"]], "get_shifted_instances_from_earlier_time() (sleap.nn.tracking.flowcandidatemaker method)": [[80, "sleap.nn.tracking.FlowCandidateMaker.get_shifted_instances_from_earlier_time"]], "img_scale (sleap.nn.tracking.flowcandidatemaker attribute)": [[80, "sleap.nn.tracking.FlowCandidateMaker.img_scale"]], "instance_count (sleap.nn.tracking.trackcleaner attribute)": [[80, "sleap.nn.tracking.TrackCleaner.instance_count"]], "iou_threshold (sleap.nn.tracking.trackcleaner attribute)": [[80, "sleap.nn.tracking.TrackCleaner.iou_threshold"]], "is_valid (sleap.nn.tracking.kalmantracker property)": [[80, "sleap.nn.tracking.KalmanTracker.is_valid"]], "make_tracker() (sleap.nn.tracking.kalmantracker class method)": [[80, "sleap.nn.tracking.KalmanTracker.make_tracker"]], "matching_function (sleap.nn.tracking.tracker attribute)": [[80, "sleap.nn.tracking.Tracker.matching_function"]], "matching_function() (sleap.nn.tracking.flowmaxtracker method)": [[80, "sleap.nn.tracking.FlowMaxTracker.matching_function"]], "max_tracking (sleap.nn.tracking.tracker attribute)": [[80, "sleap.nn.tracking.Tracker.max_tracking"]], "max_tracks (sleap.nn.tracking.flowmaxtrackscandidatemaker attribute)": [[80, "sleap.nn.tracking.FlowMaxTracksCandidateMaker.max_tracks"]], "min_new_track_points (sleap.nn.tracking.tracker attribute)": [[80, "sleap.nn.tracking.Tracker.min_new_track_points"]], "min_points (sleap.nn.tracking.flowcandidatemaker attribute)": [[80, "sleap.nn.tracking.FlowCandidateMaker.min_points"]], "of_max_levels (sleap.nn.tracking.flowcandidatemaker attribute)": [[80, "sleap.nn.tracking.FlowCandidateMaker.of_max_levels"]], "of_window_size (sleap.nn.tracking.flowcandidatemaker attribute)": [[80, "sleap.nn.tracking.FlowCandidateMaker.of_window_size"]], "prune_shifted_instances() (sleap.nn.tracking.flowcandidatemaker method)": [[80, "sleap.nn.tracking.FlowCandidateMaker.prune_shifted_instances"]], "robust_best_instance (sleap.nn.tracking.tracker attribute)": [[80, "sleap.nn.tracking.Tracker.robust_best_instance"]], "run_tracker() (in module sleap.nn.tracking)": [[80, "sleap.nn.tracking.run_tracker"]], "save_shifted_instances (sleap.nn.tracking.flowcandidatemaker attribute)": [[80, "sleap.nn.tracking.FlowCandidateMaker.save_shifted_instances"]], "similarity_function (sleap.nn.tracking.tracker attribute)": [[80, "sleap.nn.tracking.Tracker.similarity_function"]], "similarity_function() (sleap.nn.tracking.flowmaxtracker method)": [[80, "sleap.nn.tracking.FlowMaxTracker.similarity_function"]], "sleap.nn.tracking": [[80, "module-sleap.nn.tracking"]], "track() (sleap.nn.tracking.kalmantracker method)": [[80, "sleap.nn.tracking.KalmanTracker.track"]], "track() (sleap.nn.tracking.tracker method)": [[80, "sleap.nn.tracking.Tracker.track"]], "track_window (sleap.nn.tracking.flowcandidatemaker attribute)": [[80, "sleap.nn.tracking.FlowCandidateMaker.track_window"]], "track_window (sleap.nn.tracking.tracker attribute)": [[80, "sleap.nn.tracking.Tracker.track_window"]], "unique_tracks_in_queue (sleap.nn.tracking.tracker property)": [[80, "sleap.nn.tracking.Tracker.unique_tracks_in_queue"]], "bottomupmodeltrainer (class in sleap.nn.training)": [[81, "sleap.nn.training.BottomUpModelTrainer"]], "bottomupmulticlassmodeltrainer (class in sleap.nn.training)": [[81, "sleap.nn.training.BottomUpMultiClassModelTrainer"]], "centroidconfmapsmodeltrainer (class in