diff --git a/develop/_sources/api.rst b/develop/_sources/api.rst index 23a8d1b95..e6af22307 100644 --- a/develop/_sources/api.rst +++ b/develop/_sources/api.rst @@ -65,14 +65,23 @@ Developer API sleap.nn.training sleap.nn.utils sleap.nn.viz - sleap.nn.tracker.components - sleap.nn.tracker.kalman sleap.nn.config.data sleap.nn.config.model sleap.nn.config.optimization sleap.nn.config.outputs sleap.nn.config.training_job sleap.nn.config.utils + sleap.nn.architectures.common + sleap.nn.architectures.encoder_decoder + sleap.nn.architectures.hourglass + sleap.nn.architectures.hrnet + sleap.nn.architectures.leap + sleap.nn.architectures.pretrained_encoders + sleap.nn.architectures.resnet + sleap.nn.architectures.unet + sleap.nn.architectures.upsampling + sleap.nn.tracker.components + sleap.nn.tracker.kalman sleap.nn.data.augmentation sleap.nn.data.confidence_maps sleap.nn.data.dataset_ops @@ -90,12 +99,3 @@ Developer API sleap.nn.data.resizing sleap.nn.data.training sleap.nn.data.utils - sleap.nn.architectures.common - sleap.nn.architectures.encoder_decoder - sleap.nn.architectures.hourglass - sleap.nn.architectures.hrnet - sleap.nn.architectures.leap - sleap.nn.architectures.pretrained_encoders - sleap.nn.architectures.resnet - sleap.nn.architectures.unet - sleap.nn.architectures.upsampling diff --git a/develop/_sources/guides/cli.md b/develop/_sources/guides/cli.md index ab62f3130..03b806903 100644 --- a/develop/_sources/guides/cli.md +++ b/develop/_sources/guides/cli.md @@ -138,7 +138,10 @@ usage: sleap-track [-h] [-m MODELS] [--frames FRAMES] [--only-labeled-frames] [- [data_path] positional arguments: - data_path Path to data to predict on. This can be a labels (.slp) file or any supported video format. + data_path Path to data to predict on. This can be one of the following: A .slp file containing labeled data; A folder containing multiple + video files in supported formats; An individual video file in a supported format; A CSV file with a column of video file paths. + If more than one column is provided in the CSV file, the first will be used for the input data paths and the next column will be + used as the output paths; A text file with a path to a video file on each line optional arguments: -h, --help show this help message and exit @@ -153,7 +156,7 @@ optional arguments: Only run inference on unlabeled suggested frames when running on labels dataset. This is useful for generating predictions for initialization during labeling. -o OUTPUT, --output OUTPUT - The output filename to use for the predicted data. If not provided, defaults to '[data_path].predictions.slp'. + The output filename or directory path to use for the predicted data. If not provided, defaults to '[data_path].predictions.slp'. --no-empty-frames Clear any empty frames that did not have any detected instances before saving to output. --verbosity {none,rich,json} Verbosity of inference progress reporting. 'none' does not output anything during inference, 'rich' displays an updating diff --git a/develop/api.html b/develop/api.html index 7dda5879e..daa6d0906 100644 --- a/develop/api.html +++ b/develop/api.html @@ -483,12 +483,6 @@ <h1>Developer API</h1> <tr class="row-even"><td><p><a class="reference internal" href="api/sleap.nn.viz.html#module-sleap.nn.viz" title="sleap.nn.viz"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sleap.nn.viz</span></code></a></p></td> <td><p>Visualization and plotting utilities.</p></td> </tr> -<tr class="row-odd"><td><p><a class="reference internal" href="api/sleap.nn.tracker.components.html#module-sleap.nn.tracker.components" title="sleap.nn.tracker.components"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sleap.nn.tracker.components</span></code></a></p></td> -<td><p>Functions/classes used by multiple trackers.</p></td> -</tr> -<tr class="row-even"><td><p><a class="reference internal" href="api/sleap.nn.tracker.kalman.html#module-sleap.nn.tracker.kalman" title="sleap.nn.tracker.kalman"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sleap.nn.tracker.kalman</span></code></a></p></td> -<td><p>Module to use Kalman filters for tracking instance identities.</p></td> -</tr> <tr class="row-odd"><td><p><a class="reference internal" href="api/sleap.nn.config.data.html#module-sleap.nn.config.data" title="sleap.nn.config.data"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sleap.nn.config.data</span></code></a></p></td> <td><p></p></td> </tr> @@ -507,84 +501,90 @@ <h1>Developer API</h1> <tr class="row-even"><td><p><a class="reference internal" href="api/sleap.nn.config.utils.html#module-sleap.nn.config.utils" title="sleap.nn.config.utils"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sleap.nn.config.utils</span></code></a></p></td> <td><p>Utilities for config building and validation.</p></td> </tr> -<tr class="row-odd"><td><p><a class="reference internal" href="api/sleap.nn.data.augmentation.html#module-sleap.nn.data.augmentation" title="sleap.nn.data.augmentation"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sleap.nn.data.augmentation</span></code></a></p></td> +<tr class="row-odd"><td><p><a class="reference internal" href="api/sleap.nn.architectures.common.html#module-sleap.nn.architectures.common" title="sleap.nn.architectures.common"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sleap.nn.architectures.common</span></code></a></p></td> +<td><p>Common utilities for architecture and model building.</p></td> +</tr> +<tr class="row-even"><td><p><a class="reference internal" href="api/sleap.nn.architectures.encoder_decoder.html#module-sleap.nn.architectures.encoder_decoder" title="sleap.nn.architectures.encoder_decoder"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sleap.nn.architectures.encoder_decoder</span></code></a></p></td> +<td><p>Generic encoder-decoder fully convolutional backbones.</p></td> +</tr> +<tr class="row-odd"><td><p><a class="reference internal" href="api/sleap.nn.architectures.hourglass.html#module-sleap.nn.architectures.hourglass" title="sleap.nn.architectures.hourglass"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sleap.nn.architectures.hourglass</span></code></a></p></td> +<td><p>This module provides a generalized implementation of (stacked) hourglass.</p></td> +</tr> +<tr class="row-even"><td><p><a class="reference internal" href="api/sleap.nn.architectures.hrnet.html#module-sleap.nn.architectures.hrnet" title="sleap.nn.architectures.hrnet"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sleap.nn.architectures.hrnet</span></code></a></p></td> +<td><p>(Higher)HRNet backbone.</p></td> +</tr> +<tr class="row-odd"><td><p><a class="reference internal" href="api/sleap.nn.architectures.leap.html#module-sleap.nn.architectures.leap" title="sleap.nn.architectures.leap"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sleap.nn.architectures.leap</span></code></a></p></td> +<td><p>This module provides a generalized implementation of the LEAP CNN.</p></td> +</tr> +<tr class="row-even"><td><p><a class="reference internal" href="api/sleap.nn.architectures.pretrained_encoders.html#module-sleap.nn.architectures.pretrained_encoders" title="sleap.nn.architectures.pretrained_encoders"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sleap.nn.architectures.pretrained_encoders</span></code></a></p></td> +<td><p>Encoder-decoder backbones with pretrained encoder models.</p></td> +</tr> +<tr class="row-odd"><td><p><a class="reference internal" href="api/sleap.nn.architectures.resnet.html#module-sleap.nn.architectures.resnet" title="sleap.nn.architectures.resnet"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sleap.nn.architectures.resnet</span></code></a></p></td> +<td><p>ResNet-based backbones.</p></td> +</tr> +<tr class="row-even"><td><p><a class="reference internal" href="api/sleap.nn.architectures.unet.html#module-sleap.nn.architectures.unet" title="sleap.nn.architectures.unet"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sleap.nn.architectures.unet</span></code></a></p></td> +<td><p>This module provides a generalized implementation of UNet.</p></td> +</tr> +<tr class="row-odd"><td><p><a class="reference internal" href="api/sleap.nn.architectures.upsampling.html#module-sleap.nn.architectures.upsampling" title="sleap.nn.architectures.upsampling"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sleap.nn.architectures.upsampling</span></code></a></p></td> +<td><p>This module defines common upsampling layer stack configurations.</p></td> +</tr> +<tr class="row-even"><td><p><a class="reference internal" href="api/sleap.nn.tracker.components.html#module-sleap.nn.tracker.components" title="sleap.nn.tracker.components"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sleap.nn.tracker.components</span></code></a></p></td> +<td><p>Functions/classes used by multiple trackers.</p></td> +</tr> +<tr class="row-odd"><td><p><a class="reference internal" href="api/sleap.nn.tracker.kalman.html#module-sleap.nn.tracker.kalman" title="sleap.nn.tracker.kalman"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sleap.nn.tracker.kalman</span></code></a></p></td> +<td><p>Module to use Kalman filters for tracking instance identities.</p></td> +</tr> +<tr class="row-even"><td><p><a class="reference internal" href="api/sleap.nn.data.augmentation.html#module-sleap.nn.data.augmentation" title="sleap.nn.data.augmentation"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sleap.nn.data.augmentation</span></code></a></p></td> <td><p>Transformers for applying data augmentation.</p></td> </tr> -<tr class="row-even"><td><p><a class="reference internal" href="api/sleap.nn.data.confidence_maps.html#module-sleap.nn.data.confidence_maps" title="sleap.nn.data.confidence_maps"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sleap.nn.data.confidence_maps</span></code></a></p></td> +<tr class="row-odd"><td><p><a class="reference internal" href="api/sleap.nn.data.confidence_maps.html#module-sleap.nn.data.confidence_maps" title="sleap.nn.data.confidence_maps"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sleap.nn.data.confidence_maps</span></code></a></p></td> <td><p>Transformers for confidence map generation.</p></td> </tr> -<tr class="row-odd"><td><p><a class="reference internal" href="api/sleap.nn.data.dataset_ops.html#module-sleap.nn.data.dataset_ops" title="sleap.nn.data.dataset_ops"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sleap.nn.data.dataset_ops</span></code></a></p></td> +<tr class="row-even"><td><p><a class="reference internal" href="api/sleap.nn.data.dataset_ops.html#module-sleap.nn.data.dataset_ops" title="sleap.nn.data.dataset_ops"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sleap.nn.data.dataset_ops</span></code></a></p></td> <td><p>Transformers for dataset (multi-example) operations, e.g., shuffling and batching.</p></td> </tr> -<tr class="row-even"><td><p><a class="reference internal" href="api/sleap.nn.data.edge_maps.html#module-sleap.nn.data.edge_maps" title="sleap.nn.data.edge_maps"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sleap.nn.data.edge_maps</span></code></a></p></td> +<tr class="row-odd"><td><p><a class="reference internal" href="api/sleap.nn.data.edge_maps.html#module-sleap.nn.data.edge_maps" title="sleap.nn.data.edge_maps"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sleap.nn.data.edge_maps</span></code></a></p></td> <td><p>Transformers for generating edge confidence maps and part affinity fields.</p></td> </tr> -<tr class="row-odd"><td><p><a class="reference internal" href="api/sleap.nn.data.general.html#module-sleap.nn.data.general" title="sleap.nn.data.general"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sleap.nn.data.general</span></code></a></p></td> +<tr class="row-even"><td><p><a class="reference internal" href="api/sleap.nn.data.general.html#module-sleap.nn.data.general" title="sleap.nn.data.general"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sleap.nn.data.general</span></code></a></p></td> <td><p>General purpose transformers for common pipeline processing tasks.</p></td> </tr> -<tr class="row-even"><td><p><a class="reference internal" href="api/sleap.nn.data.grouping.html#module-sleap.nn.data.grouping" title="sleap.nn.data.grouping"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sleap.nn.data.grouping</span></code></a></p></td> +<tr class="row-odd"><td><p><a class="reference internal" href="api/sleap.nn.data.grouping.html#module-sleap.nn.data.grouping" title="sleap.nn.data.grouping"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sleap.nn.data.grouping</span></code></a></p></td> <td><p>Group inference results ("examples") by frame.</p></td> </tr> -<tr class="row-odd"><td><p><a class="reference internal" href="api/sleap.nn.data.identity.html#module-sleap.nn.data.identity" title="sleap.nn.data.identity"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sleap.nn.data.identity</span></code></a></p></td> +<tr class="row-even"><td><p><a class="reference internal" href="api/sleap.nn.data.identity.html#module-sleap.nn.data.identity" title="sleap.nn.data.identity"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sleap.nn.data.identity</span></code></a></p></td> <td><p>Utilities for generating data for track identity models.</p></td> </tr> -<tr class="row-even"><td><p><a class="reference internal" href="api/sleap.nn.data.inference.html#module-sleap.nn.data.inference" title="sleap.nn.data.inference"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sleap.nn.data.inference</span></code></a></p></td> +<tr class="row-odd"><td><p><a class="reference internal" href="api/sleap.nn.data.inference.html#module-sleap.nn.data.inference" title="sleap.nn.data.inference"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sleap.nn.data.inference</span></code></a></p></td> <td><p>Transformers for performing inference.</p></td> </tr> -<tr class="row-odd"><td><p><a class="reference internal" href="api/sleap.nn.data.instance_centroids.html#module-sleap.nn.data.instance_centroids" title="sleap.nn.data.instance_centroids"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sleap.nn.data.instance_centroids</span></code></a></p></td> +<tr class="row-even"><td><p><a class="reference internal" href="api/sleap.nn.data.instance_centroids.html#module-sleap.nn.data.instance_centroids" title="sleap.nn.data.instance_centroids"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sleap.nn.data.instance_centroids</span></code></a></p></td> <td><p>Transformers for finding instance centroids.</p></td> </tr> -<tr class="row-even"><td><p><a class="reference internal" href="api/sleap.nn.data.instance_cropping.html#module-sleap.nn.data.instance_cropping" title="sleap.nn.data.instance_cropping"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sleap.nn.data.instance_cropping</span></code></a></p></td> +<tr class="row-odd"><td><p><a class="reference internal" href="api/sleap.nn.data.instance_cropping.html#module-sleap.nn.data.instance_cropping" title="sleap.nn.data.instance_cropping"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sleap.nn.data.instance_cropping</span></code></a></p></td> <td><p>Transformers for cropping instances for topdown processing.</p></td> </tr> -<tr class="row-odd"><td><p><a class="reference internal" href="api/sleap.nn.data.normalization.html#module-sleap.nn.data.normalization" title="sleap.nn.data.normalization"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sleap.nn.data.normalization</span></code></a></p></td> +<tr class="row-even"><td><p><a class="reference internal" href="api/sleap.nn.data.normalization.html#module-sleap.nn.data.normalization" title="sleap.nn.data.normalization"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sleap.nn.data.normalization</span></code></a></p></td> <td><p>Transformers for normalizing data formats.</p></td> </tr> -<tr class="row-even"><td><p><a class="reference internal" href="api/sleap.nn.data.offset_regression.html#module-sleap.nn.data.offset_regression" title="sleap.nn.data.offset_regression"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sleap.nn.data.offset_regression</span></code></a></p></td> +<tr class="row-odd"><td><p><a class="reference internal" href="api/sleap.nn.data.offset_regression.html#module-sleap.nn.data.offset_regression" title="sleap.nn.data.offset_regression"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sleap.nn.data.offset_regression</span></code></a></p></td> <td><p>Utilities for creating offset regression maps.</p></td> </tr> -<tr class="row-odd"><td><p><a class="reference internal" href="api/sleap.nn.data.pipelines.html#module-sleap.nn.data.pipelines" title="sleap.nn.data.pipelines"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sleap.nn.data.pipelines</span></code></a></p></td> +<tr class="row-even"><td><p><a class="reference internal" href="api/sleap.nn.data.pipelines.html#module-sleap.nn.data.pipelines" title="sleap.nn.data.pipelines"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sleap.nn.data.pipelines</span></code></a></p></td> <td><p>This module defines high level pipeline configurations from providers/transformers.</p></td> </tr> -<tr class="row-even"><td><p><a class="reference internal" href="api/sleap.nn.data.providers.html#module-sleap.nn.data.providers" title="sleap.nn.data.providers"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sleap.nn.data.providers</span></code></a></p></td> +<tr class="row-odd"><td><p><a class="reference internal" href="api/sleap.nn.data.providers.html#module-sleap.nn.data.providers" title="sleap.nn.data.providers"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sleap.nn.data.providers</span></code></a></p></td> <td><p>Data providers for pipeline I/O.</p></td> </tr> -<tr class="row-odd"><td><p><a class="reference internal" href="api/sleap.nn.data.resizing.html#module-sleap.nn.data.resizing" title="sleap.nn.data.resizing"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sleap.nn.data.resizing</span></code></a></p></td> +<tr class="row-even"><td><p><a class="reference internal" href="api/sleap.nn.data.resizing.html#module-sleap.nn.data.resizing" title="sleap.nn.data.resizing"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sleap.nn.data.resizing</span></code></a></p></td> <td><p>Transformers for image resizing and padding.</p></td> </tr> -<tr class="row-even"><td><p><a class="reference internal" href="api/sleap.nn.data.training.html#module-sleap.nn.data.training" title="sleap.nn.data.training"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sleap.nn.data.training</span></code></a></p></td> +<tr class="row-odd"><td><p><a class="reference internal" href="api/sleap.nn.data.training.html#module-sleap.nn.data.training" title="sleap.nn.data.training"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sleap.nn.data.training</span></code></a></p></td> <td><p>Transformers and utilities for training-related operations.</p></td> </tr> -<tr class="row-odd"><td><p><a class="reference internal" href="api/sleap.nn.data.utils.html#module-sleap.nn.data.utils" title="sleap.nn.data.utils"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sleap.nn.data.utils</span></code></a></p></td> +<tr class="row-even"><td><p><a class="reference internal" href="api/sleap.nn.data.utils.html#module-sleap.nn.data.utils" title="sleap.nn.data.utils"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sleap.nn.data.utils</span></code></a></p></td> <td><p>Miscellaneous utility functions for data processing.</p></td> </tr> -<tr class="row-even"><td><p><a class="reference internal" href="api/sleap.nn.architectures.common.html#module-sleap.nn.architectures.common" title="sleap.nn.architectures.common"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sleap.nn.architectures.common</span></code></a></p></td> -<td><p>Common utilities for architecture and model building.</p></td> -</tr> -<tr class="row-odd"><td><p><a class="reference internal" href="api/sleap.nn.architectures.encoder_decoder.html#module-sleap.nn.architectures.encoder_decoder" title="sleap.nn.architectures.encoder_decoder"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sleap.nn.architectures.encoder_decoder</span></code></a></p></td> -<td><p>Generic encoder-decoder fully convolutional backbones.</p></td> -</tr> -<tr class="row-even"><td><p><a class="reference internal" href="api/sleap.nn.architectures.hourglass.html#module-sleap.nn.architectures.hourglass" title="sleap.nn.architectures.hourglass"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sleap.nn.architectures.hourglass</span></code></a></p></td> -<td><p>This module provides a generalized implementation of (stacked) hourglass.</p></td> -</tr> -<tr class="row-odd"><td><p><a class="reference internal" href="api/sleap.nn.architectures.hrnet.html#module-sleap.nn.architectures.hrnet" title="sleap.nn.architectures.hrnet"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sleap.nn.architectures.hrnet</span></code></a></p></td> -<td><p>(Higher)HRNet backbone.</p></td> -</tr> -<tr class="row-even"><td><p><a class="reference internal" href="api/sleap.nn.architectures.leap.html#module-sleap.nn.architectures.leap" title="sleap.nn.architectures.leap"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sleap.nn.architectures.leap</span></code></a></p></td> -<td><p>This module provides a generalized implementation of the LEAP CNN.</p></td> -</tr> -<tr class="row-odd"><td><p><a class="reference internal" href="api/sleap.nn.architectures.pretrained_encoders.html#module-sleap.nn.architectures.pretrained_encoders" title="sleap.nn.architectures.pretrained_encoders"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sleap.nn.architectures.pretrained_encoders</span></code></a></p></td> -<td><p>Encoder-decoder backbones with pretrained encoder models.</p></td> -</tr> -<tr class="row-even"><td><p><a class="reference internal" href="api/sleap.nn.architectures.resnet.html#module-sleap.nn.architectures.resnet" title="sleap.nn.architectures.resnet"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sleap.nn.architectures.resnet</span></code></a></p></td> -<td><p>ResNet-based backbones.</p></td> -</tr> -<tr class="row-odd"><td><p><a class="reference internal" href="api/sleap.nn.architectures.unet.html#module-sleap.nn.architectures.unet" title="sleap.nn.architectures.unet"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sleap.nn.architectures.unet</span></code></a></p></td> -<td><p>This module provides a generalized implementation of UNet.</p></td> -</tr> -<tr class="row-even"><td><p><a class="reference internal" href="api/sleap.nn.architectures.upsampling.html#module-sleap.nn.architectures.upsampling" title="sleap.nn.architectures.upsampling"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sleap.nn.architectures.upsampling</span></code></a></p></td> -<td><p>This module defines common upsampling layer stack configurations.</p></td> -</tr> </tbody> </table> </section> diff --git a/develop/api/sleap.nn.inference.html b/develop/api/sleap.nn.inference.html index c01d889b3..0b748dd15 100644 --- a/develop/api/sleap.nn.inference.html +++ b/develop/api/sleap.nn.inference.html @@ -338,7 +338,7 @@ <h1>sleap.nn.inference</h1> function which provides a simplified interface for creating <a href="#id3"><span class="problematic" id="id4">`</span></a>Predictor`s.</p> <dl class="py class"> <dt class="sig sig-object py" id="sleap.nn.inference.BottomUpInferenceLayer"> -<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">BottomUpInferenceLayer</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L2693-L2959"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.BottomUpInferenceLayer" title="Permalink to this definition">#</a></dt> +<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">BottomUpInferenceLayer</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L2694-L2960"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.BottomUpInferenceLayer" title="Permalink to this definition">#</a></dt> <dd><p>Keras layer that predicts instances from images using a trained model.</p> <p>This layer encapsulates all of the inference operations required for generating predictions from a centered instance confidence map model. This includes @@ -461,7 +461,7 @@ <h1>sleap.nn.inference</h1> <dl class="py method"> <dt class="sig sig-object py" id="sleap.nn.inference.BottomUpInferenceLayer.call"> -<span class="sig-name descname"><span class="pre">call</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L2894-L2959"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.BottomUpInferenceLayer.call" title="Permalink to this definition">#</a></dt> +<span class="sig-name descname"><span class="pre">call</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L2895-L2960"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.BottomUpInferenceLayer.call" title="Permalink to this definition">#</a></dt> <dd><p>Predict instances for one batch of images.</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> @@ -495,13 +495,13 @@ <h1>sleap.nn.inference</h1> <dl class="py method"> <dt class="sig sig-object py" id="sleap.nn.inference.BottomUpInferenceLayer.find_peaks"> -<span class="sig-name descname"><span class="pre">find_peaks</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">cms</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">offsets</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L2848-L2892"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.BottomUpInferenceLayer.find_peaks" title="Permalink to this definition">#</a></dt> +<span class="sig-name descname"><span class="pre">find_peaks</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">cms</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">offsets</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L2849-L2893"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.BottomUpInferenceLayer.find_peaks" title="Permalink to this definition">#</a></dt> <dd><p>Run peak finding on predicted confidence maps.</p> </dd></dl> <dl class="py method"> <dt class="sig sig-object py" id="sleap.nn.inference.BottomUpInferenceLayer.forward_pass"> -<span class="sig-name descname"><span class="pre">forward_pass</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L2820-L2846"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.BottomUpInferenceLayer.forward_pass" title="Permalink to this definition">#</a></dt> +<span class="sig-name descname"><span class="pre">forward_pass</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L2821-L2847"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.BottomUpInferenceLayer.forward_pass" title="Permalink to this definition">#</a></dt> <dd><p>Run preprocessing and model inference on a batch.</p> </dd></dl> @@ -509,7 +509,7 @@ <h1>sleap.nn.inference</h1> <dl class="py class"> <dt class="sig sig-object py" id="sleap.nn.inference.BottomUpInferenceModel"> -<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">BottomUpInferenceModel</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L2962-L3008"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.BottomUpInferenceModel" title="Permalink to this definition">#</a></dt> +<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">BottomUpInferenceModel</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L2963-L3009"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.BottomUpInferenceModel" title="Permalink to this definition">#</a></dt> <dd><p>Bottom-up instance prediction model.</p> <p>This model encapsulates the bottom-up approach where points are first detected by local peak detection and then grouped into instances by connectivity scoring using @@ -523,7 +523,7 @@ <h1>sleap.nn.inference</h1> <dl class="py method"> <dt class="sig sig-object py" id="sleap.nn.inference.BottomUpInferenceModel.call"> -<span class="sig-name descname"><span class="pre">call</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">example</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L2982-L3008"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.BottomUpInferenceModel.call" title="Permalink to this definition">#</a></dt> +<span class="sig-name descname"><span class="pre">call</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">example</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L2983-L3009"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.BottomUpInferenceModel.call" title="Permalink to this definition">#</a></dt> <dd><p>Predict instances for one batch of images.</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> @@ -556,7 +556,7 @@ <h1>sleap.nn.inference</h1> <dl class="py class"> <dt class="sig sig-object py" id="sleap.nn.inference.BottomUpMultiClassInferenceLayer"> -<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">BottomUpMultiClassInferenceLayer</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L3306-L3544"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.BottomUpMultiClassInferenceLayer" title="Permalink to this definition">#</a></dt> +<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">BottomUpMultiClassInferenceLayer</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L3307-L3545"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.BottomUpMultiClassInferenceLayer" title="Permalink to this definition">#</a></dt> <dd><p>Keras layer that predicts instances from images using a trained model.</p> <p>This layer encapsulates all of the inference operations required for generating predictions from a centered instance confidence map model. This includes @@ -662,7 +662,7 @@ <h1>sleap.nn.inference</h1> <dl class="py method"> <dt class="sig sig-object py" id="sleap.nn.inference.BottomUpMultiClassInferenceLayer.call"> -<span class="sig-name descname"><span class="pre">call</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L3480-L3544"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.BottomUpMultiClassInferenceLayer.call" title="Permalink to this definition">#</a></dt> +<span class="sig-name descname"><span class="pre">call</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L3481-L3545"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.BottomUpMultiClassInferenceLayer.call" title="Permalink to this definition">#</a></dt> <dd><p>Predict instances for one batch of images.</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> @@ -693,13 +693,13 @@ <h1>sleap.nn.inference</h1> <dl class="py method"> <dt class="sig sig-object py" id="sleap.nn.inference.BottomUpMultiClassInferenceLayer.find_peaks"> -<span class="sig-name descname"><span class="pre">find_peaks</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">cms</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">offsets</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L3448-L3478"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.BottomUpMultiClassInferenceLayer.find_peaks" title="Permalink to this definition">#</a></dt> +<span class="sig-name descname"><span class="pre">find_peaks</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">cms</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">offsets</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L3449-L3479"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.BottomUpMultiClassInferenceLayer.find_peaks" title="Permalink to this definition">#</a></dt> <dd><p>Run peak finding on predicted confidence maps.</p> </dd></dl> <dl class="py method"> <dt class="sig sig-object py" id="sleap.nn.inference.BottomUpMultiClassInferenceLayer.forward_pass"> -<span class="sig-name descname"><span class="pre">forward_pass</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L3422-L3446"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.BottomUpMultiClassInferenceLayer.forward_pass" title="Permalink to this definition">#</a></dt> +<span class="sig-name descname"><span class="pre">forward_pass</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L3423-L3447"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.BottomUpMultiClassInferenceLayer.forward_pass" title="Permalink to this definition">#</a></dt> <dd><p>Run preprocessing and model inference on a batch.</p> </dd></dl> @@ -707,7 +707,7 @@ <h1>sleap.nn.inference</h1> <dl class="py class"> <dt class="sig sig-object py" id="sleap.nn.inference.BottomUpMultiClassInferenceModel"> -<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">BottomUpMultiClassInferenceModel</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L3547-L3589"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.BottomUpMultiClassInferenceModel" title="Permalink to this definition">#</a></dt> +<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">BottomUpMultiClassInferenceModel</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L3548-L3590"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.BottomUpMultiClassInferenceModel" title="Permalink to this definition">#</a></dt> <dd><p>Bottom-up multi-class instance prediction model.</p> <p>This model encapsulates the bottom-up multi-class approach where points are first detected by local peak finding and then grouped into instances by their identity @@ -721,7 +721,7 @@ <h1>sleap.nn.inference</h1> <dl class="py method"> <dt class="sig sig-object py" id="sleap.nn.inference.BottomUpMultiClassInferenceModel.call"> -<span class="sig-name descname"><span class="pre">call</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">example</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L3563-L3589"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.BottomUpMultiClassInferenceModel.call" title="Permalink to this definition">#</a></dt> +<span class="sig-name descname"><span class="pre">call</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">example</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L3564-L3590"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.BottomUpMultiClassInferenceModel.call" title="Permalink to this definition">#</a></dt> <dd><p>Predict instances for one batch of images.</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> @@ -754,7 +754,7 @@ <h1>sleap.nn.inference</h1> <dl class="py class"> <dt class="sig sig-object py" id="sleap.nn.inference.BottomUpMultiClassPredictor"> -<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">BottomUpMultiClassPredictor</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">config</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="sleap.nn.config.training_job.html#sleap.nn.config.training_job.TrainingJobConfig" title="sleap.nn.config.training_job.TrainingJobConfig"><span class="pre">sleap.nn.config.training_job.TrainingJobConfig</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="sleap.nn.model.html#sleap.nn.model.Model" title="sleap.nn.model.Model"><span class="pre">sleap.nn.model.Model</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">inference_model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="#sleap.nn.inference.BottomUpMultiClassInferenceModel" title="sleap.nn.inference.BottomUpMultiClassInferenceModel"><span class="pre">sleap.nn.inference.BottomUpMultiClassInferenceModel</span></a><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">peak_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.2</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">4</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_refinement</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_patch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tracks</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">List</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="sleap.instance.html#sleap.instance.Track" title="sleap.instance.Track"><span class="pre">sleap.instance.Track</span></a><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbosity</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'rich'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">report_rate</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">2.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">model_paths</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">NOTHING</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L3593-L3814"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.BottomUpMultiClassPredictor" title="Permalink to this definition">#</a></dt> +<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">BottomUpMultiClassPredictor</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">config</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="sleap.nn.config.training_job.html#sleap.nn.config.training_job.TrainingJobConfig" title="sleap.nn.config.training_job.TrainingJobConfig"><span class="pre">sleap.nn.config.training_job.TrainingJobConfig</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="sleap.nn.model.html#sleap.nn.model.Model" title="sleap.nn.model.Model"><span class="pre">sleap.nn.model.Model</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">inference_model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="#sleap.nn.inference.BottomUpMultiClassInferenceModel" title="sleap.nn.inference.BottomUpMultiClassInferenceModel"><span class="pre">sleap.nn.inference.BottomUpMultiClassInferenceModel</span></a><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">peak_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.2</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">4</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_refinement</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_patch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tracks</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">List</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="sleap.instance.html#sleap.instance.Track" title="sleap.instance.Track"><span class="pre">sleap.instance.Track</span></a><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbosity</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'rich'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">report_rate</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">2.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">model_paths</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">NOTHING</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L3594-L3815"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.BottomUpMultiClassPredictor" title="Permalink to this definition">#</a></dt> <dd><p>Bottom-up multi-instance predictor.</p> <p>This high-level class handles initialization, preprocessing and tracking using a trained bottom-up multi-instance SLEAP model.</p> @@ -873,7 +873,7 @@ <h1>sleap.nn.inference</h1> <dl class="py method"> <dt class="sig sig-object py" id="sleap.nn.inference.BottomUpMultiClassPredictor.from_trained_models"> -<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">from_trained_models</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model_path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">4</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">peak_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.2</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_refinement</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_patch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">resize_input_layer</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><a class="reference internal" href="#sleap.nn.inference.BottomUpMultiClassPredictor" title="sleap.nn.inference.BottomUpMultiClassPredictor"><span class="pre">sleap.nn.inference.BottomUpMultiClassPredictor</span></a></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L3651-L3702"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.BottomUpMultiClassPredictor.from_trained_models" title="Permalink to this definition">#</a></dt> +<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">from_trained_models</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model_path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">4</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">peak_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.2</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_refinement</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_patch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">resize_input_layer</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><a class="reference internal" href="#sleap.nn.inference.BottomUpMultiClassPredictor" title="sleap.nn.inference.BottomUpMultiClassPredictor"><span class="pre">sleap.nn.inference.BottomUpMultiClassPredictor</span></a></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L3652-L3703"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.BottomUpMultiClassPredictor.from_trained_models" title="Permalink to this definition">#</a></dt> <dd><p>Create predictor from a saved model.</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> @@ -912,7 +912,7 @@ <h1>sleap.nn.inference</h1> <dl class="py class"> <dt class="sig sig-object py" id="sleap.nn.inference.BottomUpPredictor"> -<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">BottomUpPredictor</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">bottomup_config</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="sleap.nn.config.training_job.html#sleap.nn.config.training_job.TrainingJobConfig" title="sleap.nn.config.training_job.TrainingJobConfig"><span class="pre">sleap.nn.config.training_job.TrainingJobConfig</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">bottomup_model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="sleap.nn.model.html#sleap.nn.model.Model" title="sleap.nn.model.Model"><span class="pre">sleap.nn.model.Model</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">inference_model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="#sleap.nn.inference.BottomUpInferenceModel" title="sleap.nn.inference.BottomUpInferenceModel"><span class="pre">sleap.nn.inference.BottomUpInferenceModel</span></a><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">peak_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.2</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">4</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_refinement</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_patch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_edge_length_ratio</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.25</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">dist_penalty_weight</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">1.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">paf_line_points</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">10</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">min_line_scores</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.25</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbosity</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'rich'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">report_rate</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">2.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">model_paths</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">NOTHING</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L3012-L3303"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.BottomUpPredictor" title="Permalink to this definition">#</a></dt> +<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">BottomUpPredictor</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">bottomup_config</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="sleap.nn.config.training_job.html#sleap.nn.config.training_job.TrainingJobConfig" title="sleap.nn.config.training_job.TrainingJobConfig"><span class="pre">sleap.nn.config.training_job.TrainingJobConfig</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">bottomup_model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="sleap.nn.model.html#sleap.nn.model.Model" title="sleap.nn.model.Model"><span class="pre">sleap.nn.model.Model</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">inference_model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="#sleap.nn.inference.BottomUpInferenceModel" title="sleap.nn.inference.BottomUpInferenceModel"><span class="pre">sleap.nn.inference.BottomUpInferenceModel</span></a><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">peak_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.2</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">4</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_refinement</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_patch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_edge_length_ratio</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.25</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">dist_penalty_weight</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">1.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">paf_line_points</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">10</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">min_line_scores</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.25</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbosity</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'rich'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">report_rate</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">2.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">model_paths</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">NOTHING</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L3013-L3304"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.BottomUpPredictor" title="Permalink to this definition">#</a></dt> <dd><p>Bottom-up multi-instance predictor.</p> <p>This high-level class handles initialization, preprocessing and tracking using a trained bottom-up multi-instance SLEAP model.</p> @@ -1096,7 +1096,7 @@ <h1>sleap.nn.inference</h1> <dl class="py method"> <dt class="sig sig-object py" id="sleap.nn.inference.BottomUpPredictor.from_trained_models"> -<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">from_trained_models</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model_path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">4</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">peak_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.2</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_refinement</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_patch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_edge_length_ratio</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.25</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">dist_penalty_weight</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">1.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">paf_line_points</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">10</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">min_line_scores</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.25</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">resize_input_layer</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><a class="reference internal" href="#sleap.nn.inference.BottomUpPredictor" title="sleap.nn.inference.BottomUpPredictor"><span class="pre">sleap.nn.inference.BottomUpPredictor</span></a></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L3107-L3184"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.BottomUpPredictor.from_trained_models" title="Permalink to this definition">#</a></dt> +<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">from_trained_models</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model_path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">4</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">peak_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.2</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_refinement</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_patch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_edge_length_ratio</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.25</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">dist_penalty_weight</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">1.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">paf_line_points</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">10</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">min_line_scores</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.25</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">resize_input_layer</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><a class="reference internal" href="#sleap.nn.inference.BottomUpPredictor" title="sleap.nn.inference.BottomUpPredictor"><span class="pre">sleap.nn.inference.BottomUpPredictor</span></a></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L3108-L3185"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.BottomUpPredictor.from_trained_models" title="Permalink to this definition">#</a></dt> <dd><p>Create predictor from a saved model.</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> @@ -1149,7 +1149,7 @@ <h1>sleap.nn.inference</h1> <dl class="py class"> <dt class="sig sig-object py" id="sleap.nn.inference.CentroidCrop"> -<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">CentroidCrop</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L1624-L1940"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.CentroidCrop" title="Permalink to this definition">#</a></dt> +<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">CentroidCrop</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L1625-L1941"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.CentroidCrop" title="Permalink to this definition">#</a></dt> <dd><p>Inference layer for applying centroid crop-based models.</p> <p>This layer encapsulates all of the inference operations requires for generating predictions from a centroid confidence map model. This includes preprocessing, @@ -1296,7 +1296,7 @@ <h1>sleap.nn.inference</h1> <dl class="py class"> <dt class="sig sig-object py" id="sleap.nn.inference.CentroidCropGroundTruth"> -<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">CentroidCropGroundTruth</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L722-L798"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.CentroidCropGroundTruth" title="Permalink to this definition">#</a></dt> +<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">CentroidCropGroundTruth</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L723-L799"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.CentroidCropGroundTruth" title="Permalink to this definition">#</a></dt> <dd><p>Keras layer that simulates a centroid cropping model using ground truth.</p> <p>This layer is useful for testing and evaluating centered instance models.</p> <dl class="py attribute"> @@ -1307,7 +1307,7 @@ <h1>sleap.nn.inference</h1> <dl class="py method"> <dt class="sig sig-object py" id="sleap.nn.inference.CentroidCropGroundTruth.call"> -<span class="sig-name descname"><span class="pre">call</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">example_gt</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">tensorflow.python.framework.ops.Tensor</span><span class="p"><span class="pre">]</span></span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">tensorflow.python.framework.ops.Tensor</span><span class="p"><span class="pre">]</span></span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L735-L798"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.CentroidCropGroundTruth.call" title="Permalink to this definition">#</a></dt> +<span class="sig-name descname"><span class="pre">call</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">example_gt</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">tensorflow.python.framework.ops.Tensor</span><span class="p"><span class="pre">]</span></span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">tensorflow.python.framework.ops.Tensor</span><span class="p"><span class="pre">]</span></span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L736-L799"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.CentroidCropGroundTruth.call" title="Permalink to this definition">#</a></dt> <dd><p>Return the ground truth instance crops.</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> @@ -1343,7 +1343,7 @@ <h1>sleap.nn.inference</h1> <dl class="py class"> <dt class="sig sig-object py" id="sleap.nn.inference.CentroidInferenceModel"> -<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">CentroidInferenceModel</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L2168-L2208"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.CentroidInferenceModel" title="Permalink to this definition">#</a></dt> +<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">CentroidInferenceModel</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L2169-L2209"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.CentroidInferenceModel" title="Permalink to this definition">#</a></dt> <dd><p>Centroid only instance prediction model.</p> <p>This model encapsulates the first step in a top-down approach where instances are detected by local peak detection of an anchor point and then cropped.</p> @@ -1357,7 +1357,7 @@ <h1>sleap.nn.inference</h1> <dl class="py method"> <dt class="sig sig-object py" id="sleap.nn.inference.CentroidInferenceModel.call"> -<span class="sig-name descname"><span class="pre">call</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">example</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">tensorflow.python.framework.ops.Tensor</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">tensorflow.python.framework.ops.Tensor</span><span class="p"><span class="pre">]</span></span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">tensorflow.python.framework.ops.Tensor</span><span class="p"><span class="pre">]</span></span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L2184-L2208"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.CentroidInferenceModel.call" title="Permalink to this definition">#</a></dt> +<span class="sig-name descname"><span class="pre">call</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">example</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">tensorflow.python.framework.ops.Tensor</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">tensorflow.python.framework.ops.Tensor</span><span class="p"><span class="pre">]</span></span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">tensorflow.python.framework.ops.Tensor</span><span class="p"><span class="pre">]</span></span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L2185-L2209"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.CentroidInferenceModel.call" title="Permalink to this definition">#</a></dt> <dd><p>Predict instances for one batch of images.</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> @@ -1385,7 +1385,7 @@ <h1>sleap.nn.inference</h1> <dl class="py class"> <dt class="sig sig-object py" id="sleap.nn.inference.FindInstancePeaks"> -<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">FindInstancePeaks</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L1943-L2165"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.FindInstancePeaks" title="Permalink to this definition">#</a></dt> +<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">FindInstancePeaks</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L1944-L2166"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.FindInstancePeaks" title="Permalink to this definition">#</a></dt> <dd><p>Keras layer that predicts instance peaks from images using a trained model.</p> <p>This layer encapsulates all of the inference operations required for generating predictions from a centered instance confidence map model. This includes @@ -1466,7 +1466,7 @@ <h1>sleap.nn.inference</h1> <dl class="py method"> <dt class="sig sig-object py" id="sleap.nn.inference.FindInstancePeaks.call"> -<span class="sig-name descname"><span class="pre">call</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">inputs</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">tensorflow.python.framework.ops.Tensor</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">tensorflow.python.framework.ops.Tensor</span><span class="p"><span class="pre">]</span></span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">tensorflow.python.framework.ops.Tensor</span><span class="p"><span class="pre">]</span></span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L2026-L2165"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.FindInstancePeaks.call" title="Permalink to this definition">#</a></dt> +<span class="sig-name descname"><span class="pre">call</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">inputs</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">tensorflow.python.framework.ops.Tensor</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">tensorflow.python.framework.ops.Tensor</span><span class="p"><span class="pre">]</span></span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">tensorflow.python.framework.ops.Tensor</span><span class="p"><span class="pre">]</span></span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L2027-L2166"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.FindInstancePeaks.call" title="Permalink to this definition">#</a></dt> <dd><p>Predict confidence maps and infer peak coordinates.</p> <p>This layer can be chained with a <a class="reference internal" href="#sleap.nn.inference.CentroidCrop" title="sleap.nn.inference.CentroidCrop"><code class="xref py py-obj docutils literal notranslate"><span class="pre">CentroidCrop</span></code></a> layer to create a top-down inference function from full images.</p> @@ -1519,12 +1519,12 @@ <h1>sleap.nn.inference</h1> <dl class="py class"> <dt class="sig sig-object py" id="sleap.nn.inference.FindInstancePeaksGroundTruth"> -<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">FindInstancePeaksGroundTruth</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L801-L883"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.FindInstancePeaksGroundTruth" title="Permalink to this definition">#</a></dt> +<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">FindInstancePeaksGroundTruth</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L802-L884"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.FindInstancePeaksGroundTruth" title="Permalink to this definition">#</a></dt> <dd><p>Keras layer that simulates a centered instance peaks model.</p> <p>This layer is useful for testing and evaluating centroid models.</p> <dl class="py method"> <dt class="sig sig-object py" id="sleap.nn.inference.FindInstancePeaksGroundTruth.call"> -<span class="sig-name descname"><span class="pre">call</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">example_gt</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">tensorflow.python.framework.ops.Tensor</span><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">crop_output</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">tensorflow.python.framework.ops.Tensor</span><span class="p"><span class="pre">]</span></span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">tensorflow.python.framework.ops.Tensor</span><span class="p"><span class="pre">]</span></span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L809-L883"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.FindInstancePeaksGroundTruth.call" title="Permalink to this definition">#</a></dt> +<span class="sig-name descname"><span class="pre">call</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">example_gt</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">tensorflow.python.framework.ops.Tensor</span><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">crop_output</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">tensorflow.python.framework.ops.Tensor</span><span class="p"><span class="pre">]</span></span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">tensorflow.python.framework.ops.Tensor</span><span class="p"><span class="pre">]</span></span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L810-L884"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.FindInstancePeaksGroundTruth.call" title="Permalink to this definition">#</a></dt> <dd><p>Return the ground truth instance peaks given a set of crops.</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> @@ -1572,7 +1572,7 @@ <h1>sleap.nn.inference</h1> <dl class="py class"> <dt class="sig sig-object py" id="sleap.nn.inference.InferenceLayer"> -<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">InferenceLayer</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L886-L966"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.InferenceLayer" title="Permalink to this definition">#</a></dt> +<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">InferenceLayer</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L887-L967"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.InferenceLayer" title="Permalink to this definition">#</a></dt> <dd><p>Base layer for wrapping a Keras model into a layer with preprocessing.</p> <p>This layer is useful for wrapping input preprocessing operations that would otherwise be handled by a separate pipeline.