sleap.nn.training)": [[81, "sleap.nn.training.CentroidConfmapsModelTrainer"]], "datareaders (class in sleap.nn.training)": [[81, "sleap.nn.training.DataReaders"]], "singleinstancemodeltrainer (class in sleap.nn.training)": [[81, "sleap.nn.training.SingleInstanceModelTrainer"]], "topdownmulticlassmodeltrainer (class in sleap.nn.training)": [[81, "sleap.nn.training.TopDownMultiClassModelTrainer"]], "topdownconfmapsmodeltrainer (class in sleap.nn.training)": [[81, "sleap.nn.training.TopdownConfmapsModelTrainer"]], "trainer (class in sleap.nn.training)": [[81, "sleap.nn.training.Trainer"]], "callbacks (sleap.nn.training.trainer property)": [[81, "sleap.nn.training.Trainer.callbacks"]], "cleanup() (sleap.nn.training.trainer method)": [[81, "sleap.nn.training.Trainer.cleanup"]], "config (sleap.nn.training.trainer attribute)": [[81, "sleap.nn.training.Trainer.config"]], "create_trainer_using_cli() (in module sleap.nn.training)": [[81, "sleap.nn.training.create_trainer_using_cli"]], "data_readers (sleap.nn.training.trainer attribute)": [[81, "sleap.nn.training.Trainer.data_readers"]], "evaluate() (sleap.nn.training.trainer method)": [[81, "sleap.nn.training.Trainer.evaluate"]], "from_config() (sleap.nn.training.datareaders class method)": [[81, "sleap.nn.training.DataReaders.from_config"]], "from_config() (sleap.nn.training.trainer class method)": [[81, "sleap.nn.training.Trainer.from_config"]], "from_labels() (sleap.nn.training.datareaders class method)": [[81, "sleap.nn.training.DataReaders.from_labels"]], "get_timestamp() (in module sleap.nn.training)": [[81, "sleap.nn.training.get_timestamp"]], "has_offsets (sleap.nn.training.bottomupmodeltrainer property)": [[81, "sleap.nn.training.BottomUpModelTrainer.has_offsets"]], "has_offsets (sleap.nn.training.bottomupmulticlassmodeltrainer property)": [[81, "sleap.nn.training.BottomUpMultiClassModelTrainer.has_offsets"]], "has_offsets (sleap.nn.training.centroidconfmapsmodeltrainer property)": [[81, "sleap.nn.training.CentroidConfmapsModelTrainer.has_offsets"]], "has_offsets (sleap.nn.training.singleinstancemodeltrainer property)": [[81, "sleap.nn.training.SingleInstanceModelTrainer.has_offsets"]], "has_offsets (sleap.nn.training.topdownmulticlassmodeltrainer property)": [[81, "sleap.nn.training.TopDownMultiClassModelTrainer.has_offsets"]], "has_offsets (sleap.nn.training.topdownconfmapsmodeltrainer property)": [[81, "sleap.nn.training.TopdownConfmapsModelTrainer.has_offsets"]], "initial_config (sleap.nn.training.trainer attribute)": [[81, "sleap.nn.training.Trainer.initial_config"]], "input_keys (sleap.nn.training.bottomupmodeltrainer property)": [[81, "sleap.nn.training.BottomUpModelTrainer.input_keys"]], "input_keys (sleap.nn.training.bottomupmulticlassmodeltrainer property)": [[81, "sleap.nn.training.BottomUpMultiClassModelTrainer.input_keys"]], "input_keys (sleap.nn.training.centroidconfmapsmodeltrainer property)": [[81, "sleap.nn.training.CentroidConfmapsModelTrainer.input_keys"]], "input_keys (sleap.nn.training.singleinstancemodeltrainer property)": [[81, "sleap.nn.training.SingleInstanceModelTrainer.input_keys"]], "input_keys (sleap.nn.training.topdownmulticlassmodeltrainer property)": [[81, "sleap.nn.training.TopDownMultiClassModelTrainer.input_keys"]], "input_keys (sleap.nn.training.topdownconfmapsmodeltrainer property)": [[81, "sleap.nn.training.TopdownConfmapsModelTrainer.input_keys"]], "input_keys (sleap.nn.training.trainer property)": [[81, "sleap.nn.training.Trainer.input_keys"]], "keras_model (sleap.nn.training.trainer property)": [[81, "sleap.nn.training.Trainer.keras_model"]], "main() (in module sleap.nn.training)": [[81, "sleap.nn.training.main"]], "model (sleap.nn.training.trainer attribute)": [[81, "sleap.nn.training.Trainer.model"]], "optimization_callbacks (sleap.nn.training.trainer attribute)": [[81, "sleap.nn.training.Trainer.optimization_callbacks"]], "output_callbacks (sleap.nn.training.trainer attribute)": [[81, "sleap.nn.training.Trainer.output_callbacks"]], "output_keys (sleap.nn.training.bottomupmodeltrainer property)": [[81, "sleap.nn.training.BottomUpModelTrainer.output_keys"]], "output_keys (sleap.nn.training.bottomupmulticlassmodeltrainer property)": [[81, "sleap.nn.training.BottomUpMultiClassModelTrainer.output_keys"]], "output_keys (sleap.nn.training.centroidconfmapsmodeltrainer property)": [[81, "sleap.nn.training.CentroidConfmapsModelTrainer.output_keys"]], "output_keys (sleap.nn.training.singleinstancemodeltrainer property)": [[81, "sleap.nn.training.SingleInstanceModelTrainer.output_keys"]], "output_keys (sleap.nn.training.topdownmulticlassmodeltrainer property)": [[81, "sleap.nn.training.TopDownMultiClassModelTrainer.output_keys"]], "output_keys (sleap.nn.training.topdownconfmapsmodeltrainer property)": [[81, "sleap.nn.training.TopdownConfmapsModelTrainer.output_keys"]], "output_keys (sleap.nn.training.trainer property)": [[81, "sleap.nn.training.Trainer.output_keys"]], "package() (sleap.nn.training.trainer method)": [[81, "sleap.nn.training.Trainer.package"]], "pipeline_builder (sleap.nn.training.trainer attribute)": [[81, "sleap.nn.training.Trainer.pipeline_builder"]], "run_path (sleap.nn.training.trainer attribute)": [[81, "sleap.nn.training.Trainer.run_path"]], "sanitize_scope_name() (in module sleap.nn.training)": [[81, "sleap.nn.training.sanitize_scope_name"]], "setup() (sleap.nn.training.trainer method)": [[81, "sleap.nn.training.Trainer.setup"]], "setup_checkpointing() (in module sleap.nn.training)": [[81, "sleap.nn.training.setup_checkpointing"]], "setup_losses() (in module sleap.nn.training)": [[81, "sleap.nn.training.setup_losses"]], "setup_metrics() (in module sleap.nn.training)": [[81, "sleap.nn.training.setup_metrics"]], "setup_new_run_folder() (in module sleap.nn.training)": [[81, "sleap.nn.training.setup_new_run_folder"]], "setup_optimization_callbacks() (in module sleap.nn.training)": [[81, "sleap.nn.training.setup_optimization_callbacks"]], "setup_optimizer() (in module sleap.nn.training)": [[81, "sleap.nn.training.setup_optimizer"]], "setup_output_callbacks() (in module sleap.nn.training)": [[81, "sleap.nn.training.setup_output_callbacks"]], "setup_tensorboard() (in module sleap.nn.training)": [[81, "sleap.nn.training.setup_tensorboard"]], "setup_visualization() (in module sleap.nn.training)": [[81, "sleap.nn.training.setup_visualization"]], "setup_zmq_callbacks() (in module sleap.nn.training)": [[81, "sleap.nn.training.setup_zmq_callbacks"]], "sleap.nn.training": [[81, "module-sleap.nn.training"]], "test_labels (sleap.nn.training.datareaders property)": [[81, "sleap.nn.training.DataReaders.test_labels"]], "test_labels_reader (sleap.nn.training.datareaders attribute)": [[81, "sleap.nn.training.DataReaders.test_labels_reader"]], "train() (sleap.nn.training.trainer