</p> @@ -1617,7 +1617,7 @@ <h1>sleap.nn.inference</h1> <dl class="py method"> <dt class="sig sig-object py" id="sleap.nn.inference.InferenceLayer.call"> -<span class="sig-name descname"><span class="pre">call</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">tensorflow.python.framework.ops.Tensor</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">tensorflow.python.framework.ops.Tensor</span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L957-L966"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.InferenceLayer.call" title="Permalink to this definition">#</a></dt> +<span class="sig-name descname"><span class="pre">call</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">tensorflow.python.framework.ops.Tensor</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">tensorflow.python.framework.ops.Tensor</span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L958-L967"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.InferenceLayer.call" title="Permalink to this definition">#</a></dt> <dd><p>Call the model with preprocessed data.</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> @@ -1631,7 +1631,7 @@ <h1>sleap.nn.inference</h1> <dl class="py method"> <dt class="sig sig-object py" id="sleap.nn.inference.InferenceLayer.preprocess"> -<span class="sig-name descname"><span class="pre">preprocess</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">imgs</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">tensorflow.python.framework.ops.Tensor</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">tensorflow.python.framework.ops.Tensor</span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L929-L955"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.InferenceLayer.preprocess" title="Permalink to this definition">#</a></dt> +<span class="sig-name descname"><span class="pre">preprocess</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">imgs</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">tensorflow.python.framework.ops.Tensor</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">tensorflow.python.framework.ops.Tensor</span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L930-L956"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.InferenceLayer.preprocess" title="Permalink to this definition">#</a></dt> <dd><p>Apply all preprocessing operations configured for this layer.</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> @@ -1649,14 +1649,14 @@ <h1>sleap.nn.inference</h1> <dl class="py class"> <dt class="sig sig-object py" id="sleap.nn.inference.InferenceModel"> -<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">InferenceModel</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L969-L1157"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.InferenceModel" title="Permalink to this definition">#</a></dt> +<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">InferenceModel</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L970-L1158"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.InferenceModel" title="Permalink to this definition">#</a></dt> <dd><p>SLEAP inference model base class.</p> <p>This class wraps the <code class="xref py py-obj docutils literal notranslate"><span class="pre">tf.keras.Model</span></code> class to provide SLEAP-specific inference utilities such as handling different input data types, preprocessing and variable output shapes.</p> <dl class="py method"> <dt class="sig sig-object py" id="sleap.nn.inference.InferenceModel.export_model"> -<span class="sig-name descname"><span class="pre">export_model</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">save_path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">signatures</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'serving_default'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">save_traces</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">model_name</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tensors</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">str</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">unrag_outputs</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L1080-L1157"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.InferenceModel.export_model" title="Permalink to this definition">#</a></dt> +<span class="sig-name descname"><span class="pre">export_model</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">save_path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">signatures</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'serving_default'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">save_traces</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">model_name</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tensors</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">str</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">unrag_outputs</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L1081-L1158"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.InferenceModel.export_model" title="Permalink to this definition">#</a></dt> <dd><p>Save the frozen graph of a model.</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> @@ -1685,7 +1685,7 @@ <h1>sleap.nn.inference</h1> <dl class="py method"> <dt class="sig sig-object py" id="sleap.nn.inference.InferenceModel.predict"> -<span class="sig-name descname"><span class="pre">predict</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">numpy.ndarray</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">tensorflow.python.framework.ops.Tensor</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">tensorflow.python.framework.ops.Tensor</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">tensorflow.python.data.ops.dataset_ops.DatasetV2</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><a class="reference internal" href="sleap.nn.data.pipelines.html#sleap.nn.data.pipelines.Pipeline" title="sleap.nn.data.pipelines.Pipeline"><span class="pre">sleap.nn.data.pipelines.Pipeline</span></a><span class="p"><span class="pre">,</span></span><span class="w"> </span><a class="reference internal" href="sleap.io.video.html#sleap.io.video.Video" title="sleap.io.video.Video"><span class="pre">sleap.io.video.Video</span></a><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">numpy</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">4</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">numpy.ndarray</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">tensorflow.python.framework.ops.Tensor</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">tensorflow.python.ops.ragged.ragged_tensor.RaggedTensor</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L977-L1033"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.InferenceModel.predict" title="Permalink to this definition">#</a></dt> +<span class="sig-name descname"><span class="pre">predict</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">numpy.ndarray</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">tensorflow.python.framework.ops.Tensor</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">tensorflow.python.framework.ops.Tensor</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">tensorflow.python.data.ops.dataset_ops.DatasetV2</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><a class="reference internal" href="sleap.nn.data.pipelines.html#sleap.nn.data.pipelines.Pipeline" title="sleap.nn.data.pipelines.Pipeline"><span class="pre">sleap.nn.data.pipelines.Pipeline</span></a><span class="p"><span class="pre">,</span></span><span class="w"> </span><a class="reference internal" href="sleap.io.video.html#sleap.io.video.Video" title="sleap.io.video.Video"><span class="pre">sleap.io.video.Video</span></a><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">numpy</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">4</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">numpy.ndarray</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">tensorflow.python.framework.ops.Tensor</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">tensorflow.python.ops.ragged.ragged_tensor.RaggedTensor</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L978-L1034"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.InferenceModel.predict" title="Permalink to this definition">#</a></dt> <dd><p>Predict instances in the data.</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> @@ -1729,7 +1729,7 @@ <h1>sleap.nn.inference</h1> <dl class="py method"> <dt class="sig sig-object py" id="sleap.nn.inference.InferenceModel.predict_on_batch"> -<span class="sig-name descname"><span class="pre">predict_on_batch</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">numpy.ndarray</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">tensorflow.python.framework.ops.Tensor</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">tensorflow.python.framework.ops.Tensor</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">numpy</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">numpy.ndarray</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">tensorflow.python.framework.ops.Tensor</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">tensorflow.python.ops.ragged.ragged_tensor.RaggedTensor</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L1035-L1078"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.InferenceModel.predict_on_batch" title="Permalink to this definition">#</a></dt> +<span class="sig-name descname"><span class="pre">predict_on_batch</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">numpy.ndarray</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">tensorflow.python.framework.ops.Tensor</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">tensorflow.python.framework.ops.Tensor</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">numpy</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">numpy.ndarray</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">tensorflow.python.framework.ops.Tensor</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">tensorflow.python.ops.ragged.ragged_tensor.RaggedTensor</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L1036-L1079"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.InferenceModel.predict_on_batch" title="Permalink to this definition">#</a></dt> <dd><p>Predict a single batch of samples.</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> @@ -1766,7 +1766,7 @@ <h1>sleap.nn.inference</h1> <dl class="py class"> <dt class="sig sig-object py" id="sleap.nn.inference.MoveNetInferenceLayer"> -<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">MoveNetInferenceLayer</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L4579-L4624"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.MoveNetInferenceLayer" title="Permalink to this definition">#</a></dt> +<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">MoveNetInferenceLayer</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L4580-L4625"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.MoveNetInferenceLayer" title="Permalink to this definition">#</a></dt> <dd><p>Inference layer for applying single instance models.</p> <p>This layer encapsulates all of the inference operations requires for generating predictions from a single instance confidence map model. This includes @@ -1816,7 +1816,7 @@ <h1>sleap.nn.inference</h1> <dl class="py method"> <dt class="sig sig-object py" id="sleap.nn.inference.MoveNetInferenceLayer.call"> -<span class="sig-name descname"><span class="pre">call</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">ex</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L4614-L4624"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.MoveNetInferenceLayer.call" title="Permalink to this definition">#</a></dt> +<span class="sig-name descname"><span class="pre">call</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">ex</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L4615-L4625"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.MoveNetInferenceLayer.call" title="Permalink to this definition">#</a></dt> <dd><p>Call the model with preprocessed data.</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> @@ -1832,7 +1832,7 @@ <h1>sleap.nn.inference</h1> <dl class="py class"> <dt class="sig sig-object py" id="sleap.nn.inference.MoveNetInferenceModel"> -<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">MoveNetInferenceModel</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L4627-L4651"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.MoveNetInferenceModel" title="Permalink to this definition">#</a></dt> +<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">MoveNetInferenceModel</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L4628-L4652"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.MoveNetInferenceModel" title="Permalink to this definition">#</a></dt> <dd><p>MoveNet prediction model.</p> <p>This model encapsulates the basic MoveNet approach. The images are passed to a model which is trained to detect all body parts (17 joints in total).</p> @@ -1849,7 +1849,7 @@ <h1>sleap.nn.inference</h1> <dl class="py method"> <dt class="sig sig-object py" id="sleap.nn.inference.MoveNetInferenceModel.call"> -<span class="sig-name descname"><span class="pre">call</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">x</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L4650-L4651"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.MoveNetInferenceModel.call" title="Permalink to this definition">#</a></dt> +<span class="sig-name descname"><span class="pre">call</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">x</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L4651-L4652"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.MoveNetInferenceModel.call" title="Permalink to this definition">#</a></dt> <dd><p>Calls the model on new inputs and returns the outputs as tensors.</p> <p>In this case <a class="reference internal" href="#sleap.nn.inference.MoveNetInferenceModel.call" title="sleap.nn.inference.MoveNetInferenceModel.call"><code class="xref py py-obj docutils literal notranslate"><span class="pre">call()</span></code></a> just reapplies all ops in the graph to the new inputs @@ -1883,7 +1883,7 @@ <h1>sleap.nn.inference</h1> <dl class="py class"> <dt class="sig sig-object py" id="sleap.nn.inference.MoveNetPredictor"> -<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">MoveNetPredictor</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">inference_model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="#sleap.nn.inference.MoveNetInferenceModel" title="sleap.nn.inference.MoveNetInferenceModel"><span class="pre">sleap.nn.inference.MoveNetInferenceModel</span></a><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">peak_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.2</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">model_name</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'lightning'</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbosity</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'rich'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">report_rate</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">2.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">model_paths</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">NOTHING</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L4655-L4796"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.MoveNetPredictor" title="Permalink to this definition">#</a></dt> +<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">MoveNetPredictor</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">inference_model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="#sleap.nn.inference.MoveNetInferenceModel" title="sleap.nn.inference.MoveNetInferenceModel"><span class="pre">sleap.nn.inference.MoveNetInferenceModel</span></a><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">peak_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.2</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">model_name</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'lightning'</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbosity</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'rich'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">report_rate</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">2.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">model_paths</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">NOTHING</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L4656-L4797"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.MoveNetPredictor" title="Permalink to this definition">#</a></dt> <dd><p>MoveNet predictor.</p> <p>This high-level class handles initialization, preprocessing and tracking using a trained MoveNet model. @@ -1950,7 +1950,7 @@ <h1>sleap.nn.inference</h1> <dl class="py method"> <dt class="sig sig-object py" id="sleap.nn.inference.MoveNetPredictor.from_trained_models"> -<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">from_trained_models</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model_name</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">peak_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.2</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><a class="reference internal" href="#sleap.nn.inference.MoveNetPredictor" title="sleap.nn.inference.MoveNetPredictor"><span class="pre">sleap.nn.inference.MoveNetPredictor</span></a></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L4707-L4729"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.MoveNetPredictor.from_trained_models" title="Permalink to this definition">#</a></dt> +<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">from_trained_models</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model_name</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">peak_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.2</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><a class="reference internal" href="#sleap.nn.inference.MoveNetPredictor" title="sleap.nn.inference.MoveNetPredictor"><span class="pre">sleap.nn.inference.MoveNetPredictor</span></a></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L4708-L4730"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.MoveNetPredictor.from_trained_models" title="Permalink to this definition">#</a></dt> <dd><p>Create the predictor from a saved model.</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> @@ -1977,11 +1977,11 @@ <h1>sleap.nn.inference</h1> <dl class="py class"> <dt class="sig sig-object py" id="sleap.nn.inference.Predictor"> -<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">Predictor</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbosity</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'rich'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">report_rate</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">2.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">model_paths</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">NOTHING</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L158-L588"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.Predictor" title="Permalink to this definition">#</a></dt> +<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">Predictor</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbosity</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'rich'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">report_rate</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">2.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">model_paths</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">NOTHING</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L159-L589"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.Predictor" title="Permalink to this definition">#</a></dt> <dd><p>Base interface class for predictors.</p> <dl class="py method"> <dt class="sig sig-object py" id="sleap.nn.inference.Predictor.export_model"> -<span class="sig-name descname"><span class="pre">export_model</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">save_path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">signatures</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'serving_default'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">save_traces</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">model_name</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tensors</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">str</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">unrag_outputs</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L532-L588"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.Predictor.export_model" title="Permalink to this definition">#</a></dt> +<span class="sig-name descname"><span class="pre">export_model</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">save_path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">signatures</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'serving_default'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">save_traces</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">model_name</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tensors</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">str</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">unrag_outputs</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L533-L589"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.Predictor.export_model" title="Permalink to this definition">#</a></dt> <dd><p>Export a trained SLEAP model as a frozen graph. Initializes model, creates a dummy tracing batch and passes it through the model. The frozen graph is saved along with training meta info.</p> @@ -2010,7 +2010,7 @@ <h1>sleap.nn.inference</h1> <dl class="py method"> <dt class="sig sig-object py" id="sleap.nn.inference.Predictor.from_model_paths"> -<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">from_model_paths</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model_paths</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">peak_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.2</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_refinement</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_patch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">4</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">resize_input_layer</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><a class="reference internal" href="#sleap.nn.inference.Predictor" title="sleap.nn.inference.Predictor"><span class="pre">sleap.nn.inference.Predictor</span></a></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L174-L310"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.Predictor.from_model_paths" title="Permalink to this definition">#</a></dt> +<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">from_model_paths</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model_paths</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">peak_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.2</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_refinement</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_patch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">4</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">resize_input_layer</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><a class="reference internal" href="#sleap.nn.inference.Predictor" title="sleap.nn.inference.Predictor"><span class="pre">sleap.nn.inference.Predictor</span></a></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L175-L311"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.Predictor.from_model_paths" title="Permalink to this definition">#</a></dt> <dd><p>Create the appropriate <a class="reference internal" href="#sleap.nn.inference.Predictor" title="sleap.nn.inference.Predictor"><code class="xref py py-obj docutils literal notranslate"><span class="pre">Predictor</span></code></a> subclass from a list of model paths.</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> @@ -2054,7 +2054,7 @@ <h1>sleap.nn.inference</h1> <dl class="py method"> <dt class="sig sig-object py" id="sleap.nn.inference.Predictor.make_pipeline"> -<span class="sig-name descname"><span class="pre">make_pipeline</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data_provider</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">sleap.nn.data.pipelines.Provider</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><a class="reference internal" href="sleap.nn.data.pipelines.html#sleap.nn.data.pipelines.Pipeline" title="sleap.nn.data.pipelines.Pipeline"><span class="pre">sleap.nn.data.pipelines.Pipeline</span></a></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L328-L370"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.Predictor.make_pipeline" title="Permalink to this definition">#</a></dt> +<span class="sig-name descname"><span class="pre">make_pipeline</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data_provider</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">sleap.nn.data.pipelines.Provider</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><a class="reference internal" href="sleap.nn.data.pipelines.html#sleap.nn.data.pipelines.Pipeline" title="sleap.nn.data.pipelines.Pipeline"><span class="pre">sleap.nn.data.pipelines.Pipeline</span></a></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L329-L371"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.Predictor.make_pipeline" title="Permalink to this definition">#</a></dt> <dd><p>Make a data loading pipeline.</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> @@ -2074,7 +2074,7 @@ <h1>sleap.nn.inference</h1> <dl class="py method"> <dt class="sig sig-object py" id="sleap.nn.inference.Predictor.predict"> -<span class="sig-name descname"><span class="pre">predict</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">sleap.nn.data.pipelines.Provider</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><a class="reference internal" href="sleap.io.dataset.html#sleap.io.dataset.Labels" title="sleap.io.dataset.Labels"><span class="pre">sleap.io.dataset.Labels</span></a><span class="p"><span class="pre">,</span></span><span class="w"> </span><a class="reference internal" href="sleap.io.video.html#sleap.io.video.Video" title="sleap.io.video.Video"><span class="pre">sleap.io.video.Video</span></a><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">make_labels</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">numpy.ndarray</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">,</span></span><span class="w"> </span><a class="reference internal" href="sleap.io.dataset.html#sleap.io.dataset.Labels" title="sleap.io.dataset.Labels"><span class="pre">sleap.io.dataset.Labels</span></a><span class="p"><span class="pre">]</span></span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L495-L530"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.Predictor.predict" title="Permalink to this definition">#</a></dt> +<span class="sig-name descname"><span class="pre">predict</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">sleap.nn.data.pipelines.Provider</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><a class="reference internal" href="sleap.io.dataset.html#sleap.io.dataset.Labels" title="sleap.io.dataset.Labels"><span class="pre">sleap.io.dataset.Labels</span></a><span class="p"><span class="pre">,</span></span><span class="w"> </span><a class="reference internal" href="sleap.io.video.html#sleap.io.video.Video" title="sleap.io.video.Video"><span class="pre">sleap.io.video.Video</span></a><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">make_labels</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">numpy.ndarray</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">,</span></span><span class="w"> </span><a class="reference internal" href="sleap.io.dataset.html#sleap.io.dataset.Labels" title="sleap.io.dataset.Labels"><span class="pre">sleap.io.dataset.Labels</span></a><span class="p"><span class="pre">]</span></span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L496-L531"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.Predictor.predict" title="Permalink to this definition">#</a></dt> <dd><p>Run inference on a data source.</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> @@ -2104,11 +2104,11 @@ <h1>sleap.nn.inference</h1> <dl class="py class"> <dt class="sig sig-object py" id="sleap.nn.inference.RateColumn"> -<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">RateColumn</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">table_column</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">rich.table.Column</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L146-L154"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.RateColumn" title="Permalink to this definition">#</a></dt> +<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">RateColumn</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">table_column</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">rich.table.Column</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L147-L155"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.RateColumn" title="Permalink to this definition">#</a></dt> <dd><p>Renders the progress rate.</p> <dl class="py method"> <dt class="sig sig-object py" id="sleap.nn.inference.RateColumn.render"> -<span class="sig-name descname"><span class="pre">render</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">task</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Task</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">rich.text.Text</span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L149-L154"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.RateColumn.render" title="Permalink to this definition">#</a></dt> +<span class="sig-name descname"><span class="pre">render</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">task</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Task</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">rich.text.Text</span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L150-L155"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.RateColumn.render" title="Permalink to this definition">#</a></dt> <dd><p>Show progress rate.</p> </dd></dl> @@ -2116,7 +2116,7 @@ <h1>sleap.nn.inference</h1> <dl class="py class"> <dt class="sig sig-object py" id="sleap.nn.inference.SingleInstanceInferenceLayer"> -<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">SingleInstanceInferenceLayer</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L1215-L1366"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.SingleInstanceInferenceLayer" title="Permalink to this definition">#</a></dt> +<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">SingleInstanceInferenceLayer</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L1216-L1367"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.SingleInstanceInferenceLayer" title="Permalink to this definition">#</a></dt> <dd><p>Inference layer for applying single instance models.</p> <p>This layer encapsulates all of the inference operations requires for generating predictions from a single instance confidence map model. This includes @@ -2205,7 +2205,7 @@ <h1>sleap.nn.inference</h1> <dl class="py method"> <dt class="sig sig-object py" id="sleap.nn.inference.SingleInstanceInferenceLayer.call"> -<span class="sig-name descname"><span class="pre">call</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L1305-L1366"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.SingleInstanceInferenceLayer.call" title="Permalink to this definition">#</a></dt> +<span class="sig-name descname"><span class="pre">call</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L1306-L1367"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.SingleInstanceInferenceLayer.call" title="Permalink to this definition">#</a></dt> <dd><p>Predict instance confidence maps and find peaks.</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> @@ -2233,7 +2233,7 @@ <h1>sleap.nn.inference</h1> <dl class="py class"> <dt class="sig sig-object py" id="sleap.nn.inference.SingleInstanceInferenceModel"> -<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">SingleInstanceInferenceModel</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L1369-L1401"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.SingleInstanceInferenceModel" title="Permalink to this definition">#</a></dt> +<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">SingleInstanceInferenceModel</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L1370-L1402"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.SingleInstanceInferenceModel" title="Permalink to this definition">#</a></dt> <dd><p>Single instance prediction model.</p> <p>This model encapsulates the basic single instance approach where it is assumed that there is only one instance in the frame. The images are passed to a peak detector @@ -2248,7 +2248,7 @@ <h1>sleap.nn.inference</h1> <dl class="py method"> <dt class="sig sig-object py" id="sleap.nn.inference.SingleInstanceInferenceModel.call"> -<span class="sig-name descname"><span class="pre">call</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">example</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L1386-L1401"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.SingleInstanceInferenceModel.call" title="Permalink to this definition">#</a></dt> +<span class="sig-name descname"><span class="pre">call</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">example</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L1387-L1402"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.SingleInstanceInferenceModel.call" title="Permalink to this definition">#</a></dt> <dd><p>Predict instances for one batch of images.</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> @@ -2274,7 +2274,7 @@ <h1>sleap.nn.inference</h1> <dl class="py class"> <dt class="sig sig-object py" id="sleap.nn.inference.SingleInstancePredictor"> -<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">SingleInstancePredictor</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">confmap_config</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="sleap.nn.config.training_job.html#sleap.nn.config.training_job.TrainingJobConfig" title="sleap.nn.config.training_job.TrainingJobConfig"><span class="pre">sleap.nn.config.training_job.TrainingJobConfig</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">confmap_model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="sleap.nn.model.html#sleap.nn.model.Model" title="sleap.nn.model.Model"><span class="pre">sleap.nn.model.Model</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">inference_model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="#sleap.nn.inference.SingleInstanceInferenceModel" title="sleap.nn.inference.SingleInstanceInferenceModel"><span class="pre">sleap.nn.inference.SingleInstanceInferenceModel</span></a><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">peak_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.2</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_refinement</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_patch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">4</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbosity</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'rich'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">report_rate</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">2.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">model_paths</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">NOTHING</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L1405-L1621"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.SingleInstancePredictor" title="Permalink to this definition">#</a></dt> +<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">SingleInstancePredictor</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">confmap_config</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="sleap.nn.config.training_job.html#sleap.nn.config.training_job.TrainingJobConfig" title="sleap.nn.config.training_job.TrainingJobConfig"><span class="pre">sleap.nn.config.training_job.TrainingJobConfig</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">confmap_model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="sleap.nn.model.html#sleap.nn.model.Model" title="sleap.nn.model.Model"><span class="pre">sleap.nn.model.Model</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">inference_model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="#sleap.nn.inference.SingleInstanceInferenceModel" title="sleap.nn.inference.SingleInstanceInferenceModel"><span class="pre">sleap.nn.inference.SingleInstanceInferenceModel</span></a><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">peak_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.2</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_refinement</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_patch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">4</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbosity</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'rich'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">report_rate</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">2.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">model_paths</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">NOTHING</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L1406-L1622"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.SingleInstancePredictor" title="Permalink to this definition">#</a></dt> <dd><p>Single instance predictor.</p> <p>This high-level class handles initialization, preprocessing and tracking using a trained single instance SLEAP model.</p> @@ -2378,7 +2378,7 @@ <h1>sleap.nn.inference</h1> <dl class="py method"> <dt class="sig sig-object py" id="sleap.nn.inference.SingleInstancePredictor.export_model"> -<span class="sig-name descname"><span class="pre">export_model</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">save_path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">signatures</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'serving_default'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">save_traces</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">model_name</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tensors</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">str</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">unrag_outputs</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L1601-L1621"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.SingleInstancePredictor.export_model" title="Permalink to this definition">#</a></dt> +<span class="sig-name descname"><span class="pre">export_model</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">save_path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">signatures</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'serving_default'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">save_traces</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">model_name</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tensors</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">str</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">unrag_outputs</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L1602-L1622"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.SingleInstancePredictor.export_model" title="Permalink to this definition">#</a></dt> <dd><p>Export a trained SLEAP model as a frozen graph. Initializes model, creates a dummy tracing batch and passes it through the model. The frozen graph is saved along with training meta info.</p> @@ -2407,7 +2407,7 @@ <h1>sleap.nn.inference</h1> <dl class="py method"> <dt class="sig sig-object py" id="sleap.nn.inference.SingleInstancePredictor.from_trained_models"> -<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">from_trained_models</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model_path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">peak_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.2</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_refinement</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_patch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">4</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">resize_input_layer</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><a class="reference internal" href="#sleap.nn.inference.SingleInstancePredictor" title="sleap.nn.inference.SingleInstancePredictor"><span class="pre">sleap.nn.inference.SingleInstancePredictor</span></a></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L1465-L1518"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.SingleInstancePredictor.from_trained_models" title="Permalink to this definition">#</a></dt> +<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">from_trained_models</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model_path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">peak_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.2</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_refinement</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_patch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">4</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">resize_input_layer</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><a class="reference internal" href="#sleap.nn.inference.SingleInstancePredictor" title="sleap.nn.inference.SingleInstancePredictor"><span class="pre">sleap.nn.inference.SingleInstancePredictor</span></a></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L1466-L1519"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.SingleInstancePredictor.from_trained_models" title="Permalink to this definition">#</a></dt> <dd><p>Create the predictor from a saved model.</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> @@ -2446,7 +2446,7 @@ <h1>sleap.nn.inference</h1> <dl class="py class"> <dt class="sig sig-object py" id="sleap.nn.inference.TopDownInferenceModel"> -<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">TopDownInferenceModel</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L2211-L2276"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.TopDownInferenceModel" title="Permalink to this definition">#</a></dt> +<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">TopDownInferenceModel</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L2212-L2277"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.TopDownInferenceModel" title="Permalink to this definition">#</a></dt> <dd><p>Top-down instance prediction model.</p> <p>This model encapsulates the top-down approach where instances are first detected by local peak detection of an anchor point and then cropped. These instance-centered @@ -2471,7 +2471,7 @@ <h1>sleap.nn.inference</h1> <dl class="py method"> <dt class="sig sig-object py" id="sleap.nn.inference.TopDownInferenceModel.call"> -<span class="sig-name descname"><span class="pre">call</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">example</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">tensorflow.python.framework.ops.Tensor</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">tensorflow.python.framework.ops.Tensor</span><span class="p"><span class="pre">]</span></span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">tensorflow.python.framework.ops.Tensor</span><span class="p"><span class="pre">]</span></span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L2238-L2276"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.TopDownInferenceModel.call" title="Permalink to this definition">#</a></dt> +<span class="sig-name descname"><span class="pre">call</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">example</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">tensorflow.python.framework.ops.Tensor</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">tensorflow.python.framework.ops.Tensor</span><span class="p"><span class="pre">]</span></span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">tensorflow.python.framework.ops.Tensor</span><span class="p"><span class="pre">]</span></span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L2239-L2277"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.TopDownInferenceModel.call" title="Permalink to this definition">#</a></dt> <dd><p>Predict instances for one batch of images.</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> @@ -2505,7 +2505,7 @@ <h1>sleap.nn.inference</h1> <dl class="py class"> <dt class="sig sig-object py" id="sleap.nn.inference.TopDownMultiClassFindPeaks"> -<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">TopDownMultiClassFindPeaks</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L3817-L4083"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.TopDownMultiClassFindPeaks" title="Permalink to this definition">#</a></dt> +<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">TopDownMultiClassFindPeaks</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L3818-L4084"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.TopDownMultiClassFindPeaks" title="Permalink to this definition">#</a></dt> <dd><p>Keras layer that predicts and classifies peaks from images using a trained model.</p> <p>This layer encapsulates all of the inference operations required for generating predictions from a centered instance confidence map and multi-class model. This @@ -2613,7 +2613,7 @@ <h1>sleap.nn.inference</h1> <dl class="py method"> <dt class="sig sig-object py" id="sleap.nn.inference.TopDownMultiClassFindPeaks.call"> -<span class="sig-name descname"><span class="pre">call</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">inputs</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">tensorflow.python.framework.ops.Tensor</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">tensorflow.python.framework.ops.Tensor</span><span class="p"><span class="pre">]</span></span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">tensorflow.python.framework.ops.Tensor</span><span class="p"><span class="pre">]</span></span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L3925-L4083"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.TopDownMultiClassFindPeaks.call" title="Permalink to this definition">#</a></dt> +<span class="sig-name descname"><span class="pre">call</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">inputs</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">tensorflow.python.framework.ops.Tensor</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">tensorflow.python.framework.ops.Tensor</span><span class="p"><span class="pre">]</span></span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">tensorflow.python.framework.ops.Tensor</span><span class="p"><span class="pre">]</span></span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L3926-L4084"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.TopDownMultiClassFindPeaks.call" title="Permalink to this definition">#</a></dt> <dd><p>Predict confidence maps and infer peak coordinates.</p> <p>This layer can be chained with a <a class="reference internal" href="#sleap.nn.inference.CentroidCrop" title="sleap.nn.inference.CentroidCrop"><code class="xref py py-obj docutils literal notranslate"><span class="pre">CentroidCrop</span></code></a> layer to create a top-down inference function from full images.</p> @@ -2674,7 +2674,7 @@ <h1>sleap.nn.inference</h1> <dl class="py class"> <dt class="sig sig-object py" id="sleap.nn.inference.TopDownMultiClassInferenceModel"> -<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">TopDownMultiClassInferenceModel</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L4086-L4156"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.TopDownMultiClassInferenceModel" title="Permalink to this definition">#</a></dt> +<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">TopDownMultiClassInferenceModel</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L4087-L4157"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.TopDownMultiClassInferenceModel" title="Permalink to this definition">#</a></dt> <dd><p>Top-down instance prediction model.</p> <p>This model encapsulates the top-down approach where instances are first detected by local peak detection of an anchor point and then cropped. These instance-centered @@ -2699,7 +2699,7 @@ <h1>sleap.nn.inference</h1> <dl class="py method"> <dt class="sig sig-object py" id="sleap.nn.inference.TopDownMultiClassInferenceModel.call"> -<span class="sig-name descname"><span class="pre">call</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">example</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">tensorflow.python.framework.ops.Tensor</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">tensorflow.python.framework.ops.Tensor</span><span class="p"><span class="pre">]</span></span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">tensorflow.python.framework.ops.Tensor</span><span class="p"><span class="pre">]</span></span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L4113-L4141"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.TopDownMultiClassInferenceModel.call" title="Permalink to this definition">#</a></dt> +<span class="sig-name descname"><span class="pre">call</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">example</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">tensorflow.python.framework.ops.Tensor</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">tensorflow.python.framework.ops.Tensor</span><span class="p"><span class="pre">]</span></span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">tensorflow.python.framework.ops.Tensor</span><span class="p"><span class="pre">]</span></span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L4114-L4142"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.TopDownMultiClassInferenceModel.call" title="Permalink to this definition">#</a></dt> <dd><p>Predict instances for one batch of images.</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> @@ -2731,7 +2731,7 @@ <h1>sleap.nn.inference</h1> <dl class="py method"> <dt class="sig sig-object py" id="sleap.nn.inference.TopDownMultiClassInferenceModel.export_model"> -<span class="sig-name descname"><span class="pre">export_model</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">save_path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">signatures</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'serving_default'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">save_traces</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">model_name</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tensors</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">str</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">unrag_outputs</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L4143-L4156"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.TopDownMultiClassInferenceModel.export_model" title="Permalink to this definition">#</a></dt> +<span class="sig-name descname"><span class="pre">export_model</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">save_path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">signatures</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'serving_default'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">save_traces</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">model_name</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tensors</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">str</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">unrag_outputs</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L4144-L4157"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.TopDownMultiClassInferenceModel.export_model" title="Permalink to this definition">#</a></dt> <dd><p>Save the frozen graph of a model.</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> @@ -2762,7 +2762,7 @@ <h1>sleap.nn.inference</h1> <dl class="py class"> <dt class="sig sig-object py" id="sleap.nn.inference.TopDownMultiClassPredictor"> -<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">TopDownMultiClassPredictor</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">centroid_config</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="sleap.nn.config.training_job.html#sleap.nn.config.training_job.TrainingJobConfig" title="sleap.nn.config.training_job.TrainingJobConfig"><span class="pre">sleap.nn.config.training_job.TrainingJobConfig</span></a><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">centroid_model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="sleap.nn.model.html#sleap.nn.model.Model" title="sleap.nn.model.Model"><span class="pre">sleap.nn.model.Model</span></a><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">confmap_config</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="sleap.nn.config.training_job.html#sleap.nn.config.training_job.TrainingJobConfig" title="sleap.nn.config.training_job.TrainingJobConfig"><span class="pre">sleap.nn.config.training_job.TrainingJobConfig</span></a><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">confmap_model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="sleap.nn.model.html#sleap.nn.model.Model" title="sleap.nn.model.Model"><span class="pre">sleap.nn.model.Model</span></a><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">inference_model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="#sleap.nn.inference.TopDownMultiClassInferenceModel" title="sleap.nn.inference.TopDownMultiClassInferenceModel"><span class="pre">sleap.nn.inference.TopDownMultiClassInferenceModel</span></a><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">4</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">peak_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.2</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_refinement</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_patch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tracks</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">List</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="sleap.instance.html#sleap.instance.Track" title="sleap.instance.Track"><span class="pre">sleap.instance.Track</span></a><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbosity</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'rich'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">report_rate</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">2.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">model_paths</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">NOTHING</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L4160-L4539"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.TopDownMultiClassPredictor" title="Permalink to this definition">#</a></dt> +<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">TopDownMultiClassPredictor</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">centroid_config</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="sleap.nn.config.training_job.html#sleap.nn.config.training_job.TrainingJobConfig" title="sleap.nn.config.training_job.TrainingJobConfig"><span class="pre">sleap.nn.config.training_job.TrainingJobConfig</span></a><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">centroid_model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="sleap.nn.model.html#sleap.nn.model.Model" title="sleap.nn.model.Model"><span class="pre">sleap.nn.model.Model</span></a><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">confmap_config</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="sleap.nn.config.training_job.html#sleap.nn.config.training_job.TrainingJobConfig" title="sleap.nn.config.training_job.TrainingJobConfig"><span class="pre">sleap.nn.config.training_job.TrainingJobConfig</span></a><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">confmap_model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="sleap.nn.model.html#sleap.nn.model.Model" title="sleap.nn.model.Model"><span class="pre">sleap.nn.model.Model</span></a><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">inference_model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="#sleap.nn.inference.TopDownMultiClassInferenceModel" title="sleap.nn.inference.TopDownMultiClassInferenceModel"><span class="pre">sleap.nn.inference.TopDownMultiClassInferenceModel</span></a><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">4</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">peak_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.2</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_refinement</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_patch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tracks</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">List</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="sleap.instance.html#sleap.instance.Track" title="sleap.instance.Track"><span class="pre">sleap.instance.Track</span></a><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbosity</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'rich'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">report_rate</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">2.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">model_paths</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">NOTHING</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L4161-L4540"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.TopDownMultiClassPredictor" title="Permalink to this definition">#</a></dt> <dd><p>Top-down multi-instance predictor with classification.</p> <p>This high-level class handles initialization, preprocessing and tracking using a trained top-down multi-instance classification SLEAP model.</p> @@ -2921,7 +2921,7 @@ <h1>sleap.nn.inference</h1> <dl class="py method"> <dt class="sig sig-object py" id="sleap.nn.inference.TopDownMultiClassPredictor.export_model"> -<span class="sig-name descname"><span class="pre">export_model</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">save_path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">signatures</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'serving_default'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">save_traces</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">model_name</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tensors</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">str</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">unrag_outputs</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L4512-L4539"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.TopDownMultiClassPredictor.export_model" title="Permalink to this definition">#</a></dt> +<span class="sig-name descname"><span class="pre">export_model</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">save_path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">signatures</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'serving_default'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">save_traces</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">model_name</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tensors</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">str</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">unrag_outputs</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L4513-L4540"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.TopDownMultiClassPredictor.export_model" title="Permalink to this definition">#</a></dt> <dd><p>Export a trained SLEAP model as a frozen graph. Initializes model, creates a dummy tracing batch and passes it through the model. The frozen graph is saved along with training meta info.</p> @@ -2950,7 +2950,7 @@ <h1>sleap.nn.inference</h1> <dl class="py method"> <dt class="sig sig-object py" id="sleap.nn.inference.TopDownMultiClassPredictor.from_trained_models"> -<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">from_trained_models</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">centroid_model_path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">confmap_model_path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">4</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">peak_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.2</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_refinement</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_patch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">resize_input_layer</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><a class="reference internal" href="#sleap.nn.inference.TopDownMultiClassPredictor" title="sleap.nn.inference.TopDownMultiClassPredictor"><span class="pre">sleap.nn.inference.TopDownMultiClassPredictor</span></a></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L4259-L4347"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.TopDownMultiClassPredictor.from_trained_models" title="Permalink to this definition">#</a></dt> +<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">from_trained_models</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">centroid_model_path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">confmap_model_path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">4</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">peak_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.2</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_refinement</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_patch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">resize_input_layer</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><a class="reference internal" href="#sleap.nn.inference.TopDownMultiClassPredictor" title="sleap.nn.inference.TopDownMultiClassPredictor"><span class="pre">sleap.nn.inference.TopDownMultiClassPredictor</span></a></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L4260-L4348"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.TopDownMultiClassPredictor.from_trained_models" title="Permalink to this definition">#</a></dt> <dd><p>Create predictor from saved models.</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> @@ -2993,7 +2993,7 @@ <h1>sleap.nn.inference</h1> <dl class="py method"> <dt class="sig sig-object py" id="sleap.nn.inference.TopDownMultiClassPredictor.make_pipeline"> -<span class="sig-name descname"><span class="pre">make_pipeline</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data_provider</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">sleap.nn.data.pipelines.Provider</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><a class="reference internal" href="sleap.nn.data.pipelines.html#sleap.nn.data.pipelines.Pipeline" title="sleap.nn.data.pipelines.Pipeline"><span class="pre">sleap.nn.data.pipelines.Pipeline</span></a></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L4367-L4401"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.TopDownMultiClassPredictor.make_pipeline" title="Permalink to this definition">#</a></dt> +<span class="sig-name descname"><span class="pre">make_pipeline</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data_provider</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">sleap.nn.data.pipelines.Provider</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><a class="reference internal" href="sleap.nn.data.pipelines.html#sleap.nn.data.pipelines.Pipeline" title="sleap.nn.data.pipelines.Pipeline"><span class="pre">sleap.nn.data.pipelines.Pipeline</span></a></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L4368-L4402"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.TopDownMultiClassPredictor.make_pipeline" title="Permalink to this definition">#</a></dt> <dd><p>Make a data loading pipeline.</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> @@ -3015,7 +3015,7 @@ <h1>sleap.nn.inference</h1> <dl class="py class"> <dt class="sig sig-object py" id="sleap.nn.inference.TopDownPredictor"> -<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">TopDownPredictor</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">centroid_config</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="sleap.nn.config.training_job.html#sleap.nn.config.training_job.TrainingJobConfig" title="sleap.nn.config.training_job.TrainingJobConfig"><span class="pre">sleap.nn.config.training_job.TrainingJobConfig</span></a><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">centroid_model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="sleap.nn.model.html#sleap.nn.model.Model" title="sleap.nn.model.Model"><span class="pre">sleap.nn.model.Model</span></a><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">confmap_config</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="sleap.nn.config.training_job.html#sleap.nn.config.training_job.TrainingJobConfig" title="sleap.nn.config.training_job.TrainingJobConfig"><span class="pre">sleap.nn.config.training_job.TrainingJobConfig</span></a><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">confmap_model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="sleap.nn.model.html#sleap.nn.model.Model" title="sleap.nn.model.Model"><span class="pre">sleap.nn.model.Model</span></a><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">inference_model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="#sleap.nn.inference.TopDownInferenceModel" title="sleap.nn.inference.TopDownInferenceModel"><span class="pre">sleap.nn.inference.TopDownInferenceModel</span></a><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">4</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">peak_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.2</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_refinement</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_patch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbosity</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'rich'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">report_rate</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">2.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">model_paths</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">NOTHING</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L2280-L2690"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.TopDownPredictor" title="Permalink to this definition">#</a></dt> +<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">TopDownPredictor</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">centroid_config</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="sleap.nn.config.training_job.html#sleap.nn.config.training_job.TrainingJobConfig" title="sleap.nn.config.training_job.TrainingJobConfig"><span class="pre">sleap.nn.config.training_job.TrainingJobConfig</span></a><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">centroid_model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="sleap.nn.model.html#sleap.nn.model.Model" title="sleap.nn.model.Model"><span class="pre">sleap.nn.model.Model</span></a><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">confmap_config</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="sleap.nn.config.training_job.html#sleap.nn.config.training_job.TrainingJobConfig" title="sleap.nn.config.training_job.TrainingJobConfig"><span class="pre">sleap.nn.config.training_job.TrainingJobConfig</span></a><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">confmap_model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="sleap.nn.model.html#sleap.nn.model.Model" title="sleap.nn.model.Model"><span class="pre">sleap.nn.model.Model</span></a><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">inference_model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="#sleap.nn.inference.TopDownInferenceModel" title="sleap.nn.inference.TopDownInferenceModel"><span class="pre">sleap.nn.inference.TopDownInferenceModel</span></a><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">4</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">peak_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.2</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_refinement</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_patch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbosity</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'rich'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">report_rate</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">2.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">model_paths</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">NOTHING</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L2281-L2691"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.TopDownPredictor" title="Permalink to this definition">#</a></dt> <dd><p>Top-down multi-instance predictor.</p> <p>This high-level class handles initialization, preprocessing and tracking using a trained top-down multi-instance SLEAP model.</p> @@ -3176,7 +3176,7 @@ <h1>sleap.nn.inference</h1> <dl class="py method"> <dt class="sig sig-object py" id="sleap.nn.inference.TopDownPredictor.export_model"> -<span class="sig-name descname"><span class="pre">export_model</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">save_path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">signatures</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'serving_default'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">save_traces</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">model_name</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tensors</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">str</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">unrag_outputs</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L2663-L2690"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.TopDownPredictor.export_model" title="Permalink to this definition">#</a></dt> +<span class="sig-name descname"><span class="pre">export_model</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">save_path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">signatures</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'serving_default'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">save_traces</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">model_name</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tensors</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">str</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">unrag_outputs</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L2664-L2691"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.TopDownPredictor.export_model" title="Permalink to this definition">#</a></dt> <dd><p>Export a trained SLEAP model as a frozen graph. Initializes model, creates a dummy tracing batch and passes it through the model. The frozen graph is saved along with training meta info.</p> @@ -3205,7 +3205,7 @@ <h1>sleap.nn.inference</h1> <dl class="py method"> <dt class="sig sig-object py" id="sleap.nn.inference.TopDownPredictor.from_trained_models"> -<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">from_trained_models</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">centroid_model_path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">confmap_model_path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">4</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">peak_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.2</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_refinement</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_patch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">resize_input_layer</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><a class="reference internal" href="#sleap.nn.inference.TopDownPredictor" title="sleap.nn.inference.TopDownPredictor"><span class="pre">sleap.nn.inference.TopDownPredictor</span></a></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L2391-L2487"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.TopDownPredictor.from_trained_models" title="Permalink to this definition">#</a></dt> +<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">from_trained_models</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">centroid_model_path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">confmap_model_path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">4</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">peak_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.2</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_refinement</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">integral_patch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">resize_input_layer</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><a class="reference internal" href="#sleap.nn.inference.TopDownPredictor" title="sleap.nn.inference.TopDownPredictor"><span class="pre">sleap.nn.inference.TopDownPredictor</span></a></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L2392-L2488"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.TopDownPredictor.from_trained_models" title="Permalink to this definition">#</a></dt> <dd><p>Create predictor from saved models.</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> @@ -3252,7 +3252,7 @@ <h1>sleap.nn.inference</h1> <dl class="py method"> <dt class="sig sig-object py" id="sleap.nn.inference.TopDownPredictor.make_pipeline"> -<span class="sig-name descname"><span class="pre">make_pipeline</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data_provider</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">sleap.nn.data.pipelines.Provider</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><a class="reference internal" href="sleap.nn.data.pipelines.html#sleap.nn.data.pipelines.Pipeline" title="sleap.nn.data.pipelines.Pipeline"><span class="pre">sleap.nn.data.pipelines.Pipeline</span></a></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L2499-L2545"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.TopDownPredictor.make_pipeline" title="Permalink to this definition">#</a></dt> +<span class="sig-name descname"><span class="pre">make_pipeline</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data_provider</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">sleap.nn.data.pipelines.Provider</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><a class="reference internal" href="sleap.nn.data.pipelines.html#sleap.nn.data.pipelines.Pipeline" title="sleap.nn.data.pipelines.Pipeline"><span class="pre">sleap.nn.data.pipelines.Pipeline</span></a></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L2500-L2546"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.TopDownPredictor.make_pipeline" title="Permalink to this definition">#</a></dt> <dd><p>Make a data loading pipeline.</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> @@ -3274,11 +3274,11 @@ <h1>sleap.nn.inference</h1> <dl class="py class"> <dt class="sig sig-object py" id="sleap.nn.inference.VisualPredictor"> -<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">VisualPredictor</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">config</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="sleap.nn.config.training_job.html#sleap.nn.config.training_job.TrainingJobConfig" title="sleap.nn.config.training_job.TrainingJobConfig"><span class="pre">sleap.nn.config.training_job.TrainingJobConfig</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="sleap.nn.model.html#sleap.nn.model.Model" title="sleap.nn.model.Model"><span class="pre">sleap.nn.model.Model</span></a></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbosity</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'rich'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">report_rate</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">2.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">model_paths</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">NOTHING</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L593-L719"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.VisualPredictor" title="Permalink to this definition">#</a></dt> +<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">VisualPredictor</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">config</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="sleap.nn.config.training_job.html#sleap.nn.config.training_job.TrainingJobConfig" title="sleap.nn.config.training_job.TrainingJobConfig"><span class="pre">sleap.nn.config.training_job.TrainingJobConfig</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="sleap.nn.model.html#sleap.nn.model.Model" title="sleap.nn.model.Model"><span class="pre">sleap.nn.model.Model</span></a></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbosity</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'rich'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">report_rate</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">2.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">model_paths</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">NOTHING</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L594-L720"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.VisualPredictor" title="Permalink to this definition">#</a></dt> <dd><p>Predictor class for generating the visual output of model.</p> <dl class="py method"> <dt class="sig sig-object py" id="sleap.nn.inference.VisualPredictor.make_pipeline"> -<span class="sig-name descname"><span class="pre">make_pipeline</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L649-L667"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.VisualPredictor.make_pipeline" title="Permalink to this definition">#</a></dt> +<span class="sig-name descname"><span class="pre">make_pipeline</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L650-L668"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.VisualPredictor.make_pipeline" title="Permalink to this definition">#</a></dt> <dd><p>Make a data loading pipeline.</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> @@ -3298,7 +3298,7 @@ <h1>sleap.nn.inference</h1> <dl class="py method"> <dt class="sig sig-object py" id="sleap.nn.inference.VisualPredictor.predict"> -<span class="sig-name descname"><span class="pre">predict</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data_provider</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">sleap.nn.data.pipelines.Provider</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L715-L719"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.VisualPredictor.predict" title="Permalink to this definition">#</a></dt> +<span class="sig-name descname"><span class="pre">predict</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data_provider</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">sleap.nn.data.pipelines.Provider</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L716-L720"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.VisualPredictor.predict" title="Permalink to this definition">#</a></dt> <dd><p>Run inference on a data source.</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> @@ -3320,7 +3320,7 @@ <h1>sleap.nn.inference</h1> <dl class="py method"> <dt class="sig sig-object py" id="sleap.nn.inference.VisualPredictor.safely_generate"> -<span class="sig-name descname"><span class="pre">safely_generate</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">ds</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">tensorflow.python.data.ops.dataset_ops.DatasetV2</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">progress</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L669-L703"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.VisualPredictor.safely_generate" title="Permalink to this definition">#</a></dt> +<span class="sig-name descname"><span class="pre">safely_generate</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">ds</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">tensorflow.python.data.ops.dataset_ops.DatasetV2</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">progress</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L670-L704"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.VisualPredictor.safely_generate" title="Permalink to this definition">#</a></dt> <dd><p>Yields examples from dataset, catching and logging exceptions.</p> </dd></dl> @@ -3328,13 +3328,13 @@ <h1>sleap.nn.inference</h1> <dl class="py function"> <dt class="sig sig-object py" id="sleap.nn.inference.export_cli"> -<span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">export_cli</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">args</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">list</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L4984-L4999"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.export_cli" title="Permalink to this definition">#</a></dt> +<span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">export_cli</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">args</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">list</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L4985-L5000"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.export_cli" title="Permalink to this definition">#</a></dt> <dd><p>CLI for sleap-export.</p> </dd></dl> <dl class="py function"> <dt class="sig sig-object py" id="sleap.nn.inference.export_model"> -<span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">export_model</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model_path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">save_path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'exported_model'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">signatures</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'serving_default'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">save_traces</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">model_name</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tensors</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">str</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">unrag_outputs</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L4941-L4981"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.export_model" title="Permalink to this definition">#</a></dt> +<span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">export_model</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model_path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">save_path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'exported_model'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">signatures</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'serving_default'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">save_traces</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">model_name</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tensors</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">str</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">unrag_outputs</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L4942-L4982"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.export_model" title="Permalink to this definition">#</a></dt> <dd><p>High level export of a trained SLEAP model as a frozen graph.</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> @@ -3362,7 +3362,7 @@ <h1>sleap.nn.inference</h1> <dl class="py function"> <dt class="sig sig-object py" id="sleap.nn.inference.find_head"> -<span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">find_head</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">keras.engine.training.Model</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">name</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L1190-L1212"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.find_head" title="Permalink to this definition">#</a></dt> +<span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">find_head</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">keras.engine.training.Model</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">name</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L1191-L1213"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.find_head" title="Permalink to this definition">#</a></dt> <dd><p>Return the index of a head in a model’s outputs.</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> @@ -3389,7 +3389,7 @@ <h1>sleap.nn.inference</h1> <dl class="py function"> <dt class="sig sig-object py" id="sleap.nn.inference.get_keras_model_path"> -<span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">get_keras_model_path</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">str</span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L131-L143"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.get_keras_model_path" title="Permalink to this definition">#</a></dt> +<span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">get_keras_model_path</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">str</span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L132-L144"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.get_keras_model_path" title="Permalink to this definition">#</a></dt> <dd><p>Utility method for finding the path to a saved Keras model.</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> @@ -3403,7 +3403,7 @@ <h1>sleap.nn.inference</h1> <dl class="py function"> <dt class="sig sig-object py" id="sleap.nn.inference.get_model_output_stride"> -<span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">get_model_output_stride</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">keras.engine.training.Model</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">input_ind</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">output_ind</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">-</span> <span class="pre">1</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">int</span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L1160-L1187"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.get_model_output_stride" title="Permalink to this definition">#</a></dt> +<span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">get_model_output_stride</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">keras.engine.training.Model</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">input_ind</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">output_ind</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">-</span> <span class="pre">1</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">int</span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L1161-L1188"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.get_model_output_stride" title="Permalink to this definition">#</a></dt> <dd><p>Return the stride (1/scale) of the model outputs relative to the input.</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> @@ -3429,7 +3429,7 @@ <h1>sleap.nn.inference</h1> <dl class="py function"> <dt class="sig sig-object py" id="sleap.nn.inference.load_model"> -<span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">load_model</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model_path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">4</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">peak_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.2</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">refinement</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'integral'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tracker</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tracker_window</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tracker_max_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">disable_gpu_preallocation</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">progress_reporting</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'rich'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">resize_input_layer</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><a class="reference internal" href="#sleap.nn.inference.Predictor" title="sleap.nn.inference.Predictor"><span class="pre">sleap.nn.inference.Predictor</span></a></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L4799-L4938"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.load_model" title="Permalink to this definition">#</a></dt> +<span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">load_model</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model_path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">4</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">peak_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.2</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">refinement</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'integral'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tracker</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tracker_window</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tracker_max_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">disable_gpu_preallocation</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">progress_reporting</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'rich'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">resize_input_layer</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><a class="reference internal" href="#sleap.nn.inference.Predictor" title="sleap.nn.inference.Predictor"><span class="pre">sleap.nn.inference.Predictor</span></a></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L4800-L4939"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.load_model" title="Permalink to this definition">#</a></dt> <dd><p>Load a trained SLEAP model.</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> @@ -3488,7 +3488,7 @@ <h1>sleap.nn.inference</h1> <dl class="py function"> <dt class="sig sig-object py" id="sleap.nn.inference.main"> -<span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">main</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">args</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">list</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L5406-L5541"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.main" title="Permalink to this definition">#</a></dt> +<span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">main</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">args</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">list</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L5490-L5706"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.main" title="Permalink to this definition">#</a></dt> <dd><p>Entrypoint for <code class="xref py py-obj docutils literal notranslate"><span class="pre">sleap-track</span></code> CLI for running inference.</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> @@ -3499,7 +3499,7 @@ <h1>sleap.nn.inference</h1> <dl class="py function"> <dt class="sig sig-object py" id="sleap.nn.inference.make_model_movenet"> -<span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">make_model_movenet</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model_name</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">keras.engine.training.Model</span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L4542-L4576"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.make_model_movenet" title="Permalink to this definition">#</a></dt> +<span class="sig-prename descclassname"><span class="pre">sleap.nn.inference.</span></span><span class="sig-name descname"><span class="pre">make_model_movenet</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model_name</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">keras.engine.training.Model</span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/inference.py#L4543-L4577"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.inference.make_model_movenet" title="Permalink to this definition">#</a></dt> <dd><p>Load a MoveNet model by name.</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> diff --git a/develop/api/sleap.nn.tracker.components.html b/develop/api/sleap.nn.tracker.components.html index d2c02fed3..915ac8549 100644 --- a/develop/api/sleap.nn.tracker.components.html +++ b/develop/api/sleap.nn.tracker.components.html @@ -329,7 +329,7 @@ <h1>sleap.nn.tracker.components</h1> </ol> <dl class="py class"> <dt class="sig sig-object py" id="sleap.nn.tracker.components.FrameMatches"> -<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.tracker.components.</span></span><span class="sig-name descname"><span class="pre">FrameMatches</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">matches</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="#sleap.nn.tracker.components.Match" title="sleap.nn.tracker.components.Match"><span class="pre">sleap.nn.tracker.components.Match</span></a><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">cost_matrix</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">numpy.ndarray</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">unmatched_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">sleap.nn.tracker.components.InstanceType</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">NOTHING</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracker/components.py#L371-L532"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracker.components.FrameMatches" title="Permalink to this definition">#</a></dt> +<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.tracker.components.</span></span><span class="sig-name descname"><span class="pre">FrameMatches</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">matches</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="#sleap.nn.tracker.components.Match" title="sleap.nn.tracker.components.Match"><span class="pre">sleap.nn.tracker.components.Match</span></a><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">cost_matrix</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">numpy.ndarray</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">unmatched_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">sleap.nn.tracker.components.InstanceType</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">NOTHING</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracker/components.py#L463-L624"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracker.components.FrameMatches" title="Permalink to this definition">#</a></dt> <dd><p>Calculates (and stores) matches for a frame.</p> <p>This class encapsulates the logic to generate matches (using a custom matching function) from a cost matrix. One key feature is that it retains @@ -375,7 +375,7 @@ <h1>sleap.nn.tracker.components</h1> <dl class="py method"> <dt class="sig sig-object py" id="sleap.nn.tracker.components.FrameMatches.from_candidate_instances"> -<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">from_candidate_instances</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">untracked_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">sleap.nn.tracker.components.InstanceType</span><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">candidate_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">sleap.nn.tracker.components.InstanceType</span><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">similarity_function</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Callable</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">matching_function</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Callable</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">robust_best_instance</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">1.0</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracker/components.py#L406-L481"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracker.components.FrameMatches.from_candidate_instances" title="Permalink to this definition">#</a></dt> +<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">from_candidate_instances</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">untracked_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">sleap.nn.tracker.components.InstanceType</span><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">candidate_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">sleap.nn.tracker.components.InstanceType</span><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">similarity_function</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Callable</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">matching_function</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Callable</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">robust_best_instance</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">1.0</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracker/components.py#L498-L573"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracker.components.FrameMatches.from_candidate_instances" title="Permalink to this definition">#</a></dt> <dd><p>Calculates (and stores) matches for a frame from candidate instance.</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> @@ -407,13 +407,13 @@ <h1>sleap.nn.tracker.components</h1> <dl class="py class"> <dt class="sig sig-object py" id="sleap.nn.tracker.components.Match"> -<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.tracker.components.</span></span><span class="sig-name descname"><span class="pre">Match</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">track</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="sleap.instance.html#sleap.instance.Track" title="sleap.instance.Track"><span class="pre">sleap.instance.Track</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">instance</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="sleap.instance.html#sleap.instance.Instance" title="sleap.instance.Instance"><span class="pre">sleap.instance.Instance</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">score</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">float</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">is_first_choice</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracker/components.py#L361-L367"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracker.components.Match" title="Permalink to this definition">#</a></dt> +<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.tracker.components.</span></span><span class="sig-name descname"><span class="pre">Match</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">track</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="sleap.instance.html#sleap.instance.Track" title="sleap.instance.Track"><span class="pre">sleap.instance.Track</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">instance</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="sleap.instance.html#sleap.instance.Instance" title="sleap.instance.Instance"><span class="pre">sleap.instance.Instance</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">score</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">float</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">is_first_choice</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracker/components.py#L453-L459"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracker.components.Match" title="Permalink to this definition">#</a></dt> <dd><p>Stores a match between a specific instance and specific track.</p> </dd></dl> <dl class="py function"> <dt class="sig sig-object py" id="sleap.nn.tracker.components.centroid_distance"> -<span class="sig-prename descclassname"><span class="pre">sleap.nn.tracker.components.</span></span><span class="sig-name descname"><span class="pre">centroid_distance</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">ref_instance</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">sleap.nn.tracker.components.InstanceType</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">query_instance</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">sleap.nn.tracker.components.InstanceType</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">cache</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">dict</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">{}</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">float</span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracker/components.py#L43-L61"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracker.components.centroid_distance" title="Permalink to this definition">#</a></dt> +<span class="sig-prename descclassname"><span class="pre">sleap.nn.tracker.components.</span></span><span class="sig-name descname"><span class="pre">centroid_distance</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">ref_instance</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">sleap.nn.tracker.components.InstanceType</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">query_instance</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">sleap.nn.tracker.components.InstanceType</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">cache</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">dict</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">{}</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">float</span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracker/components.py#L135-L153"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracker.components.centroid_distance" title="Permalink to this definition">#</a></dt> <dd><p>Returns the negative distance between the centroids of two instances.</p> <p>Uses <code class="xref py py-obj docutils literal notranslate"><span class="pre">cache</span></code> dictionary (created with function so it persists between calls) since without cache this method is significantly slower than others.</p> @@ -421,7 +421,7 @@ <h1>sleap.nn.tracker.components</h1> <dl class="py function"> <dt class="sig sig-object py" id="sleap.nn.tracker.components.connect_single_track_breaks"> -<span class="sig-prename descclassname"><span class="pre">sleap.nn.tracker.components.</span></span><span class="sig-name descname"><span class="pre">connect_single_track_breaks</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">frames</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="sleap.instance.html#sleap.instance.LabeledFrame" title="sleap.instance.LabeledFrame"><span class="pre">LabeledFrame</span></a><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">instance_count</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="sleap.instance.html#sleap.instance.LabeledFrame" title="sleap.instance.LabeledFrame"><span class="pre">LabeledFrame</span></a><span class="p"><span class="pre">]</span></span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracker/components.py#L309-L357"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracker.components.connect_single_track_breaks" title="Permalink to this definition">#</a></dt> +<span class="sig-prename descclassname"><span class="pre">sleap.nn.tracker.components.</span></span><span class="sig-name descname"><span class="pre">connect_single_track_breaks</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">frames</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="sleap.instance.html#sleap.instance.LabeledFrame" title="sleap.instance.LabeledFrame"><span class="pre">LabeledFrame</span></a><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">instance_count</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="sleap.instance.html#sleap.instance.LabeledFrame" title="sleap.instance.LabeledFrame"><span class="pre">LabeledFrame</span></a><span class="p"><span class="pre">]</span></span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracker/components.py#L401-L449"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracker.components.connect_single_track_breaks" title="Permalink to this definition">#</a></dt> <dd><p>Merges breaks in tracks by connecting single lost with single new track.</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> @@ -438,7 +438,7 @@ <h1>sleap.nn.tracker.components</h1> <dl class="py function"> <dt class="sig sig-object py" id="sleap.nn.tracker.components.cull_frame_instances"> -<span class="sig-prename descclassname"><span class="pre">sleap.nn.tracker.components.</span></span><span class="sig-name descname"><span class="pre">cull_frame_instances</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">instances_list</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">sleap.nn.tracker.components.InstanceType</span><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">instance_count</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">iou_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">float</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="sleap.instance.html#sleap.instance.LabeledFrame" title="sleap.instance.LabeledFrame"><span class="pre">LabeledFrame</span></a><span class="p"><span class="pre">]</span></span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracker/components.py#L258-L306"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracker.components.cull_frame_instances" title="Permalink to this definition">#</a></dt> +<span class="sig-prename descclassname"><span class="pre">sleap.nn.tracker.components.</span></span><span class="sig-name descname"><span class="pre">cull_frame_instances</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">instances_list</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">sleap.nn.tracker.components.InstanceType</span><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">instance_count</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">iou_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">float</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="sleap.instance.html#sleap.instance.LabeledFrame" title="sleap.instance.LabeledFrame"><span class="pre">LabeledFrame</span></a><span class="p"><span class="pre">]</span></span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracker/components.py#L350-L398"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracker.components.cull_frame_instances" title="Permalink to this definition">#</a></dt> <dd><p>Removes instances (for single frame) over instance per frame threshold.</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> @@ -458,7 +458,7 @@ <h1>sleap.nn.tracker.components</h1> <dl class="py function"> <dt class="sig sig-object py" id="sleap.nn.tracker.components.cull_instances"> -<span class="sig-prename descclassname"><span class="pre">sleap.nn.tracker.components.</span></span><span class="sig-name descname"><span class="pre">cull_instances</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">frames</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="sleap.instance.html#sleap.instance.LabeledFrame" title="sleap.instance.LabeledFrame"><span class="pre">LabeledFrame</span></a><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">instance_count</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">iou_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">float</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracker/components.py#L202-L255"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracker.components.cull_instances" title="Permalink to this definition">#</a></dt> +<span class="sig-prename descclassname"><span class="pre">sleap.nn.tracker.components.</span></span><span class="sig-name descname"><span class="pre">cull_instances</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">frames</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="sleap.instance.html#sleap.instance.LabeledFrame" title="sleap.instance.LabeledFrame"><span class="pre">LabeledFrame</span></a><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">instance_count</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">iou_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">float</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracker/components.py#L294-L347"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracker.components.cull_instances" title="Permalink to this definition">#</a></dt> <dd><p>Removes instances from frames over instance per frame threshold.</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> @@ -476,40 +476,69 @@ <h1>sleap.nn.tracker.components</h1> </dl> </dd></dl> +<dl class="py function"> +<dt class="sig sig-object py" id="sleap.nn.tracker.components.factory_object_keypoint_similarity"> +<span class="sig-prename descclassname"><span class="pre">sleap.nn.tracker.components.</span></span><span class="sig-name descname"><span class="pre">factory_object_keypoint_similarity</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">keypoint_errors</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">List</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">int</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">float</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">score_weighting</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">normalization_keypoints</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'all'</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">Callable</span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracker/components.py#L46-L132"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracker.components.factory_object_keypoint_similarity" title="Permalink to this definition">#</a></dt> +<dd><p>Factory for similarity function based on object keypoints.</p> +<dl class="field-list simple"> +<dt class="field-odd">Parameters</dt> +<dd class="field-odd"><ul class="simple"> +<li><p><strong>keypoint_errors</strong> – The standard error of the distance between the predicted +keypoint and the true value, in pixels. +If None or empty list, defaults to 1. +If a scalar or singleton list, every keypoint has the same error. +If a list, defines the error for each keypoint, the length should be equal +to the number of keypoints in the skeleton.</p></li> +<li><p><strong>score_weighting</strong> – If True, use <code class="xref py py-obj docutils literal notranslate"><span class="pre">score</span></code> of <code class="xref py py-obj docutils literal notranslate"><span class="pre">PredictedPoint</span></code> to weigh +<code class="xref py py-obj docutils literal notranslate"><span class="pre">keypoint_errors</span></code>. If False, do not add a weight to <code class="xref py py-obj docutils literal notranslate"><span class="pre">keypoint_errors</span></code>.</p></li> +<li><p><strong>normalization_keypoints</strong> – Determine how to normalize similarity score. One of +[“all”, “ref”, “union”]. If “all”, similarity score is normalized by number +of reference points. If “ref”, similarity score is normalized by number of +visible reference points. If “union”, similarity score is normalized by +number of points both visible in query and reference instance. +Default is “all”.</p></li> +</ul> +</dd> +<dt class="field-even">Returns</dt> +<dd class="field-even"><p>Callable that returns object keypoint similarity between two <a href="#id1"><span class="problematic" id="id2">`</span></a>Instance`s.</p> +</dd> +</dl> +</dd></dl> + <dl class="py function"> <dt class="sig sig-object py" id="sleap.nn.tracker.components.first_choice_matching"> -<span class="sig-prename descclassname"><span class="pre">sleap.nn.tracker.components.</span></span><span class="sig-name descname"><span class="pre">first_choice_matching</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">cost_matrix</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">numpy.ndarray</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">Tuple</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">int</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracker/components.py#L535-L545"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracker.components.first_choice_matching" title="Permalink to this definition">#</a></dt> +<span class="sig-prename descclassname"><span class="pre">sleap.nn.tracker.components.</span></span><span class="sig-name descname"><span class="pre">first_choice_matching</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">cost_matrix</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">numpy.ndarray</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">Tuple</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">int</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracker/components.py#L627-L637"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracker.components.first_choice_matching" title="Permalink to this definition">#</a></dt> <dd><p>Returns match indices where each row gets matched to best column.</p> <p>The means that multiple rows might be matched to the same column.</p> </dd></dl> <dl class="py function"> <dt class="sig sig-object py" id="sleap.nn.tracker.components.greedy_matching"> -<span class="sig-prename descclassname"><span class="pre">sleap.nn.tracker.components.</span></span><span class="sig-name descname"><span class="pre">greedy_matching</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">cost_matrix</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">numpy.ndarray</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">Tuple</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">int</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracker/components.py#L88-L109"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracker.components.greedy_matching" title="Permalink to this definition">#</a></dt> +<span class="sig-prename descclassname"><span class="pre">sleap.nn.tracker.components.</span></span><span class="sig-name descname"><span class="pre">greedy_matching</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">cost_matrix</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">numpy.ndarray</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">Tuple</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">int</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracker/components.py#L180-L201"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracker.components.greedy_matching" title="Permalink to this definition">#</a></dt> <dd><p>Performs greedy bipartite matching.</p> </dd></dl> <dl class="py function"> <dt class="sig sig-object py" id="sleap.nn.tracker.components.hungarian_matching"> -<span class="sig-prename descclassname"><span class="pre">sleap.nn.tracker.components.</span></span><span class="sig-name descname"><span class="pre">hungarian_matching</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">cost_matrix</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">numpy.ndarray</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">Tuple</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">int</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracker/components.py#L81-L85"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracker.components.hungarian_matching" title="Permalink to this definition">#</a></dt> +<span class="sig-prename descclassname"><span class="pre">sleap.nn.tracker.components.</span></span><span class="sig-name descname"><span class="pre">hungarian_matching</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">cost_matrix</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">numpy.ndarray</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">Tuple</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">int</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracker/components.py#L173-L177"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracker.components.hungarian_matching" title="Permalink to this definition">#</a></dt> <dd><p>Wrapper for Hungarian matching algorithm in scipy.</p> </dd></dl> <dl class="py function"> <dt class="sig sig-object py" id="sleap.nn.tracker.components.instance_iou"> -<span class="sig-prename descclassname"><span class="pre">sleap.nn.tracker.components.</span></span><span class="sig-name descname"><span class="pre">instance_iou</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">ref_instance</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">sleap.nn.tracker.components.InstanceType</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">query_instance</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">sleap.nn.tracker.components.InstanceType</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">cache</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">dict</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">{}</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">float</span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracker/components.py#L64-L78"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracker.components.instance_iou" title="Permalink to this definition">#</a></dt> +<span class="sig-prename descclassname"><span class="pre">sleap.nn.tracker.components.</span></span><span class="sig-name descname"><span class="pre">instance_iou</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">ref_instance</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">sleap.nn.tracker.components.InstanceType</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">query_instance</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">sleap.nn.tracker.components.InstanceType</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">cache</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">dict</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">{}</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">float</span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracker/components.py#L156-L170"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracker.components.instance_iou" title="Permalink to this definition">#</a></dt> <dd><p>Computes IOU between bounding boxes of instances.</p> </dd></dl> <dl class="py function"> <dt class="sig sig-object py" id="sleap.nn.tracker.components.instance_similarity"> -<span class="sig-prename descclassname"><span class="pre">sleap.nn.tracker.components.</span></span><span class="sig-name descname"><span class="pre">instance_similarity</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">ref_instance</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">sleap.nn.tracker.components.InstanceType</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">query_instance</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">sleap.nn.tracker.components.InstanceType</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">float</span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracker/components.py#L29-L40"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracker.components.instance_similarity" title="Permalink to this definition">#</a></dt> +<span class="sig-prename descclassname"><span class="pre">sleap.nn.tracker.components.</span></span><span class="sig-name descname"><span class="pre">instance_similarity</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">ref_instance</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">sleap.nn.tracker.components.InstanceType</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">query_instance</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">sleap.nn.tracker.components.InstanceType</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">float</span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracker/components.py#L32-L43"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracker.components.instance_similarity" title="Permalink to this definition">#</a></dt> <dd><p>Computes similarity between instances.</p> </dd></dl> <dl class="py function"> <dt class="sig sig-object py" id="sleap.nn.tracker.components.nms_fast"> -<span class="sig-prename descclassname"><span class="pre">sleap.nn.tracker.components.</span></span><span class="sig-name descname"><span class="pre">nms_fast</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">boxes</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">scores</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">iou_threshold</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">target_count</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracker/components.py#L125-L199"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracker.components.nms_fast" title="Permalink to this definition">#</a></dt> +<span class="sig-prename descclassname"><span class="pre">sleap.nn.tracker.components.</span></span><span class="sig-name descname"><span class="pre">nms_fast</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">boxes</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">scores</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">iou_threshold</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">target_count</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracker/components.py#L217-L291"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracker.components.nms_fast" title="Permalink to this definition">#</a></dt> <dd><p><a class="reference external" href="https://www.pyimagesearch.com/2015/02/16/faster-non-maximum-suppression-python/">https://www.pyimagesearch.com/2015/02/16/faster-non-maximum-suppression-python/</a></p> </dd></dl> diff --git a/develop/api/sleap.nn.tracking.html b/develop/api/sleap.nn.tracking.html index e255a48f5..1d945f23c 100644 --- a/develop/api/sleap.nn.tracking.html +++ b/develop/api/sleap.nn.tracking.html @@ -322,13 +322,13 @@ <h1>sleap.nn.tracking</h1> <p>Tracking tools for linking grouped instances over time.</p> <dl class="py class"> <dt class="sig sig-object py" id="sleap.nn.tracking.BaseTracker"> -<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.tracking.</span></span><span class="sig-name descname"><span class="pre">BaseTracker</span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracking.py#L504-L531"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.BaseTracker" title="Permalink to this definition">#</a></dt> +<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.tracking.</span></span><span class="sig-name descname"><span class="pre">BaseTracker</span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracking.py#L508-L535"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.BaseTracker" title="Permalink to this definition">#</a></dt> <dd><p>Abstract base class for tracker.</p> </dd></dl> <dl class="py class"> <dt class="sig sig-object py" id="sleap.nn.tracking.FlowCandidateMaker"> -<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.tracking.</span></span><span class="sig-name descname"><span class="pre">FlowCandidateMaker</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">min_points</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">img_scale</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">1.