method)": [[81, "sleap.nn.training.Trainer.train"]], "training_labels (sleap.nn.training.datareaders property)": [[81, "sleap.nn.training.DataReaders.training_labels"]], "training_labels_reader (sleap.nn.training.datareaders attribute)": [[81, "sleap.nn.training.DataReaders.training_labels_reader"]], "training_pipeline (sleap.nn.training.trainer attribute)": [[81, "sleap.nn.training.Trainer.training_pipeline"]], "training_viz_pipeline (sleap.nn.training.trainer attribute)": [[81, "sleap.nn.training.Trainer.training_viz_pipeline"]], "validation_labels (sleap.nn.training.datareaders property)": [[81, "sleap.nn.training.DataReaders.validation_labels"]], "validation_labels_reader (sleap.nn.training.datareaders attribute)": [[81, "sleap.nn.training.DataReaders.validation_labels_reader"]], "validation_pipeline (sleap.nn.training.trainer attribute)": [[81, "sleap.nn.training.Trainer.validation_pipeline"]], "validation_viz_pipeline (sleap.nn.training.trainer attribute)": [[81, "sleap.nn.training.Trainer.validation_viz_pipeline"]], "visualization_callbacks (sleap.nn.training.trainer attribute)": [[81, "sleap.nn.training.Trainer.visualization_callbacks"]], "compute_iou() (in module sleap.nn.utils)": [[82, "sleap.nn.utils.compute_iou"]], "group_array() (in module sleap.nn.utils)": [[82, "sleap.nn.utils.group_array"]], "match_points() (in module sleap.nn.utils)": [[82, "sleap.nn.utils.match_points"]], "reset_input_layer() (in module sleap.nn.utils)": [[82, "sleap.nn.utils.reset_input_layer"]], "sleap.nn.utils": [[82, "module-sleap.nn.utils"]], "tf_linear_sum_assignment() (in module sleap.nn.utils)": [[82, "sleap.nn.utils.tf_linear_sum_assignment"]], "generate_skeleton_preview_image() (in module sleap.nn.viz)": [[83, "sleap.nn.viz.generate_skeleton_preview_image"]], "imgfig() (in module sleap.nn.viz)": [[83, "sleap.nn.viz.imgfig"]], "plot_confmaps() (in module sleap.nn.viz)": [[83, "sleap.nn.viz.plot_confmaps"]], "plot_img() (in module sleap.nn.viz)": [[83, "sleap.nn.viz.plot_img"]], "plot_instance() (in module sleap.nn.viz)": [[83, "sleap.nn.viz.plot_instance"]], "plot_instances() (in module sleap.nn.viz)": [[83, "sleap.nn.viz.plot_instances"]], "plot_pafs() (in module sleap.nn.viz)": [[83, "sleap.nn.viz.plot_pafs"]], "plot_peaks() (in module sleap.nn.viz)": [[83, "sleap.nn.viz.plot_peaks"]], "sleap.nn.viz": [[83, "module-sleap.nn.viz"]], "edgetype (class in sleap.skeleton)": [[84, "sleap.skeleton.EdgeType"]], "node (class in sleap.skeleton)": [[84, "sleap.skeleton.Node"]], "skeleton (class in sleap.skeleton)": [[84, "sleap.skeleton.Skeleton"]], "skeletondecoder (class in sleap.skeleton)": [[84, "sleap.skeleton.SkeletonDecoder"]], "skeletonencoder (class in sleap.skeleton)": [[84, "sleap.skeleton.SkeletonEncoder"]], "_is_template (sleap.skeleton.skeleton attribute)": [[84, "sleap.skeleton.Skeleton._is_template"]], "_skeleton_idx (sleap.skeleton.skeleton attribute)": [[84, "sleap.skeleton.Skeleton._skeleton_idx"]], "add_edge() (sleap.skeleton.skeleton method)": [[84, "sleap.skeleton.Skeleton.add_edge"]], "add_node() (sleap.skeleton.skeleton method)": [[84, "sleap.skeleton.Skeleton.add_node"]], "add_nodes() (sleap.skeleton.skeleton method)": [[84, "sleap.skeleton.Skeleton.add_nodes"]], "add_symmetry() (sleap.skeleton.skeleton method)": [[84, "sleap.skeleton.Skeleton.add_symmetry"]], "as_node() (sleap.skeleton.node class method)": [[84, "sleap.skeleton.Node.as_node"]], "clear_edges() (sleap.skeleton.skeleton method)": [[84, "sleap.skeleton.Skeleton.clear_edges"]], "decode() (sleap.skeleton.skeletondecoder class method)": [[84, "sleap.skeleton.SkeletonDecoder.decode"]], "decode_preview_image() (sleap.skeleton.skeletondecoder static method)": [[84, "sleap.skeleton.SkeletonDecoder.decode_preview_image"]], "delete_edge() (sleap.skeleton.skeleton method)": [[84, "sleap.skeleton.Skeleton.delete_edge"]], "delete_node() (sleap.skeleton.skeleton method)": [[84, "sleap.skeleton.Skeleton.delete_node"]], "delete_symmetry() (sleap.skeleton.skeleton method)": [[84, "sleap.skeleton.Skeleton.delete_symmetry"]], "description (sleap.skeleton.skeleton attribute)": [[84, "sleap.skeleton.Skeleton.description"]], "edge_inds (sleap.skeleton.skeleton property)": [[84, "sleap.skeleton.Skeleton.edge_inds"]], "edge_names (sleap.skeleton.skeleton property)": [[84, "sleap.skeleton.Skeleton.edge_names"]], "edge_to_index() (sleap.skeleton.skeleton method)": [[84, "sleap.skeleton.Skeleton.edge_to_index"]], "edges (sleap.skeleton.skeleton property)": [[84, "sleap.skeleton.Skeleton.edges"]], "edges_full (sleap.skeleton.skeleton property)": [[84, "sleap.skeleton.Skeleton.edges_full"]], "encode() (sleap.skeleton.skeletonencoder class method)": [[84, "sleap.skeleton.SkeletonEncoder.encode"]], "find_neighbors() (sleap.skeleton.skeleton method)": [[84, "sleap.skeleton.Skeleton.find_neighbors"]], "find_node() (sleap.skeleton.skeleton method)": [[84, "sleap.skeleton.Skeleton.find_node"]], "find_unique_nodes() (sleap.skeleton.skeleton static method)": [[84, "sleap.skeleton.Skeleton.find_unique_nodes"]], "from_dict() (sleap.skeleton.skeleton class method)": [[84, "sleap.skeleton.Skeleton.from_dict"]], "from_json() (sleap.skeleton.skeleton class method)": [[84, "sleap.skeleton.Skeleton.from_json"]], "from_names() (sleap.skeleton.node static method)": [[84, "sleap.skeleton.Node.from_names"]], "from_names_and_edge_inds() (sleap.skeleton.skeleton class method)": [[84, "sleap.skeleton.Skeleton.from_names_and_edge_inds"]], "get_symmetry() (sleap.skeleton.skeleton method)": [[84, "sleap.skeleton.Skeleton.get_symmetry"]], "get_symmetry_name() (sleap.skeleton.skeleton method)": [[84, "sleap.skeleton.Skeleton.get_symmetry_name"]], "graph (sleap.skeleton.skeleton property)": [[84, "sleap.skeleton.Skeleton.graph"]], "graph_symmetry (sleap.skeleton.skeleton property)": [[84, "sleap.skeleton.Skeleton.graph_symmetry"]], "has_edge() (sleap.skeleton.skeleton method)": [[84, "sleap.skeleton.Skeleton.has_edge"]], "has_node() (sleap.skeleton.skeleton method)": [[84, "sleap.skeleton.Skeleton.has_node"]], "has_nodes() (sleap.skeleton.skeleton method)": [[84, "sleap.skeleton.Skeleton.has_nodes"]], "is_arborescence (sleap.skeleton.skeleton property)": [[84, "sleap.skeleton.Skeleton.is_arborescence"]], "is_template (sleap.skeleton.skeleton property)": [[84, "sleap.skeleton.Skeleton.is_template"]], "load_all_hdf5() (sleap.skeleton.skeleton class method)": [[84, "sleap.skeleton.Skeleton.load_all_hdf5"]], "load_hdf5() (sleap.skeleton.skeleton class method)": [[84, "sleap.skeleton.Skeleton.load_hdf5"]], "load_json() (sleap.skeleton.skeleton class method)": [[84, "sleap.skeleton.Skeleton.load_json"]], "load_mat() (sleap.skeleton.skeleton class