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">of_window_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">21</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">of_max_levels</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">3</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">save_shifted_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">track_window</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">shifted_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">Tuple</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">int</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">sleap.nn.tracking.ShiftedInstance</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">NOTHING</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracking.py#L107-L354"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.FlowCandidateMaker" title="Permalink to this definition">#</a></dt> +<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.tracking.</span></span><span class="sig-name descname"><span class="pre">FlowCandidateMaker</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">min_points</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">img_scale</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">1.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">of_window_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">21</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">of_max_levels</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">3</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">save_shifted_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">track_window</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">shifted_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">Tuple</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">int</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">sleap.nn.tracking.ShiftedInstance</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">NOTHING</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracking.py#L108-L355"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.FlowCandidateMaker" title="Permalink to this definition">#</a></dt> <dd><p>Class for producing optical flow shift matching candidates.</p> <dl class="py attribute"> <dt class="sig sig-object py" id="sleap.nn.tracking.FlowCandidateMaker.min_points"> @@ -405,7 +405,7 @@ <h1>sleap.nn.tracking</h1> <dl class="py method"> <dt class="sig sig-object py" id="sleap.nn.tracking.FlowCandidateMaker.flow_shift_instances"> -<em class="property"><span class="pre">static</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">flow_shift_instances</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">ref_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">sleap.nn.tracker.components.InstanceType</span><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">ref_img</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">numpy.ndarray</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">new_img</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">numpy.ndarray</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">min_shifted_points</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">scale</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">1.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">window_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">21</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_levels</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">3</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">sleap.nn.tracking.ShiftedInstance</span><span class="p"><span class="pre">]</span></span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracking.py#L252-L354"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.FlowCandidateMaker.flow_shift_instances" title="Permalink to this definition">#</a></dt> +<em class="property"><span class="pre">static</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">flow_shift_instances</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">ref_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">sleap.nn.tracker.components.InstanceType</span><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">ref_img</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">numpy.ndarray</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">new_img</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">numpy.ndarray</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">min_shifted_points</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">scale</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">1.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">window_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">21</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_levels</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">3</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">sleap.nn.tracking.ShiftedInstance</span><span class="p"><span class="pre">]</span></span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracking.py#L253-L355"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.FlowCandidateMaker.flow_shift_instances" title="Permalink to this definition">#</a></dt> <dd><p>Generates instances in a new frame by applying optical flow displacements.</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> @@ -438,7 +438,7 @@ <h1>sleap.nn.tracking</h1> <dl class="py method"> <dt class="sig sig-object py" id="sleap.nn.tracking.FlowCandidateMaker.get_shifted_instances"> -<span class="sig-name descname"><span class="pre">get_shifted_instances</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">ref_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">sleap.nn.tracker.components.InstanceType</span><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">ref_img</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">numpy.ndarray</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">ref_t</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">img</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">numpy.ndarray</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">t</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">sleap.nn.tracking.ShiftedInstance</span><span class="p"><span class="pre">]</span></span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracking.py#L163-L200"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.FlowCandidateMaker.get_shifted_instances" title="Permalink to this definition">#</a></dt> +<span class="sig-name descname"><span class="pre">get_shifted_instances</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">ref_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">sleap.nn.tracker.components.InstanceType</span><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">ref_img</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">numpy.ndarray</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">ref_t</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">img</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">numpy.ndarray</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">t</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">sleap.nn.tracking.ShiftedInstance</span><span class="p"><span class="pre">]</span></span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracking.py#L164-L201"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.FlowCandidateMaker.get_shifted_instances" title="Permalink to this definition">#</a></dt> <dd><p>Returns a list of shifted instances and save shifted instances if needed.</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> @@ -455,7 +455,7 @@ <h1>sleap.nn.tracking</h1> <dl class="py method"> <dt class="sig sig-object py" id="sleap.nn.tracking.FlowCandidateMaker.get_shifted_instances_from_earlier_time"> -<span class="sig-name descname"><span class="pre">get_shifted_instances_from_earlier_time</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="pre">ref_t:</span> <span class="pre">int,</span> <span class="pre">ref_img:</span> <span class="pre">numpy.ndarray,</span> <span class="pre">ref_instances:</span> <span class="pre">typing.List[sleap.nn.tracker.components.InstanceType],</span> <span class="pre">t:</span> <span class="pre">int)</span> <span class="pre">-></span> <span class="pre">(<class</span> <span class="pre">'numpy.ndarray'>,</span> <span class="pre">typing.List[~InstanceType]</span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracking.py#L142-L161"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.FlowCandidateMaker.get_shifted_instances_from_earlier_time" title="Permalink to this definition">#</a></dt> +<span class="sig-name descname"><span class="pre">get_shifted_instances_from_earlier_time</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="pre">ref_t:</span> <span class="pre">int,</span> <span class="pre">ref_img:</span> <span class="pre">numpy.ndarray,</span> <span class="pre">ref_instances:</span> <span class="pre">typing.List[sleap.nn.tracker.components.InstanceType],</span> <span class="pre">t:</span> <span class="pre">int)</span> <span class="pre">-></span> <span class="pre">(<class</span> <span class="pre">'numpy.ndarray'>,</span> <span class="pre">typing.List[~InstanceType]</span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracking.py#L143-L162"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.FlowCandidateMaker.get_shifted_instances_from_earlier_time" title="Permalink to this definition">#</a></dt> <dd><p>Generate shifted instances and corresponding image from earlier time.</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> @@ -471,7 +471,7 @@ <h1>sleap.nn.tracking</h1> <dl class="py method"> <dt class="sig sig-object py" id="sleap.nn.tracking.FlowCandidateMaker.prune_shifted_instances"> -<span class="sig-name descname"><span class="pre">prune_shifted_instances</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">t</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracking.py#L233-L250"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.FlowCandidateMaker.prune_shifted_instances" title="Permalink to this definition">#</a></dt> +<span class="sig-name descname"><span class="pre">prune_shifted_instances</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">t</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracking.py#L234-L251"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.FlowCandidateMaker.prune_shifted_instances" title="Permalink to this definition">#</a></dt> <dd><p>Prune the shifted instances older than <code class="xref py py-obj docutils literal notranslate"><span class="pre">self.track_window</span></code>.</p> <p>If <code class="xref py py-obj docutils literal notranslate"><span class="pre">self.save_shifted_instances</span></code> is False, do nothing.</p> <dl class="simple"> @@ -487,17 +487,17 @@ <h1>sleap.nn.tracking</h1> <dl class="py class"> <dt class="sig sig-object py" id="sleap.nn.tracking.FlowMaxTracker"> -<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.tracking.</span></span><span class="sig-name descname"><span class="pre">FlowMaxTracker</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">max_tracks:</span> <span class="pre">typing.Optional[int]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">track_window:</span> <span class="pre">int</span> <span class="pre">=</span> <span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">similarity_function:</span> <span class="pre">typing.Optional[typing.Callable]</span> <span class="pre">=</span> <span class="pre"><function</span> <span class="pre">instance_similarity></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">matching_function:</span> <span class="pre">typing.Callable</span> <span class="pre">=</span> <span class="pre"><function</span> <span class="pre">greedy_matching></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">candidate_maker:</span> <span class="pre">object</span> <span class="pre">=</span> <span class="pre">NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_tracking:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">cleaner:</span> <span class="pre">typing.Optional[typing.Callable]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">target_instance_count:</span> <span class="pre">int</span> <span class="pre">=</span> <span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">pre_cull_function:</span> <span class="pre">typing.Optional[typing.Callable]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">post_connect_single_breaks:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">robust_best_instance:</span> <span class="pre">float</span> <span class="pre">=</span> <span class="pre">1.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">min_new_track_points:</span> <span class="pre">int</span> <span class="pre">=</span> <span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">track_matching_queue:</span> <span class="pre">typing.Deque[sleap.nn.tracking.MatchedFrameInstances]</span> <span class="pre">=</span> <span class="pre">NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">track_matching_queue_dict:</span> <span class="pre">typing.Dict[sleap.instance.Track</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">typing.Deque[sleap.nn.tracking.MatchedFrameInstance]]</span> <span class="pre">=</span> <span class="pre">NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">spawned_tracks:</span> <span class="pre">typing.List[sleap.instance.Track]</span> <span class="pre">=</span> <span class="pre">NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">save_tracked_instances:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tracked_instances:</span> <span class="pre">typing.Dict[int</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">typing.List[sleap.nn.tracker.components.InstanceType]]</span> <span class="pre">=</span> <span class="pre">NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">last_matches:</span> <span class="pre">typing.Optional[sleap.nn.tracker.components.FrameMatches]</span> <span class="pre">=</span> <span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracking.py#L1091-L1098"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.FlowMaxTracker" title="Permalink to this definition">#</a></dt> +<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.tracking.</span></span><span class="sig-name descname"><span class="pre">FlowMaxTracker</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">max_tracks:</span> <span class="pre">typing.Optional[int]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">track_window:</span> <span class="pre">int</span> <span class="pre">=</span> <span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">similarity_function:</span> <span class="pre">typing.Optional[typing.Callable]</span> <span class="pre">=</span> <span class="pre"><function</span> <span class="pre">instance_similarity></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">matching_function:</span> <span class="pre">typing.Callable</span> <span class="pre">=</span> <span class="pre"><function</span> <span class="pre">greedy_matching></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">candidate_maker:</span> <span class="pre">object</span> <span class="pre">=</span> <span class="pre">NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_tracking:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">cleaner:</span> <span class="pre">typing.Optional[typing.Callable]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">target_instance_count:</span> <span class="pre">int</span> <span class="pre">=</span> <span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">pre_cull_function:</span> <span class="pre">typing.Optional[typing.Callable]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">post_connect_single_breaks:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">robust_best_instance:</span> <span class="pre">float</span> <span class="pre">=</span> <span class="pre">1.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">min_new_track_points:</span> <span class="pre">int</span> <span class="pre">=</span> <span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">track_matching_queue:</span> <span class="pre">typing.Deque[sleap.nn.tracking.MatchedFrameInstances]</span> <span class="pre">=</span> <span class="pre">NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">track_matching_queue_dict:</span> <span class="pre">typing.Dict[sleap.instance.Track</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">typing.Deque[sleap.nn.tracking.MatchedFrameInstance]]</span> <span class="pre">=</span> <span class="pre">NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">spawned_tracks:</span> <span class="pre">typing.List[sleap.instance.Track]</span> <span class="pre">=</span> <span class="pre">NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">save_tracked_instances:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tracked_instances:</span> <span class="pre">typing.Dict[int</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">typing.List[sleap.nn.tracker.components.InstanceType]]</span> <span class="pre">=</span> <span class="pre">NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">last_matches:</span> <span class="pre">typing.Optional[sleap.nn.tracker.components.FrameMatches]</span> <span class="pre">=</span> <span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracking.py#L1162-L1169"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.FlowMaxTracker" title="Permalink to this definition">#</a></dt> <dd><p>Pre-configured tracker to use optical flow shifted candidates with max tracks.</p> <dl class="py method"> <dt class="sig sig-object py" id="sleap.nn.tracking.FlowMaxTracker.matching_function"> -<span class="sig-name descname"><span class="pre">matching_function</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">Tuple</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">int</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracker/components.py#L88-L109"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.FlowMaxTracker.matching_function" title="Permalink to this definition">#</a></dt> +<span class="sig-name descname"><span class="pre">matching_function</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">Tuple</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">int</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracker/components.py#L180-L201"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.FlowMaxTracker.matching_function" title="Permalink to this definition">#</a></dt> <dd><p>Performs greedy bipartite matching.</p> </dd></dl> <dl class="py method"> <dt class="sig sig-object py" id="sleap.nn.tracking.FlowMaxTracker.similarity_function"> -<span class="sig-name descname"><span class="pre">similarity_function</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">query_instance</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">sleap.nn.tracker.components.InstanceType</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">float</span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracker/components.py#L29-L40"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.FlowMaxTracker.similarity_function" title="Permalink to this definition">#</a></dt> +<span class="sig-name descname"><span class="pre">similarity_function</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">query_instance</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">sleap.nn.tracker.components.InstanceType</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">float</span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracker/components.py#L32-L43"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.FlowMaxTracker.similarity_function" title="Permalink to this definition">#</a></dt> <dd><p>Computes similarity between instances.</p> </dd></dl> @@ -505,7 +505,7 @@ <h1>sleap.nn.tracking</h1> <dl class="py class"> <dt class="sig sig-object py" id="sleap.nn.tracking.FlowMaxTracksCandidateMaker"> -<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.tracking.</span></span><span class="sig-name descname"><span class="pre">FlowMaxTracksCandidateMaker</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">min_points</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">img_scale</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">1.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">of_window_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">21</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">of_max_levels</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">3</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">save_shifted_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">track_window</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">shifted_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">Tuple</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">int</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">sleap.nn.tracking.ShiftedInstance</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_tracks</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracking.py#L358-L434"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.FlowMaxTracksCandidateMaker" title="Permalink to this definition">#</a></dt> +<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.tracking.</span></span><span class="sig-name descname"><span class="pre">FlowMaxTracksCandidateMaker</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">min_points</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">img_scale</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">1.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">of_window_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">21</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">of_max_levels</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">3</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">save_shifted_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">track_window</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">shifted_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">Tuple</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">int</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">sleap.nn.tracking.ShiftedInstance</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_tracks</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracking.py#L359-L436"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.FlowMaxTracksCandidateMaker" title="Permalink to this definition">#</a></dt> <dd><p>Class for producing optical flow shift matching candidates with maximum tracks.</p> <dl class="py attribute"> <dt class="sig sig-object py" id="sleap.nn.tracking.FlowMaxTracksCandidateMaker.max_tracks"> @@ -520,7 +520,7 @@ <h1>sleap.nn.tracking</h1> <dl class="py method"> <dt class="sig sig-object py" id="sleap.nn.tracking.FlowMaxTracksCandidateMaker.get_ref_instances"> -<em class="property"><span class="pre">static</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">get_ref_instances</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">ref_t</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">ref_img</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">numpy.ndarray</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">track_matching_queue_dict</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="sleap.instance.html#sleap.instance.Track" title="sleap.instance.Track"><span class="pre">sleap.instance.Track</span></a><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">Deque</span><span class="p"><span class="pre">[</span></span><span class="pre">sleap.nn.tracking.MatchedFrameInstance</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">sleap.nn.tracker.components.InstanceType</span><span class="p"><span class="pre">]</span></span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracking.py#L368-L389"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.FlowMaxTracksCandidateMaker.get_ref_instances" title="Permalink to this definition">#</a></dt> +<em class="property"><span class="pre">static</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">get_ref_instances</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">ref_t</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">ref_img</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">numpy.ndarray</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">track_matching_queue_dict</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="sleap.instance.html#sleap.instance.Track" title="sleap.instance.Track"><span class="pre">sleap.instance.Track</span></a><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">Deque</span><span class="p"><span class="pre">[</span></span><span class="pre">sleap.nn.tracking.MatchedFrameInstance</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">sleap.nn.tracker.components.InstanceType</span><span class="p"><span class="pre">]</span></span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracking.py#L369-L390"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.FlowMaxTracksCandidateMaker.get_ref_instances" title="Permalink to this definition">#</a></dt> <dd><p>Generates a list of instances based on the reference time and image.</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> @@ -538,13 +538,13 @@ <h1>sleap.nn.tracking</h1> <dl class="py class"> <dt class="sig sig-object py" id="sleap.nn.tracking.FlowTracker"> -<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.tracking.</span></span><span class="sig-name descname"><span class="pre">FlowTracker</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">max_tracks:</span> <span class="pre">typing.Optional[int]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">track_window:</span> <span class="pre">int</span> <span class="pre">=</span> <span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_tracking:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">cleaner:</span> <span class="pre">typing.Optional[typing.Callable]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">target_instance_count:</span> <span class="pre">int</span> <span class="pre">=</span> <span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">pre_cull_function:</span> <span class="pre">typing.Optional[typing.Callable]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">post_connect_single_breaks:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">robust_best_instance:</span> <span class="pre">float</span> <span class="pre">=</span> <span class="pre">1.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">min_new_track_points:</span> <span class="pre">int</span> <span class="pre">=</span> <span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">track_matching_queue:</span> <span class="pre">typing.Deque[sleap.nn.tracking.MatchedFrameInstances]</span> <span class="pre">=</span> <span class="pre">NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">track_matching_queue_dict:</span> <span class="pre">typing.Dict[sleap.instance.Track</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">typing.Deque[sleap.nn.tracking.MatchedFrameInstance]]</span> <span class="pre">=</span> <span class="pre">NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">spawned_tracks:</span> <span class="pre">typing.List[sleap.instance.Track]</span> <span class="pre">=</span> <span class="pre">NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">save_tracked_instances:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tracked_instances:</span> <span class="pre">typing.Dict[int</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">typing.List[sleap.nn.tracker.components.InstanceType]]</span> <span class="pre">=</span> <span class="pre">NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">last_matches:</span> <span class="pre">typing.Optional[sleap.nn.tracker.components.FrameMatches]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">similarity_function:</span> <span class="pre">typing.Callable</span> <span class="pre">=</span> <span class="pre"><function</span> <span class="pre">instance_similarity></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">matching_function:</span> <span class="pre">typing.Callable</span> <span class="pre">=</span> <span class="pre"><function</span> <span class="pre">greedy_matching></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">candidate_maker:</span> <span class="pre">object</span> <span class="pre">=</span> <span class="pre">NOTHING</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracking.py#L1080-L1085"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.FlowTracker" title="Permalink to this definition">#</a></dt> +<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.tracking.</span></span><span class="sig-name descname"><span class="pre">FlowTracker</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">max_tracks:</span> <span class="pre">typing.Optional[int]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">track_window:</span> <span class="pre">int</span> <span class="pre">=</span> <span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_tracking:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">cleaner:</span> <span class="pre">typing.Optional[typing.Callable]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">target_instance_count:</span> <span class="pre">int</span> <span class="pre">=</span> <span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">pre_cull_function:</span> <span class="pre">typing.Optional[typing.Callable]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">post_connect_single_breaks:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">robust_best_instance:</span> <span class="pre">float</span> <span class="pre">=</span> <span class="pre">1.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">min_new_track_points:</span> <span class="pre">int</span> <span class="pre">=</span> <span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">track_matching_queue:</span> <span class="pre">typing.Deque[sleap.nn.tracking.MatchedFrameInstances]</span> <span class="pre">=</span> <span class="pre">NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">track_matching_queue_dict:</span> <span class="pre">typing.Dict[sleap.instance.Track</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">typing.Deque[sleap.nn.tracking.MatchedFrameInstance]]</span> <span class="pre">=</span> <span class="pre">NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">spawned_tracks:</span> <span class="pre">typing.List[sleap.instance.Track]</span> <span class="pre">=</span> <span class="pre">NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">save_tracked_instances:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tracked_instances:</span> <span class="pre">typing.Dict[int</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">typing.List[sleap.nn.tracker.components.InstanceType]]</span> <span class="pre">=</span> <span class="pre">NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">last_matches:</span> <span class="pre">typing.Optional[sleap.nn.tracker.components.FrameMatches]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">similarity_function:</span> <span class="pre">typing.Callable</span> <span class="pre">=</span> <span class="pre"><function</span> <span class="pre">instance_similarity></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">matching_function:</span> <span class="pre">typing.Callable</span> <span class="pre">=</span> <span class="pre"><function</span> <span class="pre">greedy_matching></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">candidate_maker:</span> <span class="pre">object</span> <span class="pre">=</span> <span class="pre">NOTHING</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracking.py#L1151-L1156"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.FlowTracker" title="Permalink to this definition">#</a></dt> <dd><p>A Tracker pre-configured to use optical flow shifted candidates.</p> </dd></dl> <dl class="py class"> <dt class="sig sig-object py" id="sleap.nn.tracking.KalmanTracker"> -<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.tracking.</span></span><span class="sig-name descname"><span class="pre">KalmanTracker</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">init_tracker</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="#sleap.nn.tracking.Tracker" title="sleap.nn.tracking.Tracker"><span class="pre">sleap.nn.tracking.Tracker</span></a><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">init_set</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">sleap.nn.tracking.KalmanInitSet</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">kalman_tracker</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">sleap.nn.tracker.kalman.BareKalmanTracker</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">cull_function</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">Callable</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">init_frame_count</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">10</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">re_init_cooldown</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">100</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">re_init_after</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">20</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">init_done</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">pre_tracked</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">last_t</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">last_init_t</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracking.py#L1198-L1391"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.KalmanTracker" title="Permalink to this definition">#</a></dt> +<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.tracking.</span></span><span class="sig-name descname"><span class="pre">KalmanTracker</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">init_tracker</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="#sleap.nn.tracking.Tracker" title="sleap.nn.tracking.Tracker"><span class="pre">sleap.nn.tracking.Tracker</span></a><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">init_set</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">sleap.nn.tracking.KalmanInitSet</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">kalman_tracker</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">sleap.nn.tracker.kalman.BareKalmanTracker</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">cull_function</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">Callable</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">init_frame_count</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">10</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">re_init_cooldown</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">100</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">re_init_after</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">20</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">init_done</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">pre_tracked</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">last_t</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">last_init_t</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracking.py#L1269-L1462"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.KalmanTracker" title="Permalink to this definition">#</a></dt> <dd><p>Class for Kalman filter-based tracking pipeline.</p> <p>Kalman filters need to be initialized with a certain number of already tracked instances.</p> @@ -585,7 +585,7 @@ <h1>sleap.nn.tracking</h1> <dl class="py method"> <dt class="sig sig-object py" id="sleap.nn.tracking.KalmanTracker.make_tracker"> -<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">make_tracker</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">init_tracker</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="#sleap.nn.tracking.Tracker" title="sleap.nn.tracking.Tracker"><span class="pre">sleap.nn.tracking.Tracker</span></a><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">node_indices</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">instance_count</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">instance_iou_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.8</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">init_frame_count</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">10</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracking.py#L1250-L1301"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.KalmanTracker.make_tracker" title="Permalink to this definition">#</a></dt> +<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">make_tracker</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">init_tracker</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="#sleap.nn.tracking.Tracker" title="sleap.nn.tracking.Tracker"><span class="pre">sleap.nn.tracking.Tracker</span></a><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">node_indices</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">instance_count</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">instance_iou_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">float</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.8</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">init_frame_count</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">10</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracking.py#L1321-L1372"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.KalmanTracker.make_tracker" title="Permalink to this definition">#</a></dt> <dd><p>Creates KalmanTracker object.</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> @@ -610,7 +610,7 @@ <h1>sleap.nn.tracking</h1> <dl class="py method"> <dt class="sig sig-object py" id="sleap.nn.tracking.KalmanTracker.track"> -<span class="sig-name descname"><span class="pre">track</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">untracked_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">sleap.nn.tracker.components.InstanceType</span><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">img</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">numpy.ndarray</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">t</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">sleap.nn.tracker.components.InstanceType</span><span class="p"><span class="pre">]</span></span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracking.py#L1303-L1381"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.KalmanTracker.track" title="Permalink to this definition">#</a></dt> +<span class="sig-name descname"><span class="pre">track</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">untracked_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">sleap.nn.tracker.components.InstanceType</span><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">img</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">numpy.ndarray</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">t</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">sleap.nn.tracker.components.InstanceType</span><span class="p"><span class="pre">]</span></span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracking.py#L1374-L1452"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.KalmanTracker.track" title="Permalink to this definition">#</a></dt> <dd><p>Tracks individual frame, using Kalman filters if possible.</p> </dd></dl> @@ -618,31 +618,31 @@ <h1>sleap.nn.tracking</h1> <dl class="py class"> <dt class="sig sig-object py" id="sleap.nn.tracking.SimpleCandidateMaker"> -<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.tracking.</span></span><span class="sig-name descname"><span class="pre">SimpleCandidateMaker</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">min_points</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracking.py#L438-L457"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.SimpleCandidateMaker" title="Permalink to this definition">#</a></dt> +<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.tracking.</span></span><span class="sig-name descname"><span class="pre">SimpleCandidateMaker</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">min_points</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracking.py#L440-L459"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.SimpleCandidateMaker" title="Permalink to this definition">#</a></dt> <dd><p>Class for producing list of matching candidates from prior frames.</p> </dd></dl> <dl class="py class"> <dt class="sig sig-object py" id="sleap.nn.tracking.SimpleMaxTracker"> -<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.tracking.</span></span><span class="sig-name descname"><span class="pre">SimpleMaxTracker</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">track_window:</span> <span class="pre">int</span> <span class="pre">=</span> <span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">cleaner:</span> <span class="pre">typing.Optional[typing.Callable]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">target_instance_count:</span> <span class="pre">int</span> <span class="pre">=</span> <span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">pre_cull_function:</span> <span class="pre">typing.Optional[typing.Callable]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">post_connect_single_breaks:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">robust_best_instance:</span> <span class="pre">float</span> <span class="pre">=</span> <span class="pre">1.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">min_new_track_points:</span> <span class="pre">int</span> <span class="pre">=</span> <span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">track_matching_queue:</span> <span class="pre">typing.Deque[sleap.nn.tracking.MatchedFrameInstances]</span> <span class="pre">=</span> <span class="pre">NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">track_matching_queue_dict:</span> <span class="pre">typing.Dict[sleap.instance.Track</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">typing.Deque[sleap.nn.tracking.MatchedFrameInstance]]</span> <span class="pre">=</span> <span class="pre">NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">spawned_tracks:</span> <span class="pre">typing.List[sleap.instance.Track]</span> <span class="pre">=</span> <span class="pre">NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">save_tracked_instances:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tracked_instances:</span> <span class="pre">typing.Dict[int</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">typing.List[sleap.nn.tracker.components.InstanceType]]</span> <span class="pre">=</span> <span class="pre">NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">last_matches:</span> <span class="pre">typing.Optional[sleap.nn.tracker.components.FrameMatches]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">similarity_function:</span> <span class="pre">typing.Callable</span> <span class="pre">=</span> <span class="pre"><function</span> <span class="pre">instance_iou></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">matching_function:</span> <span class="pre">typing.Callable</span> <span class="pre">=</span> <span class="pre"><function</span> <span class="pre">hungarian_matching></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">candidate_maker:</span> <span class="pre">object</span> <span class="pre">=</span> <span class="pre">NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_tracking:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">*</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_tracks:</span> <span class="pre">int</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracking.py#L1111-L1118"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.SimpleMaxTracker" title="Permalink to this definition">#</a></dt> +<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.tracking.</span></span><span class="sig-name descname"><span class="pre">SimpleMaxTracker</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">track_window:</span> <span class="pre">int</span> <span class="pre">=</span> <span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">cleaner:</span> <span class="pre">typing.Optional[typing.Callable]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">target_instance_count:</span> <span class="pre">int</span> <span class="pre">=</span> <span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">pre_cull_function:</span> <span class="pre">typing.Optional[typing.Callable]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">post_connect_single_breaks:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">robust_best_instance:</span> <span class="pre">float</span> <span class="pre">=</span> <span class="pre">1.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">min_new_track_points:</span> <span class="pre">int</span> <span class="pre">=</span> <span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">track_matching_queue:</span> <span class="pre">typing.Deque[sleap.nn.tracking.MatchedFrameInstances]</span> <span class="pre">=</span> <span class="pre">NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">track_matching_queue_dict:</span> <span class="pre">typing.Dict[sleap.instance.Track</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">typing.Deque[sleap.nn.tracking.MatchedFrameInstance]]</span> <span class="pre">=</span> <span class="pre">NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">spawned_tracks:</span> <span class="pre">typing.List[sleap.instance.Track]</span> <span class="pre">=</span> <span class="pre">NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">save_tracked_instances:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tracked_instances:</span> <span class="pre">typing.Dict[int</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">typing.List[sleap.nn.tracker.components.InstanceType]]</span> <span class="pre">=</span> <span class="pre">NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">last_matches:</span> <span class="pre">typing.Optional[sleap.nn.tracker.components.FrameMatches]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">similarity_function:</span> <span class="pre">typing.Callable</span> <span class="pre">=</span> <span class="pre"><function</span> <span class="pre">instance_iou></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">matching_function:</span> <span class="pre">typing.Callable</span> <span class="pre">=</span> <span class="pre"><function</span> <span class="pre">hungarian_matching></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">candidate_maker:</span> <span class="pre">object</span> <span class="pre">=</span> <span class="pre">NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_tracking:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">*</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_tracks:</span> <span class="pre">int</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracking.py#L1182-L1189"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.SimpleMaxTracker" title="Permalink to this definition">#</a></dt> <dd><p>Pre-configured tracker to use simple, non-image-based candidates with max tracks.</p> </dd></dl> <dl class="py class"> <dt class="sig sig-object py" id="sleap.nn.tracking.SimpleMaxTracksCandidateMaker"> -<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.tracking.</span></span><span class="sig-name descname"><span class="pre">SimpleMaxTracksCandidateMaker</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">min_points</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_tracks</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracking.py#L461-L481"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.SimpleMaxTracksCandidateMaker" title="Permalink to this definition">#</a></dt> +<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.tracking.</span></span><span class="sig-name descname"><span class="pre">SimpleMaxTracksCandidateMaker</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">min_points</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_tracks</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracking.py#L463-L484"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.SimpleMaxTracksCandidateMaker" title="Permalink to this definition">#</a></dt> <dd><p>Class to generate instances with maximum number of tracks from prior frames.</p> </dd></dl> <dl class="py class"> <dt class="sig sig-object py" id="sleap.nn.tracking.SimpleTracker"> -<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.tracking.</span></span><span class="sig-name descname"><span class="pre">SimpleTracker</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">max_tracks:</span> <span class="pre">typing.Optional[int]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">track_window:</span> <span class="pre">int</span> <span class="pre">=</span> <span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_tracking:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">cleaner:</span> <span class="pre">typing.Optional[typing.Callable]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">target_instance_count:</span> <span class="pre">int</span> <span class="pre">=</span> <span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">pre_cull_function:</span> <span class="pre">typing.Optional[typing.Callable]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">post_connect_single_breaks:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">robust_best_instance:</span> <span class="pre">float</span> <span class="pre">=</span> <span class="pre">1.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">min_new_track_points:</span> <span class="pre">int</span> <span class="pre">=</span> <span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">track_matching_queue:</span> <span class="pre">typing.Deque[sleap.nn.tracking.MatchedFrameInstances]</span> <span class="pre">=</span> <span class="pre">NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">track_matching_queue_dict:</span> <span class="pre">typing.Dict[sleap.instance.Track</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">typing.Deque[sleap.nn.tracking.MatchedFrameInstance]]</span> <span class="pre">=</span> <span class="pre">NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">spawned_tracks:</span> <span class="pre">typing.List[sleap.instance.Track]</span> <span class="pre">=</span> <span class="pre">NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">save_tracked_instances:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tracked_instances:</span> <span class="pre">typing.Dict[int</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">typing.List[sleap.nn.tracker.components.InstanceType]]</span> <span class="pre">=</span> <span class="pre">NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">last_matches:</span> <span class="pre">typing.Optional[sleap.nn.tracker.components.FrameMatches]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">similarity_function:</span> <span class="pre">typing.Callable</span> <span class="pre">=</span> <span class="pre"><function</span> <span class="pre">instance_iou></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">matching_function:</span> <span class="pre">typing.Callable</span> <span class="pre">=</span> <span class="pre"><function</span> <span class="pre">hungarian_matching></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">candidate_maker:</span> <span class="pre">object</span> <span class="pre">=</span> <span class="pre">NOTHING</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracking.py#L1102-L1107"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.SimpleTracker" title="Permalink to this definition">#</a></dt> +<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.tracking.</span></span><span class="sig-name descname"><span class="pre">SimpleTracker</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">max_tracks:</span> <span class="pre">typing.Optional[int]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">track_window:</span> <span class="pre">int</span> <span class="pre">=</span> <span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_tracking:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">cleaner:</span> <span class="pre">typing.Optional[typing.Callable]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">target_instance_count:</span> <span class="pre">int</span> <span class="pre">=</span> <span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">pre_cull_function:</span> <span class="pre">typing.Optional[typing.Callable]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">post_connect_single_breaks:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">robust_best_instance:</span> <span class="pre">float</span> <span class="pre">=</span> <span class="pre">1.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">min_new_track_points:</span> <span class="pre">int</span> <span class="pre">=</span> <span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">track_matching_queue:</span> <span class="pre">typing.Deque[sleap.nn.tracking.MatchedFrameInstances]</span> <span class="pre">=</span> <span class="pre">NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">track_matching_queue_dict:</span> <span class="pre">typing.Dict[sleap.instance.Track</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">typing.Deque[sleap.nn.tracking.MatchedFrameInstance]]</span> <span class="pre">=</span> <span class="pre">NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">spawned_tracks:</span> <span class="pre">typing.List[sleap.instance.Track]</span> <span class="pre">=</span> <span class="pre">NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">save_tracked_instances:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tracked_instances:</span> <span class="pre">typing.Dict[int</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">typing.List[sleap.nn.tracker.components.InstanceType]]</span> <span class="pre">=</span> <span class="pre">NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">last_matches:</span> <span class="pre">typing.Optional[sleap.nn.tracker.components.FrameMatches]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">similarity_function:</span> <span class="pre">typing.Callable</span> <span class="pre">=</span> <span class="pre"><function</span> <span class="pre">instance_iou></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">matching_function:</span> <span class="pre">typing.Callable</span> <span class="pre">=</span> <span class="pre"><function</span> <span class="pre">hungarian_matching></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">candidate_maker:</span> <span class="pre">object</span> <span class="pre">=</span> <span class="pre">NOTHING</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracking.py#L1173-L1178"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.SimpleTracker" title="Permalink to this definition">#</a></dt> <dd><p>A Tracker pre-configured to use simple, non-image-based candidates.</p> </dd></dl> <dl class="py class"> <dt class="sig sig-object py" id="sleap.nn.tracking.TrackCleaner"> -<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.tracking.</span></span><span class="sig-name descname"><span class="pre">TrackCleaner</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">instance_count</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">iou_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">float</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracking.py#L1395-L1420"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.TrackCleaner" title="Permalink to this definition">#</a></dt> +<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.tracking.</span></span><span class="sig-name descname"><span class="pre">TrackCleaner</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">instance_count</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">iou_threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">float</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracking.py#L1466-L1491"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.TrackCleaner" title="Permalink to this definition">#</a></dt> <dd><p>Class for merging breaks in the predicted tracks.</p> <p>Method: 1. You specify how many instances there should be in each frame. @@ -681,7 +681,7 @@ <h1>sleap.nn.tracking</h1> <dl class="py class"> <dt class="sig sig-object py" id="sleap.nn.tracking.Tracker"> -<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.tracking.</span></span><span class="sig-name descname"><span class="pre">Tracker</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">max_tracks:</span> <span class="pre">typing.Optional[int]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">track_window:</span> <span class="pre">int</span> <span class="pre">=</span> <span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">similarity_function:</span> <span class="pre">typing.Optional[typing.Callable]</span> <span class="pre">=</span> <span class="pre"><function</span> <span class="pre">instance_similarity></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">matching_function:</span> <span class="pre">typing.Callable</span> <span class="pre">=</span> <span class="pre"><function</span> <span class="pre">greedy_matching></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">candidate_maker:</span> <span class="pre">object</span> <span class="pre">=</span> <span class="pre">NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_tracking:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">cleaner:</span> <span class="pre">typing.Optional[typing.Callable]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">target_instance_count:</span> <span class="pre">int</span> <span class="pre">=</span> <span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">pre_cull_function:</span> <span class="pre">typing.Optional[typing.Callable]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">post_connect_single_breaks:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">robust_best_instance:</span> <span class="pre">float</span> <span class="pre">=</span> <span class="pre">1.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">min_new_track_points:</span> <span class="pre">int</span> <span class="pre">=</span> <span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">track_matching_queue:</span> <span class="pre">typing.Deque[sleap.nn.tracking.MatchedFrameInstances]</span> <span class="pre">=</span> <span class="pre">NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">track_matching_queue_dict:</span> <span class="pre">typing.Dict[sleap.instance.Track</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">typing.Deque[sleap.nn.tracking.MatchedFrameInstance]]</span> <span class="pre">=</span> <span class="pre">NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">spawned_tracks:</span> <span class="pre">typing.List[sleap.instance.Track]</span> <span class="pre">=</span> <span class="pre">NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">save_tracked_instances:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tracked_instances:</span> <span class="pre">typing.Dict[int</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">typing.List[sleap.nn.tracker.components.InstanceType]]</span> <span class="pre">=</span> <span class="pre">NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">last_matches:</span> <span class="pre">typing.Optional[sleap.nn.tracker.components.FrameMatches]</span> <span class="pre">=</span> <span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracking.py#L535-L1076"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.Tracker" title="Permalink to this definition">#</a></dt> +<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sleap.nn.tracking.</span></span><span class="sig-name descname"><span class="pre">Tracker</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">max_tracks:</span> <span class="pre">typing.Optional[int]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">track_window:</span> <span class="pre">int</span> <span class="pre">=</span> <span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">similarity_function:</span> <span class="pre">typing.Optional[typing.Callable]</span> <span class="pre">=</span> <span class="pre"><function</span> <span class="pre">instance_similarity></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">matching_function:</span> <span class="pre">typing.Callable</span> <span class="pre">=</span> <span class="pre"><function</span> <span class="pre">greedy_matching></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">candidate_maker:</span> <span class="pre">object</span> <span class="pre">=</span> <span class="pre">NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_tracking:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">cleaner:</span> <span class="pre">typing.Optional[typing.Callable]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">target_instance_count:</span> <span class="pre">int</span> <span class="pre">=</span> <span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">pre_cull_function:</span> <span class="pre">typing.Optional[typing.Callable]</span> <span class="pre">=</span> <span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">post_connect_single_breaks:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">robust_best_instance:</span> <span class="pre">float</span> <span class="pre">=</span> <span class="pre">1.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">min_new_track_points:</span> <span class="pre">int</span> <span class="pre">=</span> <span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">track_matching_queue:</span> <span class="pre">typing.Deque[sleap.nn.tracking.MatchedFrameInstances]</span> <span class="pre">=</span> <span class="pre">NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">track_matching_queue_dict:</span> <span class="pre">typing.Dict[sleap.instance.Track</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">typing.Deque[sleap.nn.tracking.MatchedFrameInstance]]</span> <span class="pre">=</span> <span class="pre">NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">spawned_tracks:</span> <span class="pre">typing.List[sleap.instance.Track]</span> <span class="pre">=</span> <span class="pre">NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">save_tracked_instances:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tracked_instances:</span> <span class="pre">typing.Dict[int</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">typing.List[sleap.nn.tracker.components.InstanceType]]</span> <span class="pre">=</span> <span class="pre">NOTHING</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">last_matches:</span> <span class="pre">typing.Optional[sleap.nn.tracker.components.FrameMatches]</span> <span class="pre">=</span> <span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracking.py#L539-L1147"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.Tracker" title="Permalink to this definition">#</a></dt> <dd><p>Instance pose tracker.</p> <p>Use by instantiated with the desired parameters and then calling the <a class="reference internal" href="#sleap.nn.tracking.Tracker.track" title="sleap.nn.tracking.Tracker.track"><code class="xref py py-obj docutils literal notranslate"><span class="pre">track</span></code></a> method for each frame.</p> @@ -785,13 +785,13 @@ <h1>sleap.nn.tracking</h1> <dl class="py method"> <dt class="sig sig-object py" id="sleap.nn.tracking.Tracker.final_pass"> -<span class="sig-name descname"><span class="pre">final_pass</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">frames</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="sleap.instance.html#sleap.instance.LabeledFrame" title="sleap.instance.LabeledFrame"><span class="pre">sleap.instance.LabeledFrame</span></a><span class="p"><span class="pre">]</span></span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracking.py#L790-L802"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.Tracker.final_pass" title="Permalink to this definition">#</a></dt> +<span class="sig-name descname"><span class="pre">final_pass</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">frames</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="sleap.instance.html#sleap.instance.LabeledFrame" title="sleap.instance.LabeledFrame"><span class="pre">sleap.instance.LabeledFrame</span></a><span class="p"><span class="pre">]</span></span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracking.py#L806-L818"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.Tracker.final_pass" title="Permalink to this definition">#</a></dt> <dd><p>Called after tracking has run on all frames to do any post-processing.</p> </dd></dl> <dl class="py method"> <dt class="sig sig-object py" id="sleap.nn.tracking.Tracker.track"> -<span class="sig-name descname"><span class="pre">track</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">untracked_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">sleap.nn.tracker.components.InstanceType</span><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">img</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">numpy.ndarray</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">t</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">sleap.nn.tracker.components.InstanceType</span><span class="p"><span class="pre">]</span></span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracking.py#L627-L748"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.Tracker.track" title="Permalink to this definition">#</a></dt> +<span class="sig-name descname"><span class="pre">track</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">untracked_instances</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">sleap.nn.tracker.components.InstanceType</span><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">img</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">numpy.ndarray</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">t</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">sleap.nn.tracker.components.InstanceType</span><span class="p"><span class="pre">]</span></span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracking.py#L639-L763"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.Tracker.track" title="Permalink to this definition">#</a></dt> <dd><p>Performs a single step of tracking.</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> @@ -817,7 +817,7 @@ <h1>sleap.nn.tracking</h1> <dl class="py function"> <dt class="sig sig-object py" id="sleap.nn.tracking.run_tracker"> -<span class="sig-prename descclassname"><span class="pre">sleap.nn.tracking.</span></span><span class="sig-name descname"><span class="pre">run_tracker</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">frames</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="sleap.instance.html#sleap.instance.LabeledFrame" title="sleap.instance.LabeledFrame"><span class="pre">sleap.instance.LabeledFrame</span></a><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tracker</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="#sleap.nn.tracking.BaseTracker" title="sleap.nn.tracking.BaseTracker"><span class="pre">sleap.nn.tracking.BaseTracker</span></a></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="sleap.instance.html#sleap.instance.LabeledFrame" title="sleap.instance.LabeledFrame"><span class="pre">sleap.instance.LabeledFrame</span></a><span class="p"><span class="pre">]</span></span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracking.py#L1423-L1460"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.run_tracker" title="Permalink to this definition">#</a></dt> +<span class="sig-prename descclassname"><span class="pre">sleap.nn.tracking.</span></span><span class="sig-name descname"><span class="pre">run_tracker</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">frames</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="sleap.instance.html#sleap.instance.LabeledFrame" title="sleap.instance.LabeledFrame"><span class="pre">sleap.instance.LabeledFrame</span></a><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tracker</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="#sleap.nn.tracking.BaseTracker" title="sleap.nn.tracking.BaseTracker"><span class="pre">sleap.nn.tracking.BaseTracker</span></a></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="sleap.instance.html#sleap.instance.LabeledFrame" title="sleap.instance.LabeledFrame"><span class="pre">sleap.instance.LabeledFrame</span></a><span class="p"><span class="pre">]</span></span></span></span><a class="reference external" href="https://github.com/talmolab/sleap/blob/v1.4.1a2/sleap/nn/tracking.py#L1494-L1531"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sleap.nn.tracking.run_tracker" title="Permalink to this definition">#</a></dt> <dd><p>Run a tracker on a set of labeled frames.</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> diff --git a/develop/genindex.html b/develop/genindex.html index 0bc8fccfe..f69436e6b 100644 --- a/develop/genindex.html +++ b/develop/genindex.html @@ -1481,6 +1481,8 @@ <h2 id="E">E</h2> <h2 id="F">F</h2> <table style="width: 100%" class="indextable genindextable"><tr> <td style="width: 33%; vertical-align: top;"><ul> + <li><a href="api/sleap.nn.tracker.components.html#sleap.nn.tracker.components.factory_object_keypoint_similarity">factory_object_keypoint_similarity() (in module sleap.nn.tracker.components)</a> +</li> <li><a href="api/sleap.nn.architectures.resnet.html#sleap.nn.architectures.resnet.ResNet101.features_output_stride">features_output_stride (sleap.nn.architectures.resnet.ResNet101 attribute)</a> <ul> diff --git a/develop/guides/cli.html b/develop/guides/cli.html index 5c95acf0e..40d2b3246 100644 --- a/develop/guides/cli.html +++ b/develop/guides/cli.html @@ -482,7 +482,10 @@ <h2>Inference and Tracking<a class="headerlink" href="#inference-and-tracking" t [data_path] positional arguments: - data_path Path to data to predict on. This can be a labels (.slp) file or any supported video format. + data_path Path to data to predict on. This can be one of the following: A .slp file containing labeled data; A folder containing multiple + video files in supported formats; An individual video file in a supported format; A CSV file with a column of video file paths. + If more than one column is provided in the CSV file, the first will be used for the input data paths and the next column will be + used as the output paths; A text file with a path to a video file on each line optional arguments: -h, --help show this help message and exit @@ -497,7 +500,7 @@ <h2>Inference and Tracking<a class="headerlink" href="#inference-and-tracking" t Only run inference on unlabeled suggested frames when running on labels dataset. This is useful for generating predictions for initialization during labeling. -o OUTPUT, --output OUTPUT - The output filename to use for the predicted data. If not provided, defaults to '[data_path].predictions.slp'. + The output filename or directory path to use for the predicted data. If not provided, defaults to '[data_path].predictions.slp'. --no-empty-frames Clear any empty frames that did not have any detected instances before saving to output. --verbosity {none,rich,json} Verbosity of inference progress reporting. 'none' does not output anything during inference, 'rich' displays an updating diff --git a/develop/objects.inv b/develop/objects.inv index 57aa9dc75..9234439dd 100644 Binary files a/develop/objects.inv and b/develop/objects.inv differ diff --git a/develop/searchindex.js b/develop/searchindex.js index a2a099efc..2327626e1 100644 --- a/develop/searchindex.js +++ b/develop/searchindex.js @@ -1 +1 @@ -Search.setIndex({docnames:["CODE_OF_CONDUCT","CONTRIBUTING","api","api/sleap.info.align","api/sleap.info.feature_suggestions","api/sleap.info.labels","api/sleap.info.metrics","api/sleap.info.summary","api/sleap.info.trackcleaner","api/sleap.info.write_tracking_h5","api/sleap.instance","api/sleap.io.asyncvideo","api/sleap.io.convert","api/sleap.io.dataset","api/sleap.io.format.adaptor","api/sleap.io.format.alphatracker","api/sleap.io.format.coco","api/sleap.io.format.csv","api/sleap.io.format.deeplabcut","api/sleap.io.format.deepposekit","api/sleap.io.format.dispatch","api/sleap.io.format.filehandle","api/sleap.io.format.genericjson","api/sleap.io.format.hdf5","api/sleap.io.format.labels_json","api/sleap.io.format.leap_matlab","api/sleap.io.format.main","api/sleap.io.format.ndx_pose","api/sleap.io.format.nix","api/sleap.io.format.sleap_analysis","api/sleap.io.format.text","api/sleap.io.legacy","api/sleap.io.pathutils","api/sleap.io.video","api/sleap.io.videowriter","api/sleap.io.visuals","api/sleap.message","api/sleap.nn.architectures.common","api/sleap.nn.architectures.encoder_decoder","api/sleap.nn.architectures.hourglass","api/sleap.nn.architectures.hrnet","api/sleap.nn.architectures.leap","api/sleap.nn.architectures.pretrained_encoders","api/sleap.nn.architectures.resnet","api/sleap.nn.architectures.unet","api/sleap.nn.architectures.upsampling","api/sleap.nn.callbacks","api/sleap.nn.config.data","api/sleap.nn.config.model","api/sleap.nn.config.optimization","api/sleap.nn.config.outputs","api/sleap.nn.config.training_job","api/sleap.nn.config.utils","api/sleap.nn.data.augmentation","api/sleap.nn.data.confidence_maps","api/sleap.nn.data.dataset_ops","api/sleap.nn.data.edge_maps","api/sleap.nn.data.general","api/sleap.nn.data.grouping","api/sleap.nn.data.identity","api/sleap.nn.data.inference","api/sleap.nn.data.instance_centroids","api/sleap.nn.data.instance_cropping","api/sleap.nn.data.normalization","api/sleap.nn.data.offset_regression","api/sleap.nn.data.pipelines","api/sleap.nn.data.providers","api/sleap.nn.data.resizing","api/sleap.nn.data.training","api/sleap.nn.data.utils","api/sleap.nn.evals","api/sleap.nn.heads","api/sleap.nn.identity","api/sleap.nn.inference","api/sleap.nn.losses","api/sleap.nn.model","api/sleap.nn.paf_grouping","api/sleap.nn.peak_finding","api/sleap.nn.system","api/sleap.nn.tracker.components","api/sleap.nn.tracker.kalman","api/sleap.nn.tracking","api/sleap.nn.training","api/sleap.nn.utils","api/sleap.nn.viz","api/sleap.skeleton","api/sleap.util","datasets","guides/choosing-models","guides/cli","guides/colab","guides/custom-training","guides/gui","guides/index","guides/merging","guides/proofreading","guides/remote","guides/skeletons","guides/training","guides/troubleshooting-workflows","help","index","installation","notebooks/Analysis_examples","notebooks/Data_structures","notebooks/Interactive_and_realtime_inference","notebooks/Interactive_and_resumable_training","notebooks/Model_evaluation","notebooks/Post_inference_tracking","notebooks/Training_and_inference_on_an_example_dataset","notebooks/Training_and_inference_using_Google_Drive","notebooks/analysis_example/README","notebooks/index","overview","tutorials/analysis","tutorials/assisted-labeling","tutorials/initial-labeling","tutorials/initial-training","tutorials/new-project","tutorials/proofreading","tutorials/tutorial"],envversion:{"sphinx.domains.c":2,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":5,"sphinx.domains.index":1,"sphinx.domains.javascript":2,"sphinx.domains.math":2,"sphinx.domains.python":3,"sphinx.domains.rst":2,"sphinx.domains.std":2,sphinx:56},filenames:["CODE_OF_CONDUCT.md","CONTRIBUTING.md","api.rst","api/sleap.info.align.rst","api/sleap.info.feature_suggestions.rst","api/sleap.info.labels.rst","api/sleap.info.metrics.rst","api/sleap.info.summary.rst","api/sleap.info.trackcleaner.rst","api/sleap.info.write_tracking_h5.rst","api/sleap.instance.rst","api/sleap.io.asyncvideo.rst","api/sleap.io.convert.rst","api/sleap.io.dataset.rst","api/sleap.io.format.adaptor.rst","api/sleap.io.format.alphatracker.rst","api/sleap.io.format.coco.rst","api/sleap.io.format.csv.rst","api/sleap.io.format.deeplabcut.rst","api/sleap.io.format.deepposekit.rst","api/sleap.io.format.dispatch.rst","api/sleap.io.format.filehandle.rst","api/sleap.io.format.genericjson.rst","api/sleap.io.format.hdf5.rst","api/sleap.io.format.labels_json.rst","api/sleap.io.format.leap_matlab.rst","api/sleap.io.format.main.rst","api/sleap.io.format.ndx_pose.rst","api/sleap.io.format.nix.rst","api/sleap.io.format.sleap_analysis.rst","api/sleap.io.format.text.rst","api/sleap.io.legacy.rst","api/sleap.io.pathutils.rst","api/sleap.io.video.rst","api/sleap.io.videowriter.rst","api/sleap.io.visuals.rst","api/sleap.message.rst","api/sleap.nn.architectures.common.rst","api/sleap.nn.architectures.encoder_decoder.rst","api/sleap.nn.architectures.hourglass.rst","api/sleap.nn.architectures.hrnet.rst","api/sleap.nn.architectures.leap.rst","api/sleap.nn.architectures.pretrained_encoders.rst","api/sleap.nn.architectures.resnet.rst","api/sleap.nn.architectures.unet.rst","api/sleap.nn.architectures.upsampling.rst","api/sleap.nn.callbacks.rst","api/sleap.nn.config.data.rst","api/sleap.nn.config.model.rst","api/sleap.nn.config.optimization.rst","api/sleap.nn.config.outputs.rst","api/sleap.nn.config.training_job.rst","api/sleap.nn.config.utils.rst","api/sleap.nn.data.augmentation.rst","api/sleap.nn.data.confidence_maps.rst","api/sleap.nn.data.dataset_ops.rst","api/sleap.nn.data.edge_maps.rst","api/sleap.nn.data.general.rst","api/sleap.nn.data.grouping.rst","api/sleap.nn.data.identity.rst","api/sleap.nn.data.inference.rst","api/sleap.nn.data.instance_centroids.rst","api/sleap.nn.data.instance_cropping.rst","api/sleap.nn.data.normalization.rst","api/sleap.nn.data.offset_regression.rst","api/sleap.nn.data.pipelines.rst","api/sleap.nn.data.providers.rst","api/sleap.nn.data.resizing.rst","api/sleap.nn.data.training.rst","api/sleap.nn.data.utils.rst","api/sleap.nn.evals.rst","api/sleap.nn.heads.rst","api/sleap.nn.identity.rst","api/sleap.nn.inference.rst","api/sleap.nn.losses.rst","api/sleap.nn.model.rst","api/sleap.nn.paf_grouping.rst","api/sleap.nn.peak_finding.rst","api/sleap.nn.system.rst","api/sleap.nn.tracker.components.rst","api/sleap.nn.tracker.kalman.rst","api/sleap.nn.tracking.rst","api/sleap.nn.training.rst","api/sleap.nn.utils.rst","api/sleap.nn.viz.rst","api/sleap.skeleton.rst","api/sleap.util.rst","datasets.md","guides/choosing-models.md","guides/cli.md","guides/colab.rst","guides/custom-training.md","guides/gui.md","guides/index.md","guides/merging.rst","guides/proofreading.md","guides/remote.md","guides/skeletons.md","guides/training.rst","guides/troubleshooting-workflows.md","help.md","index.rst","installation.md","notebooks/Analysis_examples.ipynb","notebooks/Data_structures.ipynb","notebooks/Interactive_and_realtime_inference.ipynb","notebooks/Interactive_and_resumable_training.ipynb","notebooks/Model_evaluation.ipynb","notebooks/Post_inference_tracking.ipynb","notebooks/Training_and_inference_on_an_example_dataset.ipynb","notebooks/Training_and_inference_using_Google_Drive.ipynb","notebooks/analysis_example/README.md","notebooks/index.rst","overview.rst","tutorials/analysis.rst","tutorials/assisted-labeling.md","tutorials/initial-labeling.rst","tutorials/initial-training.rst","tutorials/new-project.md","tutorials/proofreading.rst","tutorials/tutorial.rst"],objects:{"sleap.info":[[3,0,0,"-","align"],[4,0,0,"-","feature_suggestions"],[5,0,0,"-","labels"],[6,0,0,"-","metrics"],[7,0,0,"-","summary"],[8,0,0,"-","trackcleaner"],[9,0,0,"-","write_tracking_h5"]],"sleap.info.align":[[3,1,1,"","align_instance_points"],[3,1,1,"","align_instances"],[3,1,1,"","align_instances_on_most_stable"],[3,1,1,"","get_instances_points"],[3,1,1,"","get_mean_and_std_for_points"],[3,1,1,"","get_most_stable_node_pair"],[3,1,1,"","get_stable_node_pairs"],[3,1,1,"","get_template_points_array"]],"sleap.info.feature_suggestions":[[4,2,1,"","FrameGroupSet"],[4,2,1,"","FrameItem"],[4,2,1,"","ItemStack"],[4,2,1,"","ParallelFeaturePipeline"]],"sleap.info.feature_suggestions.FrameGroupSet":[[4,3,1,"","all_items"],[4,4,1,"","append_to_group"],[4,4,1,"","extend_group_items"],[4,4,1,"","get_item_group"],[4,5,1,"","group_data"],[4,3,1,"","groups"],[4,5,1,"","groupset_data"],[4,5,1,"","item_group"],[4,5,1,"","method"],[4,4,1,"","sample"]],"sleap.info.feature_suggestions.ItemStack":[[4,4,1,"","brisk_bag_of_features"],[4,3,1,"","current_groupset"],[4,5,1,"","data"],[4,4,1,"","extend_ownership"],[4,4,1,"","flatten"],[4,4,1,"","get_all_items_from_group"],[4,4,1,"","get_item_data"],[4,4,1,"","get_item_data_idxs"],[4,4,1,"","get_raw_images"],[4,5,1,"","group_sets"],[4,4,1,"","hog_bag_of_features"],[4,5,1,"","items"],[4,4,1,"","kmeans"],[4,4,1,"","make_sample_group"],[4,5,1,"","meta"],[4,5,1,"","ownership"],[4,4,1,"","pca"],[4,4,1,"","sample_groups"]],"sleap.info.feature_suggestions.ParallelFeaturePipeline":[[4,4,1,"","get"],[4,4,1,"","make"],[4,4,1,"","run"],[4,4,1,"","tuples_to_suggestions"]],"sleap.info.metrics":[[6,1,1,"","calculate_pairwise_cost"],[6,1,1,"","compare_instance_lists"],[6,1,1,"","list_points_array"],[6,1,1,"","match_instance_lists"],[6,1,1,"","match_instance_lists_nodewise"],[6,1,1,"","matched_instance_distances"],[6,1,1,"","nodeless_point_dist"],[6,1,1,"","point_dist"],[6,1,1,"","point_match_count"],[6,1,1,"","point_nonmatch_count"]],"sleap.info.summary":[[7,2,1,"","StatisticSeries"]],"sleap.info.summary.StatisticSeries":[[7,4,1,"","get_instance_score_series"],[7,4,1,"","get_point_count_series"],[7,4,1,"","get_point_displacement_series"],[7,4,1,"","get_point_score_series"],[7,4,1,"","get_primary_point_displacement_series"]],"sleap.info.trackcleaner":[[8,1,1,"","fit_tracks"]],"sleap.info.write_tracking_h5":[[9,1,1,"","get_edges_as_np_strings"],[9,1,1,"","get_nodes_as_np_strings"],[9,1,1,"","get_occupancy_and_points_matrices"],[9,1,1,"","get_tracks_as_np_strings"],[9,1,1,"","main"],[9,1,1,"","remove_empty_tracks_from_matrices"],[9,1,1,"","write_csv_file"],[9,1,1,"","write_occupancy_file"]],"sleap.instance":[[10,2,1,"","Instance"],[10,2,1,"","InstancesList"],[10,2,1,"","LabeledFrame"],[10,2,1,"","Point"],[10,2,1,"","PointArray"],[10,2,1,"","PredictedInstance"],[10,2,1,"","PredictedPoint"],[10,2,1,"","PredictedPointArray"],[10,2,1,"","Track"],[10,1,1,"","make_instance_cattr"]],"sleap.instance.Instance":[[10,3,1,"","bounding_box"],[10,3,1,"","centroid"],[10,4,1,"","fill_missing"],[10,3,1,"","frame_idx"],[10,4,1,"","from_numpy"],[10,4,1,"","from_pointsarray"],[10,4,1,"","get_points_array"],[10,4,1,"","matches"],[10,3,1,"","midpoint"],[10,3,1,"","n_visible_points"],[10,3,1,"","nodes"],[10,3,1,"","nodes_points"],[10,4,1,"","numpy"],[10,3,1,"","points"],[10,3,1,"","points_array"],[10,4,1,"","transform_points"],[10,3,1,"","video"]],"sleap.instance.InstancesList":[[10,4,1,"","append"],[10,4,1,"","clear"],[10,4,1,"","copy"],[10,4,1,"","extend"],[10,4,1,"","insert"],[10,3,1,"","labeled_frame"],[10,4,1,"","pop"],[10,4,1,"","remove"]],"sleap.instance.LabeledFrame":[[10,4,1,"","complex_frame_merge"],[10,4,1,"","complex_merge_between"],[10,4,1,"","find"],[10,3,1,"","has_predicted_instances"],[10,3,1,"","has_tracked_instances"],[10,3,1,"","has_user_instances"],[10,3,1,"","image"],[10,4,1,"","index"],[10,4,1,"","insert"],[10,3,1,"","instances"],[10,3,1,"","instances_to_show"],[10,4,1,"","merge_frames"],[10,3,1,"","n_predicted_instances"],[10,3,1,"","n_tracked_instances"],[10,3,1,"","n_user_instances"],[10,4,1,"","numpy"],[10,4,1,"","plot"],[10,4,1,"","plot_predicted"],[10,3,1,"","predicted_instances"],[10,4,1,"","remove_empty_instances"],[10,4,1,"","remove_untracked"],[10,3,1,"","tracked_instances"],[10,3,1,"","training_instances"],[10,3,1,"","unused_predictions"],[10,3,1,"","user_instances"]],"sleap.instance.Point":[[10,5,1,"","dtype"],[10,4,1,"","isnan"],[10,4,1,"","numpy"]],"sleap.instance.PointArray":[[10,4,1,"","from_array"],[10,4,1,"","make_default"]],"sleap.instance.PredictedInstance":[[10,4,1,"","from_arrays"],[10,4,1,"","from_instance"],[10,4,1,"","from_numpy"],[10,4,1,"","from_pointsarray"],[10,3,1,"","points_and_scores_array"],[10,3,1,"","scores"]],"sleap.instance.PredictedPoint":[[10,5,1,"","dtype"],[10,4,1,"","from_point"]],"sleap.instance.PredictedPointArray":[[10,4,1,"","to_array"]],"sleap.instance.Track":[[10,4,1,"","matches"]],"sleap.io":[[11,0,0,"-","asyncvideo"],[12,0,0,"-","convert"],[13,0,0,"-","dataset"],[31,0,0,"-","legacy"],[32,0,0,"-","pathutils"],[33,0,0,"-","video"],[34,0,0,"-","videowriter"],[35,0,0,"-","visuals"]],"sleap.io.asyncvideo":[[11,2,1,"","AsyncVideo"],[11,2,1,"","AsyncVideoServer"]],"sleap.io.asyncvideo.AsyncVideo":[[11,3,1,"","chunks"],[11,4,1,"","close"],[11,4,1,"","from_video"],[11,4,1,"","load_by_chunk"]],"sleap.io.asyncvideo.AsyncVideoServer":[[11,4,1,"","run"]],"sleap.io.convert":[[12,1,1,"","main"]],"sleap.io.dataset":[[13,2,1,"","Labels"],[13,2,1,"","LabelsDataCache"],[13,1,1,"","find_path_using_paths"],[13,1,1,"","load_file"]],"sleap.io.dataset.Labels":[[13,4,1,"","add_instance"],[13,4,1,"","add_suggestion"],[13,4,1,"","add_track"],[13,4,1,"","add_video"],[13,3,1,"","all_instances"],[13,4,1,"","append"],[13,4,1,"","append_suggestions"],[13,4,1,"","clear_suggestions"],[13,4,1,"","complex_merge_between"],[13,4,1,"","copy"],[13,4,1,"","delete_suggestions"],[13,4,1,"","describe"],[13,4,1,"","export"],[13,4,1,"","export_csv"],[13,4,1,"","export_nwb"],[13,4,1,"","extend_from"],[13,4,1,"","extract"],[13,4,1,"","find"],[13,4,1,"","find_first"],[13,4,1,"","find_last"],[13,4,1,"","find_suggestion"],[13,4,1,"","find_track_occupancy"],[13,4,1,"","finish_complex_merge"],[13,4,1,"","frames"],[13,4,1,"","get"],[13,4,1,"","get_next_suggestion"],[13,4,1,"","get_suggestions"],[13,4,1,"","get_track_count"],[13,4,1,"","get_track_occupancy"],[13,4,1,"","get_unlabeled_suggestion_inds"],[13,4,1,"","get_video_suggestions"],[13,4,1,"","has_frame"],[13,3,1,"","has_missing_videos"],[13,4,1,"","index"],[13,4,1,"","insert"],[13,4,1,"","instance_count"],[13,4,1,"","instances"],[13,3,1,"","is_multi_instance"],[13,5,1,"","labeled_frames"],[13,3,1,"","labels"],[13,4,1,"","load_file"],[13,4,1,"","make_video_callback"],[13,4,1,"","merge_container_dicts"],[13,4,1,"","merge_matching_frames"],[13,4,1,"","merge_nodes"],[13,5,1,"","negative_anchors"],[13,4,1,"","numpy"],[13,3,1,"","predicted_instances"],[13,5,1,"","provenance"],[13,4,1,"","remove"],[13,4,1,"","remove_all_tracks"],[13,4,1,"","remove_empty_frames"],[13,4,1,"","remove_empty_instances"],[13,4,1,"","remove_frame"],[13,4,1,"","remove_frames"],[13,4,1,"","remove_instance"],[13,4,1,"","remove_predictions"],[13,4,1,"","remove_suggestion"],[13,4,1,"","remove_track"],[13,4,1,"","remove_untracked_instances"],[13,4,1,"","remove_unused_tracks"],[13,4,1,"","remove_user_instances"],[13,4,1,"","remove_video"],[13,4,1,"","save"],[13,4,1,"","save_file"],[13,4,1,"","save_frame_data_hdf5"],[13,4,1,"","save_frame_data_imgstore"],[13,4,1,"","set_suggestions"],[13,3,1,"","skeleton"],[13,5,1,"","skeletons"],[13,4,1,"","split"],[13,5,1,"","suggestions"],[13,4,1,"","to_dict"],[13,4,1,"","to_json"],[13,4,1,"","to_pipeline"],[13,4,1,"","track_set_instance"],[13,4,1,"","track_swap"],[13,5,1,"","tracks"],[13,3,1,"","unlabeled_suggestions"],[13,3,1,"","user_instances"],[13,3,1,"","user_labeled_frame_inds"],[13,3,1,"","user_labeled_frames"],[13,3,1,"","video"],[13,5,1,"","videos"],[13,4,1,"","with_user_labels_only"]],"sleap.io.dataset.LabelsDataCache":[[13,4,1,"","add_instance"],[13,4,1,"","add_track"],[13,4,1,"","find_fancy_frame_idxs"],[13,4,1,"","find_frames"],[13,4,1,"","get_filtered_frame_idxs"],[13,4,1,"","get_frame_count"],[13,4,1,"","get_track_occupancy"],[13,4,1,"","get_video_track_occupancy"],[13,4,1,"","remove_frame"],[13,4,1,"","remove_instance"],[13,4,1,"","remove_video"],[13,4,1,"","track_swap"],[13,4,1,"","update"],[13,4,1,"","update_counts_for_frame"]],"sleap.io.format":[[14,0,0,"-","adaptor"],[15,0,0,"-","alphatracker"],[16,0,0,"-","coco"],[17,0,0,"-","csv"],[18,0,0,"-","deeplabcut"],[19,0,0,"-","deepposekit"],[20,0,0,"-","dispatch"],[21,0,0,"-","filehandle"],[22,0,0,"-","genericjson"],[23,0,0,"-","hdf5"],[24,0,0,"-","labels_json"],[25,0,0,"-","leap_matlab"],[26,0,0,"-","main"],[27,0,0,"-","ndx_pose"],[28,0,0,"-","nix"],[29,0,0,"-","sleap_analysis"],[30,0,0,"-","text"]],"sleap.io.format.adaptor":[[14,2,1,"","Adaptor"],[14,2,1,"","SleapObjectType"]],"sleap.io.format.adaptor.Adaptor":[[14,3,1,"","all_exts"],[14,4,1,"","can_read_file"],[14,4,1,"","can_write_filename"],[14,3,1,"","default_ext"],[14,4,1,"","does_match_ext"],[14,4,1,"","does_read"],[14,4,1,"","does_write"],[14,3,1,"","formatted_ext_options"],[14,3,1,"","handles"],[14,3,1,"","name"],[14,4,1,"","read"],[14,4,1,"","write"]],"sleap.io.format.alphatracker":[[15,2,1,"","AlphaTrackerAdaptor"]],"sleap.io.format.alphatracker.AlphaTrackerAdaptor":[[15,3,1,"","all_exts"],[15,4,1,"","can_read_file"],[15,4,1,"","can_write_filename"],[15,3,1,"","default_ext"],[15,4,1,"","does_match_ext"],[15,4,1,"","does_read"],[15,4,1,"","does_write"],[15,3,1,"","formatted_ext_options"],[15,4,1,"","get_alpha_tracker_frame_dict"],[15,4,1,"","get_alpha_tracker_instance_dict"],[15,4,1,"","get_alpha_tracker_point_dict"],[15,3,1,"","handles"],[15,4,1,"","make_video_for_image_list"],[15,3,1,"","name"],[15,4,1,"","read"],[15,4,1,"","write"]],"sleap.io.format.coco":[[16,2,1,"","LabelsCocoAdaptor"]],"sleap.io.format.coco.LabelsCocoAdaptor":[[16,3,1,"","all_exts"],[16,4,1,"","can_read_file"],[16,4,1,"","can_write_filename"],[16,3,1,"","default_ext"],[16,4,1,"","does_read"],[16,4,1,"","does_write"],[16,3,1,"","handles"],[16,3,1,"","name"],[16,4,1,"","read"]],"sleap.io.format.csv":[[17,2,1,"","CSVAdaptor"]],"sleap.io.format.csv.CSVAdaptor":[[17,3,1,"","all_exts"],[17,4,1,"","can_read_file"],[17,4,1,"","can_write_filename"],[17,3,1,"","default_ext"],[17,4,1,"","does_read"],[17,4,1,"","does_write"],[17,3,1,"","handles"],[17,3,1,"","name"],[17,4,1,"","write"]],"sleap.io.format.deeplabcut":[[18,2,1,"","LabelsDeepLabCutCsvAdaptor"],[18,2,1,"","LabelsDeepLabCutYamlAdaptor"]],"sleap.io.format.deeplabcut.LabelsDeepLabCutCsvAdaptor":[[18,3,1,"","all_exts"],[18,4,1,"","can_read_file"],[18,4,1,"","can_write_filename"],[18,3,1,"","default_ext"],[18,4,1,"","does_read"],[18,4,1,"","does_write"],[18,3,1,"","handles"],[18,4,1,"","make_video_for_image_list"],[18,3,1,"","name"],[18,4,1,"","read"]],"sleap.io.format.deeplabcut.LabelsDeepLabCutYamlAdaptor":[[18,3,1,"","all_exts"],[18,4,1,"","can_read_file"],[18,4,1,"","can_write_filename"],[18,3,1,"","default_ext"],[18,4,1,"","does_read"],[18,4,1,"","does_write"],[18,3,1,"","handles"],[18,3,1,"","name"],[18,4,1,"","read"]],"sleap.io.format.deepposekit":[[19,2,1,"","LabelsDeepPoseKitAdaptor"]],"sleap.io.format.deepposekit.LabelsDeepPoseKitAdaptor":[[19,3,1,"","all_exts"],[19,4,1,"","can_read_file"],[19,4,1,"","can_write_filename"],[19,3,1,"","default_ext"],[19,4,1,"","does_read"],[19,4,1,"","does_write"],[19,3,1,"","handles"],[19,3,1,"","name"],[19,4,1,"","read"]],"sleap.io.format.filehandle":[[21,2,1,"","FileHandle"]],"sleap.io.format.filehandle.FileHandle":[[21,4,1,"","close"],[21,3,1,"","file"],[21,3,1,"","format_id"],[21,3,1,"","is_hdf5"],[21,3,1,"","is_json"],[21,3,1,"","json"],[21,4,1,"","open"],[21,3,1,"","text"]],"sleap.io.format.genericjson":[[22,2,1,"","GenericJsonAdaptor"]],"sleap.io.format.genericjson.GenericJsonAdaptor":[[22,3,1,"","all_exts"],[22,4,1,"","can_read_file"],[22,4,1,"","can_write_filename"],[22,3,1,"","default_ext"],[22,4,1,"","does_read"],[22,4,1,"","does_write"],[22,3,1,"","handles"],[22,3,1,"","name"],[22,4,1,"","read"],[22,4,1,"","write"]],"sleap.io.format.hdf5":[[23,2,1,"","LabelsV1Adaptor"]],"sleap.io.format.hdf5.LabelsV1Adaptor":[[23,3,1,"","all_exts"],[23,4,1,"","can_read_file"],[23,4,1,"","can_write_filename"],[23,3,1,"","default_ext"],[23,4,1,"","does_read"],[23,4,1,"","does_write"],[23,3,1,"","handles"],[23,3,1,"","name"],[23,4,1,"","read"],[23,4,1,"","write"]],"sleap.io.format.labels_json":[[24,2,1,"","LabelsJsonAdaptor"]],"sleap.io.format.labels_json.LabelsJsonAdaptor":[[24,3,1,"","all_exts"],[24,4,1,"","can_read_file"],[24,4,1,"","can_write_filename"],[24,3,1,"","default_ext"],[24,4,1,"","does_read"],[24,4,1,"","does_write"],[24,4,1,"","from_json_data"],[24,3,1,"","handles"],[24,3,1,"","name"],[24,4,1,"","read"],[24,4,1,"","write"]],"sleap.io.format.leap_matlab":[[25,2,1,"","LabelsLeapMatlabAdaptor"]],"sleap.io.format.leap_matlab.LabelsLeapMatlabAdaptor":[[25,3,1,"","all_exts"],[25,4,1,"","can_read_file"],[25,4,1,"","can_write_filename"],[25,3,1,"","default_ext"],[25,4,1,"","does_read"],[25,4,1,"","does_write"],[25,3,1,"","handles"],[25,3,1,"","name"],[25,4,1,"","read"]],"sleap.io.format.main":[[26,1,1,"","read"],[26,1,1,"","write"]],"sleap.io.format.ndx_pose":[[27,2,1,"","NDXPoseAdaptor"]],"sleap.io.format.ndx_pose.NDXPoseAdaptor":[[27,3,1,"","all_exts"],[27,4,1,"","can_read_file"],[27,4,1,"","can_write_filename"],[27,3,1,"","default_ext"],[27,4,1,"","does_read"],[27,4,1,"","does_write"],[27,3,1,"","handles"],[27,3,1,"","name"],[27,4,1,"","read"],[27,4,1,"","write"]],"sleap.io.format.nix":[[28,2,1,"","NixAdaptor"]],"sleap.io.format.nix.NixAdaptor":[[28,3,1,"","all_exts"],[28,4,1,"","can_read_file"],[28,4,1,"","can_write_filename"],[28,3,1,"","default_ext"],[28,4,1,"","does_read"],[28,4,1,"","does_write"],[28,3,1,"","handles"],[28,3,1,"","name"],[28,4,1,"","read"],[28,4,1,"","write"]],"sleap.io.format.sleap_analysis":[[29,2,1,"","SleapAnalysisAdaptor"]],"sleap.io.format.sleap_analysis.SleapAnalysisAdaptor":[[29,3,1,"","all_exts"],[29,4,1,"","can_read_file"],[29,4,1,"","can_write_filename"],[29,3,1,"","default_ext"],[29,4,1,"","does_read"],[29,4,1,"","does_write"],[29,3,1,"","handles"],[29,3,1,"","name"],[29,4,1,"","read"],[29,4,1,"","write"]],"sleap.io.format.text":[[30,2,1,"","TextAdaptor"]],"sleap.io.format.text.TextAdaptor":[[30,3,1,"","all_exts"],[30,4,1,"","can_read_file"],[30,4,1,"","can_write_filename"],[30,3,1,"","default_ext"],[30,4,1,"","does_read"],[30,4,1,"","does_write"],[30,3,1,"","handles"],[30,3,1,"","name"],[30,4,1,"","read"],[30,4,1,"","write"]],"sleap.io.legacy":[[31,1,1,"","load_labels_json_old"],[31,1,1,"","load_predicted_labels_json_old"]],"sleap.io.pathutils":[[32,1,1,"","filenames_prefix_change"],[32,1,1,"","find_changed_subpath"],[32,1,1,"","list_file_missing"]],"sleap.io.video":[[33,2,1,"","DummyVideo"],[33,2,1,"","HDF5Video"],[33,2,1,"","ImgStoreVideo"],[33,2,1,"","MediaVideo"],[33,2,1,"","NumpyVideo"],[33,2,1,"","SingleImageVideo"],[33,2,1,"","Video"],[33,1,1,"","available_video_exts"],[33,1,1,"","load_video"]],"sleap.io.video.HDF5Video":[[33,3,1,"","channels"],[33,4,1,"","check"],[33,4,1,"","close"],[33,3,1,"","dtype"],[33,3,1,"","embedded_frame_inds"],[33,3,1,"","enable_source_video"],[33,3,1,"","frames"],[33,4,1,"","get_frame"],[33,3,1,"","has_embedded_images"],[33,3,1,"","height"],[33,3,1,"","last_frame_idx"],[33,4,1,"","matches"],[33,4,1,"","reset"],[33,3,1,"","source_video"],[33,3,1,"","source_video_available"],[33,3,1,"","width"]],"sleap.io.video.ImgStoreVideo":[[33,3,1,"","channels"],[33,4,1,"","close"],[33,3,1,"","dtype"],[33,3,1,"","frames"],[33,4,1,"","get_frame"],[33,3,1,"","height"],[33,3,1,"","imgstore"],[33,3,1,"","last_frame_idx"],[33,4,1,"","matches"],[33,4,1,"","open"],[33,4,1,"","reset"],[33,3,1,"","width"]],"sleap.io.video.MediaVideo":[[33,3,1,"","channels"],[33,3,1,"","dtype"],[33,3,1,"","fps"],[33,3,1,"","frames"],[33,4,1,"","get_frame"],[33,3,1,"","height"],[33,4,1,"","matches"],[33,4,1,"","reset"],[33,3,1,"","width"]],"sleap.io.video.NumpyVideo":[[33,3,1,"","channels"],[33,3,1,"","dtype"],[33,3,1,"","frames"],[33,4,1,"","get_frame"],[33,3,1,"","height"],[33,3,1,"","is_missing"],[33,4,1,"","matches"],[33,4,1,"","reset"],[33,3,1,"","width"]],"sleap.io.video.SingleImageVideo":[[33,3,1,"","channels"],[33,3,1,"","dtype"],[33,3,1,"","frames"],[33,4,1,"","get_frame"],[33,3,1,"","height"],[33,4,1,"","matches"],[33,4,1,"","reset"],[33,3,1,"","width"]],"sleap.io.video.Video":[[33,4,1,"","cattr"],[33,4,1,"","fixup_path"],[33,4,1,"","from_filename"],[33,4,1,"","from_hdf5"],[33,4,1,"","from_image_filenames"],[33,4,1,"","from_media"],[33,4,1,"","from_numpy"],[33,4,1,"","get_frame"],[33,4,1,"","get_frames"],[33,4,1,"","get_frames_safely"],[33,4,1,"","imgstore_from_filenames"],[33,3,1,"","is_missing"],[33,3,1,"","last_frame_idx"],[33,3,1,"","num_frames"],[33,3,1,"","shape"],[33,4,1,"","to_hdf5"],[33,4,1,"","to_imgstore"],[33,4,1,"","to_pipeline"]],"sleap.io.videowriter":[[34,2,1,"","VideoWriter"],[34,2,1,"","VideoWriterOpenCV"],[34,2,1,"","VideoWriterSkvideo"]],"sleap.io.videowriter.VideoWriter":[[34,4,1,"","safe_builder"]],"sleap.io.videowriter.VideoWriterSkvideo":[[34,5,1,"","crf"],[34,5,1,"","filename"],[34,5,1,"","fps"],[34,5,1,"","height"],[34,5,1,"","preset"],[34,5,1,"","width"]],"sleap.io.visuals":[[35,2,1,"","VideoMarkerThread"],[35,1,1,"","img_to_cv"],[35,1,1,"","reader"],[35,1,1,"","resize_image"],[35,1,1,"","save_labeled_video"],[35,1,1,"","writer"]],"sleap.io.visuals.VideoMarkerThread":[[35,4,1,"","run"]],"sleap.message":[[36,2,1,"","BaseMessageParticipant"],[36,2,1,"","Receiver"],[36,2,1,"","Sender"]],"sleap.message.Receiver":[[36,4,1,"","check_message"],[36,4,1,"","check_messages"],[36,4,1,"","push_back_message"]],"sleap.message.Sender":[[36,4,1,"","send_array"],[36,4,1,"","send_dict"]],"sleap.nn":[[46,0,0,"-","callbacks"],[70,0,0,"-","evals"],[71,0,0,"-","heads"],[72,0,0,"-","identity"],[73,0,0,"-","inference"],[74,0,0,"-","losses"],[75,0,0,"-","model"],[76,0,0,"-","paf_grouping"],[77,0,0,"-","peak_finding"],[78,0,0,"-","system"],[81,0,0,"-","tracking"],[82,0,0,"-","training"],[83,0,0,"-","utils"],[84,0,0,"-","viz"]],"sleap.nn.architectures":[[37,0,0,"-","common"],[38,0,0,"-","encoder_decoder"],[39,0,0,"-","hourglass"],[40,0,0,"-","hrnet"],[41,0,0,"-","leap"],[42,0,0,"-","pretrained_encoders"],[43,0,0,"-","resnet"],[44,0,0,"-","unet"],[45,0,0,"-","upsampling"]],"sleap.nn.architectures.common":[[37,2,1,"","IntermediateFeature"]],"sleap.nn.architectures.common.IntermediateFeature":[[37,3,1,"","scale"],[37,5,1,"","stride"],[37,5,1,"","tensor"]],"sleap.nn.architectures.encoder_decoder":[[38,2,1,"","DecoderBlock"],[38,2,1,"","EncoderBlock"],[38,2,1,"","EncoderDecoder"],[38,2,1,"","SimpleConvBlock"],[38,2,1,"","SimpleUpsamplingBlock"]],"sleap.nn.architectures.encoder_decoder.DecoderBlock":[[38,4,1,"","make_block"],[38,5,1,"","upsampling_stride"]],"sleap.nn.architectures.encoder_decoder.EncoderBlock":[[38,4,1,"","make_block"],[38,5,1,"","pool"],[38,5,1,"","pooling_stride"]],"sleap.nn.architectures.encoder_decoder.EncoderDecoder":[[38,3,1,"","decoder_features_stride"],[38,3,1,"","decoder_stack"],[38,3,1,"","encoder_features_stride"],[38,3,1,"","encoder_stack"],[38,4,1,"","make_backbone"],[38,4,1,"","make_decoder"],[38,4,1,"","make_encoder"],[38,4,1,"","make_stem"],[38,3,1,"","maximum_stride"],[38,3,1,"","output_stride"],[38,5,1,"","stacks"],[38,3,1,"","stem_features_stride"],[38,3,1,"","stem_stack"]],"sleap.nn.architectures.encoder_decoder.SimpleConvBlock":[[38,5,1,"","activation"],[38,5,1,"","batch_norm"],[38,5,1,"","batch_norm_before_activation"],[38,5,1,"","block_prefix"],[38,5,1,"","filters"],[38,5,1,"","kernel_size"],[38,4,1,"","make_block"],[38,5,1,"","num_convs"],[38,5,1,"","pool"],[38,5,1,"","pool_before_convs"],[38,5,1,"","pooling_stride"],[38,5,1,"","use_bias"]],"sleap.nn.architectures.encoder_decoder.SimpleUpsamplingBlock":[[38,5,1,"","interp_method"],[38,4,1,"","make_block"],[38,5,1,"","refine_convs"],[38,5,1,"","refine_convs_activation"],[38,5,1,"","refine_convs_batch_norm"],[38,5,1,"","refine_convs_batch_norm_before_activation"],[38,5,1,"","refine_convs_filters"],[38,5,1,"","refine_convs_first_filters"],[38,5,1,"","refine_convs_kernel_size"],[38,5,1,"","refine_convs_use_bias"],[38,5,1,"","skip_add"],[38,5,1,"","skip_connection"],[38,5,1,"","transposed_conv"],[38,5,1,"","transposed_conv_activation"],[38,5,1,"","transposed_conv_batch_norm"],[38,5,1,"","transposed_conv_batch_norm_before_activation"],[38,5,1,"","transposed_conv_filters"],[38,5,1,"","transposed_conv_kernel_size"],[38,5,1,"","transposed_conv_use_bias"],[38,5,1,"","upsampling_stride"]],"sleap.nn.architectures.hourglass":[[39,2,1,"","DownsamplingBlock"],[39,2,1,"","Hourglass"],[39,2,1,"","StemBlock"],[39,2,1,"","UpsamplingBlock"],[39,1,1,"","conv"]],"sleap.nn.architectures.hourglass.DownsamplingBlock":[[39,5,1,"","filters"],[39,4,1,"","make_block"]],"sleap.nn.architectures.hourglass.Hourglass":[[39,3,1,"","decoder_stack"],[39,5,1,"","down_blocks"],[39,3,1,"","encoder_stack"],[39,5,1,"","filter_increase"],[39,5,1,"","filters"],[39,4,1,"","from_config"],[39,5,1,"","interp_method"],[39,5,1,"","stacks"],[39,5,1,"","stem_filters"],[39,3,1,"","stem_stack"],[39,5,1,"","stem_stride"],[39,5,1,"","up_blocks"]],"sleap.nn.architectures.hourglass.StemBlock":[[39,5,1,"","filters"],[39,5,1,"","first_conv_stride"],[39,4,1,"","make_block"],[39,5,1,"","output_filters"],[39,5,1,"","pool"],[39,5,1,"","pooling_stride"]],"sleap.nn.architectures.hourglass.UpsamplingBlock":[[39,5,1,"","filters"],[39,5,1,"","interp_method"],[39,4,1,"","make_block"]],"sleap.nn.architectures.hrnet":[[40,2,1,"","HigherHRNet"],[40,1,1,"","adjust_prefix"],[40,1,1,"","bottleneck_block"],[40,1,1,"","simple_block"]],"sleap.nn.architectures.hrnet.HigherHRNet":[[40,5,1,"","C"],[40,5,1,"","bilinear_upsampling"],[40,5,1,"","bottleneck"],[40,5,1,"","deconv_filters"],[40,3,1,"","down_blocks"],[40,5,1,"","initial_downsampling_steps"],[40,5,1,"","n_deconv_modules"],[40,4,1,"","output"],[40,3,1,"","output_scale"]],"sleap.nn.architectures.leap":[[41,2,1,"","LeapCNN"]],"sleap.nn.architectures.leap.LeapCNN":[[41,3,1,"","decoder_stack"],[41,5,1,"","down_blocks"],[41,5,1,"","down_convs_per_block"],[41,3,1,"","encoder_stack"],[41,5,1,"","filters"],[41,5,1,"","filters_rate"],[41,4,1,"","from_config"],[41,5,1,"","up_blocks"],[41,5,1,"","up_convs_per_block"],[41,5,1,"","up_interpolate"]],"sleap.nn.architectures.pretrained_encoders":[[42,2,1,"","UnetPretrainedEncoder"]],"sleap.nn.architectures.pretrained_encoders.UnetPretrainedEncoder":[[42,5,1,"","decoder_filters"],[42,3,1,"","down_blocks"],[42,5,1,"","encoder"],[42,4,1,"","from_config"],[42,4,1,"","make_backbone"],[42,3,1,"","maximum_stride"],[42,3,1,"","output_stride"],[42,5,1,"","pretrained"],[42,3,1,"","up_blocks"]],"sleap.nn.architectures.resnet":[[43,2,1,"","ResNet101"],[43,2,1,"","ResNet152"],[43,2,1,"","ResNet50"],[43,2,1,"","ResNetv1"],[43,1,1,"","block_v1"],[43,1,1,"","imagenet_preproc_v1"],[43,1,1,"","make_backbone_fn"],[43,1,1,"","make_resnet_model"],[43,1,1,"","stack_v1"],[43,1,1,"","tile_channels"]],"sleap.nn.architectures.resnet.ResNet101":[[43,5,1,"","features_output_stride"],[43,5,1,"","frozen"],[43,5,1,"","pretrained"],[43,5,1,"","skip_connections"],[43,5,1,"","upsampling_stack"]],"sleap.nn.architectures.resnet.ResNet152":[[43,5,1,"","features_output_stride"],[43,5,1,"","frozen"],[43,5,1,"","pretrained"],[43,5,1,"","skip_connections"],[43,5,1,"","upsampling_stack"]],"sleap.nn.architectures.resnet.ResNet50":[[43,5,1,"","features_output_stride"],[43,5,1,"","frozen"],[43,5,1,"","pretrained"],[43,5,1,"","skip_connections"],[43,5,1,"","upsampling_stack"]],"sleap.nn.architectures.resnet.ResNetv1":[[43,3,1,"","down_blocks"],[43,5,1,"","features_output_stride"],[43,4,1,"","from_config"],[43,5,1,"","frozen"],[43,4,1,"","make_backbone"],[43,3,1,"","maximum_stride"],[43,5,1,"","model_name"],[43,3,1,"","output_scale"],[43,3,1,"","output_stride"],[43,5,1,"","pretrained"],[43,5,1,"","skip_connections"],[43,5,1,"","stack_configs"],[43,5,1,"","upsampling_stack"]],"sleap.nn.architectures.unet":[[44,2,1,"","PoolingBlock"],[44,2,1,"","UNet"]],"sleap.nn.architectures.unet.PoolingBlock":[[44,4,1,"","make_block"],[44,5,1,"","pool"],[44,5,1,"","pooling_stride"]],"sleap.nn.architectures.unet.UNet":[[44,5,1,"","block_contraction"],[44,5,1,"","convs_per_block"],[44,3,1,"","decoder_stack"],[44,5,1,"","down_blocks"],[44,3,1,"","encoder_stack"],[44,5,1,"","filters"],[44,5,1,"","filters_rate"],[44,4,1,"","from_config"],[44,5,1,"","kernel_size"],[44,5,1,"","middle_block"],[44,5,1,"","stem_blocks"],[44,5,1,"","stem_kernel_size"],[44,3,1,"","stem_stack"],[44,5,1,"","up_blocks"],[44,5,1,"","up_interpolate"]],"sleap.nn.architectures.upsampling":[[45,2,1,"","UpsamplingStack"]],"sleap.nn.architectures.upsampling.UpsamplingStack":[[45,4,1,"","from_config"],[45,5,1,"","make_skip_connection"],[45,4,1,"","make_stack"],[45,5,1,"","output_stride"],[45,5,1,"","refine_convs"],[45,5,1,"","refine_convs_batchnorm"],[45,5,1,"","refine_convs_filters"],[45,5,1,"","refine_convs_filters_rate"],[45,5,1,"","skip_add"],[45,5,1,"","transposed_conv"],[45,5,1,"","transposed_conv_batchnorm"],[45,5,1,"","transposed_conv_filters"],[45,5,1,"","transposed_conv_filters_rate"],[45,5,1,"","transposed_conv_kernel_size"],[45,5,1,"","upsampling_stride"]],"sleap.nn.callbacks":[[46,2,1,"","MatplotlibSaver"],[46,2,1,"","ModelCheckpointOnEvent"],[46,2,1,"","ProgressReporterZMQ"],[46,2,1,"","TensorBoardMatplotlibWriter"],[46,2,1,"","TrainingControllerZMQ"]],"sleap.nn.callbacks.MatplotlibSaver":[[46,4,1,"","on_epoch_end"],[46,5,1,"","plot_fn"],[46,5,1,"","prefix"],[46,5,1,"","save_folder"]],"sleap.nn.callbacks.ModelCheckpointOnEvent":[[46,5,1,"","event"],[46,5,1,"","filepath"],[46,4,1,"","on_epoch_end"],[46,4,1,"","on_train_begin"],[46,4,1,"","on_train_end"]],"sleap.nn.callbacks.ProgressReporterZMQ":[[46,4,1,"","on_batch_begin"],[46,4,1,"","on_batch_end"],[46,4,1,"","on_epoch_begin"],[46,4,1,"","on_epoch_end"],[46,4,1,"","on_train_begin"],[46,4,1,"","on_train_end"]],"sleap.nn.callbacks.TensorBoardMatplotlibWriter":[[46,5,1,"","logdir"],[46,4,1,"","on_epoch_end"],[46,5,1,"","plot_fn"],[46,5,1,"","tag"]],"sleap.nn.callbacks.TrainingControllerZMQ":[[46,4,1,"","on_batch_end"],[46,4,1,"","set_lr"]],"sleap.nn.config":[[47,0,0,"-","data"],[48,0,0,"-","model"],[49,0,0,"-","optimization"],[50,0,0,"-","outputs"],[51,0,0,"-","training_job"],[52,0,0,"-","utils"]],"sleap.nn.config.data":[[47,2,1,"","DataConfig"],[47,2,1,"","InstanceCroppingConfig"],[47,2,1,"","LabelsConfig"],[47,2,1,"","PreprocessingConfig"]],"sleap.nn.config.data.InstanceCroppingConfig":[[47,5,1,"","center_on_part"],[47,5,1,"","crop_size"],[47,5,1,"","crop_size_detection_padding"]],"sleap.nn.config.data.LabelsConfig":[[47,5,1,"","search_path_hints"],[47,5,1,"","skeletons"],[47,5,1,"","split_by_inds"],[47,5,1,"","test_inds"],[47,5,1,"","test_labels"],[47,5,1,"","training_inds"],[47,5,1,"","training_labels"],[47,5,1,"","validation_fraction"],[47,5,1,"","validation_inds"],[47,5,1,"","validation_labels"]],"sleap.nn.config.data.PreprocessingConfig":[[47,5,1,"","ensure_grayscale"],[47,5,1,"","ensure_rgb"],[47,5,1,"","imagenet_mode"],[47,5,1,"","input_scale"],[47,5,1,"","pad_to_stride"],[47,5,1,"","resize_and_pad_to_target"],[47,5,1,"","target_height"],[47,5,1,"","target_width"]],"sleap.nn.config.model":[[48,2,1,"","BackboneConfig"],[48,2,1,"","CenteredInstanceConfmapsHeadConfig"],[48,2,1,"","CentroidsHeadConfig"],[48,2,1,"","ClassMapsHeadConfig"],[48,2,1,"","ClassVectorsHeadConfig"],[48,2,1,"","HeadsConfig"],[48,2,1,"","HourglassConfig"],[48,2,1,"","LEAPConfig"],[48,2,1,"","ModelConfig"],[48,2,1,"","MultiClassBottomUpConfig"],[48,2,1,"","MultiClassTopDownConfig"],[48,2,1,"","MultiInstanceConfig"],[48,2,1,"","MultiInstanceConfmapsHeadConfig"],[48,2,1,"","PartAffinityFieldsHeadConfig"],[48,2,1,"","PretrainedEncoderConfig"],[48,2,1,"","ResNetConfig"],[48,2,1,"","SingleInstanceConfmapsHeadConfig"],[48,2,1,"","UNetConfig"],[48,2,1,"","UpsamplingConfig"]],"sleap.nn.config.model.BackboneConfig":[[48,5,1,"","hourglass"],[48,5,1,"","leap"],[48,5,1,"","resnet"],[48,5,1,"","unet"]],"sleap.nn.config.model.CenteredInstanceConfmapsHeadConfig":[[48,5,1,"","anchor_part"],[48,5,1,"","loss_weight"],[48,5,1,"","offset_refinement"],[48,5,1,"","output_stride"],[48,5,1,"","part_names"],[48,5,1,"","sigma"]],"sleap.nn.config.model.CentroidsHeadConfig":[[48,5,1,"","anchor_part"],[48,5,1,"","loss_weight"],[48,5,1,"","offset_refinement"],[48,5,1,"","output_stride"],[48,5,1,"","sigma"]],"sleap.nn.config.model.ClassMapsHeadConfig":[[48,5,1,"","classes"],[48,5,1,"","loss_weight"],[48,5,1,"","output_stride"],[48,5,1,"","sigma"]],"sleap.nn.config.model.ClassVectorsHeadConfig":[[48,5,1,"","classes"],[48,5,1,"","loss_weight"],[48,5,1,"","num_fc_layers"],[48,5,1,"","num_fc_units"],[48,5,1,"","output_stride"]],"sleap.nn.config.model.HeadsConfig":[[48,5,1,"","centered_instance"],[48,5,1,"","centroid"],[48,5,1,"","multi_class_bottomup"],[48,5,1,"","multi_class_topdown"],[48,5,1,"","multi_instance"],[48,5,1,"","single_instance"]],"sleap.nn.config.model.HourglassConfig":[[48,5,1,"","filters"],[48,5,1,"","filters_increase"],[48,5,1,"","max_stride"],[48,5,1,"","output_stride"],[48,5,1,"","stacks"],[48,5,1,"","stem_stride"]],"sleap.nn.config.model.LEAPConfig":[[48,5,1,"","filters"],[48,5,1,"","filters_rate"],[48,5,1,"","max_stride"],[48,5,1,"","output_stride"],[48,5,1,"","stacks"],[48,5,1,"","up_interpolate"]],"sleap.nn.config.model.ModelConfig":[[48,5,1,"","backbone"],[48,5,1,"","base_checkpoint"],[48,5,1,"","heads"]],"sleap.nn.config.model.MultiClassBottomUpConfig":[[48,5,1,"","class_maps"],[48,5,1,"","confmaps"]],"sleap.nn.config.model.MultiClassTopDownConfig":[[48,5,1,"","class_vectors"],[48,5,1,"","confmaps"]],"sleap.nn.config.model.MultiInstanceConfig":[[48,5,1,"","confmaps"],[48,5,1,"","pafs"]],"sleap.nn.config.model.MultiInstanceConfmapsHeadConfig":[[48,5,1,"","loss_weight"],[48,5,1,"","offset_refinement"],[48,5,1,"","output_stride"],[48,5,1,"","part_names"],[48,5,1,"","sigma"]],"sleap.nn.config.model.PartAffinityFieldsHeadConfig":[[48,5,1,"","edges"],[48,5,1,"","loss_weight"],[48,5,1,"","output_stride"],[48,5,1,"","sigma"]],"sleap.nn.config.model.PretrainedEncoderConfig":[[48,5,1,"","decoder_batchnorm"],[48,5,1,"","decoder_filters"],[48,5,1,"","decoder_filters_rate"],[48,5,1,"","encoder"],[48,5,1,"","output_stride"],[48,5,1,"","pretrained"]],"sleap.nn.config.model.ResNetConfig":[[48,5,1,"","max_stride"],[48,5,1,"","output_stride"],[48,5,1,"","upsampling"],[48,5,1,"","version"],[48,5,1,"","weights"]],"sleap.nn.config.model.SingleInstanceConfmapsHeadConfig":[[48,5,1,"","loss_weight"],[48,5,1,"","offset_refinement"],[48,5,1,"","output_stride"],[48,5,1,"","part_names"],[48,5,1,"","sigma"]],"sleap.nn.config.model.UNetConfig":[[48,5,1,"","filters"],[48,5,1,"","filters_rate"],[48,5,1,"","max_stride"],[48,5,1,"","middle_block"],[48,5,1,"","output_stride"],[48,5,1,"","stacks"],[48,5,1,"","stem_stride"],[48,5,1,"","up_interpolate"]],"sleap.nn.config.model.UpsamplingConfig":[[48,5,1,"","block_stride"],[48,5,1,"","conv_batchnorm"],[48,5,1,"","filters"],[48,5,1,"","filters_rate"],[48,5,1,"","method"],[48,5,1,"","refine_convs"],[48,5,1,"","skip_connections"],[48,5,1,"","transposed_conv_kernel_size"]],"sleap.nn.config.optimization":[[49,2,1,"","AugmentationConfig"],[49,2,1,"","EarlyStoppingConfig"],[49,2,1,"","HardKeypointMiningConfig"],[49,2,1,"","LearningRateScheduleConfig"],[49,2,1,"","OptimizationConfig"]],"sleap.nn.config.optimization.AugmentationConfig":[[49,5,1,"","brightness"],[49,5,1,"","brightness_max_val"],[49,5,1,"","brightness_min_val"],[49,5,1,"","contrast"],[49,5,1,"","contrast_max_gamma"],[49,5,1,"","contrast_min_gamma"],[49,5,1,"","flip_horizontal"],[49,5,1,"","gaussian_noise"],[49,5,1,"","gaussian_noise_mean"],[49,5,1,"","gaussian_noise_stddev"],[49,5,1,"","random_crop"],[49,5,1,"","random_crop_height"],[49,5,1,"","random_crop_width"],[49,5,1,"","random_flip"],[49,5,1,"","rotate"],[49,5,1,"","rotation_max_angle"],[49,5,1,"","rotation_min_angle"],[49,5,1,"","scale"],[49,5,1,"","scale_max"],[49,5,1,"","scale_min"],[49,5,1,"","translate"],[49,5,1,"","translate_max"],[49,5,1,"","translate_min"],[49,5,1,"","uniform_noise"],[49,5,1,"","uniform_noise_max_val"],[49,5,1,"","uniform_noise_min_val"]],"sleap.nn.config.optimization.EarlyStoppingConfig":[[49,5,1,"","plateau_min_delta"],[49,5,1,"","plateau_patience"],[49,5,1,"","stop_training_on_plateau"]],"sleap.nn.config.optimization.HardKeypointMiningConfig":[[49,5,1,"","hard_to_easy_ratio"],[49,5,1,"","loss_scale"],[49,5,1,"","max_hard_keypoints"],[49,5,1,"","min_hard_keypoints"],[49,5,1,"","online_mining"]],"sleap.nn.config.optimization.LearningRateScheduleConfig":[[49,5,1,"","min_learning_rate"],[49,5,1,"","plateau_cooldown"],[49,5,1,"","plateau_min_delta"],[49,5,1,"","plateau_patience"],[49,5,1,"","reduce_on_plateau"],[49,5,1,"","reduction_factor"]],"sleap.nn.config.optimization.OptimizationConfig":[[49,5,1,"","augmentation_config"],[49,5,1,"","batch_size"],[49,5,1,"","batches_per_epoch"],[49,5,1,"","early_stopping"],[49,5,1,"","epochs"],[49,5,1,"","hard_keypoint_mining"],[49,5,1,"","initial_learning_rate"],[49,5,1,"","learning_rate_schedule"],[49,5,1,"","min_batches_per_epoch"],[49,5,1,"","min_val_batches_per_epoch"],[49,5,1,"","online_shuffling"],[49,5,1,"","optimizer"],[49,5,1,"","prefetch"],[49,5,1,"","preload_data"],[49,5,1,"","shuffle_buffer_size"],[49,5,1,"","val_batches_per_epoch"]],"sleap.nn.config.outputs":[[50,2,1,"","CheckpointingConfig"],[50,2,1,"","OutputsConfig"],[50,2,1,"","TensorBoardConfig"],[50,2,1,"","ZMQConfig"]],"sleap.nn.config.outputs.CheckpointingConfig":[[50,5,1,"","best_model"],[50,5,1,"","every_epoch"],[50,5,1,"","final_model"],[50,5,1,"","initial_model"],[50,5,1,"","latest_model"]],"sleap.nn.config.outputs.OutputsConfig":[[50,5,1,"","checkpointing"],[50,5,1,"","keep_viz_images"],[50,5,1,"","log_to_csv"],[50,5,1,"","run_name"],[50,5,1,"","run_name_prefix"],[50,5,1,"","run_name_suffix"],[50,3,1,"","run_path"],[50,5,1,"","runs_folder"],[50,5,1,"","save_outputs"],[50,5,1,"","save_visualizations"],[50,5,1,"","tags"],[50,5,1,"","tensorboard"],[50,5,1,"","zip_outputs"],[50,5,1,"","zmq"]],"sleap.nn.config.outputs.TensorBoardConfig":[[50,5,1,"","architecture_graph"],[50,5,1,"","loss_frequency"],[50,5,1,"","profile_graph"],[50,5,1,"","visualizations"],[50,5,1,"","write_logs"]],"sleap.nn.config.outputs.ZMQConfig":[[50,5,1,"","controller_address"],[50,5,1,"","controller_polling_timeout"],[50,5,1,"","publish_address"],[50,5,1,"","publish_updates"],[50,5,1,"","subscribe_to_controller"]],"sleap.nn.config.training_job":[[51,2,1,"","TrainingJobConfig"],[51,1,1,"","load_config"]],"sleap.nn.config.training_job.TrainingJobConfig":[[51,5,1,"","data"],[51,5,1,"","description"],[51,5,1,"","filename"],[51,4,1,"","from_json"],[51,4,1,"","from_json_dicts"],[51,4,1,"","load_json"],[51,5,1,"","model"],[51,5,1,"","name"],[51,5,1,"","optimization"],[51,5,1,"","outputs"],[51,4,1,"","save_json"],[51,5,1,"","sleap_version"],[51,4,1,"","to_json"]],"sleap.nn.config.utils":[[52,1,1,"","oneof"]],"sleap.nn.data":[[53,0,0,"-","augmentation"],[54,0,0,"-","confidence_maps"],[55,0,0,"-","dataset_ops"],[56,0,0,"-","edge_maps"],[57,0,0,"-","general"],[58,0,0,"-","grouping"],[59,0,0,"-","identity"],[60,0,0,"-","inference"],[61,0,0,"-","instance_centroids"],[62,0,0,"-","instance_cropping"],[63,0,0,"-","normalization"],[64,0,0,"-","offset_regression"],[65,0,0,"-","pipelines"],[66,0,0,"-","providers"],[67,0,0,"-","resizing"],[68,0,0,"-","training"],[69,0,0,"-","utils"]],"sleap.nn.data.augmentation":[[53,2,1,"","AlbumentationsAugmenter"],[53,2,1,"","RandomCropper"],[53,2,1,"","RandomFlipper"],[53,1,1,"","flip_instances_lr"],[53,1,1,"","flip_instances_ud"]],"sleap.nn.data.augmentation.AlbumentationsAugmenter":[[53,5,1,"","augmenter"],[53,4,1,"","from_config"],[53,5,1,"","image_key"],[53,3,1,"","input_keys"],[53,5,1,"","instances_key"],[53,3,1,"","output_keys"],[53,4,1,"","transform_dataset"]],"sleap.nn.data.augmentation.RandomCropper":[[53,5,1,"","crop_height"],[53,5,1,"","crop_width"],[53,4,1,"","transform_dataset"]],"sleap.nn.data.augmentation.RandomFlipper":[[53,4,1,"","from_skeleton"],[53,5,1,"","horizontal"],[53,5,1,"","probability"],[53,5,1,"","symmetric_inds"],[53,4,1,"","transform_dataset"]],"sleap.nn.data.confidence_maps":[[54,2,1,"","InstanceConfidenceMapGenerator"],[54,2,1,"","MultiConfidenceMapGenerator"],[54,2,1,"","SingleInstanceConfidenceMapGenerator"],[54,1,1,"","make_confmaps"],[54,1,1,"","make_multi_confmaps"],[54,1,1,"","make_multi_confmaps_with_offsets"]],"sleap.nn.data.confidence_maps.InstanceConfidenceMapGenerator":[[54,5,1,"","all_instances"],[54,5,1,"","flatten_offsets"],[54,3,1,"","input_keys"],[54,5,1,"","offsets_threshold"],[54,3,1,"","output_keys"],[54,5,1,"","output_stride"],[54,5,1,"","sigma"],[54,4,1,"","transform_dataset"],[54,5,1,"","with_offsets"]],"sleap.nn.data.confidence_maps.MultiConfidenceMapGenerator":[[54,5,1,"","centroids"],[54,5,1,"","flatten_offsets"],[54,3,1,"","input_keys"],[54,5,1,"","offsets_threshold"],[54,3,1,"","output_keys"],[54,5,1,"","output_stride"],[54,5,1,"","sigma"],[54,4,1,"","transform_dataset"],[54,5,1,"","with_offsets"]],"sleap.nn.data.confidence_maps.SingleInstanceConfidenceMapGenerator":[[54,5,1,"","flatten_offsets"],[54,3,1,"","input_keys"],[54,5,1,"","offsets_threshold"],[54,3,1,"","output_keys"],[54,5,1,"","output_stride"],[54,5,1,"","sigma"],[54,4,1,"","transform_dataset"],[54,5,1,"","with_offsets"]],"sleap.nn.data.dataset_ops":[[55,2,1,"","Batcher"],[55,2,1,"","LambdaFilter"],[55,2,1,"","Prefetcher"],[55,2,1,"","Preloader"],[55,2,1,"","Repeater"],[55,2,1,"","Shuffler"],[55,2,1,"","Unbatcher"]],"sleap.nn.data.dataset_ops.Batcher":[[55,5,1,"","batch_size"],[55,5,1,"","drop_remainder"],[55,3,1,"","input_keys"],[55,3,1,"","output_keys"],[55,4,1,"","transform_dataset"],[55,5,1,"","unrag"]],"sleap.nn.data.dataset_ops.LambdaFilter":[[55,5,1,"","filter_fn"],[55,3,1,"","input_keys"],[55,3,1,"","output_keys"],[55,4,1,"","transform_dataset"]],"sleap.nn.data.dataset_ops.Prefetcher":[[55,5,1,"","buffer_size"],[55,3,1,"","input_keys"],[55,3,1,"","output_keys"],[55,5,1,"","prefetch"],[55,4,1,"","transform_dataset"]],"sleap.nn.data.dataset_ops.Preloader":[[55,5,1,"","examples"],[55,3,1,"","input_keys"],[55,3,1,"","output_keys"],[55,4,1,"","transform_dataset"]],"sleap.nn.data.dataset_ops.Repeater":[[55,5,1,"","epochs"],[55,3,1,"","input_keys"],[55,3,1,"","output_keys"],[55,5,1,"","repeat"],[55,4,1,"","transform_dataset"]],"sleap.nn.data.dataset_ops.Shuffler":[[55,5,1,"","buffer_size"],[55,3,1,"","input_keys"],[55,3,1,"","output_keys"],[55,5,1,"","reshuffle_each_iteration"],[55,5,1,"","shuffle"],[55,4,1,"","transform_dataset"]],"sleap.nn.data.dataset_ops.Unbatcher":[[55,3,1,"","input_keys"],[55,3,1,"","output_keys"],[55,4,1,"","transform_dataset"]],"sleap.nn.data.edge_maps":[[56,2,1,"","PartAffinityFieldsGenerator"],[56,1,1,"","distance_to_edge"],[56,1,1,"","get_edge_points"],[56,1,1,"","make_edge_maps"],[56,1,1,"","make_multi_pafs"],[56,1,1,"","make_pafs"]],"sleap.nn.data.edge_maps.PartAffinityFieldsGenerator":[[56,5,1,"","flatten_channels"],[56,3,1,"","input_keys"],[56,3,1,"","output_keys"],[56,5,1,"","output_stride"],[56,5,1,"","sigma"],[56,5,1,"","skeletons"],[56,4,1,"","transform_dataset"]],"sleap.nn.data.general":[[57,2,1,"","KeyDeviceMover"],[57,2,1,"","KeyFilter"],[57,2,1,"","KeyRenamer"],[57,2,1,"","LambdaMap"]],"sleap.nn.data.general.KeyDeviceMover":[[57,3,1,"","input_keys"],[57,3,1,"","output_keys"],[57,4,1,"","transform_dataset"]],"sleap.nn.data.general.KeyFilter":[[57,3,1,"","input_keys"],[57,3,1,"","output_keys"],[57,4,1,"","transform_dataset"]],"sleap.nn.data.general.KeyRenamer":[[57,3,1,"","input_keys"],[57,3,1,"","output_keys"],[57,4,1,"","transform_dataset"]],"sleap.nn.data.general.LambdaMap":[[57,5,1,"","func"],[57,5,1,"","input_key_names"],[57,3,1,"","input_keys"],[57,5,1,"","output_key_names"],[57,3,1,"","output_keys"],[57,4,1,"","transform_dataset"]],"sleap.nn.data.grouping":[[58,1,1,"","group_examples"],[58,1,1,"","group_examples_iter"]],"sleap.nn.data.identity":[[59,2,1,"","ClassMapGenerator"],[59,2,1,"","ClassVectorGenerator"],[59,1,1,"","make_class_maps"],[59,1,1,"","make_class_vectors"]],"sleap.nn.data.identity.ClassMapGenerator":[[59,5,1,"","centroids"],[59,5,1,"","class_map_threshold"],[59,3,1,"","input_keys"],[59,3,1,"","output_keys"],[59,5,1,"","output_stride"],[59,5,1,"","sigma"],[59,4,1,"","transform_dataset"]],"sleap.nn.data.identity.ClassVectorGenerator":[[59,3,1,"","input_keys"],[59,3,1,"","output_keys"],[59,4,1,"","transform_dataset"]],"sleap.nn.data.inference":[[60,2,1,"","GlobalPeakFinder"],[60,2,1,"","KerasModelPredictor"],[60,2,1,"","LocalPeakFinder"],[60,2,1,"","MockGlobalPeakFinder"],[60,2,1,"","PredictedCenterInstanceNormalizer"]],"sleap.nn.data.inference.PredictedCenterInstanceNormalizer":[[60,3,1,"","input_keys"],[60,3,1,"","output_keys"],[60,4,1,"","transform_dataset"]],"sleap.nn.data.instance_centroids":[[61,2,1,"","InstanceCentroidFinder"],[61,1,1,"","find_points_bbox_midpoint"],[61,1,1,"","get_instance_anchors"]],"sleap.nn.data.instance_centroids.InstanceCentroidFinder":[[61,5,1,"","anchor_part_names"],[61,5,1,"","center_on_anchor_part"],[61,4,1,"","from_config"],[61,3,1,"","input_keys"],[61,5,1,"","instances_key"],[61,3,1,"","output_keys"],[61,5,1,"","skeletons"],[61,4,1,"","transform_dataset"]],"sleap.nn.data.instance_cropping":[[62,2,1,"","InstanceCropper"],[62,1,1,"","crop_bboxes"],[62,1,1,"","find_instance_crop_size"],[62,1,1,"","make_centered_bboxes"],[62,1,1,"","normalize_bboxes"],[62,1,1,"","unnormalize_bboxes"]],"sleap.nn.data.instance_cropping.InstanceCropper":[[62,5,1,"","centroids_key"],[62,5,1,"","crop_height"],[62,5,1,"","crop_width"],[62,4,1,"","from_config"],[62,5,1,"","image_key"],[62,3,1,"","input_keys"],[62,5,1,"","instances_key"],[62,5,1,"","keep_full_image"],[62,5,1,"","mock_centroid_confidence"],[62,3,1,"","output_keys"],[62,4,1,"","transform_dataset"],[62,5,1,"","unbatch"]],"sleap.nn.data.normalization":[[63,2,1,"","Normalizer"],[63,1,1,"","convert_rgb_to_bgr"],[63,1,1,"","ensure_float"],[63,1,1,"","ensure_grayscale"],[63,1,1,"","ensure_int"],[63,1,1,"","ensure_min_image_rank"],[63,1,1,"","ensure_rgb"],[63,1,1,"","scale_image_range"],[63,1,1,"","scale_to_imagenet_caffe_mode"],[63,1,1,"","scale_to_imagenet_tf_mode"],[63,1,1,"","scale_to_imagenet_torch_mode"]],"sleap.nn.data.normalization.Normalizer":[[63,5,1,"","ensure_float"],[63,5,1,"","ensure_grayscale"],[63,5,1,"","ensure_rgb"],[63,4,1,"","from_config"],[63,5,1,"","image_key"],[63,5,1,"","imagenet_mode"],[63,3,1,"","input_keys"],[63,3,1,"","output_keys"],[63,4,1,"","transform_dataset"]],"sleap.nn.data.offset_regression":[[64,1,1,"","make_offsets"],[64,1,1,"","mask_offsets"]],"sleap.nn.data.pipelines":[[65,2,1,"","BottomUpMultiClassPipeline"],[65,2,1,"","BottomUpPipeline"],[65,2,1,"","CentroidConfmapsPipeline"],[65,2,1,"","Pipeline"],[65,2,1,"","SingleInstanceConfmapsPipeline"],[65,2,1,"","TopDownMultiClassPipeline"],[65,2,1,"","TopdownConfmapsPipeline"]],"sleap.nn.data.pipelines.BottomUpMultiClassPipeline":[[65,5,1,"","class_maps_head"],[65,5,1,"","confmaps_head"],[65,5,1,"","data_config"],[65,4,1,"","make_base_pipeline"],[65,4,1,"","make_training_pipeline"],[65,4,1,"","make_viz_pipeline"],[65,5,1,"","offsets_head"],[65,5,1,"","optimization_config"]],"sleap.nn.data.pipelines.BottomUpPipeline":[[65,5,1,"","confmaps_head"],[65,5,1,"","data_config"],[65,4,1,"","make_base_pipeline"],[65,4,1,"","make_training_pipeline"],[65,4,1,"","make_viz_pipeline"],[65,5,1,"","offsets_head"],[65,5,1,"","optimization_config"],[65,5,1,"","pafs_head"]],"sleap.nn.data.pipelines.CentroidConfmapsPipeline":[[65,5,1,"","centroid_confmap_head"],[65,5,1,"","data_config"],[65,4,1,"","make_base_pipeline"],[65,4,1,"","make_training_pipeline"],[65,4,1,"","make_viz_pipeline"],[65,5,1,"","offsets_head"],[65,5,1,"","optimization_config"]],"sleap.nn.data.pipelines.Pipeline":[[65,4,1,"","append"],[65,4,1,"","describe"],[65,4,1,"","from_blocks"],[65,4,1,"","from_pipelines"],[65,4,1,"","make_dataset"],[65,3,1,"","output_keys"],[65,4,1,"","peek"],[65,5,1,"","providers"],[65,4,1,"","run"],[65,5,1,"","transformers"],[65,4,1,"","validate_pipeline"]],"sleap.nn.data.pipelines.SingleInstanceConfmapsPipeline":[[65,5,1,"","data_config"],[65,4,1,"","make_base_pipeline"],[65,4,1,"","make_training_pipeline"],[65,4,1,"","make_viz_pipeline"],[65,5,1,"","offsets_head"],[65,5,1,"","optimization_config"],[65,5,1,"","single_instance_confmap_head"]],"sleap.nn.data.pipelines.TopDownMultiClassPipeline":[[65,5,1,"","class_vectors_head"],[65,5,1,"","confmaps_head"],[65,5,1,"","data_config"],[65,4,1,"","make_base_pipeline"],[65,4,1,"","make_training_pipeline"],[65,4,1,"","make_viz_pipeline"],[65,5,1,"","offsets_head"],[65,5,1,"","optimization_config"]],"sleap.nn.data.pipelines.TopdownConfmapsPipeline":[[65,5,1,"","data_config"],[65,5,1,"","instance_confmap_head"],[65,4,1,"","make_base_pipeline"],[65,4,1,"","make_training_pipeline"],[65,4,1,"","make_viz_pipeline"],[65,5,1,"","offsets_head"],[65,5,1,"","optimization_config"]],"sleap.nn.data.providers":[[66,2,1,"","LabelsReader"],[66,2,1,"","VideoReader"]],"sleap.nn.data.providers.LabelsReader":[[66,5,1,"","example_indices"],[66,4,1,"","from_filename"],[66,4,1,"","from_unlabeled_suggestions"],[66,4,1,"","from_user_instances"],[66,4,1,"","from_user_labeled_frames"],[66,3,1,"","is_from_multi_size_videos"],[66,5,1,"","labels"],[66,4,1,"","make_dataset"],[66,3,1,"","max_height_and_width"],[66,3,1,"","output_keys"],[66,3,1,"","tracks"],[66,5,1,"","user_instances_only"],[66,3,1,"","videos"],[66,5,1,"","with_track_only"]],"sleap.nn.data.providers.VideoReader":[[66,5,1,"","example_indices"],[66,4,1,"","from_filepath"],[66,4,1,"","make_dataset"],[66,3,1,"","max_height_and_width"],[66,3,1,"","output_keys"],[66,5,1,"","video"],[66,5,1,"","video_ind"],[66,3,1,"","videos"]],"sleap.nn.data.resizing":[[67,2,1,"","PointsRescaler"],[67,2,1,"","Resizer"],[67,2,1,"","SizeMatcher"],[67,1,1,"","find_padding_for_stride"],[67,1,1,"","pad_to_stride"],[67,1,1,"","resize_image"]],"sleap.nn.data.resizing.PointsRescaler":[[67,3,1,"","input_keys"],[67,3,1,"","output_keys"],[67,4,1,"","transform_dataset"]],"sleap.nn.data.resizing.Resizer":[[67,4,1,"","from_config"],[67,5,1,"","full_image_key"],[67,5,1,"","image_key"],[67,3,1,"","input_keys"],[67,5,1,"","keep_full_image"],[67,3,1,"","output_keys"],[67,5,1,"","pad_to_stride"],[67,5,1,"","points_key"],[67,5,1,"","scale"],[67,5,1,"","scale_key"],[67,4,1,"","transform_dataset"]],"sleap.nn.data.resizing.SizeMatcher":[[67,5,1,"","center_pad"],[67,4,1,"","from_config"],[67,5,1,"","full_image_key"],[67,5,1,"","image_key"],[67,3,1,"","input_keys"],[67,5,1,"","keep_full_image"],[67,5,1,"","max_image_height"],[67,5,1,"","max_image_width"],[67,3,1,"","output_keys"],[67,5,1,"","points_key"],[67,5,1,"","scale_key"],[67,4,1,"","transform_dataset"]],"sleap.nn.data.training":[[68,2,1,"","KeyMapper"],[68,1,1,"","split_labels"],[68,1,1,"","split_labels_reader"],[68,1,1,"","split_labels_train_val"]],"sleap.nn.data.training.KeyMapper":[[68,3,1,"","input_keys"],[68,5,1,"","key_maps"],[68,3,1,"","output_keys"],[68,4,1,"","transform_dataset"]],"sleap.nn.data.utils":[[69,1,1,"","describe_tensors"],[69,1,1,"","ensure_list"],[69,1,1,"","expand_to_rank"],[69,1,1,"","gaussian_pdf"],[69,1,1,"","make_grid_vectors"],[69,1,1,"","unrag_example"],[69,1,1,"","unrag_tensor"]],"sleap.nn.evals":[[70,1,1,"","compute_dist_metrics"],[70,1,1,"","compute_dists"],[70,1,1,"","compute_generalized_voc_metrics"],[70,1,1,"","compute_instance_area"],[70,1,1,"","compute_oks"],[70,1,1,"","compute_pck_metrics"],[70,1,1,"","compute_visibility_conf"],[70,1,1,"","evaluate"],[70,1,1,"","evaluate_model"],[70,1,1,"","find_frame_pairs"],[70,1,1,"","load_metrics"],[70,1,1,"","match_frame_pairs"],[70,1,1,"","match_instances"],[70,1,1,"","replace_path"]],"sleap.nn.heads":[[71,2,1,"","CenteredInstanceConfmapsHead"],[71,2,1,"","CentroidConfmapsHead"],[71,2,1,"","ClassMapsHead"],[71,2,1,"","ClassVectorsHead"],[71,2,1,"","Head"],[71,2,1,"","MultiInstanceConfmapsHead"],[71,2,1,"","OffsetRefinementHead"],[71,2,1,"","PartAffinityFieldsHead"],[71,2,1,"","SingleInstanceConfmapsHead"]],"sleap.nn.heads.CenteredInstanceConfmapsHead":[[71,5,1,"","anchor_part"],[71,3,1,"","channels"],[71,5,1,"","config"],[71,4,1,"","from_config"],[71,5,1,"","loss_weight"],[71,5,1,"","output_stride"],[71,5,1,"id0","part_names"],[71,5,1,"","sigma"]],"sleap.nn.heads.CentroidConfmapsHead":[[71,5,1,"","anchor_part"],[71,3,1,"","channels"],[71,5,1,"","config"],[71,4,1,"","from_config"],[71,5,1,"","loss_weight"],[71,5,1,"","output_stride"],[71,5,1,"","sigma"]],"sleap.nn.heads.ClassMapsHead":[[71,3,1,"","activation"],[71,3,1,"","channels"],[71,5,1,"id1","classes"],[71,5,1,"","config"],[71,4,1,"","from_config"],[71,5,1,"","loss_weight"],[71,5,1,"","output_stride"],[71,5,1,"","sigma"]],"sleap.nn.heads.ClassVectorsHead":[[71,3,1,"","activation"],[71,3,1,"","channels"],[71,5,1,"id2","classes"],[71,5,1,"","config"],[71,4,1,"","from_config"],[71,3,1,"","loss_function"],[71,5,1,"","loss_weight"],[71,4,1,"","make_head"],[71,5,1,"","num_fc_layers"],[71,5,1,"","num_fc_units"],[71,5,1,"","output_stride"]],"sleap.nn.heads.Head":[[71,3,1,"","activation"],[71,3,1,"","channels"],[71,3,1,"","loss_function"],[71,4,1,"","make_head"]],"sleap.nn.heads.MultiInstanceConfmapsHead":[[71,3,1,"","channels"],[71,5,1,"","config"],[71,4,1,"","from_config"],[71,5,1,"","loss_weight"],[71,5,1,"","output_stride"],[71,5,1,"id3","part_names"],[71,5,1,"","sigma"]],"sleap.nn.heads.OffsetRefinementHead":[[71,3,1,"","channels"],[71,5,1,"","config"],[71,4,1,"","from_config"],[71,5,1,"id6","loss_weight"],[71,5,1,"","output_stride"],[71,5,1,"id4","part_names"],[71,5,1,"id5","sigma_threshold"]],"sleap.nn.heads.PartAffinityFieldsHead":[[71,3,1,"","channels"],[71,5,1,"","config"],[71,5,1,"id7","edges"],[71,4,1,"","from_config"],[71,5,1,"","loss_weight"],[71,5,1,"","output_stride"],[71,5,1,"","sigma"]],"sleap.nn.heads.SingleInstanceConfmapsHead":[[71,3,1,"","channels"],[71,5,1,"","config"],[71,4,1,"","from_config"],[71,5,1,"","loss_weight"],[71,5,1,"","output_stride"],[71,5,1,"id8","part_names"],[71,5,1,"","sigma"]],"sleap.nn.identity":[[72,1,1,"","classify_peaks_from_maps"],[72,1,1,"","classify_peaks_from_vectors"],[72,1,1,"","group_class_peaks"]],"sleap.nn.inference":[[73,2,1,"","BottomUpInferenceLayer"],[73,2,1,"","BottomUpInferenceModel"],[73,2,1,"","BottomUpMultiClassInferenceLayer"],[73,2,1,"","BottomUpMultiClassInferenceModel"],[73,2,1,"","BottomUpMultiClassPredictor"],[73,2,1,"","BottomUpPredictor"],[73,2,1,"","CentroidCrop"],[73,2,1,"","CentroidCropGroundTruth"],[73,2,1,"","CentroidInferenceModel"],[73,2,1,"","FindInstancePeaks"],[73,2,1,"","FindInstancePeaksGroundTruth"],[73,2,1,"","InferenceLayer"],[73,2,1,"","InferenceModel"],[73,2,1,"","MoveNetInferenceLayer"],[73,2,1,"","MoveNetInferenceModel"],[73,2,1,"","MoveNetPredictor"],[73,2,1,"","Predictor"],[73,2,1,"","RateColumn"],[73,2,1,"","SingleInstanceInferenceLayer"],[73,2,1,"","SingleInstanceInferenceModel"],[73,2,1,"","SingleInstancePredictor"],[73,2,1,"","TopDownInferenceModel"],[73,2,1,"","TopDownMultiClassFindPeaks"],[73,2,1,"","TopDownMultiClassInferenceModel"],[73,2,1,"","TopDownMultiClassPredictor"],[73,2,1,"","TopDownPredictor"],[73,2,1,"","VisualPredictor"],[73,1,1,"","export_cli"],[73,1,1,"","export_model"],[73,1,1,"","find_head"],[73,1,1,"","get_keras_model_path"],[73,1,1,"","get_model_output_stride"],[73,1,1,"","load_model"],[73,1,1,"","main"],[73,1,1,"","make_model_movenet"]],"sleap.nn.inference.BottomUpInferenceLayer":[[73,4,1,"","call"],[73,5,1,"","cm_output_stride"],[73,5,1,"","confmaps_ind"],[73,4,1,"","find_peaks"],[73,4,1,"","forward_pass"],[73,5,1,"","input_scale"],[73,5,1,"","integral_patch_size"],[73,5,1,"","keras_model"],[73,5,1,"","offsets_ind"],[73,5,1,"","paf_output_stride"],[73,5,1,"","paf_scorer"],[73,5,1,"","pafs_ind"],[73,5,1,"","peak_threshold"],[73,5,1,"","refinement"],[73,5,1,"","return_confmaps"],[73,5,1,"","return_paf_graph"],[73,5,1,"","return_pafs"]],"sleap.nn.inference.BottomUpInferenceModel":[[73,5,1,"","bottomup_layer"],[73,4,1,"","call"]],"sleap.nn.inference.BottomUpMultiClassInferenceLayer":[[73,4,1,"","call"],[73,5,1,"","class_maps_ind"],[73,5,1,"","class_maps_output_stride"],[73,5,1,"","cm_output_stride"],[73,5,1,"","confmaps_ind"],[73,4,1,"","find_peaks"],[73,4,1,"","forward_pass"],[73,5,1,"","input_scale"],[73,5,1,"","integral_patch_size"],[73,5,1,"","keras_model"],[73,5,1,"","offsets_ind"],[73,5,1,"","peak_threshold"],[73,5,1,"","refinement"],[73,5,1,"","return_class_maps"],[73,5,1,"","return_confmaps"]],"sleap.nn.inference.BottomUpMultiClassInferenceModel":[[73,4,1,"","call"],[73,5,1,"","inference_layer"]],"sleap.nn.inference.BottomUpMultiClassPredictor":[[73,5,1,"","batch_size"],[73,5,1,"","config"],[73,4,1,"","from_trained_models"],[73,5,1,"","inference_model"],[73,5,1,"","integral_patch_size"],[73,5,1,"","integral_refinement"],[73,3,1,"","is_grayscale"],[73,5,1,"","model"],[73,5,1,"","peak_threshold"],[73,5,1,"","pipeline"],[73,5,1,"","tracks"]],"sleap.nn.inference.BottomUpPredictor":[[73,5,1,"","batch_size"],[73,5,1,"","bottomup_config"],[73,5,1,"","bottomup_model"],[73,5,1,"","dist_penalty_weight"],[73,4,1,"","from_trained_models"],[73,5,1,"","inference_model"],[73,5,1,"","integral_patch_size"],[73,5,1,"","integral_refinement"],[73,3,1,"","is_grayscale"],[73,5,1,"","max_edge_length_ratio"],[73,5,1,"","max_instances"],[73,5,1,"","min_line_scores"],[73,5,1,"","paf_line_points"],[73,5,1,"","peak_threshold"],[73,5,1,"","pipeline"],[73,5,1,"","tracker"]],"sleap.nn.inference.CentroidCrop":[[73,4,1,"","call"],[73,5,1,"","confmaps_ind"],[73,5,1,"","crop_size"],[73,5,1,"","input_scale"],[73,5,1,"","integral_patch_size"],[73,5,1,"","keras_model"],[73,5,1,"","max_instances"],[73,5,1,"","offsets_ind"],[73,5,1,"","output_stride"],[73,5,1,"","pad_to_stride"],[73,5,1,"","peak_threshold"],[73,5,1,"","refinement"],[73,5,1,"","return_confmaps"],[73,5,1,"","return_crops"]],"sleap.nn.inference.CentroidCropGroundTruth":[[73,4,1,"","call"],[73,5,1,"","crop_size"]],"sleap.nn.inference.CentroidInferenceModel":[[73,4,1,"","call"],[73,5,1,"","centroid_crop"]],"sleap.nn.inference.FindInstancePeaks":[[73,4,1,"","call"],[73,5,1,"","confmaps_ind"],[73,5,1,"","input_scale"],[73,5,1,"","integral_patch_size"],[73,5,1,"","keras_model"],[73,5,1,"","offsets_ind"],[73,5,1,"","output_stride"],[73,5,1,"","peak_threshold"],[73,5,1,"","refinement"],[73,5,1,"","return_confmaps"]],"sleap.nn.inference.FindInstancePeaksGroundTruth":[[73,4,1,"","call"]],"sleap.nn.inference.InferenceLayer":[[73,4,1,"","call"],[73,5,1,"","ensure_float"],[73,5,1,"","ensure_grayscale"],[73,5,1,"","input_scale"],[73,5,1,"","keras_model"],[73,5,1,"","pad_to_stride"],[73,4,1,"","preprocess"]],"sleap.nn.inference.InferenceModel":[[73,4,1,"","export_model"],[73,4,1,"","predict"],[73,4,1,"","predict_on_batch"]],"sleap.nn.inference.MoveNetInferenceLayer":[[73,4,1,"","call"],[73,5,1,"","ensure_float"],[73,5,1,"","ensure_grayscale"],[73,5,1,"","input_scale"],[73,5,1,"","keras_model"],[73,5,1,"","model_name"],[73,5,1,"","pad_to_stride"]],"sleap.nn.inference.MoveNetInferenceModel":[[73,4,1,"","call"],[73,5,1,"","inference_layer"]],"sleap.nn.inference.MoveNetPredictor":[[73,5,1,"","batch_size"],[73,4,1,"","from_trained_models"],[73,5,1,"","inference_model"],[73,3,1,"","is_grayscale"],[73,5,1,"","model_name"],[73,5,1,"","peak_threshold"],[73,5,1,"","pipeline"]],"sleap.nn.inference.Predictor":[[73,4,1,"","export_model"],[73,4,1,"","from_model_paths"],[73,3,1,"","is_grayscale"],[73,4,1,"","make_pipeline"],[73,4,1,"","predict"],[73,3,1,"","report_period"]],"sleap.nn.inference.RateColumn":[[73,4,1,"","render"]],"sleap.nn.inference.SingleInstanceInferenceLayer":[[73,4,1,"","call"],[73,5,1,"","confmaps_ind"],[73,5,1,"","input_scale"],[73,5,1,"","integral_patch_size"],[73,5,1,"","keras_model"],[73,5,1,"","offsets_ind"],[73,5,1,"","output_stride"],[73,5,1,"","pad_to_stride"],[73,5,1,"","peak_threshold"],[73,5,1,"","refinement"],[73,5,1,"","return_confmaps"]],"sleap.nn.inference.SingleInstanceInferenceModel":[[73,4,1,"","call"],[73,5,1,"","single_instance_layer"]],"sleap.nn.inference.SingleInstancePredictor":[[73,5,1,"","batch_size"],[73,5,1,"","confmap_config"],[73,5,1,"","confmap_model"],[73,4,1,"","export_model"],[73,4,1,"","from_trained_models"],[73,5,1,"","inference_model"],[73,5,1,"","integral_patch_size"],[73,5,1,"","integral_refinement"],[73,3,1,"","is_grayscale"],[73,5,1,"","peak_threshold"],[73,5,1,"","pipeline"]],"sleap.nn.inference.TopDownInferenceModel":[[73,4,1,"","call"],[73,5,1,"","centroid_crop"],[73,5,1,"","instance_peaks"]],"sleap.nn.inference.TopDownMultiClassFindPeaks":[[73,4,1,"","call"],[73,5,1,"","class_vectors_ind"],[73,5,1,"","confmaps_ind"],[73,5,1,"","input_scale"],[73,5,1,"","integral_patch_size"],[73,5,1,"","keras_model"],[73,5,1,"","offsets_ind"],[73,5,1,"","optimal_grouping"],[73,5,1,"","output_stride"],[73,5,1,"","peak_threshold"],[73,5,1,"","refinement"],[73,5,1,"","return_class_vectors"],[73,5,1,"","return_confmaps"]],"sleap.nn.inference.TopDownMultiClassInferenceModel":[[73,4,1,"","call"],[73,5,1,"","centroid_crop"],[73,4,1,"","export_model"],[73,5,1,"","instance_peaks"]],"sleap.nn.inference.TopDownMultiClassPredictor":[[73,5,1,"","batch_size"],[73,5,1,"","centroid_config"],[73,5,1,"","centroid_model"],[73,5,1,"","confmap_config"],[73,5,1,"","confmap_model"],[73,4,1,"","export_model"],[73,4,1,"","from_trained_models"],[73,5,1,"","inference_model"],[73,5,1,"","integral_patch_size"],[73,5,1,"","integral_refinement"],[73,3,1,"","is_grayscale"],[73,4,1,"","make_pipeline"],[73,5,1,"","peak_threshold"],[73,5,1,"","pipeline"],[73,5,1,"","tracker"],[73,5,1,"","tracks"]],"sleap.nn.inference.TopDownPredictor":[[73,5,1,"","batch_size"],[73,5,1,"","centroid_config"],[73,5,1,"","centroid_model"],[73,5,1,"","confmap_config"],[73,5,1,"","confmap_model"],[73,4,1,"","export_model"],[73,4,1,"","from_trained_models"],[73,5,1,"","inference_model"],[73,5,1,"","integral_patch_size"],[73,5,1,"","integral_refinement"],[73,3,1,"","is_grayscale"],[73,4,1,"","make_pipeline"],[73,5,1,"","max_instances"],[73,5,1,"","peak_threshold"],[73,5,1,"","pipeline"],[73,5,1,"","tracker"]],"sleap.nn.inference.VisualPredictor":[[73,4,1,"","make_pipeline"],[73,4,1,"","predict"],[73,4,1,"","safely_generate"]],"sleap.nn.losses":[[74,2,1,"","OHKMLoss"],[74,2,1,"","PartLoss"],[74,1,1,"","compute_ohkm_loss"]],"sleap.nn.losses.OHKMLoss":[[74,4,1,"","call"],[74,4,1,"","from_config"],[74,5,1,"","hard_to_easy_ratio"],[74,5,1,"","loss_scale"],[74,5,1,"","max_hard_keypoints"],[74,5,1,"","min_hard_keypoints"]],"sleap.nn.losses.PartLoss":[[74,5,1,"","channel_ind"],[74,5,1,"","name"],[74,4,1,"","result"],[74,4,1,"","update_state"]],"sleap.nn.model":[[75,2,1,"","Model"]],"sleap.nn.model.Model":[[75,5,1,"","backbone"],[75,4,1,"","from_config"],[75,5,1,"","heads"],[75,5,1,"","keras_model"],[75,4,1,"","make_model"],[75,3,1,"","maximum_stride"]],"sleap.nn.paf_grouping":[[76,2,1,"","EdgeConnection"],[76,2,1,"","EdgeType"],[76,2,1,"","PAFScorer"],[76,2,1,"","PeakID"],[76,1,1,"","assign_connections_to_instances"],[76,1,1,"","compute_distance_penalty"],[76,1,1,"","get_connection_candidates"],[76,1,1,"","get_paf_lines"],[76,1,1,"","group_instances_batch"],[76,1,1,"","group_instances_sample"],[76,1,1,"","make_line_subs"],[76,1,1,"","make_predicted_instances"],[76,1,1,"","match_candidates_batch"],[76,1,1,"","match_candidates_sample"],[76,1,1,"","score_paf_lines"],[76,1,1,"","score_paf_lines_batch"],[76,1,1,"","toposort_edges"]],"sleap.nn.paf_grouping.EdgeConnection":[[76,5,1,"","dst_peak_ind"],[76,5,1,"","score"],[76,5,1,"","src_peak_ind"]],"sleap.nn.paf_grouping.EdgeType":[[76,5,1,"","dst_node_ind"],[76,5,1,"","src_node_ind"]],"sleap.nn.paf_grouping.PAFScorer":[[76,5,1,"","dist_penalty_weight"],[76,5,1,"","edge_inds"],[76,5,1,"","edge_types"],[76,5,1,"","edges"],[76,4,1,"","from_config"],[76,4,1,"","group_instances"],[76,4,1,"","match_candidates"],[76,5,1,"","max_edge_length_ratio"],[76,5,1,"","min_instance_peaks"],[76,5,1,"","min_line_scores"],[76,5,1,"","n_edges"],[76,5,1,"","n_nodes"],[76,5,1,"","n_points"],[76,5,1,"","pafs_stride"],[76,5,1,"","part_names"],[76,4,1,"","predict"],[76,4,1,"","score_paf_lines"],[76,5,1,"","sorted_edge_inds"]],"sleap.nn.paf_grouping.PeakID":[[76,5,1,"","node_ind"],[76,5,1,"","peak_ind"]],"sleap.nn.peak_finding":[[77,1,1,"","crop_bboxes"],[77,1,1,"","find_global_peaks"],[77,1,1,"","find_global_peaks_integral"],[77,1,1,"","find_global_peaks_rough"],[77,1,1,"","find_global_peaks_with_offsets"],[77,1,1,"","find_local_peaks"],[77,1,1,"","find_local_peaks_integral"],[77,1,1,"","find_local_peaks_rough"],[77,1,1,"","find_local_peaks_with_offsets"],[77,1,1,"","find_offsets_local_direction"],[77,1,1,"","integral_regression"],[77,1,1,"","make_gaussian_kernel"],[77,1,1,"","smooth_imgs"]],"sleap.nn.system":[[78,1,1,"","best_logical_device_name"],[78,1,1,"","disable_preallocation"],[78,1,1,"","enable_preallocation"],[78,1,1,"","get_all_gpus"],[78,1,1,"","get_available_gpus"],[78,1,1,"","get_current_gpu"],[78,1,1,"","get_gpu_memory"],[78,1,1,"","initialize_devices"],[78,1,1,"","is_gpu_system"],[78,1,1,"","is_initialized"],[78,1,1,"","summary"],[78,1,1,"","use_cpu_only"],[78,1,1,"","use_first_gpu"],[78,1,1,"","use_gpu"],[78,1,1,"","use_last_gpu"]],"sleap.nn.tracker":[[79,0,0,"-","components"],[80,0,0,"-","kalman"]],"sleap.nn.tracker.components":[[79,2,1,"","FrameMatches"],[79,2,1,"","Match"],[79,1,1,"","centroid_distance"],[79,1,1,"","connect_single_track_breaks"],[79,1,1,"","cull_frame_instances"],[79,1,1,"","cull_instances"],[79,1,1,"","first_choice_matching"],[79,1,1,"","greedy_matching"],[79,1,1,"","hungarian_matching"],[79,1,1,"","instance_iou"],[79,1,1,"","instance_similarity"],[79,1,1,"","nms_fast"]],"sleap.nn.tracker.components.FrameMatches":[[79,5,1,"","cost_matrix"],[79,4,1,"","from_candidate_instances"],[79,3,1,"","has_only_first_choice_matches"],[79,5,1,"","matches"],[79,5,1,"","unmatched_instances"]],"sleap.nn.tracker.kalman":[[80,1,1,"","get_track_instance_matches"],[80,1,1,"","match_dict_from_match_function"],[80,1,1,"","remove_second_bests_from_cost_matrix"]],"sleap.nn.tracking":[[81,2,1,"","BaseTracker"],[81,2,1,"","FlowCandidateMaker"],[81,2,1,"","FlowMaxTracker"],[81,2,1,"","FlowMaxTracksCandidateMaker"],[81,2,1,"","FlowTracker"],[81,2,1,"","KalmanTracker"],[81,2,1,"","SimpleCandidateMaker"],[81,2,1,"","SimpleMaxTracker"],[81,2,1,"","SimpleMaxTracksCandidateMaker"],[81,2,1,"","SimpleTracker"],[81,2,1,"","TrackCleaner"],[81,2,1,"","Tracker"],[81,1,1,"","run_tracker"]],"sleap.nn.tracking.FlowCandidateMaker":[[81,4,1,"","flow_shift_instances"],[81,4,1,"","get_shifted_instances"],[81,4,1,"","get_shifted_instances_from_earlier_time"],[81,5,1,"","img_scale"],[81,5,1,"","min_points"],[81,5,1,"","of_max_levels"],[81,5,1,"","of_window_size"],[81,4,1,"","prune_shifted_instances"],[81,5,1,"","save_shifted_instances"],[81,5,1,"","track_window"]],"sleap.nn.tracking.FlowMaxTracker":[[81,4,1,"","matching_function"],[81,4,1,"","similarity_function"]],"sleap.nn.tracking.FlowMaxTracksCandidateMaker":[[81,4,1,"","get_ref_instances"],[81,5,1,"","max_tracks"]],"sleap.nn.tracking.KalmanTracker":[[81,3,1,"","is_valid"],[81,4,1,"","make_tracker"],[81,4,1,"","track"]],"sleap.nn.tracking.TrackCleaner":[[81,5,1,"","instance_count"],[81,5,1,"","iou_threshold"]],"sleap.nn.tracking.Tracker":[[81,5,1,"","candidate_maker"],[81,5,1,"","cleaner"],[81,4,1,"","final_pass"],[81,5,1,"","matching_function"],[81,5,1,"","max_tracking"],[81,5,1,"","min_new_track_points"],[81,5,1,"","robust_best_instance"],[81,5,1,"","similarity_function"],[81,4,1,"","track"],[81,5,1,"","track_window"],[81,3,1,"","unique_tracks_in_queue"]],"sleap.nn.training":[[82,2,1,"","BottomUpModelTrainer"],[82,2,1,"","BottomUpMultiClassModelTrainer"],[82,2,1,"","CentroidConfmapsModelTrainer"],[82,2,1,"","DataReaders"],[82,2,1,"","SingleInstanceModelTrainer"],[82,2,1,"","TopDownMultiClassModelTrainer"],[82,2,1,"","TopdownConfmapsModelTrainer"],[82,2,1,"","Trainer"],[82,1,1,"","create_trainer_using_cli"],[82,1,1,"","get_timestamp"],[82,1,1,"","main"],[82,1,1,"","sanitize_scope_name"],[82,1,1,"","setup_checkpointing"],[82,1,1,"","setup_losses"],[82,1,1,"","setup_metrics"],[82,1,1,"","setup_new_run_folder"],[82,1,1,"","setup_optimization_callbacks"],[82,1,1,"","setup_optimizer"],[82,1,1,"","setup_output_callbacks"],[82,1,1,"","setup_tensorboard"],[82,1,1,"","setup_visualization"],[82,1,1,"","setup_zmq_callbacks"]],"sleap.nn.training.BottomUpModelTrainer":[[82,3,1,"","has_offsets"],[82,3,1,"","input_keys"],[82,3,1,"","output_keys"]],"sleap.nn.training.BottomUpMultiClassModelTrainer":[[82,3,1,"","has_offsets"],[82,3,1,"","input_keys"],[82,3,1,"","output_keys"]],"sleap.nn.training.CentroidConfmapsModelTrainer":[[82,3,1,"","has_offsets"],[82,3,1,"","input_keys"],[82,3,1,"","output_keys"]],"sleap.nn.training.DataReaders":[[82,4,1,"","from_config"],[82,4,1,"","from_labels"],[82,3,1,"","test_labels"],[82,5,1,"","test_labels_reader"],[82,3,1,"","training_labels"],[82,5,1,"","training_labels_reader"],[82,3,1,"","validation_labels"],[82,5,1,"","validation_labels_reader"]],"sleap.nn.training.SingleInstanceModelTrainer":[[82,3,1,"","has_offsets"],[82,3,1,"","input_keys"],[82,3,1,"","output_keys"]],"sleap.nn.training.TopDownMultiClassModelTrainer":[[82,3,1,"","has_offsets"],[82,3,1,"","input_keys"],[82,3,1,"","output_keys"]],"sleap.nn.training.TopdownConfmapsModelTrainer":[[82,3,1,"","has_offsets"],[82,3,1,"","input_keys"],[82,3,1,"","output_keys"]],"sleap.nn.training.Trainer":[[82,3,1,"","callbacks"],[82,4,1,"","cleanup"],[82,5,1,"","config"],[82,5,1,"","data_readers"],[82,4,1,"","evaluate"],[82,4,1,"","from_config"],[82,5,1,"","initial_config"],[82,3,1,"","input_keys"],[82,3,1,"","keras_model"],[82,5,1,"","model"],[82,5,1,"","optimization_callbacks"],[82,5,1,"","output_callbacks"],[82,3,1,"","output_keys"],[82,4,1,"","package"],[82,5,1,"","pipeline_builder"],[82,5,1,"","run_path"],[82,4,1,"","setup"],[82,4,1,"","train"],[82,5,1,"","training_pipeline"],[82,5,1,"","training_viz_pipeline"],[82,5,1,"","validation_pipeline"],[82,5,1,"","validation_viz_pipeline"],[82,5,1,"","visualization_callbacks"]],"sleap.nn.utils":[[83,1,1,"","compute_iou"],[83,1,1,"","group_array"],[83,1,1,"","match_points"],[83,1,1,"","reset_input_layer"],[83,1,1,"","tf_linear_sum_assignment"]],"sleap.nn.viz":[[84,1,1,"","generate_skeleton_preview_image"],[84,1,1,"","imgfig"],[84,1,1,"","plot_confmaps"],[84,1,1,"","plot_img"],[84,1,1,"","plot_instance"],[84,1,1,"","plot_instances"],[84,1,1,"","plot_pafs"],[84,1,1,"","plot_peaks"]],"sleap.skeleton":[[85,2,1,"","EdgeType"],[85,2,1,"","Node"],[85,2,1,"","Skeleton"]],"sleap.skeleton.Node":[[85,4,1,"","as_node"],[85,4,1,"","from_names"],[85,4,1,"","matches"],[85,5,1,"","name"],[85,5,1,"","weight"]],"sleap.skeleton.Skeleton":[[85,5,1,"","_is_template"],[85,5,1,"","_skeleton_idx"],[85,4,1,"","add_edge"],[85,4,1,"","add_node"],[85,4,1,"","add_nodes"],[85,4,1,"","add_symmetry"],[85,4,1,"","clear_edges"],[85,4,1,"","delete_edge"],[85,4,1,"","delete_node"],[85,4,1,"","delete_symmetry"],[85,5,1,"","description"],[85,3,1,"","edge_inds"],[85,3,1,"","edge_names"],[85,4,1,"","edge_to_index"],[85,3,1,"","edges"],[85,3,1,"","edges_full"],[85,4,1,"","find_neighbors"],[85,4,1,"","find_node"],[85,4,1,"","find_unique_nodes"],[85,4,1,"","from_dict"],[85,4,1,"","from_json"],[85,4,1,"","from_names_and_edge_inds"],[85,4,1,"","get_symmetry"],[85,4,1,"","get_symmetry_name"],[85,3,1,"","graph"],[85,3,1,"","graph_symmetry"],[85,4,1,"","has_edge"],[85,4,1,"","has_node"],[85,4,1,"","has_nodes"],[85,3,1,"","is_arborescence"],[85,3,1,"","is_template"],[85,4,1,"","load_all_hdf5"],[85,4,1,"","load_hdf5"],[85,4,1,"","load_json"],[85,4,1,"","load_mat"],[85,4,1,"","make_cattr"],[85,4,1,"","matches"],[85,3,1,"","name"],[85,3,1,"","node_names"],[85,4,1,"","node_to_index"],[85,3,1,"","nodes"],[85,5,1,"","preview_image"],[85,4,1,"","relabel_node"],[85,4,1,"","relabel_nodes"],[85,4,1,"","rename_skeleton"],[85,4,1,"","save_all_hdf5"],[85,4,1,"","save_hdf5"],[85,4,1,"","save_json"],[85,3,1,"","symmetric_inds"],[85,3,1,"","symmetries"],[85,3,1,"","symmetries_full"],[85,3,1,"","symmetry_names"],[85,4,1,"","to_dict"],[85,4,1,"","to_json"]],"sleap.util":[[86,1,1,"","attr_to_dtype"],[86,1,1,"","decode_preview_image"],[86,1,1,"","dict_cut"],[86,1,1,"","find_files_by_suffix"],[86,1,1,"","frame_list"],[86,1,1,"","get_config_file"],[86,1,1,"","get_package_file"],[86,1,1,"","json_dumps"],[86,1,1,"","json_loads"],[86,1,1,"","make_scoped_dictionary"],[86,1,1,"","parse_uri_path"],[86,1,1,"","save_dict_to_hdf5"],[86,1,1,"","uniquify"],[86,1,1,"","usable_cpu_count"],[86,1,1,"","weak_filename_match"]],sleap:[[10,0,0,"-","instance"],[36,0,0,"-","message"],[85,0,0,"-","skeleton"],[86,0,0,"-","util"]]},objnames:{"0":["py","module","Python module"],"1":["py","function","Python function"],"2":["py","class","Python class"],"3":["py","property","Python property"],"4":["py","method","Python method"],"5":["py","attribute","Python attribute"]},objtypes:{"0":"py:module","1":"py:function","2":"py:class","3":"py:property","4":"py:method","5":"py:attribute"},terms:{"0":[3,4,10,13,15,27,33,35,36,37,38,43,44,45,46,47,48,49,50,53,54,55,56,57,59,60,62,63,64,66,67,68,69,70,71,72,73,74,76,77,79,80,81,83,84,85,86,89,92,95,102,104,105,106,107,108,109,110],"00":[104,105,106,109],"0000":[105,106,109],"0000e":[106,109],"0001":[49,109],"0001038":105,"00012":105,"00022":109,"00025":109,"00031":109,"00032":109,"00037":109,"00038":109,"00045":109,"00046":109,"0010":[106,109],"0011":[106,109],"0012":[106,109],"0013":[106,109],"0014":[106,109],"0015":[106,109],"0016":[106,109],"0017":[106,109],"0018":[106,109],"0018e":109,"0019":[106,109],"001_second":89,"0020":[106,109],"0021":[106,109],"0022":[106,109],"0023":[106,109],"0024":[106,109],"0025":[106,109],"0026":[106,109],"0027":[106,109],"0028":[106,109],"0029":[106,109],"0030":[106,109],"00305":105,"0031":[106,109],"0032":[106,109],"0032e":109,"0033":[106,109],"0034":[106,109],"0035":[106,109],"0036":[106,109],"0037":[106,109],"0038":[106,109],"0039":[106,109],"003_my_video":[13,27],"0040":[106,109],"0041":[106,109],"0042":109,"0043":109,"0044":109,"0045":109,"0046":109,"0046191":105,"0047":109,"0048":109,"0049":109,"0050":109,"0051":109,"0052":109,"0053":109,"0054":109,"0054291":105,"00543":105,"0055e":109,"0056":109,"0057":109,"0058":109,"0060":109,"0061":109,"0062":109,"0063":109,"0063e":109,"0064":109,"0064e":106,"0065":109,"0066":109,"0067":109,"0067e":109,"0068":109,"0069":109,"0070":109,"0071":109,"0072":109,"0073":109,"0074e":109,"0075":109,"0076":109,"0078":109,"0079":109,"0080":109,"0081":109,"0082":109,"0083":109,"0085":109,"0085e":106,"0086":109,"0087":109,"0088":109,"0089":109,"009":105,"0091":109,"00915":43,"0092":109,"0093":109,"0097":109,"00977":105,"0098":105,"0099":109,"00995":105,"00m":[107,109],"01":[70,103,104,105,106,107,108,109],"0100e":109,"0102":109,"0105":109,"0106":109,"0108":109,"0111":109,"01126":105,"01157":105,"0116":109,"0118455":105,"0118e":109,"0123":109,"0125":109,"0126":109,"0127":109,"0128":109,"01282":105,"0128e":109,"0131":109,"01324":105,"0134e":106,"0152":105,"0159e":109,"01648":105,"0166608700891056":107,"018":38,"0190e":109,"0192e":109,"0193176269531":104,"01931763":104,"0196e":109,"0197e":106,"0198":105,"0198e":109,"02":[70,79,105,106],"02057":105,"0210e":109,"0213e":109,"0215":105,"0233e":109,"0234":38,"02444":105,"025":70,"0259":105,"0259e":109,"0263e":109,"0264e":109,"0266e":109,"0270e":109,"02728":105,"0275":105,"0277e":109,"02960205":104,"02960205078125":104,"03":[13,27,70,103,104,105,109],"0301":105,"0303e":106,"0311976":105,"03162":105,"03174":105,"0318":105,"0318e":109,"0323e":109,"03244":105,"0365":105,"03793":105,"0385e":106,"038687":109,"0386e":109,"03918":105,"0394e":109,"03998":105,"04":[70,103,104,105,106,107,109],"0420e":109,"0426e":109,"04318":105,"04324":105,"04352":105,"04425":105,"04437362":105,"0444e":109,"0446e":109,"0451e":109,"0462":105,"0466e":109,"04684":105,"0474e":109,"04776":105,"04788":105,"0479":105,"04814":105,"0488e":109,"04938014":105,"04953":105,"04962":105,"0497":105,"04d":50,"05":[70,103,105,109],"0507e":109,"0515":105,"0518e":109,"05255":105,"0531e":[106,109],"05379":105,"05388":107,"0541e":106,"0545800141197903":107,"05463":105,"05493":105,"055738":106,"05611448":105,"0561e":109,"056597":106,"057389":106,"0575e":109,"0576e":109,"058046":106,"058048":104,"0581e":106,"0584":105,"05853":105,"0585e":109,"06":[49,70,106,109],"060007":104,"060013":104,"0606e":109,"0607e":109,"0612e":109,"06203796":105,"06238":105,"0630e":106,"0631e":109,"06328589":105,"0634":105,"0634e":109,"0639e":109,"06403984":105,"06436":105,"0646795":105,"06516132":105,"0652":105,"0657e":109,"06647":105,"0668":105,"066840":109,"0668e":109,"06784":105,"0690e":106,"06937":38,"07":[70,107,109],"07055778":105,"0711e":109,"0713":105,"072":70,"0720e":109,"0727e":109,"07603623":105,"0771e":109,"0772e":106,"0778e":109,"07797408":105,"08":[49,70,104,106,109],"08127":105,"08318384":105,"0835e":109,"08496":105,"08594":105,"08648682":105,"08688":105,"08721923828125":104,"08721924":104,"0888e":109,"089801":109,"08987":105,"08994":105,"08m":104,"09":[70,105,106,107,108,109],"09042":105,"0904e":109,"0905e":109,"090652":109,"09125":105,"09143":105,"091464":109,"09204":105,"09212":40,"092164":109,"09326":38,"09349":105,"09372":105,"09384":105,"0939e":106,"0943e":106,"0944e":109,"097":105,"09735":105,"0978":105,"0986e":109,"098811":109,"09885":105,"0989e":109,"0k":[104,105,106],"0m":[105,106,107,109,110],"0m0":109,"0m2023":109,"0m31m48":109,"0m31m49":109,"0m31m51":109,"0m31m52":109,"0mb":109,"0mcould":107,"0mfp":109,"0mm":109,"0munabl":107,"1":[0,3,4,9,10,12,13,27,33,35,36,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54,55,56,59,60,61,62,63,64,65,66,67,68,69,70,71,73,74,76,77,79,80,81,83,84,85,87,89,95,98,102,107,109,110,119],"10":[36,41,46,49,50,70,73,76,81,84,102,103,104,105,106,107,108,109,117],"100":[49,81,87,92,103,104,105,106,108,109],"1000":[87,89,105],"10000":33,"1004e":109,"1007e":109,"101":[103,106,109],"1018e":109,"1019":105,"1024":[87,103,104,105,107],"103":[43,63,104,107],"103255":109,"10357":40,"103658":105,"103982":109,"104":104,"10415649":104,"10415649414062":104,"104377":105,"104556":106,"105059":105,"10544":105,"10553":105,"106":109,"106019":105,"1060e":109,"107":70,"1078e":109,"107m":109,"108":109,"10843":105,"1089e":106,"109":109,"1097e":109,"10m":101,"11":[70,87,102,103,104,105,106,107,108,109],"110":109,"1100":33,"11035":105,"11078":105,"11148":105,"111973079":109,"1119e":109,"112":104,"11206":105,"1129e":109,"113":[103,109],"114":109,"1149e":109,"11572":105,"1158e":109,"116":[43,63],"1164e":109,"11816":105,"1183e":109,"1192":105,"11ea":109,"12":[70,90,102,103,104,105,106,107,108,109],"120":105,"1201e":109,"1204e":109,"120k":[105,106],"121":103,"1218e":109,"122":103,"1221e":109,"1223e":109,"123":[43,63,96],"1233e":109,"12372":105,"1238e":109,"12497":105,"12512":105,"127":[36,43,46,50,63,109],"12731166":105,"1278e":109,"128":[39,42,43,48,49,84,103,109],"1280":87,"12836":105,"12885":105,"12k":[104,105,106],"13":[70,87,103,105,106,107,109],"13065":105,"13086":105,"13202":105,"1323e":109,"13245":105,"13287":105,"132k":106,"133":[103,109],"13306":105,"13345":105,"1338":105,"1339":105,"134":109,"13475017":105,"13495":105,"1350":108,"1375e":106,"1395":105,"13pt":[106,107],"14":[70,87,104,105,106,107,108,109],"140":103,"1400e":109,"14189687":105,"142":104,"1421":105,"14230077":105,"14267":105,"14295959":104,"14295959472656":104,"14362":105,"144":[104,109],"1440":106,"145283":105,"1452e":109,"14550781":105,"14614868":104,"1461486816406":104,"1474":87,"1484228079076315":107,"1486e":109,"1497e":106,"149k":104,"14m":109,"15":[35,48,70,71,88,98,100,101,103,104,105,106,107,108,109,110],"150":[87,107],"1500":87,"15000":[104,105],"15082283":105,"1508674":105,"1508e":109,"150k":104,"151":[103,105,106,107,109],"1523e":109,"1525":[105,106,109],"15356":105,"1536":87,"1550e":109,"1555e":109,"1558":105,"1559":105,"156":109,"1560e":109,"15668":105,"15704":105,"157392":109,"1578e":109,"157k":[105,106],"158019":109,"1581400":104,"15857":105,"1588":87,"158864":109,"15892":105,"158k":105,"15924":105,"159656":109,"15m":109,"16":[43,45,47,48,70,79,104,105,106,107,108,109],"160":106,"1600e":109,"1603":38,"1604":87,"1606":43,"1611":38,"16116264":105,"1619e":109,"1631":105,"16318":105,"16357":105,"16394":105,"16397":105,"164":105,"16411652":105,"16653292":105,"1667":105,"16724":105,"16742":105,"16777216":[104,107],"16904":105,"1692e":106,"1696e":109,"1699e":109,"16df8d00":109,"16m":109,"17":[70,73,106,108,109],"1707":107,"17175":105,"172":104,"17218":105,"17297":105,"17343":105,"1743e":106,"1751e":106,"1753e":109,"17560":[104,105],"1757":105,"17578":105,"176":104,"1763e":109,"176m":105,"1774":[105,106,109],"17917":105,"17926":105,"179k":106,"18":[34,40,70,87,106,109],"180":[49,88],"1800":[104,105,107],"1802e":109,"18051867":105,"1807e":106,"1815e":109,"1817":105,"1826e":106,"1827e":109,"18298":105,"1831665":105,"185":109,"1850":[107,108],"1859":105,"18735":105,"188":104,"18854":105,"189":104,"18994":105,"18m":109,"19":[70,100,101,109],"1902":40,"1903e":109,"19041":102,"19046":105,"1905e":109,"190719_090330_wt_18":104,"190719_090330_wt_18159206_rig1":[104,105],"1907e":106,"1908":40,"191205_162402":96,"191205_163413":96,"1913e":109,"192":[87,109],"1925e":109,"193":104,"1934":104,"1936":105,"19464":105,"19696":105,"19714":105,"19766915":105,"19778":105,"197896466395166":107,"197k":[104,105],"1985e":109,"199":109,"1998e":109,"19m":[106,109],"1a2":[51,102],"1e":[49,106,109],"1f":105,"1g":105,"1k":[104,105,106],"1m":[104,105,109],"1s":[104,106],"1x1":[38,45,48],"2":[3,6,9,10,12,13,34,37,38,39,41,43,44,45,48,49,53,54,55,56,59,60,61,62,63,64,66,67,70,71,72,73,74,76,77,80,81,83,84,87,89,92,100,102,103,107,109,119],"20":[4,76,81,87,103,104,105,106,107,109,116,117],"200":[15,49,103,104,109,110],"2000":[33,87,89],"20065":105,"2012e":[106,109],"2014":87,"2015":[44,79],"2016":77,"2017":[70,76,117],"2018":[42,95],"2019":[41,87,101],"20190128_113421":109,"2020":101,"2021":[103,104,105],"2022":[87,100,101],"2022e":109,"2023":[101,104,105,106,107,108,109],"20230901t203033z":109,"20264":105,"203":105,"20336914":105,"2035e":109,"2043":105,"2048":87,"20544":105,"20596":105,"2068":105,"20728":105,"20752":105,"20844":105,"20847":105,"2087e":106,"208933":107,"2092e":106,"209734":107,"209771":107,"209801":107,"209829":107,"209859":107,"209886":107,"2098e":106,"2099":105,"209912":107,"209939":107,"209945":107,"20filenam":109,"20m":106,"21":[1,34,70,81,87,89,102,104,105,106,107,108,109],"210205":106,"21050":104,"210504_182918":[104,105],"210505_0126":104,"210505_012601":[104,105,107],"210506_230852":104,"210519_111253":105,"21084":109,"211":103,"2110e":109,"21112":105,"21129":105,"21145":109,"21151":109,"21155":105,"21188":105,"212":[103,105],"21204":105,"21255928":105,"21261":106,"2130e":106,"2156e":109,"2159e":109,"216":105,"2162e":[106,109],"21640316":105,"2166":105,"2169e":109,"217":104,"2172e":109,"2174e":109,"21753":105,"2177e":109,"2181147":105,"219":105,"21m":106,"22":[70,109],"220":105,"22018598":105,"2208":105,"22192":105,"222":105,"2224":105,"2224e":109,"223":105,"223182":104,"223923":104,"223968":104,"223999":104,"224":[43,63,105],"224028":104,"224057":104,"224084":104,"224111":104,"224140":104,"224144":104,"2247":105,"2248e":109,"225":[63,105],"2254e":106,"2262":105,"22705":105,"2276387":105,"22766":105,"2278e":106,"22808443":105,"2288e":106,"229":[63,105],"22980":109,"23":[43,70,87,100,105,106,109],"23050":109,"23056":109,"23196":105,"232":105,"2339e":106,"234":[104,105],"23578":105,"2364e":109,"2365e":109,"23718":105,"2374e":109,"2377":105,"237m":109,"2389":105,"239":105,"2397":105,"2397e":109,"239m":104,"24":[70,90,103,106,109],"240":[104,105],"2402e":106,"2403":105,"241":105,"2417e":109,"242":[104,105],"2425":105,"2428e":109,"243":105,"2437":105,"2438e":109,"244":105,"24440002":104,"24440002441406":104,"2447e":109,"2449e":109,"245":[104,105],"245745":107,"246":[104,105],"2467":105,"24688721":105,"2471e":[106,109],"2476":105,"24774":105,"24854":105,"2485e":109,"2486e":109,"24900974":105,"24979575":105,"24988":105,"24997":105,"24999984211172e":109,"249999968422344e":109,"24m":106,"25":[70,73,76,77,87,89,103,105,108,109],"250":[92,104],"2500e":109,"2502e":109,"250591":108,"250602":108,"251":105,"2511e":109,"2513e":109,"252":105,"25208":105,"25244":105,"2535e":109,"25458":105,"2546":105,"254912":109,"255":[33,43,47,49,63,92,109],"2551e":109,"255468":109,"25574":105,"256":[39,40,42,48,49,53,105,109],"2560":[104,105],"256291":109,"2563e":109,"257158":109,"2579e":109,"258":101,"25829":105,"25912":105,"25969282":105,"25983":105,"25hfinish":109,"25hinfo":109,"26":[70,92,95,104,109],"2600708":105,"2600e":109,"2604e":109,"26096":105,"2615":105,"26282":105,"2632598876953":104,"26325989":104,"2633":105,"263375180":109,"2635e":106,"26373":105,"2637e":106,"2648e":109,"2650e":106,"26575":105,"26588":105,"26732486":105,"26816":105,"268435456":[104,107],"2695e":109,"26993":105,"27":[70,104,107,109],"271":[104,105],"27118":105,"2713":105,"272":[104,105],"273":105,"27322":105,"274":105,"2743e":109,"275":105,"2752e":109,"27567":105,"2759":105,"2764":105,"27682":105,"27792":105,"2783e":109,"2793e":109,"27942":105,"28":[70,107,109],"280029296875":104,"2800293":104,"2823e":109,"28253":105,"2828e":109,"283":105,"2838e":109,"284":105,"285":[104,105],"286":105,"28660768":105,"287":105,"2873":105,"2879":105,"288":105,"2889e":106,"2893e":109,"28958":105,"29":[70,104,107,108,109],"29004":105,"29108":105,"292":105,"2922e":109,"2925e":106,"2940e":109,"29464462":105,"2947e":109,"2948":87,"2950":87,"29553":105,"29578":105,"296230286359787":104,"29968":105,"29m":104,"2d":[9,54,56,59,76,77],"2e65b":109,"2f":107,"2f20230901":109,"2faws4_request":109,"2foctet":109,"2fs3":109,"2fu":109,"2kpredict":109,"2m":105,"2s":[105,106,109],"3":[1,3,10,13,27,33,38,39,41,42,43,44,48,49,54,56,61,62,63,66,70,76,77,80,81,83,86,87,89,95,100,102,103,104,107,109,110,119],"30":[34,87,100,104,105,109],"300":109,"3000":103,"3003e":109,"3006e":109,"30078":105,"30173":105,"30188":105,"30194":105,"302":[103,109],"3027e":109,"3028e":109,"30325472":105,"30384466":105,"304":105,"30457":105,"305":[104,105],"3055e":109,"306":105,"30673":105,"307":[104,105],"30713":105,"30775963":104,"3077e":109,"308":[104,105],"30814":105,"3086853":105,"309":105,"3093e":106,"3099":105,"30m":[40,104,105],"31":[70,104,105,106,109],"310":105,"311":[105,109],"3113e":109,"312":105,"3123e":106,"3126e":109,"313":105,"31342":105,"3135e":109,"31372":105,"3139":105,"314":105,"315":105,"31561279":105,"3157":105,"3157e":109,"316":105,"31602":105,"3161e":109,"31635":105,"317":[104,105],"317060":107,"318":105,"3180e":106,"319":[104,105],"31976":105,"31982":105,"31m":[105,106,109,110],"31m126":109,"31m14":109,"31m184":109,"31m270":109,"31m33":109,"31m39":109,"31m51":109,"31m7":109,"31me":107,"31merror":[105,106,109,110],"32":[34,38,42,43,47,48,70,87,105,106,109],"320":105,"32009887695312":104,"32009888":104,"3201e":106,"32022":105,"320224":107,"3208e":109,"321":[104,105],"3215e":106,"3218e":109,"322":[104,105],"3221e":109,"32227":105,"32256":105,"323":105,"32303":105,"32346":105,"324":105,"324520":109,"32465":105,"325":[104,105],"32507":105,"32578":105,"326":[105,109],"3265e":109,"3269":105,"327":[104,105],"3279e":109,"328":105,"32881752":105,"329":[104,105],"329181":109,"3299":105,"329961":109,"32m":[106,109],"32m20190128_113421":109,"32mcourtship_label":109,"33":[70,109],"330":105,"331":[104,105],"33124":105,"332":105,"333":105,"334":105,"33406225":105,"3346e":109,"33477783":105,"335":105,"33521563":105,"33566353":105,"3358e":109,"336":105,"3368e":109,"337":105,"337645":109,"338":105,"339":105,"33m":105,"34":[44,70,106,109],"340":105,"341":105,"3421e":109,"3431e":109,"34476":105,"345":105,"3458":105,"3465":105,"347":105,"3472e":109,"348":105,"3483e":106,"3487e":106,"3493":105,"3497e":109,"3499":105,"34m__macosx":109,"34mcourtship":109,"34mdataset":109,"34mdrosophila":109,"34mmodel":109,"34mtd_fast":107,"35":[70,87,105,109],"35016":105,"351":105,"35138":105,"3515e":109,"3519e":109,"353":105,"35394":105,"354":[104,105],"35414153":105,"35440978":105,"3545e":109,"35481":105,"355":105,"35507":105,"356":105,"3565":105,"357":105,"3573e":109,"35754":105,"358":105,"3584":105,"35846":105,"358483":105,"35867":105,"3589e":109,"359":105,"35m":[104,109],"35m100":109,"35mexampl":109,"35mnone":109,"36":[70,109],"360":[105,106],"3600":[104,107],"3604":105,"36052382":105,"361":105,"36105":105,"3611e":109,"3617e":[106,109],"362":105,"36204475":105,"36255":105,"36267":105,"363":[104,105],"3632":105,"36377":105,"3638e":109,"364":105,"3648e":109,"36536":105,"3658e":106,"366":[105,106,109],"36603":105,"3664e":106,"36795":105,"368":104,"369":105,"36913":105,"36966":105,"3697e":109,"36m":109,"36m0":109,"36m1":109,"36m4":109,"36m7":109,"37":[70,105,109],"370":105,"3719":105,"372":105,"3721e":109,"3737e":106,"374":105,"375":105,"3752e":106,"376":104,"37636":105,"377":105,"3770e":109,"3774":105,"3775":105,"3776e":106,"378":105,"379":105,"3791":105,"3792":105,"38":[70,104,109],"38037":105,"38046":105,"3809e":109,"381":105,"38232":105,"38303":105,"384":[33,105],"3846e":109,"3847992":105,"385":[104,105],"3852":105,"3858":105,"3859e":109,"386":105,"3863e":109,"3869":105,"387":105,"388":105,"3881e":109,"3886e":109,"389":105,"389239":108,"3896":105,"38m":109,"39":[70,104,105,106,109],"390":105,"390139":108,"390188":108,"390230":108,"390267":108,"390306":108,"390345":108,"390383":108,"390421":108,"390425":108,"3906e":109,"3908":105,"391":105,"3911e":109,"39127233624458313":104,"39133":105,"3913e":109,"393":[104,105,109],"3931e":109,"39355":105,"394":105,"3947":105,"39497375":105,"39508":105,"3959e":109,"396":105,"397":105,"39786857":105,"398":[104,105],"39813":105,"3986":105,"398k":104,"399":105,"39m":104,"3b":109,"3d":9,"3d1800":[104,105,107],"3ddrosophila":109,"3m":105,"3mb":104,"3s":[106,109],"3x3":[45,48,62,77],"4":[0,3,13,33,35,39,40,42,43,44,45,48,49,51,54,56,62,70,73,77,80,83,84,87,89,92,98,100,101,102,103,104,107,109,110],"40":[4,87,106,109],"400":[49,105],"4000":87,"40005":105,"40057":105,"4005e":106,"401":105,"40115":105,"4015000":[104,105],"4018e":109,"40190646":105,"4019e":106,"402":105,"40244":105,"4029e":109,"4033e":109,"40347":105,"404":105,"4047e":109,"405":105,"40552":105,"4058":105,"406":[63,104,105],"4065":105,"4066":105,"407":105,"40717":105,"408":105,"4080e":109,"4087e":109,"409":105,"4097":105,"41":[70,109],"410":105,"4100e":109,"4107e":109,"4109717":105,"411":105,"4111":105,"4112e":109,"41144":105,"412":105,"412k":105,"413":[104,105],"414":105,"41422":105,"4143e":109,"4145e":106,"41486":105,"4151e":106,"4152e":109,"41534":105,"416":105,"417":105,"4179e":106,"418":105,"41803":105,"419":105,"4191e":106,"4193":105,"42":[70,105,106,107,109],"420":[104,105],"42017":105,"421":[104,105],"4215e":109,"42197":105,"422":105,"422k":105,"423":105,"42343":105,"42352":105,"42374":105,"42407":105,"4241":105,"425":[87,104,105],"42508":105,"4254e":109,"4258":105,"426":105,"427":105,"42723":105,"428":105,"42874":105,"4288e":106,"42896":105,"429":105,"4292e":109,"42938":105,"4297":105,"43":[70,105,106,107,109],"430":[104,105],"43085":105,"431":105,"43195":105,"432":105,"43228":105,"43257":105,"4325e":106,"4326e":109,"433":[104,105],"43307":105,"4330e":109,"43337214":105,"434":105,"4342":105,"4343e":109,"435":[104,105],"43555":105,"436":[104,105],"437":105,"43756":105,"4376e":106,"438":[104,105],"4382e":109,"43842":105,"43861":105,"43884":105,"439":105,"4398e":106,"44":[70,105,106,107,109],"440":[104,105],"441":[104,105],"4413e":106,"4415e":109,"442":105,"4425e":109,"4428":105,"443":[103,104,105,109],"4437e":109,"444":105,"4440e":[106,109],"4441e":106,"44467":105,"445":[104,105],"445179":104,"445232":104,"445236":104,"4453":105,"446":105,"44635":105,"4464":105,"44681":105,"4471e":109,"44776785":105,"448":105,"44873":105,"449":105,"44904":105,"4493e":109,"45":[70,87,104,109],"450":[104,105],"4500e":109,"4505e":109,"45065":105,"4506e":109,"4507":105,"451":105,"45117":105,"4526":105,"4529e":109,"4532":105,"45367":105,"45417705":105,"4541e":109,"4546e":106,"455046":105,"455402":109,"45566":105,"456":[63,96,105],"456138":109,"4567e":109,"456803":109,"457":105,"45706":105,"457464":109,"45755":105,"458":105,"45853":105,"459":[104,105],"4593":105,"4597148":105,"46":[70,104,109],"460":105,"461":105,"46105212":105,"46127":105,"462":105,"46237":105,"46246":105,"46274":105,"4627e":106,"46356":105,"4637":105,"4640e":109,"46423":105,"4643e":109,"46442":105,"465":105,"46533":105,"4653e":109,"4657e":106,"466":105,"467":105,"4673":105,"46782":105,"46788":105,"4680e":106,"4682":105,"469":105,"46994":105,"47":[70,104],"4706e":109,"471":105,"4712e":106,"4716e":109,"472":105,"4725":105,"4725e":109,"4726e":109,"4728e":109,"473":105,"47393468022346497":104,"474":[104,105],"475":[104,105],"4751":105,"47512543":105,"47549438":105,"4755":105,"4756":105,"47607":105,"4763e":109,"4767e":109,"4768":105,"4770e":106,"477220":106,"47867":105,"4787e":109,"479":105,"47983":105,"48":[70,104,107],"480":104,"481":105,"4811":105,"481k":[105,106],"4821e":109,"4829e":106,"48315":105,"4831e":109,"48407":105,"48416":105,"4847e":106,"485":63,"48532":105,"48575":105,"4858":105,"4860e":106,"48629727959632874":104,"48642":105,"4865":105,"486k":104,"48721":105,"4886e":109,"4893e":106,"4898e":109,"48993":105,"49":[70,104,105,107,109],"4912":105,"49136":105,"49152":[104,107],"4916":105,"4916717":105,"4919e":106,"4927e":109,"49347":105,"49423":105,"49429995":105,"49533":105,"4963e":109,"49683":105,"49707":105,"49756864":105,"49778372":105,"49817":105,"498908":104,"49898362":105,"499999936844688e":109,"4d":[9,33,40],"4m":106,"4s":[104,109],"5":[1,4,6,13,27,37,38,42,43,48,49,53,60,62,63,70,71,73,74,76,77,81,83,86,87,89,102,103,104,105,107,108,109,110],"50":[95,103,104,107],"500":92,"5000e":109,"5004723":105,"5007e":109,"5009e":109,"501":106,"50101817":105,"5017098":105,"5036":105,"5036e":109,"50397":105,"5043":105,"5052e":109,"50543":105,"5054e":106,"5058":105,"5058e":109,"50616":105,"5061e":109,"50806":105,"508754":106,"50894":105,"5089e":109,"50916994":105,"50th":[70,107],"51":70,"5118":105,"512":[105,109],"51236":105,"51400757":105,"51434":105,"5147":105,"5150e":109,"51591":105,"51675177":105,"5170047":105,"5174e":106,"5177e":109,"5178":105,"51843":105,"51874":105,"51895":105,"5190e":[106,109],"51m":104,"52":[70,104,105],"52002":105,"52005":105,"52008056640625":104,"52008057":104,"5206e":109,"5207e":109,"5212e":109,"52148":105,"5228e":[106,109],"5232e":106,"523632":105,"524288":[104,107],"52533":105,"52646":105,"52814":105,"5282e":106,"529680":106,"53":[70,104,105],"53275":105,"53324103":105,"53396606":105,"53412354":105,"5342":105,"5347014":105,"535":105,"5352e":106,"5362e":109,"5364e":109,"5365":105,"5365e":109,"53745":105,"538":103,"5381e":109,"5387e":109,"5388288":105,"5396e":106,"539k":103,"53m":109,"54":[70,104,109],"54178":105,"5420e":109,"54233":105,"5428e":109,"5451e":109,"5454":105,"54587":105,"546117":109,"5463986":105,"5468":105,"546866":109,"5469":105,"5473":105,"547533":109,"5475e":109,"5481076":105,"548184":109,"5494046":105,"54964":105,"5496521":105,"54977":105,"55":[70,109],"55066":105,"5512e":106,"55141157":105,"551501":103,"5518e":109,"5519e":109,"5523e":106,"5540e":106,"55441":105,"5555e":106,"5559":105,"55792":105,"5580e":109,"5588e":106,"5589e":109,"559":105,"5590857":105,"559100":106,"5591e":109,"55927":105,"5596e":109,"55972":105,"55m":109,"56":[70,104,105],"5609e":109,"56104":105,"5611e":106,"561211":105,"5621643066406":104,"56216431":104,"5624":105,"56253":105,"5631e":106,"5642e":109,"56442":105,"5647e":109,"5649e":106,"565":105,"5654e":109,"5656e":109,"56747":105,"56854":105,"56874":105,"56883":105,"56894":105,"5694e":109,"56982":105,"56m":109,"57":[70,104,105,109],"57007":105,"570176":105,"57062":105,"57127994":105,"57135009765625":104,"5713501":104,"57254":105,"57278":105,"5733776":105,"5735":105,"57388":105,"5739e":109,"5740245":105,"5744":105,"574921":106,"57523":105,"5752e":109,"5753":105,"5754e":109,"575856":105,"5764e":109,"57666":105,"5772e":109,"57848":105,"5797":105,"5798e":109,"57m":109,"58":[70,104,106],"5806e":109,"5809e":109,"5814e":109,"58252":105,"5831e":109,"58366936":105,"58368":105,"58414":105,"58466":105,"58485055":83,"585451":106,"5855e":109,"5856":105,"586040":106,"5861632227897644":104,"5869e":109,"5874e":109,"5877e":109,"588":105,"58817774":105,"5883e":106,"5890152":105,"5894165":104,"58941650390625":104,"58961":105,"58k":103,"58m":109,"59":[70,87,104],"59024":105,"59042":105,"5914":105,"5916":105,"5931e":106,"59384":105,"59448":105,"5945e":109,"5949e":109,"5957e":109,"5965e":106,"5981e":109,"59887695":104,"598876953125":104,"5989e":109,"59937":105,"59984":105,"5998e":109,"5k":104,"5m":[44,104,105],"5s":109,"5x":48,"6":[43,70,84,89,100,102,103,104,105,106,107,108,109,110],"60":101,"600":101,"60114":105,"6015e":106,"60196":105,"60254":105,"6026":105,"6030e":109,"60315":105,"6031595":105,"6039":105,"6045e":109,"6051e":109,"6053466796875":104,"60534668":104,"60617":105,"6061791":105,"6070e":106,"6076e":109,"6084e":109,"609":101,"6091":105,"6096e":106,"61":[70,109],"6100e":109,"61078":105,"61108":105,"6120859":105,"61237":105,"6125536":105,"6145e":106,"61487":105,"6160e":109,"6171893":105,"6172e":109,"61740112":105,"6176859":105,"6177351":105,"6194322":105,"6195e":109,"619m":106,"62":70,"620m":[105,106],"6215":105,"6223k":105,"6224e":109,"62262":105,"62274":105,"6229":105,"622m":106,"6231525":105,"624":105,"6250e":109,"62582":105,"62598":105,"6272e":109,"6274e":109,"6281e":109,"62988":105,"63":[70,105,109],"63016":105,"6322e":109,"63318":105,"6341":105,"6343123":105,"63477":105,"6352e":109,"63538":105,"6368e":109,"6372537":104,"63763":105,"6378e":106,"63806784":105,"6394e":109,"6399e":109,"64":[11,38,40,41,43,44,45,48,55,70,71,102,103,104,107,108],"64005":105,"6401e":109,"64023":105,"6407e":109,"6409":105,"641":105,"6411":105,"6412e":109,"64131":105,"64159":105,"6417e":109,"6432e":109,"64355469":105,"64372706":105,"64392":105,"6439e":106,"6440e":109,"6441":105,"6446":105,"64484":105,"64542":105,"6464e":109,"6468e":109,"64728":105,"6477e":109,"6479e":109,"6483e":109,"64882857":105,"64886":105,"64966":105,"65":70,"65015":105,"6513e":106,"65207":105,"6521e":109,"6535e":109,"65408":105,"6547e":109,"6551e":106,"6553":105,"65547":105,"6554e":109,"6555e":109,"65576":105,"65726":105,"6575725":105,"6584e":109,"6591e":109,"65952":105,"65994":105,"66":70,"6601":105,"66077":105,"6607e":109,"6610e":109,"66180676":105,"661k":105,"6627722":105,"66278":105,"66385":105,"66406":105,"6642":105,"6647e":109,"6663e":109,"6666e":109,"6669e":109,"6671":105,"66855":105,"66882":105,"67":[70,109],"6708e":109,"67142":105,"6716e":109,"6717e":109,"67194":105,"67218":105,"6727e":109,"6739e":109,"6743e":106,"6751":105,"6759e":109,"6765e":109,"6766":105,"6766811":105,"67697":105,"67744":105,"67786":105,"6780e":109,"6782e":109,"67886":105,"67926":105,"6795893":105,"68":[43,63,70,104,105],"68062663":105,"68115":105,"68118":105,"6811e":109,"6819e":109,"68225":105,"6822e":109,"68262":105,"68353":105,"6837e":109,"684":109,"68488":105,"6862":105,"68756":105,"6879568":105,"68842":105,"6884535":105,"68896":105,"69":[70,104],"690":[104,107],"6906e":106,"691378":109,"6915e":109,"6921e":109,"6930795":105,"69318":105,"6934e":109,"6936e":109,"6939e":109,"6943":105,"6945e":[106,109],"6946":105,"6961e":106,"69723856":105,"6987e":109,"69904":105,"69998":105,"6b0":1,"6c03a2f89e1c":109,"6j":87,"6m":[104,105],"7":[39,70,86,87,89,102,103,104,105,106,107,108,109],"70065":105,"7012927":105,"7020806":105,"7034e":109,"7035529":105,"7037247":105,"7037e":106,"7041355":105,"7051566":105,"7055e":109,"7064677":105,"7064e":109,"70679":105,"70728":105,"70898":105,"71":[70,104],"7110e":106,"7111":105,"7111e":109,"71122557":105,"71146":105,"7118e":106,"71207":105,"71269846":105,"7130e":106,"713k":[104,105,106],"7147":105,"71594":105,"71674":105,"71683":105,"71751094":105,"71759033":104,"71759033203125":104,"7180e":106,"71852":105,"71884066":105,"7197965":105,"7199e":106,"72":[70,84,104,109],"7203e":109,"72043":105,"72051835":105,"7208e":109,"7216":105,"72241":105,"72244436":105,"72284":105,"7234e":109,"72357":105,"7239725":105,"7244":105,"7247e":109,"72516":105,"725241":109,"7256":101,"72562":105,"7257e":106,"72635":105,"7274184":105,"7278":105,"72796327":105,"72803":105,"72806":105,"7281":105,"72864616":105,"7287e":109,"7288e":109,"7290425":105,"7290e":109,"73":[70,109],"73026":105,"7307":105,"7312":105,"731425":105,"7323e":106,"73245":105,"7324e":109,"7328e":109,"7331":105,"7343e":109,"73447":105,"7345e":106,"73501164":105,"73508":105,"7351e":106,"7352e":109,"7357e":109,"735933":105,"7361e":109,"736867":105,"73703":105,"7370e":106,"7373e":109,"7375747":105,"73767":105,"7378067":105,"7379e":109,"7396e":106,"7399e":109,"74":[70,105,109],"7404":105,"74078":105,"7414":105,"74188":105,"743163":105,"7434e":106,"74356":105,"74454":105,"74457":105,"74493":105,"7453e":106,"7456":105,"74594":105,"7461e":109,"74677":105,"7468e":[106,109],"7469e":109,"74753":105,"7489":105,"7489e":109,"7494e":109,"7495e":109,"75":70,"7511e":109,"7513e":[106,109],"75169766":105,"75269":105,"7544447":105,"755154":109,"7552497":105,"7553143":105,"7555":105,"7555e":109,"75566101":105,"75584614":105,"756024":109,"75647":105,"7566e":109,"757213":109,"7574282":105,"758315":109,"7586e":109,"75934":105,"75th":[70,107],"76":70,"7613073":105,"7613e":109,"7617":105,"7624657":105,"76257":105,"7625e":109,"7628807":105,"76299024":105,"7635e":109,"7636e":109,"7640e":106,"7656e":109,"7662":105,"76627":105,"76758":105,"7679e":109,"7682":105,"7685":105,"7697851":105,"77":[70,104],"7702941894531":104,"77029419":104,"77054":105,"7713":105,"77133":105,"7715297":105,"7721256017684937":104,"77222":105,"77227783":105,"7722e":109,"77295":105,"77327":105,"77335":105,"77365":105,"7738e":109,"7741e":[106,109],"77439654":105,"7750215":105,"775633":106,"775644779205322":109,"7761":105,"77646":105,"776555":106,"77664":105,"77673894":105,"77695":105,"77728":105,"777493":106,"77814513":105,"778196":106,"779":[43,63],"78":[70,104,105,106,107,108,109],"78006":105,"7803e":109,"780803382396698":104,"7812":105,"781426":105,"78146":105,"78155517578125":104,"78155518":104,"78204":105,"7820e":109,"7827e":106,"7838e":109,"7842e":109,"78436":105,"7844e":109,"78534484":105,"7854e":106,"78555703":105,"7855e":109,"78564":105,"7869e":109,"78735":105,"7880e":109,"7884":105,"7885e":109,"7888e":109,"7891e":109,"78940654":105,"7895":105,"78m":105,"79":[70,109],"7902795":105,"7903e":109,"79062":105,"7908e":109,"79095":105,"7911e":109,"79128":105,"79132":105,"7932":105,"79385":105,"7938e":109,"7941327":105,"79416":105,"7941e":109,"7946e":106,"794787":105,"7948513":105,"79486":105,"7954e":109,"79565":105,"7970e":109,"7977e":109,"797836431061851":107,"7978e":109,"79828":105,"7989652":105,"798996":105,"799":106,"7991047":105,"7991e":109,"79m":109,"7m":105,"7mb":104,"7s":[106,109],"8":[13,43,48,49,55,70,81,87,89,102,103,104,105,106,107,108,109],"80":[87,104],"80017":105,"80063":105,"80096":105,"8017e":109,"8021e":109,"8027e":109,"8031e":109,"80396":105,"804":87,"8041":105,"8042e":109,"80545":105,"8055":105,"806004":105,"8066e":109,"807011":105,"8070e":109,"8071e":109,"8074e":109,"8076":105,"8076e":106,"80786":105,"807970":105,"8081e":109,"8082221":105,"8082359":105,"8082982":105,"80847":105,"8088e":109,"808962":105,"8091e":109,"80968696":105,"81":[70,104,105],"8100913":105,"8101312":105,"8105e":109,"81119704":105,"8112e":109,"81192":105,"8121e":109,"8127704":105,"81348":105,"81354":105,"81366":105,"8137":105,"81372":105,"8141":105,"81424":105,"814560":109,"81458":105,"8147":105,"8150621709973537":107,"8156":105,"816599":105,"81688696":105,"81714":105,"8173e":109,"81768798828125":104,"81768799":104,"81785023":105,"8180281":105,"81816167":105,"81857":105,"8189e":[106,109],"81934":105,"81m":104,"82":[70,103,109],"8201":[105,106,109],"82016":105,"8213e":109,"82147":105,"8217e":106,"8224e":109,"8229":105,"82294524":105,"8234e":109,"8240589":105,"8240e":109,"8241":105,"82428":105,"8243384":105,"82465":105,"8248e":109,"82546026":105,"8261":105,"8262e":109,"8265212":105,"82654":105,"82689875":105,"8269":105,"827290":109,"8279644":105,"82819":105,"8283e":109,"8284e":109,"8288708":105,"82891417":105,"82898":105,"8293e":109,"8294e":109,"8295e":109,"82977":105,"82m":[104,105],"83":[70,104,105],"83106405":105,"83140534":105,"8317e":109,"831845":109,"8321578":105,"832633":109,"8339e":109,"83435":105,"8343e":109,"8346e":109,"83553046":105,"8356":105,"83655":105,"83666444":105,"83694":105,"83694774":105,"8370e":106,"8374":105,"83746":105,"8376e":109,"83797425":105,"8379e":109,"8384e":106,"8386477":105,"8388201":105,"83882904":105,"8390e":109,"83948356":105,"8396003":105,"84":[70,104,105],"84057474":105,"84071857":105,"8409559":105,"8414e":109,"8417":105,"8417e":106,"84183":105,"8423e":[106,109],"842469":109,"8434063":105,"84363":105,"8436978":105,"8439":105,"8445456":105,"8446":105,"8454e":106,"8461558":105,"84665924":105,"8467e":106,"84747":105,"84778":105,"8496e":109,"84995":105,"85":70,"850639":105,"8507803":105,"8509916":105,"8509e":109,"8510e":106,"8512343":105,"8518939":105,"85189575":105,"8525362":105,"85304886":105,"85324234":105,"85343812":104,"85375595":105,"85390973":105,"8547e":109,"8551e":109,"85558087":105,"8557e":106,"8559173":105,"85625255":105,"85666":105,"85703963":105,"8572e":109,"8575352":105,"85782766":105,"85786":105,"85938":105,"86":[70,105],"86021763":105,"8602e":109,"8608399":105,"8608e":106,"8609162":105,"8611444":105,"8616991":105,"8620718":105,"86227":105,"86304706":105,"86414":105,"8643":105,"864786":105,"86514":105,"8651793":105,"8653e":109,"8655":105,"86606":105,"86616135":105,"86683005":105,"8676515":105,"8684657":105,"8689e":109,"8693e":109,"86963":105,"8699e":106,"87":[70,105],"8703e":109,"87045":105,"87049603":105,"870526":109,"87054":105,"87125":105,"87129986":105,"87139845":105,"8714e":106,"87155":105,"87157995":105,"87177":105,"8718e":109,"8726":105,"87274":105,"87278444":105,"87323":105,"8733":105,"8735":105,"8743328":105,"8750135":105,"8751741":105,"87518":105,"87591183":105,"8761287":105,"87616193":105,"8762751":105,"8765895":105,"8768972":105,"877":109,"8772":105,"8775":105,"87766":105,"8776e":109,"8778":105,"87787":105,"8778759":105,"8782499999999999":107,"8785":105,"8788193":105,"8793":105,"88":[70,104,105,109],"880064":105,"88055":105,"88107586":105,"8814398":105,"8816869":105,"8817":105,"8818e":109,"8820076":105,"8822638":105,"8824023":105,"8825e":109,"8828186":105,"88284":105,"88294595":105,"8831e":109,"883279":105,"8834407":105,"88361436":105,"883681":105,"88368326":105,"8839093":105,"88438815":105,"8845e":109,"88504":105,"8853136":105,"8855596780776978":104,"886":105,"8863e":109,"88647026":105,"886791":105,"88775337":105,"8885":107,"88854957":105,"8892915":105,"8896506":105,"88998085":105,"89":[70,104,105],"89014":105,"8901e":109,"89034307":105,"89056396":105,"89063996":105,"8906e":106,"89081717":105,"89086473":105,"8910252":105,"89124495":105,"8912647":105,"89133":105,"8916":105,"8923e":109,"89285":105,"8932258":105,"89369905":105,"89383173":105,"8941e":109,"89442694":105,"89460224":105,"89484":105,"8954e":109,"89554":105,"8958":105,"89645":105,"89681005":105,"8968e":109,"8971772":105,"89723104":105,"8972577":105,"8973187":105,"8976605":105,"8979453":105,"89824754":105,"8984147543126978":107,"89858156":105,"8985e":109,"89860517":105,"89868015":105,"89886":105,"899":105,"89908":105,"8990e":109,"899237":109,"89928836":105,"8997":105,"8997571":105,"8997e":109,"89996":105,"89m":105,"8m":41,"8s":109,"9":[49,70,87,102,103,104,105,106,109,119],"90":[104,105,107],"9000":[46,50,109],"9001":[36,46,50,109],"90029544":105,"9007e":[106,109],"9010":11,"9010142093245521":107,"9011465":105,"90115":105,"9016738":105,"9018014":105,"90228":105,"90283":105,"9031525":105,"9033977":105,"9033e":109,"90368915":105,"9041e":109,"9042e":109,"9046e":109,"9048104":105,"90489644":105,"9048e":109,"90536344":105,"90552235":105,"9058e":109,"9067393":105,"90770215":105,"9081669":105,"9090e":109,"9092e":109,"9093149":105,"90th":[70,107],"91":[70,104,105],"9105379":105,"91081876":105