method)": [[84, "sleap.skeleton.Skeleton.load_mat"]], "make_cattr() (sleap.skeleton.skeleton static method)": [[84, "sleap.skeleton.Skeleton.make_cattr"]], "matches() (sleap.skeleton.node method)": [[84, "sleap.skeleton.Node.matches"]], "matches() (sleap.skeleton.skeleton method)": [[84, "sleap.skeleton.Skeleton.matches"]], "name (sleap.skeleton.node attribute)": [[84, "sleap.skeleton.Node.name"]], "name (sleap.skeleton.skeleton property)": [[84, "sleap.skeleton.Skeleton.name"]], "node_names (sleap.skeleton.skeleton property)": [[84, "sleap.skeleton.Skeleton.node_names"]], "node_to_index() (sleap.skeleton.skeleton method)": [[84, "sleap.skeleton.Skeleton.node_to_index"]], "nodes (sleap.skeleton.skeleton property)": [[84, "sleap.skeleton.Skeleton.nodes"]], "preview_image (sleap.skeleton.skeleton attribute)": [[84, "sleap.skeleton.Skeleton.preview_image"]], "relabel_node() (sleap.skeleton.skeleton method)": [[84, "sleap.skeleton.Skeleton.relabel_node"]], "relabel_nodes() (sleap.skeleton.skeleton method)": [[84, "sleap.skeleton.Skeleton.relabel_nodes"]], "rename_skeleton() (sleap.skeleton.skeleton class method)": [[84, "sleap.skeleton.Skeleton.rename_skeleton"]], "save_all_hdf5() (sleap.skeleton.skeleton class method)": [[84, "sleap.skeleton.Skeleton.save_all_hdf5"]], "save_hdf5() (sleap.skeleton.skeleton method)": [[84, "sleap.skeleton.Skeleton.save_hdf5"]], "save_json() (sleap.skeleton.skeleton method)": [[84, "sleap.skeleton.Skeleton.save_json"]], "sleap.skeleton": [[84, "module-sleap.skeleton"]], "symmetric_inds (sleap.skeleton.skeleton property)": [[84, "sleap.skeleton.Skeleton.symmetric_inds"]], "symmetries (sleap.skeleton.skeleton property)": [[84, "sleap.skeleton.Skeleton.symmetries"]], "symmetries_full (sleap.skeleton.skeleton property)": [[84, "sleap.skeleton.Skeleton.symmetries_full"]], "symmetry_names (sleap.skeleton.skeleton property)": [[84, "sleap.skeleton.Skeleton.symmetry_names"]], "to_dict() (sleap.skeleton.skeleton static method)": [[84, "sleap.skeleton.Skeleton.to_dict"]], "to_json() (sleap.skeleton.skeleton method)": [[84, "sleap.skeleton.Skeleton.to_json"]], "weight (sleap.skeleton.node attribute)": [[84, "sleap.skeleton.Node.weight"]], "attr_to_dtype() (in module sleap.util)": [[85, "sleap.util.attr_to_dtype"]], "dict_cut() (in module sleap.util)": [[85, "sleap.util.dict_cut"]], "find_files_by_suffix() (in module sleap.util)": [[85, "sleap.util.find_files_by_suffix"]], "frame_list() (in module sleap.util)": [[85, "sleap.util.frame_list"]], "get_config_file() (in module sleap.util)": [[85, "sleap.util.get_config_file"]], "get_package_file() (in module sleap.util)": [[85, "sleap.util.get_package_file"]], "json_dumps() (in module sleap.util)": [[85, "sleap.util.json_dumps"]], "json_loads() (in module sleap.util)": [[85, "sleap.util.json_loads"]], "make_scoped_dictionary() (in module sleap.util)": [[85, "sleap.util.make_scoped_dictionary"]], "parse_uri_path() (in module sleap.util)": [[85, "sleap.util.parse_uri_path"]], "save_dict_to_hdf5() (in module sleap.util)": [[85, "sleap.util.save_dict_to_hdf5"]], "sleap.util": [[85, "module-sleap.util"]], "uniquify() (in module sleap.util)": [[85, "sleap.util.uniquify"]], "usable_cpu_count() (in module sleap.util)": [[85, "sleap.util.usable_cpu_count"]], "weak_filename_match() (in module sleap.util)": [[85, "sleap.util.weak_filename_match"]]}})
\ No newline at end of file