,"9112e":109,"911333":105,"9113763":105,"9116395":105,"91168":105,"9121e":109,"9128e":106,"9131e":106,"9136e":109,"9138":105,"9141492":105,"91429555":105,"9143e":109,"91440874":105,"9149e":109,"9152e":109,"9153e":109,"91552734":104,"91552734375":104,"9155e":106,"9156e":109,"9157e":109,"91586":105,"91632":105,"9163557":105,"9167":105,"9169966":105,"9171e":106,"91743165":105,"9176925420761108":104,"918121":105,"9181e":109,"9189269":105,"91900206":105,"9191e":109,"91922":105,"9194614":105,"9197768":105,"91993105":105,"91998947":105,"91mfals":109,"92":[70,104,105],"9200019240379333":104,"9202296":105,"9207018":105,"9208387":105,"92098916":105,"92133":105,"9214447":105,"92154":105,"92188":105,"92344654":105,"923466":104,"9236755":105,"923717":104,"9238624":105,"9239":105,"9241573":105,"92460406":105,"925":[105,106],"9252076":105,"9255538":105,"9256e":109,"9257e":109,"9260271":105,"926044":104,"92618316":105,"9266":105,"9266098":105,"92688":105,"92693084":105,"9271338":105,"92730576":105,"92737":105,"9277581":105,"92798":105,"9286875":105,"9289e":106,"9293e":106,"9294e":106,"9295e":106,"92982674":105,"93":70,"9305":105,"9313457":105,"9313e":109,"9316707":105,"93173":105,"93176":105,"9318":105,"9318335":105,"931835":105,"93198806":105,"9319e":106,"93260366":105,"9328e":109,"9330e":106,"9332":105,"93347":105,"9335175":105,"93381244":105,"9344":105,"93462956":105,"93469065":105,"9352003":105,"9353e":109,"9354":105,"93542594":105,"9355017":105,"9358043670654297":104,"936":[107,108],"93606567":104,"9360656738281":104,"93695":105,"93707":105,"9372e":109,"9375356":105,"93761605":105,"93762034":105,"9381855":105,"9381e":109,"93841267":105,"93872":105,"939":[43,63,105,106,109],"9391487":105,"93915":105,"9391e":109,"9396e":109,"93973":105,"94":[70,104,105],"940083":109,"9400e":106,"940585":109,"94125":105,"94138":105,"9413e":106,"94214964":105,"9421855":105,"9422818":105,"9423e":109,"94244254":105,"9426196":105,"94275":105,"94284":105,"9439e":109,"9446315":105,"94498163":105,"9450149":105,"94503784":104,"9450378417969":104,"9452e":109,"94554764":105,"9460e":106,"94632":105,"94662":105,"9466e":106,"9470e":109,"94733":105,"94746464":105,"94770956":105,"9486e":106,"94920886":105,"9492276":105,"94934":105,"9497375488281":104,"94973755":104,"9499294":105,"94f1":109,"94k":[105,106],"95":[70,79,81,104,105,107],"9501":105,"9501e":106,"9504":105,"9505e":109,"95087":105,"9508924":105,"95218":105,"9522048":105,"9527973":105,"953":109,"95354944":105,"9537":105,"9539e":109,"95540506":105,"95544":105,"9554e":106,"95602":105,"95603913":105,"95605":105,"9561e":106,"9564e":109,"95667875":105,"95673":105,"9570074":105,"9572475":105,"9573141":105,"9573e":106,"9577e":109,"9581e":109,"9582136":105,"95822":105,"9582e":109,"9585e":106,"95904541":105,"9591119":105,"95961505":105,"9598888":105,"95th":[70,107],"96":[70,105],"9603e":109,"96054":105,"96090955":105,"9611e":106,"96142364":105,"9617e":109,"96207":105,"9620e":109,"9628e":109,"9629":105,"9633726":105,"96359974":105,"9639e":109,"96436":105,"96454924":105,"9653242":105,"96551245":105,"9657e":109,"9660537":105,"9668305":105,"96696764":105,"9671":105,"9674e":109,"96838":105,"9694":105,"9696":105,"9697e":109,"9698766":105,"9699e":109,"97":[70,87,105],"97024536":105,"9704e":109,"9705e":109,"9706679":105,"97103214":105,"9711":105,"97113":105,"9716":105,"9723e":109,"9726e":106,"97273135":105,"97276276":105,"97341204":105,"9735":105,"97403":105,"974096":105,"9743e":109,"97470093":105,"97501004":105,"97522974":105,"97578657":105,"9765e":109,"9771716":105,"9773e":109,"97743154":105,"97747803":105,"9776":105,"97779256":105,"97818244":105,"97897":105,"9789e":109,"97906494":105,"9790770411491394":104,"9790e":109,"9794":105,"97974":105,"9798533":105,"9799493":105,"98":[70,104],"98030627":105,"98035":105,"9804845":105,"9807":105,"981":104,"981288":105,"9814e":109,"9819":105,"9821":105,"982109":107,"982120":107,"9826e":106,"9830136":105,"9832e":109,"9833999":105,"98342896":105,"98374254":105,"9841e":109,"98425347":105,"9845507":105,"98462":105,"9847":105,"9849":105,"98565674":105,"9866e":109,"98671097":105,"9867e":106,"9871e":[106,109],"98755246":105,"9876475":105,"98822":105,"9882784":105,"98843":105,"9886":105,"98887885":105,"989133":104,"98916876":105,"98956":105,"98962784":105,"9896e":109,"9898":105,"98d1":109,"99":[70,104,105],"99023":105,"9910501":105,"9914025":105,"9914e":[106,109],"9915406":105,"99155337":105,"9916019":105,"9916197":105,"99162734":105,"991653":105,"99172956":105,"9917e":109,"9920751":105,"99216":105,"9929e":106,"9932013":105,"9932473":105,"9933716":105,"993386":105,"9933976":105,"99394447":105,"9940315":105,"9943127":105,"9944642":105,"9945123":105,"9946308":105,"99465877":105,"9947187":105,"99476504":105,"9948527":105,"99486005":105,"9949":105,"99496":105,"99503":105,"99526805":105,"9953135":105,"99564207":105,"99573624":105,"9959078":105,"99593395":105,"99603134":105,"99658":105,"9967":105,"9968e":109,"9973e":109,"99805":105,"9981":105,"9987816":105,"9988":105,"999999873689376e":109,"99m":109,"99mb":104,"99th":[70,107],"9m":106,"9s":[104,106,109],"\u03bb":102,"abstract":[13,34,71,73,81,82],"boolean":[13,27,73,84],"break":[8,79,81,89,100,102],"byte":[84,85,86],"case":[1,8,13,26,33,43,62,73,88,89,90,91,94,95,96,99,103,106,116,119],"catch":[13,73],"class":[4,7,10,11,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28,29,30,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,59,60,61,62,63,65,66,67,68,71,72,73,74,75,76,79,81,82,83,85,86,105],"default":[3,7,9,10,12,13,14,15,16,17,18,19,22,23,24,25,26,27,28,29,30,33,34,39,41,42,43,44,48,50,51,53,61,62,70,71,73,78,85,86,89,91,92,93,95,96,98,102,104,106,107,108,109,117,119],"do":[0,10,13,38,42,44,45,48,50,61,73,74,81,92,94,95,97,102,103,104,105,106,107,108,119],"export":[12,13,28,47,73,90,91,92,96,100,102,103,112,113,119,120],"final":[1,38,40,43,45,48,55,65,95,102,104,113,116],"float":[3,6,7,10,13,15,33,35,37,41,43,44,45,47,48,49,50,53,54,56,59,60,62,63,64,67,68,69,70,71,73,74,76,77,79,80,81,82,83,84,85,104],"function":[3,6,7,9,13,14,15,24,26,33,35,38,43,46,48,51,55,57,62,65,67,69,70,71,72,73,74,76,77,78,79,81,82,83,86,89,92,93,95,98,105,106,107,112],"import":[1,9,13,15,18,66,70,76,88,92,93,95,97,100,103,104,105,106,107,108,109,113,114,118],"int":[3,4,6,7,8,10,11,13,15,23,24,33,34,35,36,37,38,39,40,41,42,43,44,45,47,48,49,50,53,54,55,56,59,60,62,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,81,83,84,85,86,105],"long":[1,50,55,72,90,104,105],"new":[1,4,10,13,14,24,26,32,33,38,40,50,55,65,67,68,73,79,81,82,85,89,90,91,92,94,95,96,97,98,100,101,102,106,107,110,112,113,115,116,118,119],"null":109,"public":0,"return":[3,4,6,7,9,10,11,13,14,15,16,17,18,19,21,22,23,24,25,27,28,29,30,31,32,33,35,37,38,39,40,41,42,43,44,45,46,50,51,52,53,54,55,56,57,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,103,104,105,106,107,108,109,110,115],"short":[49,50,76,86],"static":[10,13,33,34,81,85],"switch":[49,74,92,95],"true":[4,9,10,13,24,25,27,31,33,35,36,38,39,40,41,42,43,44,45,47,48,49,50,51,52,53,54,55,56,57,59,60,61,62,63,65,66,67,69,70,71,73,75,77,78,80,81,84,85,86,89,102,103,104,105,106,107,108,109],"try":[1,13,26,33,80,81,86,88,92,95,96,97,98,99,100,102,103,105,112,116,117,120],"var":[107,109],"while":[13,21,26,39,48,49,55,91,92,95,98,100,102,105,115,116,117],A:[10,12,13,15,24,27,31,33,36,38,39,40,42,43,45,46,47,48,50,51,53,54,55,56,57,59,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,81,82,83,84,85,86,89,92,96,100,101,104,106,107,110],AND:42,AS:42,And:[104,109],As:[1,74,88,92,94,95,106,109,110,116],At:[38,49,98],BE:42,BUT:[42,104],Being:0,But:[91,95,96,104,105,106,108],By:[9,33,92,98,105,119],FOR:42,For:[3,6,10,13,24,26,28,33,38,42,50,62,70,73,76,77,79,81,85,87,88,89,90,91,92,96,98,99,100,101,102,103,104,105,107,109,110,113,115,116,117,118,119,120],IN:42,IS:42,If:[1,6,7,9,10,12,13,15,17,18,24,25,26,27,29,32,33,38,39,40,41,42,43,44,45,47,48,49,50,51,52,53,54,55,56,59,61,62,63,65,66,67,68,69,70,71,73,75,76,77,78,79,80,81,82,84,85,86,88,89,90,91,92,94,95,96,97,98,99,100,101,102,103,104,105,106,108,109,110,111,116,117,118,119],In:[0,8,39,44,51,73,76,77,88,92,95,96,97,99,103,104,105,106,108,109,110,112,113,117,119],It:[10,13,33,36,43,46,47,70,73,76,80,82,89,90,91,92,95,97,101,104,105,107,116],NO:42,NOT:[13,42],No:[45,47,48,49,63,73,95,102,104,107,108],Not:[13,38,89,102],OF:42,OR:42,On:[88,92,102,118],One:[68,73,79,85,95],Or:[33,100,102,117],THE:42,THe:[13,27],TO:42,That:33,The:[0,1,4,7,8,9,10,11,12,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28,29,30,31,32,33,35,37,38,39,40,42,43,44,45,47,48,49,50,51,52,53,54,55,56,59,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,85,86,88,89,90,91,92,94,96,97,98,100,102,103,104,105,106,107,109,110,111,113,114,115,116,117,119,120],Their:68,Then:[80,91,94,97,102,105,110,120],There:[13,89,91,92,95,98,103,116,119],These:[1,13,29,36,38,39,41,42,44,45,47,48,50,51,54,55,56,61,66,68,69,70,72,73,76,87,88,90,92,95,102,103,104,105,106,107,113,119],To:[13,14,26,27,29,50,54,56,62,66,70,73,77,85,89,92,94,95,96,98,100,102,104,105,106,107,109,110,114,115,117,118],WITH:42,Will:72,With:97,_1:50,_20190128_113421:109,_:[12,13,27,38,70,89,103,109],__call__:73,__getitem__:13,__init__:[52,105],__macosx:109,_courtship_label:109,_cvpr_:76,_european:77,_exampl:109,_hl:[33,85,86],_is_templ:85,_skeleton_idx:85,a5000:[105,106,109],ab:[43,107],abdo_index:103,abdo_loc:103,abdomen:[103,104,105,106,109],abid:1,abil:1,abl:[41,44,48,89,90,92,101,102,105,106,109,110,112,117,118],abort:13,about:[1,4,5,13,16,48,62,73,74,89,91,92,93,94,96,97,99,100,105,106,107,108,114,115,116,117,119],abov:[3,12,42,49,50,73,76,87,91,92,95,100,102,104,107,108],absolut:[31,33,37,47,49,50,62,66,76],abus:0,academ:101,acceler:[101,102,105,106,109,110,113],accept:[0,33,73,85],access:[10,11,13,27,33,49,55,76,89,90,92,96,100,102,104,110,112],accord:[43,63,68,106],accordingli:[3,13,49,110],account:[0,53,54,56,59,62,70,90,110,116],accumul:[74,76],accur:[88,101,113,115,117],accuraci:[47,48,70,81,106,107,108,113,115,117],achiev:[38,43,48,88,113,117],acquir:[107,109],acquisit:[100,105],across:[10,13,33,39,47,49,50,55,56,66,68,70,73,74,76,83,85,92,93,95,96,108,113,115,120],acryl:87,act:[0,1,36],action:[0,42,46,92],activ:[35,38,39,42,43,45,48,71,98,101,102,113,115,118],actor_id:109,actual:[13,33,51,68,75,81,97,104,105,106,107,108],ad:[1,10,13,38,39,44,49,62,63,67,69,73,74,90,92,94,95,97,107,109,115,116],adam:[49,109],adapt:[0,43],adaptor:[15,16,17,18,19,21,22,23,24,25,26,27,28,29,30],add:[1,3,4,10,13,14,26,40,44,48,49,61,62,68,74,85,92,94,97,102,115,116,118],add_edg:85,add_fram:34,add_inst:13,add_nod:85,add_subplot:103,add_suggest:13,add_symmetri:85,add_track:13,add_video:13,addelementwis:49,addit:[1,13,26,38,44,45,48,49,51,62,73,79,96,99,103,107,113,117],addition:[28,42,48,53,107],additivegaussiannois:49,address:[0,36,46,50],adher:1,adjac:[95,100],adjust:[31,43,46,47,49,53,54,60,64,67,73,76,110],adjust_matlab_index:31,adjust_prefix:40,admin:102,admonit:13,adopt:99,adult:87,advanc:[0,101,102],advantag:[42,48,73,88,105],advic:91,advis:103,affect:[50,92,100,102],affin:[10,48,49,56,65,71,73,76,88,92,96,97,117],after:[3,13,38,39,41,43,45,47,48,49,50,55,65,67,69,71,73,77,81,89,91,92,94,95,96,97,98,99,102,103,104,105,107,112,113,115,116,117,118],ag:0,again:[13,49,106],against:[13,81,86,89,95],agenc:100,aggreg:51,agnost:104,agreement:76,aim:1,akiaiwnjyax4csveh53a:109,al:[41,44,87,95,101,117],albument:53,albumentationsaugment:53,alejandro:77,alert:115,algorithm:[72,76,77,79,80,83,92,109,113,115],alia:[10,13,46,82],alias:[38,45,48],align:[0,10,54,67,73,77],align_inst:3,align_instance_point:3,align_instances_on_most_st:3,aligned_points_arrai:3,all:[0,1,3,4,9,10,11,13,14,15,16,17,18,19,22,23,24,25,26,27,28,29,30,32,33,38,39,42,45,47,48,49,50,51,54,56,59,61,62,65,66,67,68,70,73,74,75,76,78,79,80,81,82,85,87,88,90,92,94,95,96,97,99,100,101,102,103,104,105,106,107,108,110,113,115,116,117,118,119],all_ext:[14,15,16,17,18,19,22,23,24,25,27,28,29,30],all_fram:[9,13],all_inst:[13,54,62],all_instance_confidence_map:54,all_item:4,all_label:[13,23,24],all_labels_adaptor:26,all_peaks_in_kei:60,all_points_arrai:3,alloc:[10,13,78,104,109],allow:[10,13,21,24,26,36,48,49,50,65,73,75,85,89,92,96,100,102,104,106,110,113,119],almost:[33,119],alon:48,along:[3,15,24,28,48,55,56,61,73,76,77,83,99,103,109],alphabet:[35,89,92,95],alphatrackeradaptor:15,alreadi:[1,8,10,13,21,31,33,47,50,63,68,69,73,78,80,81,85,89,90,91,92,95,96,97,98,102,103,106,119],also:[9,13,24,26,33,42,47,48,51,54,59,61,62,63,64,66,67,69,70,72,73,76,77,78,79,81,83,89,90,91,92,94,95,96,98,100,102,103,104,105,106,107,110,113,115,116,117,119],alt:[88,92,102,116,118],altern:[10,78,89,96,102,118],although:[9,10,26,48,94,95,96,102,115,117],altogeth:[49,74,104,108],alwai:[55,66,73,95,102,116],amen:76,among:113,amongst:[89,96],amount:[98,113],amsgrad:49,amz:109,an:[0,1,3,4,6,9,10,12,13,14,15,21,24,26,27,29,33,36,37,38,39,41,42,43,44,45,46,47,48,49,50,52,53,55,57,61,62,63,65,67,68,69,70,71,73,74,75,76,77,78,79,80,81,83,84,85,86,87,88,89,91,92,94,95,96,97,98,100,101,102,103,104,105,106,107,108,110,114,115,116,117,119],anaconda:[101,102,118],analog:10,analysi:[9,12,13,17,23,26,28,29,89,100,107,111,113,119,120],analysis_exampl:[103,104,105,106],analysis_video_0:89,anatom:70,anchor:[13,48,61,71,73,77,88,117],anchor_ind:61,anchor_part:[48,71,106,109],anchor_part_nam:61,angl:[3,49],ani:[0,1,4,6,9,10,13,21,22,26,28,30,33,35,36,38,42,43,46,47,48,49,50,51,55,56,60,61,62,63,65,66,67,68,69,70,73,74,75,76,80,81,82,85,86,89,90,92,94,95,96,97,99,100,101,102,103,107,108,112,113,116,119],anim:[10,15,41,48,59,85,87,88,89,91,92,93,95,99,100,103,107,109,110,112,113,115,116,117],annegret:[87,100,101],annot:[13,15,18,28,35,92],anonym:100,anoth:[3,10,13,33,50,74,80,85,89,90,92,95,96,97,98,106,107,117,119],answer:93,anyth:[13,50,89,90,102,112],anywher:110,aoc:101,ap:107,apart:76,api:[8,26,28,73,76,82,85,100,101,104,105,107,112],app:[101,102,110,118],appear:[0,10,87,89,92,94,98,116,119],append:[10,13,23,24,27,38,46,50,63,65,70,89,105,108],append_suggest:13,append_to_group:4,appendag:95,appl:[90,101,102],appli:[0,4,7,10,32,38,39,44,45,47,48,49,53,55,62,63,67,73,74,76,77,81,89,92,95,97,102,108,113,119],applic:[43,47,48,63,66,73,77,89,103,104,105,106,109,112],appoint:0,approach:[28,48,70,73,76,83,88,92,105,110,113,117],appropri:[0,14,15,16,18,19,22,23,24,25,26,27,28,29,30,33,38,47,65,70,73,80,82,92,97,98,104,105,106,107,109,116],approxim:[63,88,113],apt:[107,109],ar:[0,1,3,4,6,7,8,9,10,11,12,13,17,24,26,27,28,29,32,33,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,59,60,61,62,63,64,65,66,67,68,69,70,72,73,74,76,77,78,79,80,81,82,85,86,87,88,89,91,92,94,95,96,97,98,99,100,103,104,105,106,107,108,109,112,114,115,116,117,119],arang:[83,103],arbitrari:[13,33,50,57],arboresc:85,architectur:[47,48,50,51,62,75,91,96,98,101,102,104,109],architecture_graph:[50,109],archiv:[24,109],are_too_close_funct:80,area:[1,70,83,92,99],aren:[13,80,81,93,94,95,99],arena:87,arg:[10,12,13,16,18,19,22,23,24,25,26,29,30,33,35,48,73,74,81,82,107,109],argument:[9,12,13,24,33,35,43,45,46,61,62,66,67,73,77,80,89,96,109],ari:[100,101],aris:42,arithmet:49,arlo:101,arm64:102,arm:85,around:[13,15,35,43,47,48,49,59,64,71,73,75,77,86,92,98,103,104,105],arrai:[4,6,9,10,13,33,53,66,69,70,73,76,77,81,83,85,103,104,105],arrow:92,art:[42,101],articl:[38,100,101],arxiv:[38,40,43,107],as_format:26,as_nod:85,ascend:80,ask:[1,92,101,116,118],aspect:[47,66,103],assembl:[76,116],assess:115,asset:[33,109],assign:[1,10,13,48,66,68,72,73,76,80,81,83,92,95,119],assign_connections_to_inst:76,assigne:1,assist:[101,113,117,120],associ:[10,13,27,39,42,48,54,61,66,70,71,73,76,81,104,108,113],associt:73,assum:[9,13,33,38,61,63,73,84,85,86,92,102,107,110,117],assumpt:48,async:11,asynchron:50,asyncvideoserv:11,atrou:43,attach:109,attack:0,attempt:[13,25,33,36,50,81],attent:[0,88],attr:[33,52,85,104,107],attr_to_dtyp:86,attribut:[10,13,33,38,42,43,45,47,48,49,50,51,52,54,55,56,59,61,62,63,65,66,67,68,71,73,82,85,105],attrs_cl:52,aug:[104,105,106],augment:[49,88,91,96],augmentation_config:[49,106,109],augmentationconfig:[49,53],author:[28,42,100,101,110],auto:[33,50,89,92,103,109],automat:[10,12,13,25,26,42,47,49,50,55,73,76,90,98,102,110,113],autotun:55,avail:[0,1,9,33,34,38,49,62,68,70,73,78,88,89,90,96,102,103,104,105,106,107,108,109],available_video_ext:33,avc1:24,averag:[48,49,70,76,77,88,92,105,106,107],avg:[70,107],avi:[24,33,34,96,100,118],avoid:[28,54,81,116],avx2:[104,105,106,107,109],avx512_vnni:104,avx512f:[104,105,106,107,109],avx:[104,107],awai:13,await:[103,104,109],aws4:109,ax1:103,ax2:103,ax:[56,73,103],axi:[3,43,54,55,56,61,62,63,64,69,73,76,77,83,103,105],b990gxjt3d3j3jh:106,b9b0638744af3144affdc46668c749128bd6c4f23ca2a1313821c7bbcd54ccdd:109,b:[1,6,62,86,92,102],back:[4,10,33,36,55,62,76,80,81,89,92,100,110],backbon:[38,39,40,42,43,45,48,75,98,106,109,117],backbone_fn:43,backboneconfig:48,backend:[13,33,104,105,106],background:[11,35,87,89,95],backlight:87,backward:[46,85,92],bag:4,balanc:49,ban:0,bar:[73,89,116],bare:33,barekalmantrack:81,base:[4,7,10,13,14,21,33,34,36,38,39,40,41,43,44,45,46,47,48,50,53,63,65,70,71,73,76,77,79,81,82,84,89,92,93,94,95,98,99,100,101,102,113],base_checkpoint:[48,89,109],base_fram:10,base_label:[10,13],base_nod:13,base_port:11,base_run_nam:82,baselin:[50,91,109],baseline_medium_rf:[96,109],baseline_model:106,basemessageparticip:36,basenam:102,basetrack:81,bash:102,basic:[13,33,39,40,61,73,86,95,99,100,105],batch:[13,33,38,39,45,46,48,49,50,55,56,72,73,74,76,77,88,98,101,105],batch_norm:[38,48],batch_norm_before_activ:38,batch_siz:[13,33,49,55,73,74,89,105,109],batcher:55,batches_per_epoch:[49,109],bbox1:83,bbox2:83,bbox:[62,77,84],bear:44,becaus:[10,24,81,85,90,92,96,97,100,102,103,106],becom:62,bed:87,been:[1,8,10,13,36,75,78,80,81,89,92,95,102,105,115,116],beeswax:87,befor:[1,8,9,10,13,32,33,35,38,44,45,48,49,50,55,62,67,69,73,75,77,80,81,82,85,89,91,92,94,96,104,105,106,109,110,115,116],begin:[9,46,49,50,90],behavior:[0,1,33,52,87,92,101,113],being:[15,34,49,56,73,74,85,100,101],believ:1,belong:[4,10,13,62,76,77,108],below:[38,44,47,49,54,59,62,64,70,71,74,76,77,87,92,95,100,102,106,108,110,113],benchmark:[47,70,87,104,105,112],bendalab:28,benefici:[48,49,88],benefit:48,berman:87,best:[0,1,3,6,78,79,80,92,95,96,97,116,117],best_logical_device_nam:78,best_model:[50,73,89,96,104,106,107,109],better:[8,24,73,76,80,88,90,94,107,115,117],between:[3,6,7,9,10,12,13,35,36,43,47,48,56,61,67,68,70,73,76,79,81,83,85,89,92,95,97,107,116,119],beyond:[48,49,73,81,92],bgr:[33,43,47,63,104],bia:38,bias:43,biasadd:[106,109],bibtex:[100,101],big:95,bilinear:[38,39,40,41,44,45,48,104,107],bilinear_upsampl:40,bin:[102,105,109],binari:[59,104,105,106,107,109],binrang:107,biolog:101,bipartit:[79,81],bit:[99,108,117],black:[1,35,89,115],blob:108,block:[38,39,40,41,42,43,44,48,65],block_contract:[44,106,109],block_prefix:38,block_strid:48,block_v1:43,blog:[83,100],blow:104,blue:[33,88,98,115,116],bmp:24,bn:38,bodi:[0,3,48,49,53,61,70,71,73,74,85,95,97,113,116,117,118],bombu:87,bone:70,bookworm:[104,105,106,107,108,109],bool:[3,4,9,10,13,14,15,16,17,18,19,21,22,23,24,25,27,28,29,30,31,32,33,35,36,38,39,40,41,42,43,44,45,47,48,49,50,51,52,53,54,55,56,57,59,60,61,62,63,65,66,67,69,70,71,73,75,78,79,80,81,82,84,85,86],both:[0,1,13,15,24,39,47,48,50,54,56,62,67,68,69,70,73,80,88,91,94,95,96,106,117],bottleneck:[40,43,44,49,55],bottleneck_block:40,bottom:[47,48,67,73,88,89,91,92,97,101,104,110,117],bottomup:[73,96,110],bottomup_config:73,bottomup_lay:73,bottomup_model:73,bottomupinferencelay:73,bottomupinferencemodel:73,bottomupmodeltrain:82,bottomupmulticlassinferencelay:73,bottomupmulticlassinferencemodel:73,bottomupmulticlassmodeltrain:82,bottomupmulticlasspipelin:65,bottomupmulticlasspredictor:73,bottomuppipelin:65,bottomuppredictor:73,bound:[10,15,47,48,49,53,61,62,69,70,71,73,77,79,83,95],boundari:[55,71],bounding_box:10,bounds_error:103,box:[10,15,33,47,48,53,61,62,70,71,73,77,79,83,88,95],box_height:62,box_width:62,brain:101,branch:[1,38,48],brew:102,briefli:70,bright:[49,88,109],brightness_max_v:[49,109],brightness_min_v:[49,109],brisk:4,brisk_bag_of_featur:4,brisk_threshold:4,broadcast:[50,56,69],broadest:100,broadfield:49,browser:[50,109],bsd:101,bu:[104,105,106,109],buf:10,buffer:[49,55],buffer_s:55,bug:1,build:[9,13,33,34,37,38,40,42,52,61,62,63,65,67,73,75,101,102,103,105,106,109,113],builder:[65,82,106,109],built:[75,96,101,113,116],bumblebe:87,bundl:96,button:[1,91,98,109,110,116,117,118],byteord:10,bytes_:9,c57bl:87,c:[10,40,42,62,95,100,101,102,103,104,105,106,108],cach:[13,33,55,79],caff:[43,47,63],cage:87,calcul:[3,6,7,61,62,67,69,70,74,79,83,107],calculate_pairwise_cost:6,call:[4,13,14,15,16,17,18,19,22,23,24,25,26,27,28,29,30,32,33,43,46,55,70,73,74,77,79,81,86,91,96,105,106,110,113],callabl:[6,13,23,24,32,35,43,46,55,57,79,80,81,82],callback:[13,33,82],callback_funct:13,came:100,camera:[87,88,105],can:[1,3,4,7,10,11,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28,29,30,31,33,35,38,39,42,43,45,47,48,49,50,51,53,54,55,56,59,62,64,65,66,69,70,73,74,76,77,78,80,81,85,87,88,89,90,91,92,93,94,95,96,97,98,99,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,119,120],can_read_fil:[14,15,16,17,18,19,22,23,24,25,27,28,29,30],can_write_filenam:[14,15,16,17,18,19,22,23,24,25,27,28,29,30],cancel:13,candid:[48,70,73,76,79,81,89,95,116],candidate_inst:79,candidate_mak:81,cannot:[13,25,26,29,33,43,48,78,85,86,97,102,104,105,106,107,108,109,110],canon:[43,44,45],cao:[76,117],cap:89,capabl:[65,105,106,109],capac:[41,43,44,48],captur:[73,105],care:[4,44,104,105,106,107,108],castro:[87,100,101],catalin:[87,100,101],categor:74,categori:1,cattr:[10,33,85],caus:95,cbmm:101,cc:[102,104,105,106,107,108,109],cd:102,cell:[104,105,106,108],center:[10,13,47,48,49,54,60,61,62,64,65,67,69,71,73,77,82,87,88,91,96,98,103,104,109,117],center_inst:[54,62],center_instance_ind:62,center_on_anchor_part:61,center_on_part:[47,61,106,109],center_pad:67,centered_inst:[48,89,91,104,105,106,107,109,110],centered_instance_id_model:105,centered_pair_smal:33,centered_patch:77,centeredinstanceconfmapshead:[65,71,73,106,109],centeredinstanceconfmapsheadconfig:[48,71,106],centroid:[10,28,47,48,54,59,60,61,62,63,65,67,71,73,77,79,82,88,89,91,95,96,98,104,105,109,110,117],centroid_confid:[60,62],centroid_confidence_kei:60,centroid_confidence_map:[54,60],centroid_config:73,centroid_confmap:73,centroid_confmap_head:65,centroid_crop:73,centroid_dist:79,centroid_kei:60,centroid_model:[73,105],centroid_model_path:73,centroid_v:[73,105],centroidconfmapshead:[65,71,73,109],centroidconfmapsmodeltrain:82,centroidconfmapspipelin:65,centroidcrop:73,centroidcropgroundtruth:73,centroidinferencemodel:73,centroids_kei:62,centroidsheadconfig:[48,71],certain:[81,85,95,98,99],certainli:33,cfg:[70,76,106],chain:[65,73],chanc:36,chang:[1,13,32,39,45,46,47,48,49,62,63,66,68,73,78,85,92,95,97,102,105,106,116,119],changed_on_load:13,channel:[10,33,35,38,39,40,42,43,45,47,48,54,59,62,63,66,67,71,72,73,74,75,76,77,84,96,104,118],channel_ind:74,channels_:33,channels_first:[33,43],channels_last:[33,43,96,104,109],channelwis:[38,74,77],charg:42,chdir:110,check:[1,10,13,15,29,32,33,36,50,52,65,73,78,81,85,86,89,92,95,100,101,102,104,109,110],check_messag:36,checkbox:95,checkerboard:[38,45,48],checkout:1,checkpoint:[46,48,50,82,89,104,109],checkpointingconfig:[50,82],child:10,children:97,chmod:102,choic:[79,80,117],choos:[88,92,94,95,96,97,102,114,116,117,119],chose:110,chosen:[95,110],chrome:109,chunk:[11,28,35],circular:87,circumst:0,citat:100,cite:[100,101],cl:86,claim:42,clarifi:0,class_ind:[59,72],class_map:[48,59,72,73],class_map_threshold:59,class_maps_head:65,class_maps_ind:73,class_maps_output_strid:73,class_prob:72,class_vector:[48,73],class_vectors_head:65,class_vectors_ind:73,classif:[48,71,72,73],classifi:[48,72,73,76,107],classification_model:42,classify_peaks_from_map:72,classify_peaks_from_vector:72,classmapgener:59,classmapshead:[65,71,73],classmapsheadconfig:[48,71],classmethod:[4,10,11,13,16,17,18,19,23,24,25,28,29,33,39,41,42,43,44,45,51,53,61,62,63,65,66,67,71,73,74,75,76,79,81,82,85],classvectorgener:59,classvectorshead:[65,71,73],classvectorsheadconfig:[48,71],clean:[79,81,89],clean_instance_count:[89,108,109],clean_iou_threshold:[89,108,109],cleaner:[8,81],cleanli:[10,13],cleanup:82,clear:[10,13,80,81,87,89,92,101],clear_edg:85,clear_suggest:13,cli:[8,12,73,82,89,100,102,105,106,108,112],click:[88,91,92,94,97,98,102,104,105,106,108,109,110,115,116,117,118,119],client:50,clip:[87,89,92,99,103,107,113,115],clipboard:92,clone:102,close:[1,11,21,33,34,48,80,102,105,112,116],closest:[6,7,73,83],cloth:70,cloud:117,cluster:[4,73,89],cm:[73,77,87],cm_output_strid:73,cmap:[84,103],cmd:[102,118],cmder:[102,118],cnn:[38,41,45],coco:[12,26,70,92],cocoapi:70,cocodataset:[16,70],cocoev:70,code:[15,26,41,70,74,85,90,92,95,100,102,103,110,119],codec:24,codecov:1,coeffici:[73,76,89],coher:48,col:[76,83],colab:[89,91,93,102,103,104,105,106,108,112,117],colab_demo:110,colaboratori:[90,112],collabor:101,collect:[13,33,50,74,100],color:[33,35,84,87,89,92,115,119],color_by_nod:84,color_by_track:84,color_manag:35,colormanag:35,column:[9,10,12,67,73,77,79,80,102,114],column_item:80,com:[38,79,83,102,103,104,105,106,107,108,109],comapar:33,combin:[13,28,48,55,56],come:[33,38,48,53,66,96,102,107],comma:89,command:[5,12,24,26,50,91,92,93,94,95,96,100,102,109,112,116,117,118,119],comment:[0,1],commerci:101,commit:[0,1],common:[21,26,33,34,38,39,40,42,43,45,57,65,76,85,92,95,100,105],common_runtim:[104,105,106,107,108,109],commonli:[47,63,77],commun:[0,1,2,11,100,101,102],compar:[6,13,33,85,86,89,107],compare_instance_list:6,comparison:[50,83,107,112],compat:[46,62,73,85,96,100,102],compens:[43,44,49],compet:80,compil:[104,105,106,107,109],complaint:0,complet:[10,13,15,50,76,85,104,113],complex:[41,44,48,100,102],complex_frame_merg:10,complex_merge_between:[10,13],complic:97,compon:[33,45,76,80,81],compos:[13,53,65],composit:[49,53,86],comprehens:93,compress:[24,34,50,100,102],comput:[10,13,33,38,45,47,48,49,50,54,56,61,62,63,67,69,70,73,74,76,77,79,81,82,83,90,91,101,102,103,104,105,106,107,108,109,110,112],compute_dist:70,compute_dist_metr:70,compute_distance_penalti:76,compute_generalized_voc_metr:70,compute_i:83,compute_instance_area:70,compute_ohkm_loss:74,compute_ok:70,compute_pck_metr:70,compute_visibility_conf:70,concaten:[38,45,48,55,65],concret:104,conda:[1,100,101,103,104,105,106,108,109,110,118],conda_dev:102,conda_jupyt:102,conda_prefix:102,condit:42,confer:77,confid:[10,48,54,56,59,62,64,65,71,72,73,76,77,82,84,88,89,92,96,104],confidence_map:[59,64],confidenti:0,config:[39,41,42,43,44,45,53,61,62,63,65,67,70,71,73,74,75,76,78,82,86,89,96,102,106,110],configur:[38,39,40,41,42,43,44,45,47,48,49,50,51,53,61,62,63,65,67,71,73,75,81,82,89,91,92,93,96,98,99,105,106,107,110,113,117],confirm:[32,36,92,102],confirm_callback:32,conflict:[10,13,38,39,50,94,102],confmap:[48,54,59,64,73,84],confmap_config:73,confmap_model:73,confmap_model_path:73,confmapconfig:71,confmaps_head:65,confmaps_in_kei:60,confmaps_ind:73,confmaps_kei:60,confmaps_out_kei:60,confmaps_strid:60,confus:70,conncet:76,connect:[8,36,37,38,39,41,42,43,44,45,48,71,73,75,76,79,85,89,90,92,95,96,97,103,104,109,113,118],connect_single_track_break:79,connected:76,consecut:[43,48,76],consequ:[100,113],consid:[0,49,70,73,74,76,81,85,89,100],consider:[47,48,49,50,55,80,86,88],consist:[45,48,97,110,116],consol:[73,89,102],constant:48,constitu:85,constraint:[63,67],constrast:49,construct:[0,10,13,31,38,43,75,105],constructor:[35,66,73],consum:50,consumpt:55,contact:[0,89],contain:[4,10,13,15,18,24,28,29,33,38,42,43,47,48,50,51,53,54,55,56,57,59,60,61,62,63,66,67,68,70,72,73,76,77,80,82,83,85,86,87,89,90,91,94,95,96,104,105,106,107,110,112],content:[13,105,109,110],context:[9,13,36,78,98],continu:[55,87,105,115,116,117,118],contract:42,contrast:[48,49,87,88,109],contrast_max_gamma:[49,109],contrast_min_gamma:[49,109],contrib:[104,105,106,107,108,109,110],contribut:[0,59,88,100],control:[8,34,45,48,50,76,84,88,91,92,98,109,110],controller_address:[50,109],controller_polling_timeout:[50,109],conv:[38,39,43,44,45,48],conv_batchnorm:48,conv_block:[38,44],conv_shortcut:43,conveni:[13,39,51,56,62,65,66,67,76,77,78,84,85,102,104,105],convent:89,converg:49,convers:[1,33,89],convert:[1,4,10,13,21,26,33,43,47,55,62,63,66,67,69,73,76,85,86,92,94,100,104,105,114,115],convert_image_dtyp:63,convert_rang:33,convert_rgb_to_bgr:63,convolut:[38,39,40,41,42,43,44,45,48],convolv:77,convs_per_block:[44,106,109],cooldown:81,coor:15,coordin:[9,10,13,15,21,48,49,53,54,56,60,62,64,66,70,72,73,76,77,83,103,104],copi:[10,13,15,36,42,48,49,66,73,82,83,85,86,90,92,94,96,103,110,112,116],copyright:42,core:[53,73,104,105,106,107,108,109,112],corner:[15,83],corr:103,corr_rol:103,correct:[0,13,26,70,71,76,92,93,94,95,97,102,107,113,115,117,119],correctli:[49,50,102,105,106,112,117],correl:103,correspond:[3,4,6,7,9,10,13,32,36,38,54,56,62,63,64,70,72,73,76,77,81,83,85,88,92,95,104,108],cost:[6,39,41,44,47,48,49,55,62,73,79,80,81,83,88,95,104,107],cost_funct:6,cost_matrix:[79,80,83],could:[0,13,14,33,70,91,102,104,105,107,108,109],count:[13,33,45,48,49,73,76,79,80,81,89,95,103,105],counter:50,courtship:[87,103,109,111],courtship_label:109,cov_vel:103,covari:[54,77],cover:[1,48,91,95,100],coverag:1,covert:[13,27],cpu:[57,73,78,86,89,102,104,105,106,107,109],cpu_feature_guard:[104,105,106,107,109],cpu_instruction_set:[104,107],cpuset:86,crash:100,creat:[0,1,4,9,10,11,13,14,15,18,24,26,27,33,38,39,40,41,42,43,44,45,46,47,50,51,53,54,55,56,57,59,60,61,62,63,64,65,66,67,68,69,71,73,75,76,78,79,81,82,84,85,86,89,92,93,94,96,97,101,102,103,104,105,106,108,109,113,120],create_trainer_using_cli:82,creation:[38,43,51],credenti:109,credit:87,crf:[34,100],criteria:[13,47,55,67,92,107],critic:[0,48,73,104,105,106,107,109],crop:[13,35,47,48,49,53,60,61,62,66,67,73,77,88,89,92,98,104],crop_and_res:[62,77],crop_bbox:[53,62,77],crop_height:[53,62,77],crop_offset:73,crop_output:73,crop_sample_ind:72,crop_siz:[47,62,73,77,109],crop_size_detection_pad:[47,109],crop_size_xi:35,crop_width:[53,62,77],cropandres:[104,107],cropper:73,cross:[95,96],crossentropi:74,csv:[9,12,13,18,50,89,92,96,107,109],csvadaptor:17,ctrl:[102,118],cuda:[78,102,104,105,106,107,108,109],cuda_bla:[105,106,109],cuda_dnn:[105,106,109],cuda_gpu_executor:[104,105,106,107,108,109],cudart:[104,107,108],cudart_stub:[104,107,108],cudatoolkit:102,cudnn:[100,102,105,106,109],cull:[8,79,80,81,89,95],cull_frame_inst:79,cull_funct:81,cull_inst:79,curl:[102,105,106],current:[4,13,15,24,27,33,38,43,45,46,48,50,54,56,75,78,80,81,82,85,86,88,90,92,95,98,101,102,105,106,110,116,118],current_groupset:4,current_strid:[38,39,43,45],curv:107,custom:[26,73,74,79,92,93,96,101,104,105,106,112],customiz:[101,112],cv2:[104,107,108],cycl:[92,95,117],d0:74,d:[4,62,73,83,85,86,87,90,92,93,94,95,100,101,102,104,105,106,107,108,109],d_0:56,d_n:56,dai:87,damag:42,dan:[87,100,101],dark:115,dashboard:50,data:[4,5,6,7,9,10,11,13,15,16,17,18,21,24,25,26,27,28,29,32,33,35,36,43,46,48,49,50,51,70,73,81,82,85,86,87,88,89,91,92,93,94,96,97,98,99,107,113,119,120],data_config:65,data_dict:9,data_path:[31,89,109],data_provid:[65,73],data_read:82,data_structur:[104,105,106],dataconfig:[47,51,65],datai:103,dataread:82,dataset:[6,7,9,12,15,16,17,18,19,20,23,24,26,27,28,29,31,33,35,46,47,49,53,54,55,56,57,59,60,61,62,63,65,66,67,68,70,73,82,85,91,92,96,101,103,104,105,106,107,111,113,114,117,118,120],dataset_h5:33,dataset_op:[53,54,56,57,59,60,61,62,63,65,66,67,68,73],datasetv2:[53,54,55,56,57,59,60,61,62,63,65,66,67,68,73],datax:103,date:[82,96,109],datetim:[13,27],david:[100,101],de:102,deactiv:102,deal:42,debian:[104,105,106,107,108,109],dec:38,decid:[91,92,94],decod:[38,39,41,42,44,45,48,51,85,86,103],decode_preview_imag:86,decoder_batchnorm:48,decoder_features_strid:38,decoder_filt:[42,48],decoder_filters_r:48,decoder_stack:[38,39,41,44],decoderblock:[38,39],deconv:40,deconv_filt:40,deconv_modul:40,deconvolut:40,decor:52,decoupl:51,decreas:[40,41,44,48,49,55,81,88],deem:0,deep:[13,15,41,85,86,100,101,104,105,106,107,109,113],deeplabcut:[12,92,100],deeplabv2:43,deepposekit:[12,92],def:[103,105],default_ext:[14,15,16,17,18,19,22,23,24,25,27,28,29,30],default_suffix:13,defin:[0,10,15,28,38,39,43,44,45,48,53,54,56,59,65,69,71,73,75,76,85,96,97,103,104,105,106,113],definit:[28,39,43,71],deflat:109,degre:49,delai:50,delet:[13,81,82,85,92,94,104,106,109],delete_edg:85,delete_nod:85,delete_suggest:13,delete_symmetri:85,delimit:40,deliv:101,delta:77,demand:90,demo:110,demonstr:[39,107,112],deng:77,deni:[107,109],denot:[9,10,13,42,62,70,72,73,76,83,107],dens:[38,55,92],densenet121:[42,48],densenet169:[42,48],densenet201:[42,48],densenet:[38,47,63],densiti:[48,77],dep:[105,106,109,110],depend:[34,45,50,54,59,69,88,90,92,96,100,102,104,105,106,107,108,110,113],deprec:[8,24],depth:86,dequ:81,deriv:103,derogatori:0,descend:[49,70],describ:[12,13,38,39,43,44,50,65,73,75,76,77,82,93,97,114,120],describe_tensor:[69,73],descript:[13,27,48,51,65,69,70,85,87,104,106,109],descriptor:4,deselect:92,deseri:[4,13,14,15,16,18,19,22,23,24,25,27,28,29,30,33,51,85],design:[51,93],desir:[4,13,39,41,43,44,45,48,50,53,61,62,63,67,81,91,95,108,113,117],dest_nam:85,destin:[56,71,76,85,95,97,102],destination_nod:[48,71],detail:[0,7,13,16,38,39,41,44,70,73,76,88,89,91,95,100,113,115],detect:[10,12,13,16,26,33,47,48,49,50,73,76,81,84,88,89,92,97,102,104,107,108],detect_video:13,detector:73,determin:[0,6,13,14,15,16,17,18,19,21,22,23,24,25,27,28,29,30,33,35,39,41,44,45,47,48,50,66,67,70,71,73,79,80,81,92,95,98,109,116],determinist:48,deutsch:[100,101],dev:[3,102],dev_requir:1,develop:[1,51,100,101,102,105,112],deviat:[3,47,49,54,56,59,63,70,77],devic:[57,78,102,104,105,106,107,108,109],device_ind:78,device_nam:[57,60],device_typ:102,diagnosi:70,diagnost:102,diagon:54,diagram:62,dialog:[14,15,35,88,89,91,98,110,117,119],dic:86,dict:[4,7,9,10,13,15,22,24,31,36,46,51,55,57,65,68,69,70,73,76,79,80,81,83,85,86,107],dict_a:13,dict_b:13,dict_cut:86,dictionari:[4,7,9,10,13,15,21,24,26,36,43,50,51,55,57,58,65,66,68,69,70,73,79,81,83,85,86,107],did:89,didn:[36,100,103,109,116],diez:[87,100,101],differ:[0,12,13,15,26,33,38,42,43,44,45,47,49,61,64,66,70,73,76,81,83,85,88,91,92,93,95,96,99,102,103,104,105,106,107,110,116,119],differenti:103,difficult:[48,49,95],difficulti:[70,107],dilat:[43,48],dilation_r:43,dim:[103,104,107],dimens:[47,48,54,56,63,66,67,69,70,71,73,76,83,103],direct:[13,45,48,56,71,76,77,92],directli:[33,45,47,48,55,73,76,82,89,92,102,103,105,107,110,118],director:101,directori:[13,15,26,33,46,50,51,73,86,89,90,92,96,102,104,106,107,108,109,110],directoryimgstor:33,direntri:86,disabl:[0,73,78,109],disable_gpu_prealloc:[73,78],disable_prealloc:[78,104,105],disambigu:48,discard:[73,76],discover:78,discuss:[2,95,100,101,102],dish:87,disk:[13,33,46,50,51],dispatch:[14,15,16,17,18,19,21,22,23,24,25,27,28,29,30],displac:[7,76,81],displai:[50,73,89,103,108,115],disposit:109,dist:[70,107],dist_arrai:6,dist_penalty_weight:[73,76,89,109],distanc:[3,6,7,48,56,70,73,76,79,83,89,95,107],distance_to_edg:56,distinct:[26,48,80,81,88,90,92,95,96,103,111,116,117],distinctly_color:[35,89],distinguish:[21,87],distribut:[42,48,49,54,56,59,69,77,92,102,107],dists_dict:70,divid:[54,63,64,73,76,77],divis:[38,43,47,62,67,73],dl:106,dlc:45,dlerror:[102,104,107,108],dload:[105,106],dlopen:[104,107,108],dm:109,dn:74,doc:[7,28,101,102,103],dock:92,docstr:[1,39,41,44],document:[1,42,43,51,76,89,108],doe:[13,26,42,44,46,48,50,53,54,56,59,61,62,65,68,85,86,89,104,107,108,115],does_match_ext:[14,15],does_read:[14,15,16,17,18,19,22,23,24,25,27,28,29,30],does_writ:[14,15,16,17,18,19,22,23,24,25,27,28,29,30],doesn:[1,3,10,13,33,55,86,91,92,96,97,98,115],don:[10,12,29,33,74,86,89,90,91,99,100,102,104,105,106,109,110,112,117],done:[35,55,61,62,68,73,81,90,112,117,119],dot:[76,84],doubl:[38,45,48,92,94,97,115,116,118,119],down:[1,41,44,48,49,50,72,73,76,88,89,91,95,96,100,101,104,105,109,116,117,118],down_block:[39,40,41,42,43,44,106,109],down_convs_per_block:41,downgrad:102,download:[87,89,90,100,102,103,104,105,106,107,108,110,111,112],downsampl:[39,40,42,43,44,48,67,88],downsampling_lay:40,downsamplingblock:39,downsid:95,downstream:[55,66],dpi:[84,105,107],dpkg:[107,109],draft:1,drag:[88,92,98,116,118],draw:[35,89],drawn:[4,88,92,95],drive:[90,92,96,103,106,108],driver:102,drop:[10,36,55,65,95,117,118],drop_old:57,drop_remaind:55,dropbox:[90,106],dropdown:119,drosophila:[87,103,109,111],drwxrwxr:[104,105,106],ds:73,ds_index:66,ds_input:[55,61,62,63,67,68],ds_store:109,dset_nam:103,dso_load:[102,104,107,108],dst_node:[76,85],dst_node_ind:[76,85],dst_peak_ind:76,dt:105,dt_float:[104,107],dt_int32:[104,107],dt_uint8:[104,107],dtype:[10,33,43,53,54,56,59,61,62,63,64,66,67,69,72,76,77,86,104,105,106,107,109],due:[76,104],dummi:[33,73],dummyvideo:33,duplic:[24,85,86],dure:[13,33,38,46,47,48,49,50,51,55,65,71,73,74,76,89,91,95,98,102,104,105,107,109,110,115,117],dx_i:77,dy_i:77,dynam:[20,73,74,102,104,107,108],e:[0,1,3,6,10,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28,29,30,33,37,38,43,45,48,49,50,53,54,55,56,59,61,62,66,67,68,69,70,72,73,74,77,78,79,80,81,85,86,88,89,91,92,93,94,95,96,101,102,104,108,109,110,113,118],each:[3,4,6,7,10,13,24,27,28,32,33,36,38,39,40,41,42,43,44,45,46,48,49,50,53,54,55,56,57,59,61,62,64,65,66,68,70,71,72,73,74,76,77,78,79,81,83,85,88,89,90,91,92,95,96,97,98,102,103,104,105,108,109,110,113,117],eager:[74,78],earli:[36,47,49,50,106,109,110],earlier:[7,81],early_stop:[49,109,110],earlystoppingconfig:[49,106,109],easi:[1,4,48,49,70,74,75,78,91,95,96,97,101,102,104,107],easier:[8,48,51,70,74,88,95,102,113],easiest:[70,90,96,114],easili:[51,89,102],east:109,echo:102,eclos:87,edg:[1,3,9,35,48,49,56,71,76,84,85,89,92,95,97,104,118],edge_destin:56,edge_ind:[9,12,56,73,76,85],edge_inds_sampl:76,edge_is_wedg:[35,89],edge_nam:[9,12,85],edge_peak_ind:[73,76],edge_peak_inds_sampl:76,edge_sourc:56,edge_to_index:85,edge_typ:76,edgeconnect:76,edges_ful:85,edgetyp:[76,85],edit:[0,51,91,92,94,95,96,102,106,112,115,119],editor:[91,96,106],edna:[100,101],edu:[0,1,99,100,101],educ:90,effect:[33,37,38,39,40,41,43,44,45,47,48,49,54,55,56,59,61,63,73,98,102,119],effici:[49,54,78],efficientnetb0:[42,48],efficientnetb1:[42,48],efficientnetb2:[42,48],efficientnetb3:[42,48],efficientnetb4:[42,48],efficientnetb5:[42,48],efficientnetb6:[42,48],efficientnetb7:[42,48],eg:1,eigen:[104,107],either:[1,9,10,18,33,35,36,50,54,59,62,67,68,70,73,77,85,89,92,94,95,96,102,116],elaps:[35,81,89],electron:0,element:[10,13,43,45,48,53,54,55,56,57,59,60,61,62,63,66,67,68,73,76,77,86],elementwis:54,eleni:[87,100,101],elimin:55,els:[13,76,110],elsewher:[90,92],email:99,embed:[13,33,39,87,104],embed_all_label:[13,104],embed_suggest:13,embedded_frame_ind:33,empathi:0,empti:[9,13,33,40,66,89,116,118],en:76,enabl:[4,33,42,48,49,50,54,55,73,78,89,95,100,102,104,105,106,107,109,112,113],enable_gpu_prealloc:78,enable_prealloc:78,enable_source_video:33,enc:38,encapsul:[73,79],enclos:87,encod:[33,38,39,41,42,44,45,48,51,77,84,85,86,89,92,95,100],encoder_decod:[39,41,44],encoder_features_strid:38,encoder_stack:[38,39,41,44],encoderblock:[38,39],encoderdecod:38,encourag:[1,48,49],end:[9,13,38,39,44,46,49,50,51,55,63,65,86,92,95,100,103,113],endpoint:50,enforc:[73,76,89],engag:87,engin:[43,60,65,73,75,82,83],enhanc:1,enough:[81,88,93,95,99,117],ensur:[4,13,24,44,47,50,52,62,67,68,73,76,78,80,87,96,100,102,119],ensure_float:[63,73],ensure_grayscal:[47,63,73,109],ensure_int:63,ensure_list:69,ensure_min_image_rank:63,ensure_rgb:[47,63,109],entail:77,enter:[102,117,118],entir:[4,9,13,27,33,38,49,54,66,77,89,90,92,94,96,105,106,107,115,116,120],entireti:92,entiti:[10,28],entrypoint:[12,73],enumer:103,env:[1,86,102,104,107,108,109],environ:[0,78,87,101,102,103,104,107,118],environment_mac:102,environment_no_cuda:102,epoch:[46,49,50,55,88,98,106,109,110,117],equal:[33,39,40,41,44,45,49,55,62,67,84,89],equival:[26,37,38,55,62,69,77],error:[1,33,52,70,76,78,98,100,102,104,105,106,107,108,109,113,115],escap:92,especi:[15,18,48,49,50,55,62,66,88,92],essenti:97,establish:85,estim:[41,48,70,76,77,81,85,107,109,112,113,117],et:[41,44,87,95,101,117],eta:109,etc:[1,4,13,33,45,86,102,104,117],ethnic:0,ethogram:103,euclidean:[70,76,83],eval:[102,106,107,109],evalu:[48,49,62,65,70,73,76,77,82,92,106,109],evaluate_model:70,even:[13,38,47,48,49,54,56,61,62,68,74,79,92,95,102,116],evenli:[73,92,116],event:[0,42,46],ever:92,everi:[1,3,6,13,27,38,39,43,45,48,49,50,55,70,89,92,95],every_epoch:[50,109],everyon:[0,1],everyth:[10,81,92,117],ex:[13,27,73],exact:[50,69,100,107],exactli:[43,62,70,77,81,88,89,95,100,103],exampl:[0,13,21,22,26,30,33,38,45,46,47,49,50,53,54,55,57,58,61,62,65,66,67,68,69,73,74,76,77,82,83,85,87,88,90,91,92,96,100,104,106,110,111,113,117],example_gt:73,example_ind:66,example_indic:[66,68],except:[10,13,26,28,38,55,73,74,97,101,102],exclud:[24,48,76,79,81,86],exclude_nod:86,exclude_non:86,exclus:13,execut:[49,74,76,82],exist:[1,13,26,27,32,33,38,39,46,50,53,85,86,92,96,97,102,106,108,112],exit:89,expand:[43,47,63,69],expand_dim:105,expand_to_rank:[63,69],expans:[43,55],expansion_r:40,expect:[0,1,9,12,13,50,53,54,55,56,57,59,60,61,62,63,67,68,70,71,73,76,77,89,103,114],experi:[0,1,48,87,100,105,108,112,113],experiment:[55,95],expir:109,explain:[91,95,96],explan:[88,114],explicit:[0,62,67,78],explicitli:[47,49,50,51],explor:[104,105,106,108],export_cli:73,export_csv:13,export_model:[73,89],export_nwb:13,export_path:89,exportanalysisfil:26,exported_model:[73,89],express:[0,42],ext:26,extend:[4,10,87],extend_from:13,extend_group_item:4,extend_ownership:4,extens:[12,13,14,15,16,17,18,19,22,23,24,25,26,27,28,29,30,33],extern:[13,50,70,92,100,102],extra:[4,47,48,102],extract:[13,38,39,42,73,86,103],extran:73,extrapolation_valu:[104,107],ey:70,eyel:[103,104,105,106,109],eyer:[103,104,105,106,109],f8:10,f:[89,95,102,103,104,105,107,114],face:[0,15,51,99],facecolor:[105,107],facilit:[33,76],fact:95,factor:[34,40,41,43,44,45,47,48,49,54,62,64,66,67,70,73,74,81,84,107],fail:[1,49,50,55,70,89,95,100,102,109,110,119],fair:0,fairli:[3,87,91],faith:0,fake:33,falkner:[87,100,101],fall:1,fals:[3,9,10,13,16,21,23,24,27,33,35,36,38,40,41,42,43,44,45,47,48,49,50,52,54,55,56,59,61,62,63,65,66,67,69,70,73,75,79,81,82,84,85,86,89,92,102,103,104,105,106,107,109],false_neg:70,familiar:94,far:[13,28,76,93,95,99,107],fashion:48,fast:[41,43,81,101,104,105],faster:[13,41,44,73,79,89,110,115],fc:38,featur:[4,37,38,39,42,43,45,47,48,70,71,79,88,92,100,113,116],features_output_strid:43,featuresuggestionpipelin:4,feautur:1,feedback:115,feel:[1,99,100,116],femal:[87,105,116],fetch:[11,65],few:[48,49,74,88,90,92,98,101,102,104,113,119],fewer:[38,45,48,55,68,76,81,97],ffmpeg:[33,34,100],field:[10,39,41,43,44,48,50,52,56,65,67,71,73,75,76,87,88,92,96,97,98,109,110,117],fifth:15,fig:103,figsiz:[103,105,107],figur:[10,46,82,84,103,105,107],file:[1,5,9,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,42,43,47,48,50,51,66,70,73,82,85,86,87,90,91,94,95,96,100,102,103,104,105,106,107,108,109,110,111,112,113,114,118],file_h5:33,filehandl:[14,15,16,17,18,19,22,23,24,25,27,28,29,30],filenam:[8,12,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28,29,30,32,33,34,35,46,51,66,70,85,86,89,90,91,96,102,103,104,105,109,110],filename_a:86,filename_b:86,filenames_prefix_chang:32,filenotfounderror:[33,86],filepath:[46,47],filetyp:13,fill:[55,73,105,116],fill_miss:[10,103],fill_valu:103,filter:[13,38,39,40,41,42,43,44,45,48,55,57,66,73,76,80,81,89,103,106,108,109],filter_connection_candid:76,filter_fn:55,filter_increas:[39,48],filters_increas:48,filters_r:[41,44,48,106,109],final_model:[50,96,109],final_pass:81,find:[3,6,10,13,15,18,25,32,33,45,48,49,57,60,61,70,73,76,77,79,80,85,89,90,92,95,101,105,110,117,119],find_changed_subpath:32,find_fancy_frame_idx:13,find_files_by_suffix:86,find_first:13,find_fram:13,find_frame_pair:70,find_global_peak:77,find_global_peaks_integr:77,find_global_peaks_rough:77,find_global_peaks_with_offset:77,find_head:73,find_instance_crop_s:62,find_last:13,find_local_peak:77,find_local_peaks_integr:77,find_local_peaks_rough:77,find_local_peaks_with_offset:77,find_neighbor:85,find_nod:85,find_offsets_local_direct:77,find_padding_for_strid:67,find_path_using_path:13,find_peak:73,find_points_bbox_midpoint:61,find_suggest:13,find_track_occup:13,find_unique_nod:85,finder:76,findinstancepeak:73,findinstancepeaksgroundtruth:73,fine:[39,43,49,74,88,116],finer:[49,76,81],finish:[13,50,89,94,96,98,102,106,109,110,115],finish_complex_merg:13,finish_timestamp:109,first:[6,7,9,12,13,15,17,29,33,35,38,39,41,43,44,45,49,53,54,55,56,62,63,65,66,69,73,78,79,80,81,85,86,89,91,92,94,95,97,102,103,104,105,106,107,108,109,110,113,114,115,117,118,119,120],first_choice_match:79,first_conv_strid:39,first_gpu:109,first_inference_tim:105,fit:[3,42,92,103],fit_predict:103,fit_track:8,five:[35,89,92,95],fix:[1,3,31,33,43,46,47,48,50,63,67,69,86,95,120],fix_rel_path:31,fixup_path:33,flag:[36,84,89,104,105,106,107,109],flat_dict:86,flatnonzero:103,flatten:[4,54,56,69,71,103,107],flatten_channel:56,flatten_offset:54,flexibl:[38,101,105],fli:[87,103],flies13:[104,105,107],flip:[47,49,53,63],flip_horizont:[49,109],flip_instances_lr:53,flip_instances_ud:53,float32:[10,43,53,54,56,59,61,62,63,64,66,69,72,73,76,77,105,106,109],float64:[77,86,105],floor:87,flow:[73,81,89,95,96,108],flow_shift_inst:81,flowcandidatemak:81,flowmaxtrack:[81,89],flowmaxtrackscandidatemak:81,flowtrack:81,fly:87,fly_clip:[105,108],fly_id:103,fly_node_loc:103,fly_node_veloc:103,fma:[104,105,106,107,109],fn:[13,70,107],focu:[48,49,74],focus:0,folder:[1,13,33,46,48,50,51,70,73,82,89,90,91,102,104,105,106,107,109,118],follow:[0,1,13,28,33,38,42,43,48,55,62,70,85,87,97,99,100,101,102,103,104,105,106,107,108,109],font_scal:103,foo:[26,86],footag:113,for_object:26,forc:[24,92,105,106,109,110],forelegl4:[103,104,105,106,109],forelegr4:[103,104,105,106,109],forg:[101,102,104,105,106,108],forget:[105,106],fork:1,form:[10,13,38,39,43,44,45,48,50,53,55,56,57,65,68,70,71,73,76,85,97,105,108],format:[9,10,12,13,31,33,43,51,62,63,65,73,85,86,89,91,92,95,96,104,105],format_id:21,formatted_ext_opt:[14,15],former:73,forum:100,forward:[73,92,103],forward_pass:73,foster:0,found:[3,13,25,26,33,38,55,70,73,76,81,85,86,95,98,102,103,105,106,109,110,117],fourth:[15,92],fp:[33,34,35,70,87,89,101,107,109],fraction:[13,47,68,73,76,89,106,109],fragment:80,frame:[4,6,7,9,10,11,12,13,15,17,18,24,29,33,34,35,47,48,56,58,62,66,68,70,73,76,79,80,81,84,87,88,89,90,91,92,93,94,95,96,97,98,99,100,103,104,105,106,108,109,112,113,115,117,120],frame_count:[103,105],frame_data_format:[23,24],frame_gt:70,frame_idx:[4,10,11,13,70,104,105],frame_ind:[58,66],frame_index:[13,33],frame_indic:[13,33],frame_list:86,frame_numb:33,frame_pair:70,frame_pr:70,frame_predict:105,frame_rang:[6,13],frame_str:86,framegroupset:4,frameitem:4,framematch:[79,81],framer:34,frames_per_chunk:11,frames_record:105,framework:[37,38,39,42,43,44,45,53,54,55,56,57,59,61,62,63,64,65,67,69,71,72,73,74,76,77,82,83,101],free:[0,1,42,90,99,100,102,109,116],freeli:87,freez:[50,73],frequenc:[50,104,107],frequent:87,fresh:[36,102],friend:100,from:[0,1,2,3,4,6,7,9,10,11,13,14,15,17,18,21,24,26,27,28,29,31,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,53,54,55,59,61,62,63,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,91,92,93,94,95,96,98,100,101,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119],from_arrai:10,from_block:65,from_candidate_inst:79,from_config:[39,41,42,43,44,45,53,61,62,63,67,71,74,75,76,82,106],from_cost_matrix:79,from_dict:85,from_filenam:[33,66],from_filepath:66,from_frame_idx:13,from_hdf5:33,from_image_filenam:33,from_inst:10,from_json:[51,85],from_json_data:24,from_json_dict:51,from_label:82,from_media:33,from_model_path:73,from_nam:85,from_names_and_edge_ind:85,from_numpi:[10,33],from_pipelin:65,from_point:10,from_pointsarrai:10,from_predict:10,from_skeleton:53,from_trained_model:73,from_unlabeled_suggest:66,from_user_inst:66,from_user_labeled_fram:66,from_video:11,fron:110,front:13,frontend:[107,109],frozen:[43,48,73,89],frozen_graph:73,fruit:87,fssl:102,full:[10,11,13,15,18,26,29,35,43,47,48,55,62,65,66,67,69,73,76,78,86,87,90,96,98,101,103],full_imag:67,full_image_height:62,full_image_kei:67,full_image_width:62,full_video:[15,18],fulli:[38,42,43,44,48,71],func:57,functon:43,fund:[100,101],furnish:42,further:[0,49,88,113],fuse:[38,45,48],futur:[46,96,115],g:[1,6,10,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28,29,30,33,37,45,48,50,53,55,62,66,67,70,72,73,74,78,79,85,86,89,90,92,95,96,101,102,103,104,108,113],gain:49,gamma:49,gammacontrast:49,gap:81,gather:61,gather_nd:76,gaussian:[48,54,56,59,69,77],gaussian_nois:[49,109],gaussian_noise_mean:[49,109],gaussian_noise_stddev:[49,109],gaussian_pdf:69,gender:0,gener:[1,4,9,11,13,22,27,28,30,35,38,39,41,43,44,45,47,48,49,50,51,53,54,55,56,59,62,64,65,66,68,69,70,73,74,76,77,79,81,82,83,84,88,89,92,94,95,96,97,100,101,102,104,105,106,107,108,109,110,112,113,115,116],generaliz:38,generate_skeleton_preview_imag:84,genericjsonadaptor:[22,26],genuineintel:[104,107],geometr:49,geometri:48,get:[1,2,3,4,7,9,10,13,17,29,33,35,36,38,42,45,62,65,76,78,79,85,86,88,89,90,92,94,95,96,98,99,103,104,105,106,108,109,110,112,115,116,117,119],get_all_gpu:78,get_all_items_from_group:4,get_alpha_tracker_frame_dict:15,get_alpha_tracker_instance_dict:15,get_alpha_tracker_point_dict:15,get_available_gpu:78,get_candid:81,get_config:74,get_config_fil:86,get_connection_candid:76,get_current_gpu:78,get_default:86,get_edge_point:56,get_edges_as_np_str:9,get_filtered_frame_idx:13,get_fram:33,get_frame_count:13,get_frames_saf:33,get_gpu_memori:78,get_instance_anchor:61,get_instance_score_seri:7,get_instances_point:3,get_item_data:4,get_item_data_idx:4,get_item_group:4,get_keras_model_path:73,get_mean_and_std_for_point:3,get_model_output_strid:73,get_most_stable_node_pair:3,get_next_suggest:13,get_nodes_as_np_str:9,get_occupancy_and_points_matric:9,get_package_fil:86,get_paf_lin:76,get_point_count_seri:7,get_point_displacement_seri:7,get_point_score_seri:7,get_points_arrai:10,get_primary_point_displacement_seri:7,get_raw_imag:4,get_ref_inst:81,get_shifted_inst:81,get_shifted_instances_from_earlier_tim:81,get_stable_node_pair:3,get_suggest:13,get_symmetri:85,get_symmetry_nam:85,get_template_points_arrai:3,get_timestamp:82,get_track_count:13,get_track_instance_match:80,get_track_occup:13,get_tracks_as_np_str:9,get_unlabeled_suggestion_ind:13,get_video_suggest:13,get_video_track_occup:13,git:[1,102],github:[1,99,101,102,103,108,109],githubusercont:[102,103,109],give:[7,73,85,88,89,90,92,95,96,98,102,110,115,116],given:[1,3,6,9,10,13,24,26,27,32,33,48,62,70,73,75,76,80,81,84,85,88,89,102,107,108],global:[48,49,60,73,77],global_pool:[48,71],globalpeakfind:60,go:[1,11,34,55,80,81,95,96,102,105,116,117],goal:[85,115,117],goe:[1,95,119],golai:103,good:[0,1,22,26,30,36,49,70,79,80,81,88,91,93,95,99,112,117],googl:[1,90,102,103,106,108,109],googleapi:[104,105,106,107],gordon:87,got:[79,117],gotten:95,govern:1,gpl:24,gpu:[49,55,73,78,88,89,90,98,101,104,105,106,107,108,109,112,117],gpu_devic:[104,105,106,107,108,109],grab:105,grab_fram:105,grabber:105,grace:[87,100,101],gracefulli:0,gracious:42,gradient:[49,73,77,88],grant:[42,100],graph:[48,56,71,73,74,76,85,89,92,97,105,117],graph_symmetri:85,graphic:[50,115],grappler:[104,107],grayscal:[33,42,43,47,63,66,73,104,118],grayscale_to_rgb:63,great:[33,106,107,112],greater:[38,45,47,48,69,73,76,89,95],greedi:[73,76,79,80,81,89,95,108],greedili:70,greedy_match:[79,81],green:[33,115],grei:[35,89,115,119],grew:28,grid:[54,56,59,64,66,69,73,77,105],grid_height:[54,56,59,64,69],grid_width:[54,56,59,64,69],gridlin:21,gritti:106,ground:[6,60,70,73,74,84,89,92,107,109,113],group:[4,10,48,49,72,73,74,76,81,83,85,86,88,97,100,101,105,107,116,117],group_arrai:83,group_class_peak:72,group_data:4,group_exampl:58,group_examples_it:58,group_inst:76,group_instances_batch:76,group_instances_sampl:76,group_set:4,groupset:4,groupset_data:4,grow:1,growth:[78,102,105,106,109],gt:107,guarante:[13,15,18],guess:94,gui:[9,10,13,25,26,35,50,90,91,93,94,95,96,100,101,106,110,111,112,113,115,118],gui_progress:35,guid:[13,27,73,76,89,91,96,100,101,104,107,108,117,119],guidelin:[1,100],gvoc:70,h264:[24,100],h5:[12,13,26,33,48,50,73,89,92,95,96,103,104,106,107,109,111,114,118],h5file:86,h5py:[33,85,86,103,114],h5read:114,h:[35,84,87,89,100,101],ha:[1,3,9,10,12,13,26,27,33,38,39,40,43,44,47,48,50,52,55,61,65,68,69,73,75,76,78,81,85,88,89,90,92,95,96,98,102,109,115,116,117,119],had:[55,81,90,102,104,105,106,107,108,109],hand:[15,85,91],handi:[66,92],handl:[14,15,16,17,18,19,22,23,24,25,27,28,29,30,33,46,73,76,81,85,105,106],handshak:36,hang:100,happen:[26,78,104],happi:[93,95],harass:0,hard:[49,70,74,88,92,95],hard_keypoint_min:[49,109],hard_to_easy_ratio:[49,74,109],harder:95,hardest:70,hardkeypointminingconfig:[49,74],hardwar:90,harm:0,has_edg:85,has_embedded_imag:33,has_fram:13,has_missing_video:13,has_nod:85,has_offset:82,has_only_first_choice_match:79,has_predicted_inst:10,has_tracked_inst:10,has_user_inst:10,hash:85,hashabl:86,hassl:108,have:[0,1,3,4,8,9,10,13,24,26,29,32,33,36,38,39,42,43,44,47,48,49,50,53,54,55,56,57,59,60,61,62,63,66,67,68,69,70,72,73,76,79,80,81,85,86,88,89,90,91,92,93,94,95,96,97,98,99,102,103,104,105,106,107,108,110,112,115,116,117,118,119],haven:[95,98,102,118],hdf5:[9,12,13,19,21,24,26,28,29,33,85,86,89,96,103,104,111,112,114],hdf5video:[13,33],head:[2,3,13,27,38,40,43,45,48,65,73,75,76,102,103,104,105,106,109],head_index:103,head_loc:103,header:92,header_data:36,headless:73,headsconfig:48,hear:100,heart:1,heatmap:77,heavili:48,height:[10,15,33,34,35,38,39,43,44,45,47,48,49,53,54,56,62,63,66,67,69,72,73,75,76,77,84,89,96],height_:33,held:47,help:[1,2,38,45,48,49,66,73,74,89,95,99,101,107,108,113],helper:[33,86],here:[1,21,33,70,73,77,80,86,87,88,92,95,96,97,100,103,106,107,108,110,111,112,113,114],herebi:42,heurist:[49,89,95,115],hexagon:87,hidden:78,hide:[78,92,104],high:[13,28,33,49,50,51,55,65,73,76,81,82,104,105,113],higher:[34,38,39,40,41,44,45,47,48,49,55,59,69,73,75,88,95,107],higher_hrnet_model:40,higherhrnet:40,highest:[40,49,72,89],highli:100,highlight:92,hindlegl4:[103,104,105,106,109],hindlegr4:[103,104,105,106,109],hint:[1,105,106,109,110],hip:70,hist:105,histori:73,histplot:107,hit:[1,95,110,117,118],hmac:109,hoc:48,hog:4,hog_bag_of_featur:4,hold:[10,21,33,75,76,92,95,116],holder:42,holist:107,home:[87,92,101,102,104,107,108,109],homebrew:102,hook:[10,85],horizont:[10,53],host:[90,109],hostnam:50,hotkei:95,hour:90,hourglass:[38,45,48,77,109],hourglassconfig:[39,48],hover:88,how:[8,11,35,39,47,48,50,67,70,81,86,87,89,90,91,92,93,94,95,96,97,98,99,103,104,105,106,107,108,110,112,113,115,116,117],howev:[48,92,100,106,113],hpc:89,hrnet32:40,http:[0,16,38,40,43,73,79,83,102,103,104,105,106,107,108,109],human:[14,15,16,17,18,19,22,23,24,25,27,28,29,30,51,77,101,113,117],hungarian:[72,79,83,89,95],hungarian_match:[79,81],hyperpamet:91,hyperparamet:[47,49,91,93,98,99,106],hyphen:89,i:[3,8,13,24,33,38,43,48,49,54,56,59,61,65,66,68,69,73,77,79,80,81,85,88,89,91,92,93,94,95,96,97,102,103,104,105,106,107,108,109,110,118],iccv:70,icloud:90,icon:109,id:[4,21,66,76,89,105,106,109,112],idea:[1,80,91,100,115,117],ideal:[10,55,97],idempot:74,ident:[0,6,38,43,44,48,55,66,68,69,71,73,80,81,84,85,87,89,92,93,95,96,103,115,119],identifi:[10,13,27,48,76,88,92,116],idl:90,idx:[4,6,13,33,105],idx_to_nod:85,idx_train:68,idx_val:68,ignor:[6,9,10,38,47,50,61,70,76,77,85,100,104,107,108],ignore_file_not_found:86,ii:8,illumin:49,illustr:112,imag:[4,10,13,15,18,24,33,35,39,40,42,43,46,47,48,49,50,53,54,56,59,62,63,66,67,69,73,76,77,81,82,84,85,86,87,88,89,90,91,92,95,96,97,98,104,105,106,107,108,110,113,116,117],image_dir:[15,18],image_height:[62,67,69],image_kei:[53,62,63,67],image_width:[62,67,69],imagenet:[42,43,47,48,63],imagenet_mod:[47,63,109],imagenet_preproc_v1:43,imageri:0,img:[33,34,35,73,77,81,84,104,105,108],img_b64:86,img_dir:16,img_height:53,img_scal:[81,89,108,109],img_to_cv:35,img_width:53,imgaug:49,imgfig:84,imgstor:[13,24,33],imgstore_from_filenam:33,imgstorevideo:[13,33],immedi:[54,95],immut:85,impact:[49,50,73,74,100],impatien:87,implement:[14,26,33,38,39,40,41,42,43,44,46,51,63,67,70,72,73,76,80,82,85,112],impli:[42,55],importanalysisfil:26,importantli:[54,56],improv:[1,39,48,49,50,55,62,73,74,81,98,99,106,109,110],imshow:103,in_q:35,in_transact:13,inappropri:0,inceptionresnetv2:[42,48],inceptionv3:[42,48],inch:84,incid:0,includ:[0,8,9,10,13,23,24,29,33,35,38,42,43,70,73,78,86,88,89,91,92,94,96,100,101,102,104,105,107,112,113,115],include_top:43,inclus:0,incom:[45,48,53,54,55,56,57,59,60,61,62,63,67,68],incomplet:82,incorpor:[81,107],incorrectli:[89,92],increas:[39,41,44,47,48,49,50,54,56,59,62,73,81,84,88,116],increment:[39,81],incur:41,ind:[13,76],indefinit:55,independ:[49,62,103],index:[4,7,9,10,12,13,27,31,33,35,46,47,56,59,61,62,66,72,73,74,76,77,78,81,83,85,86,89,96,100,104,105,106,109],index_by_origin:33,indic:[6,11,13,33,46,47,53,54,56,59,61,62,66,68,70,72,73,76,77,79,83,85,89,92,95,115],indirectli:45,individu:[0,10,15,18,33,42,49,54,55,62,64,65,66,74,81,95,104,108,117],inds1:83,inds2:83,induc:69,inf:[80,83],infer:[10,13,33,47,48,50,51,55,58,62,65,66,67,72,75,76,77,83,88,91,92,93,94,95,97,98,101,103,106,107,113,115,116,119,120],inference_lay:73,inference_model:[73,105],inference_tim:105,inferencelay:73,inferencemodel:[73,89],infin:76,infinit:55,inflat:109,info:[42,73,95,100,104,106,109],inform:[0,13,15,28,39,41,42,44,48,51,61,73,79,89,91,92,94,96,99,100,104,105,106,114,116,117,119],inherit:[14,38],init:[81,102,105,106,109],init_don:81,init_frame_count:81,init_set:81,init_track:81,initi:[32,36,38,39,40,42,43,44,48,49,50,55,56,66,73,76,78,80,81,82,89,99,101,103,105,106,109,112,113,117,118,120],initial_config:[51,82,96,106,107,109],initial_downsampling_step:40,initial_learning_r:[49,109],initial_model:[50,109],initial_shap:103,initialize_devic:78,innov:101,input:[12,33,37,38,39,40,41,42,43,44,45,47,48,53,54,55,56,57,59,61,62,63,64,65,66,67,68,69,71,73,74,75,76,77,81,82,83,86,88,89,98,100,104,105,106,107,109],input_d:[53,54,56,57,59,60,62,67],input_format:[33,89,96,104,109],input_ind:73,input_kei:[53,54,55,56,57,59,60,61,62,63,67,68,82],input_key_nam:57,input_path:89,input_predict:89,input_sc:[47,62,109],input_scal:[47,73],input_shap:[43,75],input_tensor:43,input_video:89,inquiri:101,insert:[10,13],insid:[73,86,88,89,92,96,114],inspect:[15,18,65,92,93,104,105,109,110,113],inspir:52,inst_a:6,inst_b:6,instal:[1,24,28,89,90,96,98,103,104,105,106,107,112,114,118],instanc:[0,3,6,7,8,9,13,15,24,26,28,31,33,35,39,41,42,43,44,45,47,48,49,51,53,54,56,59,60,61,62,63,65,66,67,68,70,71,72,73,74,75,76,79,80,81,82,84,85,87,88,89,90,91,92,94,95,96,97,98,103,104,105,107,108,109,113,115,116,117,120],instance_assign:76,instance_confidence_map:[54,60],instance_confmap:73,instance_confmap_head:65,instance_count:[8,13,79,81,103],instance_crop:[47,106,109],instance_gt:70,instance_i:[79,81],instance_idx:103,instance_imag:[54,60,62],instance_iou_threshold:81,instance_node_veloc:103,instance_peak:[73,105],instance_peak_v:[73,105],instance_pr:70,instance_scor:[9,10,12,73,105],instance_similar:[79,81],instancecentroidfind:[61,73],instanceconfidencemapgener:54,instancecropp:62,instancecroppingconfig:[47,61,62],instances_a:6,instances_b:6,instances_kei:[53,61,62],instances_list:79,instances_to_show:10,instanceslist:10,instancetyp:[79,80,81],instanti:[24,33,38,39,42,43,44,51,65,71,74,75,81,82,85],instead:[13,38,40,41,44,45,48,49,53,65,69,82,89,107,109,110],institut:101,instruct:[1,96,100,101,102,104,105,106,107,109,118],insult:0,int32:[53,56,59,61,62,66,72,76,77,83,105],int64:[66,86],integ:[9,13,38,42,43,45,46,47,48,49,50,59,62,63,67,69,72,73,76,77,89],integr:[39,60,73,76,77,101],integral_patch_s:[60,73,77],integral_refin:73,integral_regress:77,intend:[13,51,82,100,101],inter:110,interact:[11,13,50,73,87,102],interactive_and_realtime_infer:[104,105,106],interactive_and_resumable_train:[104,105,106],interest:[0,100],interfac:[13,33,73,85,92,93,96,102,104,105,109,112,113],interfer:102,intermedi:[37,38,39,42,43,45,48,73,92],intermediate_activ:42,intermediate_feat:43,intermediateactiv:42,intermediatefeatur:[37,38,39,42,43,45],intern:[13,81],interp1d:103,interp:103,interp_method:[38,39],interpol:[38,39,41,44,48,76,95,103],interpret:[59,76,112],intersect:[79,81,83,95],intimid:91,introduc:[40,44,48],intuit:107,invalid:[43,80],invalid_v:80,invert:[67,85],investig:0,invis:10,invisible_as_nan:10,invok:[33,35,74,110],involv:113,io:[4,6,7,9,10,62,66,68,70,73,82,89,114],iou:[79,81,89,95],iou_threshold:[79,81],ip:50,ip_address:50,ipynb:[104,105,106],is_arboresc:85,is_first_choic:79,is_from_multi_size_video:66,is_gpu_system:78,is_grayscal:73,is_hdf5:21,is_initi:78,is_json:21,is_miss:33,is_multi_inst:13,is_open:21,is_templ:85,is_valid:81,isinst:[13,27],isn:[1,33,88,91,92,96,100],isnan:[10,103],isol:102,isomorph:85,issu:[0,67,99,100,101,102,104],item:[1,4,10,13,66,86,92,105],item_group:4,item_list:4,itemstack:4,iter:[4,11,13,33,55,58,66,68,85,86,113,117],its:[0,4,13,26,33,49,55,61,62,63,67,73,74,76,78,80,88,92,95,96,100,101,102,113,116,117,118,119],itself:[3,10,49,75,86,89,94,95,103,104],j:101,jan:28,jia:77,job:[50,51,73,82,89,90,91,96,105,107,109,113],john:[1,87,100,101],join:[92,95,107],joint:[73,88,103,118],joshua:[87,100,101],journal:[100,101],jpg:[13,24,109],json:[12,13,14,15,16,17,18,19,21,22,23,24,25,27,28,29,30,31,50,51,73,85,86,89,91,92,96,104,106,107,109,110],json_data:51,json_data_dict:51,json_dump:86,json_load:86,json_str:[85,86],jump:[92,95],jun:[104,105,106],junyu:[87,100,101],jupyt:[102,112],just:[4,10,13,24,33,50,62,73,80,85,86,88,92,94,95,96,97,98,102,103,104,105,106,108,110,111,115,116,117,119],k:[4,74,103],kaiyu:77,kalman:[81,89],kalman_track:81,kalmaninitset:81,kalmantrack:81,kanad:81,kb:[103,104],kde:107,kde_kw:107,keep:[21,36,47,48,49,50,55,66,67,81,86,89,92,97,115],keep_confmap:60,keep_empty_fram:13,keep_full_imag:[62,67],keep_kei:57,keep_viz:89,keep_viz_imag:[50,109],kei:[4,7,9,10,13,15,27,43,46,50,53,54,55,56,57,58,59,60,61,62,63,65,66,67,68,69,70,73,79,80,82,83,85,86,95,103,104,105,107,116,119],kept:[55,62],kera:[38,40,42,43,46,47,49,60,63,65,69,73,75,82,83,104,106,107,109],keras_model:[60,65,73,75,82,83,106],kerasmodelpredictor:60,kerastensor:[106,109],kernel:[38,39,43,44,45,48,77],kernel_s:[38,39,43,44,77,106,109],key_by_column:80,key_id:109,key_map:68,keyboard:[92,94,95],keydevicemov:57,keyerror:13,keyfilt:57,keymapp:[65,68],keypoint:[12,16,26,49,70,74,88,92,107],keyrenam:57,keyword:[1,35,43,66],kf_init_frame_count:[89,109],kf_node_indic:[89,109],kind:[24,42,99,103],kislin:[87,100,101],km:103,kmean:[4,103],knew:95,know:[10,92,102,105,119],knowledg:62,known:32,kocher:[87,100,101],kp:103,kwarg:[13,16,18,19,22,23,24,25,26,29,30,33,35,48,66,73,74,84],l1_cache_s:[104,107],l2_cache_s:[104,107],l3_cache_s:[104,107],l:[100,101,105,106],lab:[101,102],label:[4,6,7,9,10,13,15,16,17,18,19,23,24,26,27,29,31,33,35,43,46,47,48,49,62,66,68,70,73,81,82,83,85,87,88,90,93,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,117,118,119,120],labeled_fram:[10,13,104,105,108],labeledfram:[10,13,31,33,66,70,79,81,104],labels_a:13,labels_b:13,labels_config:82,labels_gt:[6,70,107,109],labels_path:[9,89,109],labels_pr:[6,70,106,107,109],labels_read:68,labels_test:13,labels_train:[13,68],labels_v:[13,68],labels_val_test:13,labels_with_imag:[104,105],labels_with_predict:89,labelscocoadaptor:16,labelsconfig:[47,82],labelsdatacach:13,labelsdeeplabcutcsvadaptor:18,labelsdeeplabcutyamladaptor:18,labelsdeepposekitadaptor:19,labelsjsonadaptor:24,labelsleapmatlabadaptor:25,labelsread:[13,65,66,68,70,73,82],labelsv1adaptor:[21,23,26],labori:113,lack:29,lag:92,lah:[104,105,106],lambdafilt:55,lambdamap:57,landmark:[48,76,77,85,92,97,104,107],languag:0,larg:[28,48,49,50,54,62,88,92,95,100,101],larger:[33,48,49,62,73,76,88,89,98,100],largest:[47,48,49,55,62],last:[9,13,33,36,38,42,43,54,56,62,63,64,69,73,76,77,78,81,89,92,96,100,118],last_frame_idx:33,last_gpu:109,last_init_t:81,last_match:81,last_t:81,latenc:[55,101,105],later:[49,92,95,102,110],latest:[50,101,102,109,110],latest_model:[50,109],latter:[55,73,89,99],launch:[100,102,118],lauri:101,layer:[37,38,39,40,41,42,43,44,45,47,48,67,68,71,73,83,106,109],ld_library_path:[102,104,107,108],lead:[49,55,78,88,103,104],leadership:0,leap:[12,25,31,38,45,48,85,92,109,117],leapcnn:[38,41],leapconfig:[41,48],learn:[41,43,44,46,47,48,49,50,72,77,88,91,96,98,100,106,109,113,115,116],learnabl:[38,45,48],learning_rate_schedul:[49,109],learningratescheduleconfig:[49,106,109],least:[49,68,96,104,105,106,107,108,109],leav:[55,69],left:[15,47,49,53,55,67,68,70,73,85,88,92,94,105,106,107,118],legend:[92,95,103,107],len:[13,33,105],length:[3,10,42,55,62,67,68,69,70,73,76,77,83,89,92,95,103,104,105,109],lenient:90,less:[34,48,68,100],let:[8,90,91,92,94,96,98,103,104,105,107,108,109,110,116,117,119],level:[0,10,13,15,28,33,44,45,51,62,65,70,73,75,76,81,82,89,104,105,106,113],lewi:101,lf:[13,108],li:[87,100,101],liabil:42,liabl:42,lib64:[104,107,108],lib:[86,102,104,107,108,109],libcubla:[104,107,108],libcublaslt:[104,107,108],libcudart:[102,104,107,108],libcudnn:[104,107,108],libcufft:[104,107,108],libcurand:[104,107,108],libcusolv:[104,107,108],libcuspars:[104,107,108],libmamba:102,libnvinf:104,libnvinfer_plugin:104,librari:[28,42,53,102,104,105,106,107,108,109],libx264:[34,100],licens:[24,42],liezl:101,lighter:115,lightli:87,lightn:73,lightweight:[33,102],like:[3,13,33,36,38,42,45,47,50,70,74,80,81,88,90,92,93,94,95,96,98,100,102,103,104,105,106,107,108,109,110,114,116,118],likewis:[88,109],limit:[13,33,36,42,48,62,77,81,89,92],linalg:103,line:[1,3,5,9,12,35,48,73,76,91,92,93,94,95,96,98,101,109,112,115],line_scor:[73,76],line_scores_sampl:76,linear:[13,38,45,48,103],linear_sum_assign:[76,83],linearli:[39,48],liner:102,link:[81,104],lint:1,linux:[96,101,102,104,105,106,107,108,109,118],list:[3,4,6,9,10,11,12,13,14,15,16,17,18,19,22,23,24,25,27,28,29,30,31,32,33,35,36,38,39,40,41,42,43,44,45,47,48,50,53,54,55,56,57,58,59,60,61,62,63,65,66,67,68,69,70,71,73,75,76,78,79,80,81,82,83,84,85,86,89,92,93,95,97,102,103,104,113,116],list_file_miss:32,list_physical_devic:102,list_points_arrai:6,listen:50,literatur:107,littl:[97,99,102],ll:[3,7,10,13,14,15,18,24,26,32,36,70,81,85,86,88,90,91,92,94,95,96,97,98,100,102,103,104,105,106,107,108,109,110,112,114,115,116,118,119],load:[10,11,13,21,24,31,33,42,43,48,49,51,55,66,70,73,85,102,104,105,106,107,108,109,112],load_all_hdf5:85,load_by_chunk:11,load_config:[51,106,107],load_fil:[13,70,104,107,108],load_hdf5:85,load_json:[51,85],load_labels_json_old:31,load_mat:85,load_metr:[70,107],load_model:[73,104,105,107],load_predicted_labels_json_old:31,load_training_config:51,load_video:[33,104,105],load_weight:106,loader:13,loc:[103,107],local:[11,48,49,59,60,64,70,72,73,77,91,92,96,103,104,105,106,107,108,110,112,117],localhost:[105,106,109],localpeakfind:60,locat:[3,7,9,10,13,15,29,33,35,51,64,70,73,77,88,90,92,95,97,103,107,109,110,116,117],locations_matrix:9,lock:[107,109],log:[45,46,50,73,89,105,106,109,110],log_dir:46,log_to_csv:[50,109],logdir:46,logic:[51,72,73,78,79,105],logicaldevic:78,longer:[49,62,73,76,89,90,92,94,108],look:[1,26,33,38,56,61,70,81,86,88,89,90,91,92,95,107,111,116,117],lookup:13,loop:[13,48,49,50,55,76,82,101,105,106,109,112,113,117],loopbio:33,looser:80,lose:[39,89,90,116],loss:[40,41,48,49,50,71,82,88,98,106,109,110,117],loss_frequ:[50,109],loss_funct:71,loss_scal:[49,74,109],loss_weight:[48,71,106,109],lossi:[13,34,100],lossless:[13,33,100],lost:[79,88,89,95,119],lot:[50,92],love:100,low:[28,38,45,49,73,87,92,105,106],lower:[15,34,43,48,49,70,76,80,86,88,95,100,107],lowest:[42,49,74,81,92,109,110],lr:[46,50,106,109],ls:[104,105,106,110],luca:81,lw:84,m:[83,86,89,95,96,100,101,108,109,110],mac:[92,116,118],machin:[73,89,91,93,96,98,100,102,103,104,107,108,110,112,113,117],maco:102,macosx:102,made:[1,42,95,101,119],magnitud:49,mai:[0,1,12,13,21,35,38,39,41,43,44,46,47,48,49,50,51,53,55,61,62,66,68,70,73,74,76,88,89,92,95,96,99,100,102,103,104,105,107,112,113,114,116,117,119],mail:0,main:[1,9,12,13,39,48,73,75,79,82,85,92,95,103,108,115,118,119],maintain:[0,13,43,49,54,55,101],major:[9,12,99,104,114],make:[0,1,4,9,10,13,33,48,51,54,56,59,64,66,68,69,71,73,74,78,80,83,85,88,91,92,94,95,96,97,102,104,105,106,107,108,113,116,117],make_arch:24,make_backbon:[38,42,43],make_backbone_fn:43,make_base_pipelin:65,make_block:[38,39,44],make_cattr:85,make_centered_bbox:[62,77],make_class_map:59,make_class_vector:59,make_confmap:[54,59,64],make_dataset:[65,66],make_decod:38,make_default:10,make_edge_map:56,make_encod:38,make_gaussian_kernel:77,make_grid_vector:[54,56,64,69],make_head:71,make_instance_cattr:10,make_label:73,make_line_sub:76,make_model:75,make_model_movenet:73,make_multi_confmap:54,make_multi_confmaps_with_offset:54,make_multi_paf:56,make_offset:64,make_paf:56,make_pipelin:73,make_predicted_inst:76,make_resnet_model:43,make_sample_group:4,make_scoped_dictionari:86,make_skip_connect:45,make_stack:45,make_stem:38,make_track:81,make_tracker_by_nam:108,make_training_pipelin:65,make_video_callback:13,make_video_for_image_list:[15,18],make_viz_pipelin:65,mala:[87,100,101],male:[87,105,116],mamba:102,mambaforge3:102,manag:[100,102],mani:[10,11,13,38,48,73,81,86,89,92,95,98,100,102,113,115,117],manipul:[10,104],manner:10,manual:[15,18,49,50,92,106,110,113,115],map:[4,6,28,38,43,45,48,50,54,56,57,59,62,64,65,66,68,70,71,72,73,76,77,81,82,83,84,85,88,89,92,96,104,106,107,109,113],mar:[70,107],mare:101,margin:62,marielisa:[87,100,101],mark:[10,49,92,97,115,116,117],marker:[35,89],marker_s:[35,89],markers:103,mask:[13,56,59,64,73,103],mask_offset:64,masking_and_pad:73,mat:[12,85,92],match:[4,10,12,13,24,33,35,38,45,47,48,58,61,66,70,72,73,76,79,80,81,83,85,86,89,92,95,96,108,109,114,119],match_candid:76,match_candidates_batch:76,match_candidates_sampl:76,match_dict_from_match_funct:80,match_dst_peak_ind:76,match_dst_peak_inds_sampl:76,match_edge_ind:76,match_edge_inds_sampl:76,match_frame_pair:70,match_funct:80,match_inst:70,match_instance_list:6,match_instance_lists_nodewis:6,match_line_scor:76,match_line_scores_sampl:76,match_lists_funct:6,match_point:83,match_scor:[70,107],match_score_threshold:[70,107],match_src_peak_ind:76,match_src_peak_inds_sampl:76,match_threshold:70,match_to:[13,23,24],matched_instance_dist:6,matchedframeinst:81,matching_funct:[79,81],matlab:[9,12,25,31,85,89,103,113,120],matplotlib:[46,82,84,103,105,107],matplotlibsav:46,matric:[3,6,9,103,113],matrix:[3,6,9,10,33,54,70,79,80,81,83,103,105,106,109],matsliah:[100,101],matter:[53,96,97],max:[7,38,39,44,47,54,56,67,73,76,79,81,88,89,98,106,109],max_edge_length:76,max_edge_length_ratio:[73,76,89,109],max_hard_keypoint:[49,74,109],max_height_and_width:[66,67],max_i:10,max_image_height:67,max_image_width:67,max_inst:[73,89,109],max_level:81,max_siz:69,max_strid:[48,67,109],max_track:[81,89],max_val:63,max_x:10,maxim:[95,100,117],maxima:77,maximum:[38,41,42,43,44,49,54,59,63,66,67,69,73,74,75,76,77,79,81,89,106],maximum_strid:[38,42,43,62,75],maxpool:39,mayb:13,mb:[103,104,105,106,109],mckenzi:[87,100,101],mean:[3,4,7,12,13,33,34,43,47,49,54,63,70,74,79,80,89,90,92,95,100,102,103,105,107,114,117],meant:[73,76],measur:[70,76,95],mechan:106,media:[0,33],median:[10,70],mediavideo:[33,104,105],medium:92,meet:[47,55,65,67,92],melanogast:[87,103,109,111],member:[0,1],memori:[28,41,44,47,48,49,54,55,62,73,78,88,89,98,102,104,105,106,109],memory_s:[104,107],mention:[104,107,108],menu:[91,94,95,98,100,102,109,110,114,116,117,118,119],merchant:42,merg:[1,10,13,24,42,79,81,89,92,94,96,110,119],merge_container_dict:13,merge_fram:10,merge_matching_fram:13,merge_nod:13,merion:87,meshgrid:69,mess:80,messag:[50,73,89,100,115],message_queu:36,meta:[4,73,85],metadata:[4,10,13,15,18,21,28,29,37,50,73,104,106,107,112],method:[4,7,11,13,14,15,16,17,18,19,22,23,24,25,27,28,29,30,33,35,36,38,39,45,46,48,52,55,62,70,73,75,76,77,78,79,81,82,83,85,87,89,92,96,100,101,104,107,108,115,116,118,119],metric:[46,47,50,70,74,82,89,92,106,107,109,112],mib:[78,109],mice:87,micromamba:[104,107,108,109],microsecond:50,microsoft:90,middl:44,middle_block:[44,48,106,109],midlegl4:[103,104,105,106,109],midlegr4:[103,104,105,106,109],midpixel:21,midpoint:[10,48,61],might:[13,79,91,94,95,102,103,105,106,108,109,110],mikhail:[87,100,101],millisecond:105,mimic:60,min:[3,7,101,106,107,109],min_batches_per_epoch:[49,109],min_crop_s:62,min_dist:3,min_edge_scor:76,min_hard_keypoint:[49,74,109],min_instance_peak:76,min_learning_r:[49,106,109],min_line_scor:[73,76],min_match_point:[89,108,109],min_new_track_point:[81,89,108,109],min_point:81,min_shifted_point:81,min_stable_dist:3,min_val:63,min_val_batches_per_epoch:[49,109],mine:[49,74,88],mini:[38,49,55,74],minibatch:[49,88],miniconda:[86,101,118],miniforg:102,minim:[49,50,55,95],minima:49,minimum:[33,49,54,59,63,64,70,71,73,74,76,77,80,81,89],minut:[87,117],mirror:53,miscellan:[69,86],misidentifi:[95,119],mismatch:67,miss:[10,13,32,33,47,54,70,72,76,81,92,95,104,107,108],missing_path:13,mistak:[95,119],mistaken:[95,119],mit:[42,101],mitelut:[87,100,101],mix:[38,45,47,48],mjpeg:[24,33],mkdir:[102,109],mkv:24,mm:87,mobilenet:[42,48],mobilenetv1:[47,63],mobilenetv2:[42,47,48,63],mock_centroid_confid:62,mockglobalpeakfind:60,mode:[46,47,63,73,74,88,96,102,108,110,117],model:[28,37,38,39,40,41,42,43,44,45,46,47,49,50,51,56,59,60,62,63,65,66,67,70,71,72,73,74,76,82,83,87,89,90,91,92,93,94,95,96,97,98,99,103,104,105,106,113,115,116,117,119],model_evalu:[104,105,106],model_info:107,model_input_kei:60,model_nam:[43,73],model_output_kei:60,model_path:[70,73,107,109],modelcheckpointonev:46,modelconfig:[48,51,75],modifi:[10,13,39,40,42,53,66,78,79,80,83,92],modul:[4,6,7,10,31,34,35,36,38,39,41,42,43,44,45,51,65,66,73,75,76,77,78,80,83,85,86,107],mok:[70,107],moment:102,monitor:[50,73,74,87,98,115],monochrom:43,monterei:102,month:87,more:[4,8,10,13,28,38,39,41,42,43,44,45,48,49,52,59,65,68,69,73,76,78,80,81,82,85,88,89,90,91,92,97,99,101,102,107,108,113,114,115,117,118,119,120],most:[3,4,8,13,34,36,38,40,45,49,72,73,74,88,90,92,96,100,102,105,106,107,113,115,119],mostli:[8,13,50,55,78,115],motif:33,mount:[96,106,108],mous:[95,116],move:[13,47,50,57,76,87,92,94,95,97,115,116,119],movement:[81,92,113],movenet:73,movenetinferencelay:73,movenetinferencemodel:73,movenetpredictor:73,movi:[34,87],mp4:[13,24,27,33,34,87,89,96,100,104,105,108,109,110,118],mpck:[70,107],mpck_part:107,mpl:[103,107],ms:[84,105],mse:74,mu:87,much:[39,40,47,90,92,93,105],multi:[10,38,42,43,45,48,54,55,62,67,70,71,73,76,77,78,82,88,89,96,100,101,117],multi_class_bottomup:[48,109],multi_class_topdown:[48,105,109],multi_inst:[48,76,91,104,109,110],multiclassbottomupconfig:48,multiclasstopdownconfig:48,multiconfidencemapgener:54,multiinstanceconfig:[48,76],multiinstanceconfmapshead:[65,71,73],multiinstanceconfmapsheadconfig:[48,71],multipl:[1,10,13,15,18,20,21,26,33,36,38,39,47,48,50,54,56,62,65,67,68,72,76,78,79,80,85,89,91,92,94,105,106,109,116,117],multipli:[39,54,56,62],munkr:76,murthi:[87,100,101],musculu:87,must:[13,15,24,33,38,43,47,48,49,50,54,56,61,67,69,70,71,73,80,81,82,83,85,86,94,97,100,104,105,106,107,108,109],must_be_set:52,musuculu:87,mutual:13,my:[97,110],my_model:89,my_video:[13,27],n:[13,65,80,83,86,89,95,101,102,103,104,105,106,107,108,109],n_bbox:[62,77],n_candid:76,n_centroid:[62,73],n_channel:72,n_class:[59,72,73],n_cluster:[4,103],n_compon:4,n_connect:76,n_deconv_modul:40,n_down_block:67,n_dst:83,n_ed:70,n_edg:[56,76],n_frame:13,n_gt:70,n_instanc:[53,54,56,59,61,62,66,73,76],n_instances_gt:73,n_line_point:76,n_node:[10,13,53,54,56,61,62,66,70,73,76],n_output_channel:40,n_peak:[72,76,77],n_point:[61,64,76],n_positive_pair:70,n_pr:70,n_predicted_inst:10,n_sampl:[72,76],n_src:83,n_symmetri:53,n_total:13,n_track:[13,59],n_tracked_inst:10,n_user_inst:10,n_valid:[73,105],n_visible_point:10,name:[1,7,9,10,13,14,15,16,17,18,19,22,23,24,25,27,28,29,30,33,34,37,38,39,42,43,46,47,48,49,50,51,53,57,61,62,63,67,68,70,71,73,74,76,78,82,85,86,87,89,92,96,97,100,102,103,104,105,106,107,109,110,116,118,119],name_list:85,name_prefix:40,nan:[10,13,54,55,61,69,70,72,73,76,77,80,81,83,89,103,104,105],narrow:1,nasnet:[47,63],nat:101,nathaniel:[100,101],nation:0,nativ:[46,69,89],natur:[38,87,100,101],navig:95,nc:102,ndarrai:[3,4,6,9,10,11,13,33,35,36,53,66,69,70,73,76,79,80,81,83,84,85,86,105],ndx:27,ndx_pose:13,ndxposeadaptor:27,nearbi:[48,80,92],nearest:[38,39,76,92,103],nearli:100,necessari:[0,13,73,82,91,96,100,102,104,106],necessarili:[1,76],need:[1,12,13,21,26,33,35,42,44,47,48,50,61,63,66,67,70,74,76,80,81,85,86,87,88,89,90,92,93,94,95,96,97,102,103,104,105,106,107,109,110,113,114,115,116,118,119],needn:[21,32],neg:[13,70,79,104,105,106,107,108,109],negative_anchor:13,neglig:73,neighbor:[39,76,85],neighborhood:[48,59,64,77],neither:94,nest:[13,68],net:[38,98],network:[38,39,41,42,43,44,45,47,48,49,50,61,73,75,76,77,92,96,98,101,104,105,106,107,109,117],neural:[41,42,76,98,101,104,105,106,107,109],neurosci:[100,101],never:[47,55,94],new_centroid_confidence_kei:60,new_centroid_kei:60,new_fold:106,new_fram:[10,13],new_img:81,new_key_nam:57,new_label:13,new_nam:85,new_path:[32,70],new_peak_confidences_kei:60,new_peaks_kei:60,new_prefix:32,new_shap:83,new_skeleton:85,new_track:13,newaxi:103,newel:77,newer:107,newest:102,newli:[24,31,95,117],next:[4,13,92,95,102,105,106,107,108,113,116,117,119],nice:26,nicer:1,nih:101,nitti:106,nix:[78,89],nixadaptor:28,nixio:28,nixtrack:28,nm91:87,nms_fast:79,nn:[10,89,106,107,108,109],no_empty_fram:109,node1:85,node2:85,node:[3,6,7,9,10,12,13,15,27,28,29,35,47,48,53,54,56,61,62,70,71,72,73,76,81,85,87,88,89,92,94,95,96,97,98,103,104,105,106,107,108,109,115,116,118],node_a:3,node_b:3,node_count:103,node_ind:76,node_indic:81,node_loc:103,node_loc_vel:103,node_nam:[3,9,12,13,85,103],node_to_idx:85,node_to_index:85,node_type_ind:76,node_vel:103,node_veloc:103,nodeless_point_dist:6,nodes_point:10,nois:49,non:[10,13,26,33,49,50,67,73,77,79,81,89,92,93,97,102,103,105],none:[4,6,7,9,10,11,12,13,15,17,18,21,23,24,26,27,28,29,31,32,33,35,36,38,39,40,43,45,46,47,48,49,50,52,53,56,60,61,62,63,65,66,67,69,70,71,73,74,75,76,77,78,79,81,82,83,84,85,86,89,98,102,103,104,106,108,109],nonetyp:33,noninfring:42,nonn:89,nonzero:48,norm:[45,48,103],normal:[10,38,39,47,48,49,54,62,69,70,73,76,77,95,100,106],normalize_bbox:62,normalized_bbox:62,normand:[100,101],not_set:46,note:[3,4,9,12,23,24,29,33,45,49,55,74,85,86,92,94,98,100,102,103,104,105,107,108,109,111,114,116,119],notebook:[73,89,90,93,100,101,103,104,105,106,107,108,109,110,111,113],noth:[4,10,13,33,36,43,47,48,49,50,51,57,65,73,79,81],notic:42,notimplementederror:[15,26],now:[24,63,80,91,95,103,105,106,109,110,115,116],np:[9,13,33,73,76,77,83,86,103,105,107],npy:[24,33],npz:[70,106,107,109],ns104899:101,nstate:103,num:87,num_color_channel:73,num_conv:38,num_cor:[104,107],num_fc_lay:[48,71],num_fc_unit:[48,71],num_fram:33,numa:[104,105,106,107,108,109],number:[4,6,7,10,13,27,33,34,38,39,40,41,42,43,44,45,47,48,49,50,52,54,55,59,62,63,65,67,70,71,72,73,74,76,79,80,81,86,87,88,89,92,95,98,100,101,103,106,109,110,113,119],numer:[7,13,15,81,86,104],numpi:[3,4,6,9,10,11,13,27,28,33,35,36,53,66,69,70,73,76,77,79,80,81,83,84,85,86,102,103,104,105,106,107,108,109],numpyvideo:33,nutshel:113,nvidia:[101,102,104,105,106,108,109],nwb:[13,27],nwbfile:[13,27],o:[13,33,65,66,89,96,102,103,107,108,109,110],obj:85,object:[4,6,7,10,11,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28,29,30,31,33,35,51,68,70,79,81,84,85,86,102,104,105,107,108,109],objectss:10,oblig:0,obtain:[42,70,73],obvious:95,occlud:[48,70,92,116],occup:[9,13,113],occupancy_matrix:[9,114],occupi:[13,48],occur:[10,13,50,55,95,113,115,116,119],occurr:13,octet:[103,104,109],odd:77,of_max_level:[81,89,108,109],of_window_s:[81,89,108,109],off:[1,46,70,73,90,95,99,104,106,107],offens:0,offic:101,offici:[0,100,102],offlin:0,offset:[10,48,54,59,64,65,67,71,73,77,82],offset_i:67,offset_refin:[48,109],offset_x:67,offsetrefinementhead:[65,71,73],offsets_head:65,offsets_ind:73,offsets_threshold:54,often:[50,70,74,77,95,96,100],ohkm:[49,74],ohkmloss:74,ok:[70,103,104,106,107,109],oks_scal:70,oks_stddev:70,oks_voc:[70,107],old:[24,31,32,85,87,94],old_key_nam:57,old_nam:85,old_path:32,old_prefix:32,old_skeleton:85,old_track:13,older:81,ommit:89,on_batch_begin:46,on_batch_end:46,on_epoch_begin:46,on_epoch_end:46,on_train_batch_begin:46,on_train_batch_end:46,on_train_begin:46,on_train_end:46,onc:[1,48,55,78,90,91,94,95,96,99,100,102,104,105,106,109,110,112,113,115,117,118,119],one:[4,10,13,33,43,48,50,51,52,53,59,65,67,68,69,70,73,75,81,82,85,89,91,92,95,97,98,101,102,104,105,106,107,108,109,117,118,119,120],oneapi:[104,105,106,107,109],onednn:[104,105,106,107,109],onedr:90,oneof:52,ones:[13,44,62,68,73,76,82,102],onli:[1,9,10,13,33,35,39,43,44,46,47,48,49,50,52,62,65,66,68,73,76,78,79,80,81,85,89,90,91,92,94,95,96,98,100,101,102,105,106,107,108,109,110,113],onlin:[0,49,74,88],online_min:[49,109],online_shuffl:[49,109],only_labeled_fram:109,only_suggested_fram:109,onto:[62,68,105],op:[37,38,39,42,43,44,45,53,54,55,56,57,59,60,61,62,63,64,65,66,67,68,69,71,72,73,74,76,77,78,82,83,104,107],op_level_cost_estim:[104,107],open:[0,1,13,21,33,85,86,87,89,91,92,94,99,100,101,102,104,107,108,109,110,111,120],open_in_gui:109,opencv:[33,34,35,96,104,105,106,107,108,109,110],oper:[4,13,38,39,41,44,47,54,55,56,62,63,65,66,67,68,69,70,73,74,76,77,100,104,105,106,107,109],oppos:51,opt:[100,102],optic:[81,89,95,96,108],optim:[47,48,50,51,53,55,65,71,74,76,82,83,88,100,104,105,106,107,108,109],optimal_group:73,optimization_callback:82,optimization_config:65,optimizationconfig:[49,51,65,82],optimizer_v2:82,optimizerv2:82,option:[1,4,6,8,9,10,11,12,13,14,15,17,18,21,23,24,26,27,28,29,31,32,33,35,36,38,39,42,43,44,45,46,47,48,49,50,51,53,56,60,61,62,63,65,66,67,68,69,70,71,73,75,76,77,78,79,81,82,83,84,85,86,88,89,92,95,96,102,105,108,113,116,119,120],orang:[92,95,116],order:[4,10,13,33,38,43,47,48,49,53,55,61,63,66,67,68,73,74,76,77,80,81,86,96,97,103,104,116,117],org:[0,16,28,38,40,43,73,104,107,108],organ:50,orient:[0,33,88,92],origin:[1,9,10,13,33,35,38,39,41,44,54,56,66,67,86,88,89,93,94,96,98,102,115],os:[86,101,102,104,105,106,107,108,109,110],osf:87,other:[0,3,6,10,13,24,26,29,33,42,44,49,50,51,65,66,67,68,75,79,80,81,85,86,89,90,91,92,96,98,99,100,101,102,103,104,105,106,107,109,111,112,116,117],otherwis:[0,1,9,10,13,15,18,33,38,42,43,55,63,65,69,73,85,89,92,96,102,103,110,116],our:[1,2,80,90,91,96,100,101,102,103,104,105,107,109,117,118,120],out:[3,10,13,28,42,47,49,50,55,65,73,76,88,90,92,95,98,99,101,102,104,105,106,107,108],out_q:35,outgo:[53,54,55,56,57,59,60,61,62,63,67,68],outlin:92,output:[9,10,12,13,17,27,29,33,35,37,38,39,40,41,42,43,44,45,48,51,53,54,56,57,59,61,62,65,66,67,68,69,71,73,74,75,76,82,85,88,89,92,96,102,104,105,106,107,109,110],output_callback:82,output_dir:13,output_filenam:33,output_filt:39,output_height:73,output_ind:73,output_kei:[53,54,55,56,57,59,60,61,62,63,65,66,67,68,82],output_key_nam:57,output_path:[9,13,109],output_predict:89,output_scal:[40,43,84],output_strid:[38,42,43,45,48,54,56,59,69,71,73,106,109],output_width:73,outputsconfig:[50,51,82],outsid:[10,85],over:[3,4,6,8,10,13,49,50,51,55,66,68,69,73,76,77,79,81,83,84,88,89,90,92,95,103,105,106,107],overal:[6,10,48],overfit:[49,88],overlai:35,overlap:[13,79,81,89,92,95,99],overload:73,overrid:[33,35,46,89],overridden:[11,73],overview:[100,101,104,120],overwrit:[13,27,50,82],own:[4,26,55,90,91,92,101,102,105,106,113,116,120],ownership:4,p15:87,p50:[70,107],p75:[70,107],p90:[70,107],p95:[70,107],p99:[70,107],p:102,packag:[47,82,86,89,90,91,94,96,100,101,103,104,105,106,107,108,109,114,118],pad:[47,55,62,66,67,69,73,89],pad_bottom:67,pad_right:67,pad_to_strid:[47,67,73,109],pade:73,paf:[10,48,49,56,65,73,74,76,82,84,89],paf_group:73,paf_line_point:73,paf_lines_sampl:76,paf_output_strid:73,paf_scor:73,pafs_head:65,pafs_ind:73,pafs_sampl:76,pafs_strid:76,pafscor:[73,76],page:[1,2,101,102,109,110],pai:90,pair:[3,6,48,53,70,71,73,76,79,83,84,85,87,89,95,107,110,118,119],pairedreceiv:36,pairedsend:36,pairwis:[6,56,70,81],palett:[35,89,92],pan:88,panda:[103,107],panel:[95,109,116,118,119],papadoyanni:[87,100,101],paper:[39,41,70,87,100,101],parallel:[4,48,49,50,55],parallelfeaturepipelin:4,param:[13,25,33,40,66],paramet:[4,6,7,9,10,11,12,13,15,17,24,26,27,29,31,32,33,35,38,39,40,41,42,43,44,45,49,51,52,53,54,55,56,59,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,88,89,91,95,96,98,99,100,106,108,109,110,112,113],parametr:51,parent:[50,97],pars:[31,51,73,86],parse_uri_path:86,parsed_json:31,part:[3,32,47,48,49,53,56,61,65,70,71,73,74,76,85,88,89,92,96,97,113,116,117,118],part_affinity_field:[56,73],part_nam:[48,71,76,82,106,109],partaffinityfieldsgener:56,partaffinityfieldshead:[65,71,73],partaffinityfieldsheadconfig:[48,71],partial:[85,87,113],particip:0,particular:[24,42,68,92],particularli:[44,66,76,78],partit:76,partloss:74,pascal:70,pass:[1,10,12,21,33,35,38,46,60,73,76,95],patch:[62,73,77],path:[9,12,13,17,27,31,32,33,34,35,39,43,46,47,48,50,51,66,70,73,82,86,89,90,91,92,95,96,100,102,103,106,107,108,109,110,114],path_a:13,path_b:13,path_to_video:[13,27],pathlib:[13,27],pattern:[38,45,46,50],pavel:42,paw:87,pb:73,pca:4,pci:[105,106,109],pck:[70,107],pck_voc:[70,107],pckage:110,pd:[103,107],pdf:[38,40,54,69,77,105],peak:[48,54,55,59,60,64,72,73,76,77,84,89,105],peak_channel_ind:[72,73,76,77],peak_channel_inds_kei:60,peak_channel_inds_sampl:76,peak_class_prob:72,peak_confidences_kei:60,peak_ind:[72,76],peak_point:[72,77],peak_sample_ind:[72,77],peak_sample_inds_kei:60,peak_scor:76,peak_scores_sampl:76,peak_threshold:[60,73,89,109],peak_val:[72,73,76,77],peak_vals_kei:60,peakid:76,peaks_kei:60,peaks_out_kei:60,peaks_sampl:76,peek:[65,103],penal:[73,76,89],penalti:[73,76,89],pep8:1,per:[4,7,11,33,35,41,44,48,49,73,79,80,81,84,88,89,95],per_group:4,percentag:[70,89,107],percentil:[70,107],pereira2022sleap:[100,101],pereira:[41,87,100,101],perf_count:105,perfect:[10,49,70],perfectli:[10,13,15,18,54,103],perform:[38,39,40,45,46,47,48,49,50,51,55,60,62,70,73,74,76,78,79,81,83,88,89,99,102,104,106,107,109,113],perhap:90,period:81,perman:0,permiss:[0,42,107,109],permit:42,perona:70,persist:79,person:[0,42,76,85,102,118],petri:87,pgm:24,physic:[0,78,101],physical_devic:[102,105,106,109],physicaldevic:[78,102],pi:77,pick:[79,91,92,95,106,116],pil:86,pip:[28,100,101,103,104,105,106,107,108,109,110],pipelin:[4,13,33,49,55,57,62,66,70,73,76,81,82,89,91,95,98,103,106,109,110,117],pipeline_build:82,pipelinebuild:82,pix_fmt:100,pixel:[10,33,35,47,48,49,53,54,56,59,62,67,70,73,76,77,89,98],pkg:[87,91,96,104,105,106,107,110],pkzip:24,place:[1,13,55,66,70,79,86,90,92,93,95,96,102,110,112,113,119],placement:[78,92,97,116],plai:104,plan:90,plateau:49,plateau_cooldown:[49,106,109],plateau_min_delta:[49,106,109],plateau_pati:[49,106,109],platform:[102,104,105,106,107,108,109],playback:[34,100],pleas:[1,87,100,101,104,107,108],plot:[10,84,92,103,104,105,107,108],plot_confmap:84,plot_fn:46,plot_img:[10,84],plot_inst:[10,84],plot_instance_node_veloc:103,plot_paf:84,plot_peak:84,plot_predict:10,plt:[103,105,107],plu:[4,10,95],png:[13,23,24,33,46,50],point:[1,3,6,7,9,10,13,15,35,48,53,54,56,59,61,62,64,65,66,67,70,72,73,76,77,81,83,86,89,91,95,98,104,105,107,116,117],point_confid:10,point_dist:6,point_match_count:6,point_nonmatch_count:6,point_scor:[9,12],point_val:72,pointarrai:10,points1:83,points2:83,points_and_scores_arrai:10,points_arrai:10,points_gt:70,points_kei:67,points_pr:70,pointsrescal:67,poli:103,polici:[0,78],polit:0,poll:50,poll_timeout:46,poller:50,polynomi:103,pool:[4,38,39,41,44,48,67,70],pool_before_conv:38,pooling_strid:[38,39,44],poolingblock:44,poor:[48,95,107],poorli:115,pop:[10,92,102,116],popul:79,popular:42,port:[11,50,104],port_numb:50,portabl:[33,82],portion:[42,45],pose:[13,27,41,48,70,76,77,81,85,89,99,105,106,107,108,109,112,113,117],poseestim:[13,27],poseestimationseri:[13,27],posit:[0,13,28,43,70,88,89,92,95,104,107,116,117],positive_pair:70,posix:86,possibl:[13,42,73,76,80,81,82,88,91,95,96,97,100,101,106],post:[0,48,81,83,87,100,103],post_connect_single_break:[81,89,108,109],post_inference_track:[104,105,106],postpon:13,postprocess:73,potenti:[18,50,55,61,73,102,106,113],power8:102,ppm:24,pr:1,practic:49,pre:[43,48,78,81,89,90,92,105,108,109],pre_cull_funct:81,pre_cull_iou_threshold:[89,108,109],pre_cull_to_target:[89,108,109],pre_track:81,preact:43,prealloc:[73,78],preced:89,preceed:89,precis:[41,48,70,92,107,113],predecessor:85,predict:[6,8,10,13,31,47,48,50,62,65,70,71,73,74,76,79,81,88,89,91,93,95,96,98,101,103,104,105,106,107,108,109,111,112,113,116,117,119,120],predict_on_batch:[73,105],predictcost:[104,107],predicted_center_instance_confid:60,predicted_center_instance_point:60,predicted_centroid:60,predicted_centroid_channel_ind:60,predicted_centroid_confid:60,predicted_centroid_sample_ind:60,predicted_inst:[10,13,60,67,76],predicted_instance_confid:60,predicted_instance_confidence_map:60,predicted_instance_scor:76,predicted_peak_scor:76,predicted_suggest:110,predictedcenterinstancenorm:60,predictedinst:[6,10,13,27,70,73,104,105],predictedpoint:[10,104],predictedpointarrai:10,predictions_fil:108,predictor:[73,104,105,107,109],preexist:[13,27],prefer:[33,48,51,80,89,92,97,99,100,102,118],prefetch:[13,33,49,55,73,109],prefix:[38,39,40,44,46,70,86,89,109],preform:92,preload:[49,55],preload_data:[49,109],prepar:[35,110],prepend:[38,39,46,50,69,89],preprocess:[13,42,43,47,49,63,73,75,109],preprocessingconfig:[47,63,67],preprocesss:106,present:[10,13,33,38,48,51,54,56,61,62,65,73,77,81,85,89,92],preserv:[13,47,86],preset:[34,100],press:[88,102,118],pretrain:[42,43,47,48,50,63,101,106],pretrained_encod:109,pretrainedencoderconfig:[42,48],pretti:[76,105,107],prev:116,prevent:[13,38,45,48,49,50,55,73,100,104,105],preview:[84,85,86,88,98],preview_imag:85,previou:[21,50,54,56,59,81,94,95,96,102,106,119],previous:[73,85],primari:39,primarili:[13,43,67,97],primary_nod:7,primit:[13,69,73],princeton:101,principl:26,print:[5,13,65,69,73,78,102,103,104,105,106,107,114],prior:[13,54,55,56,71,81,92,95,106,116],prioriti:[1,90],privat:0,privileg:[26,102],pro:90,probabl:[13,48,53,56,59,72,73,77,86,88,90,103,105,107],problem:[1,76,89,95,99,102,115],procedur:[10,49,70,104,107],process:[4,11,13,27,33,36,48,49,55,57,62,65,66,67,69,81,86,88,90,91,95,96,98,100,106,112,113,115,117],processingmodul:[13,27],produc:[6,33,48,54,55,56,63,65,66,71,73,81,88],product:[76,109],profession:0,profil:[50,51,89,93,96,109],profile_graph:[50,109],program:50,programmat:73,progress:[13,24,28,35,41,44,73,89,115],progress_callback:[13,23,24],progress_queu:35,progress_report:73,progressreporterzmq:46,project:[0,10,13,27,89,90,91,92,93,94,96,98,104,110,113,116,117,120],promot:[49,55],prompt:[25,89,91,92,102,110,118],prone:1,proof:115,proofread:[89,92,93,96,101,113,116,120],propag:[92,95],properli:[66,104,107,108],properti:[4,10,11,13,14,15,16,17,18,19,21,22,23,24,25,27,28,29,30,33,37,38,39,40,41,42,43,44,50,53,54,55,56,57,59,60,61,62,63,65,66,67,68,71,73,75,79,81,82,85],proport:[54,56],propos:1,protobuff:52,protocol:50,proven:[9,13,68,109],provid:[13,15,26,33,38,39,41,42,43,44,45,47,48,49,51,53,61,62,65,67,68,70,71,73,75,76,77,78,81,82,85,87,89,90,92,93,102,105,107,113,115],prune:81,prune_shifted_inst:81,pseudo:13,pt:104,pts_gt:84,pts_pr:84,pub:[36,50],publish:[0,36,42,50,100,101],publish_address:[50,109],publish_upd:[50,109],pull:[47,65,76,109],pup:87,pure:105,purepath:[13,27],purpos:[10,38,42,45,48,51,57,73,101,113],push:1,push_back_messag:36,put:[42,76,86,95],px:[87,107],py:[11,13,26,86,89],py_funct:76,py_util:104,pyimagesearch:79,pynwb:[13,27],pypi:[101,102,104,105,106,107,108,109,110],pyplot:[103,105,107],pyramid:[81,89],python3:[86,104,107,108],python:[12,13,24,28,37,38,39,42,43,44,45,53,54,55,56,57,59,60,61,62,63,64,65,66,67,68,69,71,72,73,74,76,77,78,79,82,83,86,89,90,95,100,101,102,103,104,105,106,107,108,109,110,112,113,120],pytorch:40,q:[107,108],qq:107,qqq:[104,105,106,107,108,109,110],qt:[14,15,35,89],qualiti:[34,100,113],quantif:101,quantil:[79,81,89],quantit:113,quarter:[73,77],qubvel:42,queri:[75,78,85],query_inst:[79,81],question:[1,93,100],queue:[35,81],quick:[87,89,92,104],quickli:[65,92,95,115],quiver:84,r01:101,r:[89,92,103,104,105,106,109,113,114],race:0,rag:[55,69,73,76,89],ragged_tensor:[69,73,76],raggedtensor:[55,69,73,76],rais:[13,15,33,43,50,52,61,62,65,67,68,73,78,85,86],raise_error:[13,33],raise_warn:33,ran:98,random:[43,48,49,50,53,68,98,116,117],random_crop:[49,109],random_crop_height:[49,109],random_crop_width:[49,109],random_flip:[49,109],randomcropp:53,randomflipp:53,randomli:[13,42,49,92,106],rang:[6,10,13,27,33,34,42,43,49,62,63,69,70,73,76,86,88,89,92,96,98,103,107],rangelist:13,rank:[13,33,42,54,55,56,61,63,69,73,77],rapidli:101,rate:[34,43,46,47,49,50,73,91,96,106,109],ratecolumn:73,rather:[50,54,55,59,61,67,90,96,103],ratio:[47,49,66,67,73,74,83],ravindranath:[87,100,101],raw:[4,21,47,49,51,53,54,56,66,73,102,103,105,108],raw_image_s:66,rc:102,rcparam:103,re:[1,8,12,13,26,81,89,90,91,92,93,94,95,96,97,99,100,102,103,104,105,106,107,108,109,110,112,114,115,117,119],re_init_aft:81,re_init_cooldown:81,reach:[36,55,99,100,101],read:[12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,33,35,51,66,68,70,89,91,95,96,100,101,104,105,106,107,108,109,112,114,115,120],readabl:33,reader:[13,33,35,66,82],readi:[1,73,106,112,115,117,120],real:[33,73,76],realiz:92,realli:[55,86],realtim:[76,100,101],reappli:73,reason:[0,49,76],rebuild:[13,104,105,106,107,109],rec:105,recal:[70,92,107,117],recall_threshold:[70,107],recarrai:10,receiv:[35,36,42,50,105,106,117],recent:[4,119],recept:[39,41,43,44,48,88,98],reciproc:[37,48,54,56,59,69],recogn:102,recommend:[1,50,55,73,99,100,101,102,104,105,106,107,108,117,118],recomput:112,reconstruct:100,record:[10,33,87,105,106,109,110,113],recording_dur:105,recov:[41,44,48,62,105,106,109,110],rectangl:92,rectangular:92,recurs:86,red:[33,95,115],reduc:[39,44,48,49,50,54,61,74,84,109],reduce_on_plateau:[49,106,109],reducelronplateau:109,reduct:[7,49,54,56,67],reduction_factor:[49,106,109],redund:[13,80,81],ref:40,ref_img:81,ref_inst:[79,81],ref_t:81,refer:[10,13,21,33,47,70,73,76,77,81,83,92,95,100,104,105,107],referenc:[13,70],refin:[38,39,45,48,54,62,65,71,73,77,82,99,113],refine_conv:[38,45,48],refine_convs_:38,refine_convs_activ:38,refine_convs_batch_norm:38,refine_convs_batch_norm_before_activ:38,refine_convs_batchnorm:45,refine_convs_filt:[38,45],refine_convs_filters_r:45,refine_convs_first_filt:38,refine_convs_kernel_s:38,refine_convs_use_bia:38,reflect:[49,53,70],refrain:102,regard:0,regardless:[0,13,49,50,73,86,88],regim:49,region:[48,53,88,92],regist:[10,14,15,16,17,18,19,22,23,24,25,27,28,29,30,85,102,104,107,108],regress:[64,73,77],regular:[10,81,89,92,115],regularli:115,reinstal:[105,106,109,110],reject:[0,73,76],rel:[3,10,37,38,40,42,43,45,48,49,50,54,56,59,61,62,66,73,76,77,88,95,97,98,117],relabel:85,relabel_nod:85,relat:[26,46,47,48,49,50,51,65,68,82,85,104],relationship:[10,48,85],releas:[1,101,102,109,110],relev:[1,14,15,73,92,119],reli:[43,48,51,73,81],reliabl:[48,81,100],relianc:48,religion:0,reload:[33,104,105,106,108],relu:[38,39,45,48],remain:[13,47,48,69,70,73,80,95,102],remaind:55,remap:65,remot:[13,89,91,101,102,117],remov:[0,9,10,13,66,70,72,79,80,81,85,86,89,94,95,97,102,108,110],remove_all_track:13,remove_empty_fram:13,remove_empty_inst:[10,13],remove_empty_tracks_from_matric:9,remove_fram:13,remove_inst:13,remove_predict:13,remove_redund:10,remove_second_bests_from_cost_matrix:80,remove_suggest:13,remove_track:13,remove_untrack:10,remove_untracked_inst:13,remove_unused_track:13,remove_user_inst:13,remove_video:13,renam:[57,85,118],rename_skeleton:85,render:[46,50,73],repeat:[1,38,39,48,55,67,113,115,118],repeatedli:[13,105],repercuss:0,replac:[10,13,24,32,33,39,54,59,64,68,69,70,71,77,80,83,85,91,92,100,102,106,108,115],replace_path:70,replic:[43,62],replica:[105,106,109],repo_id:109,report:[0,1,13,73,87,89,100],report_period:73,report_r:73,repositori:[42,87,102,109,112],repres:[0,4,10,13,15,33,35,42,48,59,66,70,76,77,81,85,86,92,97,99,104],represent:[0,13,41,43,44,48,51,73,76,77,85,86],reproduc:106,request:[11,33,55,103,104,109],requir:[10,13,24,26,33,38,47,48,49,50,51,62,63,65,67,73,75,76,88,89,96,102,104,107,108],rescal:67,research:101,reset:[33,55,83,89,102,117],reset_input_lay:83,reshap:[77,103],reshuffle_each_iter:55,residu:[38,39,40,43],resiz:[35,47,62,66,73],resize_and_pad_to_target:[47,67,109],resize_imag:[35,67],resize_input_lay:73,resnet101:[42,43,48],resnet152:[42,43,48],resnet18:[42,48],resnet34:[42,48],resnet50:[42,43,48],resnet:[48,109,117],resnetconfig:[43,48],resnetv1:[43,47,48,63],resnetv2:[43,47,63],resnext101:[42,48],resnext50:[42,48],resnext:43,resolut:[37,38,39,40,42,45,47,48,49,84,87,102],resolv:[76,94,103,104,109],resolved_fram:13,resourc:[48,49,74],respect:[0,28,35,38,43,44,48,49,50,55,56,69,74,77,87,116],respons:[38,50,89,103,104,109],rest:[38,85,105],restart:[102,104,105,106,108],restor:103,restrict:[42,64,86],result:[0,3,4,10,13,15,18,21,28,33,38,39,43,44,45,46,48,49,58,62,68,73,74,81,82,85,86,88,89,90,92,95,99,103,104,105,106,108,112],resum:89,retain:[48,79],retrack:[89,105,108],retriev:[10,76,107],return_class_map:73,return_class_vector:73,return_confid:13,return_confmap:73,return_crop:73,return_descript:[65,69],return_dict:85,return_new:13,return_paf:73,return_paf_graph:73,reus:[13,38],revers:[13,43,63],review:[0,1,13,81,95,100,101,120],reweight:74,rgb:[33,42,43,47,63,73],rgb_to_grayscal:63,rich:[73,89,109],richer:[41,44],right:[0,1,42,47,49,53,67,85,92,95,97,103,113,116,118,119],rm:[102,104,109],roadmap:1,robust:[79,81,88,89,92,109],robust_best_inst:[79,81],roll:103,ronch:70,ronneberg:44,root:[76,107,109,110],root_dir:86,rotat:[3,49,88,92,103,106,109,116],rotate_on_node_a:3,rotation_max_angl:[49,109],rotation_min_angl:[49,109],rough:[73,77],roughli:[26,76,87],round:[68,104,106],routin:73,row:[4,9,10,53,59,62,64,67,76,79,80,83],row_count:4,row_item:80,rst:[104,105,106],rtx:[105,106,109],rubric:38,rule:[88,97],run:[4,8,11,13,35,46,50,51,65,66,73,76,78,81,82,83,88,89,91,92,94,95,98,100,102,103,105,106,108,109,112,117,119,120],run_fold:50,run_nam:[50,89,96,106,109],run_name_prefix:[50,109],run_name_suffix:[50,109],run_path:[50,82],run_track:81,runs_fold:[50,109],runtim:[41,44,51,78,90,104,105,106,108,109],rw:[104,105,106],s0:109,s1:103,s2:103,s41592:38,s:[0,1,10,13,15,17,18,21,24,26,29,31,33,35,36,38,40,42,43,45,47,50,54,55,56,59,61,63,65,66,67,69,70,73,75,76,80,81,83,85,86,87,88,89,90,91,92,94,95,96,97,98,100,101,102,103,104,105,106,107,108,109,110,112,113,116,117,119],safari:109,safe:[13,100],safe_build:34,safely_gener:73,sai:90,salk:[0,1,99,100,101],same:[7,10,13,15,28,38,39,40,41,42,43,44,45,48,49,50,51,53,54,55,56,59,62,63,64,65,66,67,68,69,70,71,72,73,74,76,77,79,80,84,85,86,88,90,91,92,93,94,95,96,100,102,104,108,109,110],sampl:[4,13,43,46,47,49,54,55,56,59,64,68,69,72,73,76,77,87,88,92,98,99,103,111,112,113,116,120],sample_group:4,sample_ind:77,sample_method:4,sample_weight:74,samples_per_group:4,samples_per_video:4,samuel:[87,100,101],sane:[87,100,101],sanit:82,sanitize_scope_nam:82,sarah:[87,100,101],satisfactori:113,satisfi:[109,110,119],save:[9,12,13,24,26,31,33,34,35,46,47,48,49,50,51,66,70,73,81,82,85,86,87,89,91,92,94,96,100,103,104,106,107,109,110,117,120],save_all_hdf5:85,save_dict_to_hdf5:86,save_fil:[13,26],save_fold:46,save_frame_data:[23,24],save_frame_data_hdf5:13,save_frame_data_imgstor:13,save_hdf5:85,save_json:[51,85],save_labeled_video:35,save_output:[50,109],save_path:73,save_shifted_inst:[81,89,109],save_trac:73,save_tracked_inst:81,save_visu:[50,109],save_viz:[89,109],savedmodel:73,savgol_filt:103,savitzki:103,saw:102,scalar:[9,10,13,47,48,55,62,66,67,69,70,73,76,77,83,84],scale:[4,10,35,37,38,39,40,41,43,44,45,47,48,49,53,54,56,59,62,63,64,66,67,69,70,72,73,74,76,77,81,84,88,89,98,104,105,108,109],scale_i:67,scale_image_rang:63,scale_kei:67,scale_max:[49,109],scale_min:[49,109],scale_to_imagenet_caffe_mod:63,scale_to_imagenet_tf_mod:63,scale_to_imagenet_torch_mod:63,scale_x:67,scatter:103,schedul:[46,49,50,106,109],scientif:28,scikit:34,scipi:[76,79,103],scope:[82,86],score:[7,9,10,13,28,48,70,73,76,79,81,89,92,104,105,107],score_paf_lin:76,score_paf_lines_batch:76,scorer:76,scratch:[94,106,109,115],screen:1,screenshot:99,script:[89,91,105,106,112],scroll:116,seaborn:[103,107],search:[13,45,47,73,86,101,102,118],search_path:13,search_path_hint:[47,109],sec:109,second:[6,15,33,35,50,73,80,85,89,95,98,115],secondary_kei:13,section:[32,95,113],see:[1,7,10,13,15,16,20,21,28,33,38,39,41,42,43,44,45,46,48,49,54,55,59,62,63,64,67,69,70,72,73,74,76,77,78,79,83,87,88,89,91,92,94,95,96,98,99,100,101,102,103,104,105,106,107,108,109,110,112,113,114,115,116,117,118,119],seek:[13,100],seek_direct:13,seekabl:100,seekbar:[95,115,116,117,119],seem:107,seen:15,segment:[48,76],segmentation_model:42,select:[8,13,33,45,47,68,79,81,87,89,91,94,95,96,98,99,102,109,113,117,118,119,120],self:[1,81,82,87,105,110],sell:42,semant:48,send:[11,35,36],send_arrai:36,send_dict:36,sender:36,senet154:[42,48],sens:100,sent:[36,103,104,109],sep:[105,106],separ:[0,1,13,24,27,50,73,88,89,94,96,103,104,105,108,110,117],seq:86,sequenc:[13,38,43,45,48,65,66,68,71,92,105,110],sequenti:[35,50,100],seresnet101:[42,48],seresnet152:[42,48],seresnet18:[42,48],seresnet34:[42,48],seresnet50:[42,48],seresnext101:[42,48],seresnext50:[42,48],seri:[7,103],serial:[4,13,33,50,51,73,85,104],serialiaz:33,serializ:51,serv:[38,39,45,48,51,62,74,77,82,97,105],server:[11,90,102],servic:90,serving_default:73,session1:89,session:[78,90,105,117],session_descript:[13,27],session_start_tim:[13,27],set:[0,1,3,4,6,9,10,13,24,27,33,38,39,41,43,44,45,47,48,49,50,52,53,54,55,56,59,61,62,63,64,66,67,69,70,71,73,76,77,80,81,82,83,86,87,89,91,92,94,95,96,97,98,102,103,104,105,106,107,108,109,110,112,113,116,117,119],set_lr:[46,50],set_suggest:13,set_titl:103,set_xlabel:103,set_xlim:103,set_xtick:103,set_ylabel:103,set_ylim:103,set_ytick:103,set_yticklabel:103,setup:[82,87,102,107],setup_checkpoint:82,setup_loss:82,setup_metr:82,setup_new_run_fold:82,setup_optim:82,setup_optimization_callback:82,setup_output_callback:82,setup_tensorboard:82,setup_visu:82,setup_zmq_callback:82,sever:[49,89,107,112,113],sexual:0,sh:[91,102],sha256:109,shaevitz:[87,100,101],shall:42,shallow:[10,13,45,97],shape:[3,9,10,12,13,33,35,43,53,54,55,56,59,61,62,63,64,66,67,69,70,71,72,73,74,75,76,77,79,83,95,103,104,105,106,107,109,114],share:[4,78,86,96,100,102,104,107,108],sharex:103,shave:87,sheikh:76,shell:102,shellenv:102,sheridan:101,shiboken2:[105,106,109,110],shift:[81,89,92,95],shifted_inst:81,shiftedinst:81,shih:76,ship:102,shortcut:[38,43,86,92,94,95,104],shortnam:86,shot:49,should:[1,10,11,13,24,26,33,39,43,45,46,47,48,49,50,51,53,55,61,68,70,72,73,74,76,77,80,81,82,83,84,85,86,88,89,91,92,94,95,97,98,102,103,104,105,106,108,113,115,117],shouldn:26,show:[0,10,35,73,89,92,95,103,109,110,112,116,117,119],show_edg:[35,89],shown:[92,94,95,116],shruthi:[87,100,101],shuffl:[49,55],shuffle_buffer_s:[49,109],shuffler:55,shutil:24,sid:[104,105,106,107,108,109],side:[62,88,92,109,118,119],sigler:101,sigma:[48,54,56,59,69,71,77,106,109],sigma_threshold:71,sign:1,signal:[13,103],signatur:[43,73,80,109],signedhead:109,signific:92,significantli:[48,79],silicon:[101,102],similar:[38,39,45,48,49,55,70,79,81,89,90,92,95,96,102,107,108,109,113],similarity_funct:[79,81],simon:76,simpl:[4,22,26,30,36,38,39,40,41,50,51,73,81,86,89,95,96,103,110],simple_block:40,simplecandidatemak:81,simpleconvblock:[38,41,44],simplemaxtrack:[81,89],simplemaxtrackscandidatemak:81,simpler:[39,45],simpletrack:81,simpleupsamplingblock:[38,41,44],simpli:[39,49,74,100,102,105,106,107,108,118],simplifi:[39,73],simul:[49,73,105],simulatedcamera:105,sinc:[10,21,24,26,33,36,47,48,49,54,55,70,73,76,79,80,81,86,88,89,91,92,95,97,98,102,107,108,109,110,112,113,115,116,117],singl:[3,4,7,10,13,15,18,24,33,35,36,43,47,48,49,50,51,52,54,56,61,62,63,65,66,67,71,73,76,78,79,81,82,84,85,87,88,89,90,91,92,94,95,101,104,105,110,117],single_inst:[48,91,109,110],single_instance_confmap_head:65,single_instance_lay:73,single_path_to_search:13,singleimagevideo:33,singleinstanceconfidencemapgener:54,singleinstanceconfmapshead:[65,71,73],singleinstanceconfmapsheadconfig:[48,71],singleinstanceconfmapspipelin:65,singleinstanceinferencelay:73,singleinstanceinferencemodel:73,singleinstancemodeltrain:82,singleinstancepredictor:73,singleton:[13,63,69],site:[86,104,107,108],situat:100,sixth:92,size:[0,10,35,38,39,42,43,44,45,47,48,49,50,55,62,63,66,67,69,70,73,76,77,81,84,87,88,89,98,104,107],sizematch:67,skeleton:[3,10,13,15,27,28,29,47,48,49,53,56,61,66,73,75,76,80,84,86,87,88,92,93,95,103,104,105,108,109,113,116,120],skeleton_edg:76,skeleton_ind:[56,61,66],skeleton_path:19,skew:[49,74],skip:[13,37,38,39,41,42,43,44,45,48,92,102,104,107,108],skip_add:[38,45],skip_connect:[38,43,48],skip_in:39,skip_label:13,skip_sourc:[38,39,45],skip_source_featur:38,sklearn:103,sleap:[2,87,88,90,91,92,93,94,95,97,98,99,102,103,107,111,113,114,115,116,117,120],sleap_activ:102,sleap_ci:86,sleap_deactiv:102,sleap_develop:102,sleap_jupyt:[104,107,108],sleap_label:92,sleap_old_ld_library_path:102,sleap_vers:[51,109],sleap_video_:[13,27],sleap_wt_gold:106,sleapanalysisadaptor:[26,29],sleapobjecttyp:[14,15,27],slice:[13,61,83,103],slightli:[102,104],slow:[13,49,50,88,92],slower:[73,79,88,95,105],slowli:117,slp:[9,12,13,23,33,70,87,89,91,96,103,104,105,106,107,108,109,110,111],small:[48,50,74,80,92,95],smaller:[39,48,54,56,59,64,67,69,70,76,98,116],smallest:[3,32,47,67],smith:[87,100,101],smooth:[77,103],smooth_diff:103,smooth_img:77,sn:[103,107],so:[3,9,10,12,13,21,28,31,33,35,39,42,44,47,48,50,54,62,63,64,70,74,76,78,79,81,87,88,90,92,93,94,95,96,100,102,103,104,105,106,107,108,109,110,114,115,117],social:0,socket:[36,50],softwar:[1,42,90,100,101,102],solar:[35,89],solv:1,solver:102,some:[1,3,7,13,21,29,31,44,55,65,73,76,78,85,87,88,92,93,94,95,96,100,102,103,104,105,106,107,108,109,110,112,115,116,117],some_issu:1,someth:[1,3,26,92],sometim:[77,81,95,99,108],somewher:110,soon:[100,109,110],sooner:90,sort:[3,6,49,70,80],sorted_edge_ind:76,souce_object:15,sound:91,sourc:[1,3,4,6,7,8,9,10,11,12,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,95,97,100,101,104,107],source_nam:85,source_nod:[48,71],source_object:[9,14,15,17,22,23,24,26,28,29,30],source_path:[17,28,29],source_points_arrai:3,source_video:33,source_video_avail:33,sp0:102,space:[0,10,48,50,69,76,90,92,100,102,116,118],span:[62,69,72,77],spars:74,spatial:[39,41,48],spatial_vec_length:76,spawn:[10,81,89,92,95,119],spawned_on:[10,105],spawned_track:81,speak:1,special:[42,50,73,90],specif:[0,10,13,14,15,26,27,45,48,50,51,63,68,73,74,79,82,85,92,98,100,105],specifi:[4,7,9,10,12,13,17,26,27,29,33,35,38,39,41,42,43,44,45,46,47,48,49,50,51,53,61,62,63,64,66,67,68,69,71,73,75,76,77,80,81,82,83,84,85,86,89,92,95,96,100,106,107,109],speed:[48,49,50,73,89,93,105,106,115,116],speedi:102,spent:[105,106],split:[13,47,50,62,66,68,70,82,86,106,107,109],split_by_ind:[47,109],split_fract:68,split_label:68,split_labels_read:68,split_labels_train_v:68,split_nam:70,spread:[48,54,56,59,70,71],spuriou:[73,76],squar:[73,77,84],square_bb:84,squash:1,squeez:99,src_node:[76,85],src_node_ind:[76,85],src_peak_ind:76,sse2:[104,107],sse3:[104,107],sse4:[104,107],sse:[104,107],ssse3:[104,107],stabl:[3,88,95,117],stack:[4,38,39,41,42,43,44,45,48,49,55,77,106,109],stack_config:43,stack_fn:43,stack_v1:43,stackoverflow:83,stage:[1,62,73,99,104,116,117],standalon:[76,104],standard:[3,35,38,43,45,47,48,49,54,55,56,59,63,70,77,80,87,89,96,104,105],start:[11,13,42,43,44,45,46,49,50,70,76,80,81,86,88,90,91,92,93,95,99,100,102,103,104,105,106,107,109,110,112,116,120],start_timestamp:109,startup:78,stat:107,state:[42,74,78,89,101,102],statist:[1,7,13,50,74],statisticseri:7,statu:1,std:[3,105],stddev:70,stem:[13,27,38,39,40,44,48,107],stem_block:[44,106,109],stem_features_strid:38,stem_filt:[39,40,43,48],stem_kernel_s:[44,106,109],stem_stack:[38,39,44],stem_strid:[39,48,109],stem_stride1:43,stem_stride2:43,stemblock:39,step:[1,3,13,38,39,40,41,42,43,44,45,48,49,54,56,59,63,67,69,73,76,80,81,88,92,95,99,100,101,102,105,106,109,113,117],still:[33,48,92,95,97,99,106],sto:85,stop:[47,49,50,98,106,109,110,117],stop_training_on_plateau:[49,106,109],storag:[13,47,49,50,90,104,105,106,107],store:[4,9,10,12,13,21,24,27,33,37,47,49,50,53,55,61,62,66,67,68,73,79,85,90,96,100,103,104,106,109,114,118],stori:100,str:[4,7,8,9,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,38,39,42,43,44,46,47,48,49,50,51,53,54,55,56,57,59,60,61,62,63,65,66,67,68,69,70,71,73,76,77,78,82,84,85,86,107],straight:102,straightforward:[3,97],strain:87,strategi:[95,101],stream:[61,63,67,103,104,109],stream_executor:[102,104,105,106,107,108,109],strictli:[73,76,89,102],stride1:43,stride:[4,10,37,38,39,40,41,42,43,44,45,47,48,54,56,59,62,64,67,71,73,75,76,84,88,92,98,106,109],string:[13,14,15,26,33,38,39,43,46,47,48,50,51,55,61,63,65,67,68,69,70,71,73,76,82,84,85,86],string_:9,stringent:107,strong:48,strongli:[101,102],structur:[10,13,38,39,49,51,68,73,85,87,105,106],stuck:100,studi:101,style:[41,42,43,92,95,107],sub:[10,11,36,50],subclass:[35,46,73,82],subdictionari:86,subdir:86,subdirectori:[50,82,86,96],subgraph:85,subject:42,sublay:39,sublicens:42,submenu:[95,119],submit:1,subpixel:[48,77],subplot:103,subsampl:[13,69],subscribe_to_control:[50,109],subscript:[76,85],subsequ:[39,44,62,92,95,102,104,105,106,108,116,119],subset:[10,13,33,66,68,83,86,89],substanti:[42,62],substitut:92,subtest:1,subtract:[43,47,63],success:[104,105,106,107,108,109,117],successfulli:[33,81,112,115],successor:[85,101],suffic:45,suffici:[43,48,88],suffix:[13,50,86,89,109],sugar:36,suggest:[4,13,23,24,66,81,89,93,95,98,99,100,115,116],suggestionfram:[4,13],suit:90,suitabl:100,sum:[7,56],summar:107,summari:[46,50,78,89,107],superfast:[34,100],supervis:[39,66],supplement:13,suppli:[88,96],support:[11,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,33,36,76,85,88,89,100,101,112,113,118],suppos:[92,94,95,96,116],suppres:77,suppress:79,sure:[1,10,13,47,80,83,91,96,97,102,104,105,106,107,108],surround:73,swap:[13,49,53,81,92,95,119],swiss:87,symmetr:[39,49,53,77,85],symmetri:[85,104],symmetric_ind:[53,85],symmetries_ful:85,symmetry_nam:85,sync:[10,90],sync_to_numpy_or_python_typ:69,sysf:[104,105,106,107,108,109],system:[13,24,33,47,50,73,89,101,102,105,106,108,109,116],system_summari:[102,104,105,106,108],t0:105,t:[1,3,10,12,13,21,26,29,32,33,36,45,48,55,74,79,80,81,86,88,89,90,91,92,93,94,95,96,97,98,99,101,102,103,104,105,106,107,109,110,112,113,115,116,117,118],tab10:103,tab:[50,88,91,98,109,119],tabl:[73,92,102,109,116],table_column:73,tabri:[100,101],tackl:1,tag:[46,50,109],tail:104,take:[0,4,6,26,38,42,43,45,49,54,55,56,59,73,77,81,85,86,90,91,92,95,98,102,103,104,105,106,107,108,111,116,117,119],taken:35,talmo:[0,1,31,87,99,100,101],talmolab:[102,103,104,105,106,107,108,109],talmop:101,target:[3,35,38,43,47,67,69,79,81,89,95],target_count:79,target_height:[47,67,109],target_instance_count:[81,89,108,109],target_points_arrai:3,target_rank:69,target_width:[47,67,109],task:[48,57,73,105,106,109],tcp:[36,46,50,109],td_fast:[104,105,107],td_id:105,team:[0,1],technic:[55,62,77,101],techniqu:95,technolog:101,tell:[13,88,92,99,100,117],templat:[1,26,85,96],temporari:[0,116],temporarili:0,tensor:[13,33,37,38,39,40,42,43,44,45,48,53,54,55,56,57,59,61,62,63,64,65,66,67,68,69,71,72,73,74,76,77,78,82,83,89],tensorboard:[46,50,82,89,109],tensorboardconfig:[50,82],tensorboardmatplotlibwrit:46,tensorfloat:[105,106,109],tensorflow:[37,38,39,42,43,44,45,53,54,55,56,57,59,60,61,62,63,64,65,66,67,68,69,71,72,73,74,76,77,78,82,83,89,90,100,102,104,105,106,107,108,109,117],tensorrt:104,tensorspec:[106,109],term:[38,48,71],termin:[49,102,118],teset:82,test:[1,13,33,47,49,50,70,73,82,87,89,104,105,106,107,109],test_ind:[47,109],test_label:[47,82,89,109],test_labels_read:82,text:[21,46,48,51,71,73,85,91,96,103,106],textadaptor:30,textual:74,tf2tensorrt:104,tf:[13,33,38,40,42,43,46,47,49,53,54,55,56,59,60,61,62,63,64,65,66,67,68,69,71,72,73,75,76,77,78,83,102,104,106,107,109],tf_enable_onednn_opt:104,tf_linear_sum_assign:[76,83],th:[62,77,89],than:[38,39,45,47,48,49,50,52,54,55,56,59,61,67,68,69,73,76,79,80,81,85,88,89,92,95,96,103,110,115],thei:[0,1,10,12,13,24,25,38,45,47,48,49,50,51,56,66,67,69,73,74,76,78,81,86,90,91,92,94,95,97,102,103,104,105,106,107,108,114],them:[35,48,49,54,55,56,67,76,82,85,90,92,93,94,95,97,99,102,104,105,106,107,109,110,112,113,117],themselv:1,therefor:[42,73],thi:[0,1,3,4,7,8,9,10,12,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28,29,30,32,33,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,59,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,88,89,90,91,92,94,95,96,97,98,100,101,102,103,104,105,106,107,108,109,110,112,113,114,115,116,117,119,120],thicker:115,thin:[92,95,115],thing:[1,74,85,86,89,90,92,96,103,116],think:[90,98,100],third:15,thorax:[3,104,105,106,109],thorax_index:103,thorax_loc:103,those:[10,13,33,47,48,73,85,89,92,94,96,102,104,107,115,117],though:55,thought:69,thread:[11,35,102],threaten:0,three:[10,13,15,76,95,96,102,117],thresh:[6,80,107],threshold:[3,6,59,64,70,71,76,77,79,80,81,89,92,95,107],through:[11,13,49,51,54,55,73,76,89,90,92,95,101,102,104,106,107,112,113,117,120],throughout:92,throughput:[13,33],thrown:26,thu:3,thumb:[88,97],thumbnail:84,thumbnail_s:84,thunder:73,thx_vel_fly0:103,thx_vel_fly1:103,tick:103,tif:24,tigher:49,tight:84,tight_layout:103,tile:[42,43],tile_channel:43,time:[1,10,31,35,36,38,39,48,49,50,51,55,73,81,82,89,90,96,98,100,102,105,106,107,108,115,116],timeout:[36,50,90],times_to_check:36,timeseri:103,timestamp:50,timestep:81,tip:[93,100,119],titl:[10,100,101,103,108],tn:[70,107],to_arrai:10,to_dict:[13,85],to_hdf5:33,to_imgstor:33,to_json:[13,51,85],to_pipelin:[13,33],todo:[1,15,43,50],toget:[17,29],togeth:[13,42,48,55,65,73,80,87,95,96,104],toggl:[92,94,116],told:115,toma:76,too:[40,49,55,80,95,113],took:105,tool:[81,93,95,100,102,115,119],toolkit:[100,102],top:[13,33,38,43,48,67,72,73,74,88,89,91,96,98,101,104,105,109,117],topdown:[47,48,62,73,106,109,117],topdown_confmap:109,topdownconfmapsmodeltrain:82,topdownconfmapspipelin:65,topdowninferencemodel:73,topdownmulticlassfindpeak:73,topdownmulticlassinferencemodel:73,topdownmulticlassmodeltrain:82,topdownmulticlasspipelin:65,topdownmulticlasspredictor:73,topdownpredictor:[73,109],topic:46,topolog:76,toposort_edg:76,torch:[47,63],tort:42,total:[6,7,13,35,49,62,68,73,76,95,104,105,106,109],total_elaps:109,toward:0,tp:[70,107],trace:73,track001:[13,27],track:[7,8,9,10,12,13,27,28,29,36,47,48,59,62,66,67,68,73,75,79,80,84,87,92,93,96,97,100,101,103,104,105,109,113,114,115,116,120],track_idx:[13,27],track_ind:[59,62,66],track_matching_queu:81,track_matching_queue_dict:81,track_nam:[9,12,13,103],track_occup:[9,12,13,29,103,114],track_set_inst:13,track_swap:13,track_window:[81,89,108,109],trackclean:[81,95],tracked_inst:[10,81],tracked_label:108,tracked_lf:108,tracker:[73,81,89,92,95,96,108,109,110,112,119],tracker_max_inst:73,tracker_window:73,tracking_scor:[9,10,12,104,105],tracking_split2:[106,107],tracks_matrix:114,tradit:33,trail:[92,95,103],train:[10,13,24,33,43,46,47,48,49,50,51,55,56,60,65,66,70,73,74,75,83,87,88,92,93,94,97,99,101,103,104,105,107,111,113,115,116,119,120],train_end:46,train_start:46,trainabl:[43,48,75,88,105],trained_model:[105,109],trainer:[46,82,106,109],training_and_inference_on_an_example_dataset:[104,105,106],training_and_inference_using_google_dr:[104,105,106],training_config:[73,89,96,104,106,107,109],training_ind:[47,109],training_inst:10,training_job:[70,73,82,110],training_job_path:[89,109],training_label:[47,82,106,109],training_labels_read:82,training_log:[50,96,107,109],training_pipelin:82,training_profil:[96,109],training_slp_fil:106,training_viz_pipelin:82,trainingcontrollerzmq:46,trainingjobconfig:[51,70,73,82,104,106],transfer:[33,43,106],transform:[3,4,10,48,53,54,55,56,57,59,60,61,62,63,65,67,68,73],transform_dataset:[53,54,55,56,57,59,60,61,62,63,67,68],transform_point:10,transformation_matrix:10,translat:[49,109],translate_max:[49,109],translate_min:[49,109],transmit:100,transpos:[9,12,38,40,41,44,45,48,92,95,103,114,119],transposed_conv:[38,45,48],transposed_conv_:38,transposed_conv_activ:38,transposed_conv_batch_norm:38,transposed_conv_batch_norm_before_activ:38,transposed_conv_batchnorm:45,transposed_conv_filt:[38,45],transposed_conv_filters_r:45,transposed_conv_kernel_s:[38,45,48],transposed_conv_use_bia:38,treat:33,tree:[97,103,107,109],tri:[90,95,100],tricki:[49,96],trigger:[46,78],troll:0,troubl:[1,117],troubleshoot:93,trt:104,truncat:62,truth:[6,60,70,73,74,84,89,92,107,109,113],tunabl:48,tune:[43,47,49,74,99],tupl:[3,4,6,9,10,11,13,32,33,35,37,38,42,43,45,48,54,56,65,66,67,68,69,70,71,72,73,75,76,77,79,81,83,84,85],tuples_to_suggest:4,turn:[49,88,92,95,104,117],turner:[100,101],tutori:[94,95,100,101,108,113,117],tweak:[99,108],twice:21,twitter:101,two:[3,6,10,13,38,51,54,70,73,76,79,80,83,85,86,88,89,92,94,95,96,102,103,104,109,110,115,117,118,119],type:[1,4,6,9,10,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28,29,30,33,37,38,39,40,41,42,43,44,45,47,48,49,50,51,53,54,55,56,57,59,61,62,63,65,66,67,68,69,70,71,73,74,75,76,79,81,82,85,86,89,91,93,95,96,97,99,100,101,102,104,105,106,107,109,112,113,117,118,119],type_spec:[106,109],typeerror:26,typic:[26,33,38,42,45,47,48,49,51,53,65,67,70,76,78,79,88,92,96,101,106,108,113],tzodikov:101,u:[38,98],uint8:[63,73,104,105],unabl:109,unaccept:[0,1],unaug:88,unavail:78,unbatch:[55,62],uncach:33,uncheck:[50,95],unclear:80,uncorrect:94,under:[13,27,62,80,86,101,102,110,116],underl:13,underli:[10,13,21,33,51,55,73,76,82],underneath:48,understand:[70,92,100],undirect:56,undo:116,unet:[38,42,45,48,106,109,117],unetconfig:[44,48,106],unetpretrainedencod:42,unguiculatu:87,unifi:13,uniform:[49,67],uniform_nois:[49,109],uniform_noise_max_v:[49,109],uniform_noise_min_v:[49,109],uniformli:[49,55],uninstal:[104,105,106,107,108,109,110],union:[6,10,13,23,24,26,29,33,38,61,65,66,70,71,73,76,79,81,82,83,84,85],uniqu:[10,13,27,48,76,81,83,85,86,104],unique_sampl:4,unique_tracks_in_queu:81,uniquifi:86,unit:[48,49,53,54,56,59,71,76],univers:[90,101],unlabel:[13,66,76,89,92,113],unlabeled_suggest:13,unless:[13,26,33,86,92,115],unlik:38,unlimit:90,unmatch:[70,83],unmatched_inst:79,unmodifi:55,unnorm:[54,69,77],unnormalize_bbox:62,unoccupi:9,unpack:110,unrag:55,unrag_exampl:69,unrag_output:73,unrag_tensor:69,unstructur:[10,70,85],until:[36,98,104,109,110,113,117,118],untrack:[13,27,79],untracked_inst:[79,81],unus:10,unused_predict:10,unwelcom:0,unzip:[91,96,107,109,110],uo:108,up:[9,33,36,38,44,45,48,49,50,56,61,66,68,73,79,80,82,86,87,88,89,91,92,93,95,97,101,102,103,104,106,107,108,109,110,115,116,117],up_block:[39,41,42,44,106,109],up_convs_per_block:41,up_interpol:[41,44,48,106,109],updat:[13,33,49,50,53,67,73,74,75,79,82,88,89,92,100,101,102,106,107],update_cach:13,update_config:[67,75,82],update_counts_for_fram:13,update_st:74,upload:[105,106,108],upon:[39,102],upper:15,upsampl:[38,39,40,41,42,43,44,48,67],upsampling2d:38,upsampling_stack:43,upsampling_strid:[38,39,45],upsamplingblock:39,upsamplingconfig:[45,48],upsamplingstack:[43,45],upshot:80,uri:86,us:[0,1,3,4,6,8,9,10,12,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28,29,30,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,59,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,101,102,103,104,105,106,107,108,109,111,113,115,116,117,118,119,120],usabl:[86,117],usable_cpu_count:86,usag:[1,20,26,34,49,62,73,89,101],use_bia:[38,43],use_cach:13,use_cocoev:70,use_cpu_onli:[78,104],use_first_gpu:78,use_gpu:78,use_gui:13,use_last_gpu:78,use_missing_gui:16,user:[1,10,13,25,32,47,50,51,62,66,86,89,92,100,102,109,113],user_inst:[10,13,66],user_instances_onli:[13,66],user_label:13,user_labeled_fram:13,user_labeled_frame_ind:13,user_labeled_onli:13,user_labels_onli:70,userbas:100,usr:86,usual:[3,26,33,80,88,92,94,95,96,106],util:[5,12,32,37,54,56,59,63,64,68,70,72,73,76,78,84,95,102,104],uva:[87,100,101],v005:89,v11:[100,102],v1:109,v2:[43,105],v8:[100,102],v:100,val:[13,58,70,89,106,107,109],val_:46,val_abdomen:[106,109],val_batches_per_epoch:[49,109],val_ey:[106,109],val_eyel:[106,109],val_forelegl4:[106,109],val_forelegr4:[106,109],val_head:[106,109],val_hindlegl4:[106,109],val_hindlegr4:[106,109],val_label:[89,109],val_loss:[106,109],val_midlegl4:[106,109],val_midlegr4:[106,109],val_thorax:[106,109],val_wingl:[106,109],val_wingr:[106,109],valid:[10,13,33,39,42,43,46,47,48,49,50,52,63,68,73,80,82,86,87,89,92,95,98,106,107,109,110,117],validate_pipelin:65,validation_fract:[47,68,106,109],validation_ind:[47,109],validation_label:[47,82,109],validation_labels_read:82,validation_pipelin:82,validation_viz_pipelin:82,valu:[4,7,9,10,13,14,33,34,39,43,47,48,49,50,54,55,59,62,63,64,67,68,69,70,71,72,73,74,75,76,77,79,80,81,83,85,86,89,92,102,104,105,106,107,108,109],valueerror:[13,43,50,61,62,65,67,68,78,85,86],vari:[49,88,105],variabl:[55,67,69,73,74,85,102,104],variant:[38,40,43,48,65],variat:92,varieti:[42,96,104,105,115],variou:[7,12,13,33,89,92],ve:[13,81,91,92,93,94,95,96,97,98,103,107,110,112,115,118],vector:[3,4,48,54,56,59,64,65,69,72,73,76,77,83],veloc:[81,92,95],vendor:[104,107],venv:102,verbos:[73,89,109],veri:[22,30,49,74,92,95,100,101],verifi:[10,102,113],version:[0,1,13,48,51,65,69,86,89,94,96,100,101,102,104,105,106,107,108,109,110,112],vertic:[10,53],vgg16:[42,48],vgg19:[42,48],vi:[70,107],via:[0,1,11,13,38,45,48,55,73,76,77,89,92,95,101,102,103,105,106,109,110,112,118],vid:58,video:[4,7,9,10,11,12,13,15,17,18,24,25,27,28,29,31,34,35,47,66,68,70,73,87,88,89,90,92,94,95,96,97,98,100,104,105,108,109,111,112,113,115,116,120],video_fn:[13,27],video_idx:[4,13,27,35],video_ind:[9,58,66],video_index:89,video_list:70,video_path:[9,19,70,89,109],video_search:[13,23,24,33],video_search_path:82,videocaptur:33,videomarkerthread:35,videoread:[33,66],videos_as_dict:4,videowriteropencv:34,videowriterskvideo:34,view:[10,50,85,88,89,95,98,109],viewpoint:0,virgin:87,virtual:[26,90],visibl:[10,13,48,66,70,74,87,92,94,97,104,107,116],vision:100,vision_:77,visual:[46,49,50,62,65,73,82,84,89,92,95,97,98,105,106,107,109,115,117],visualization_callback:82,visualize_predict:46,visualpredictor:73,viz:[10,46,50,96,106,109],viz_fn:82,vmax:103,vmin:103,voc:[70,107],vocab_s:4,volum:[100,101],vs:[53,65,70,107],w:[35,84,100,101,102,104,105,107,108,113],wa:[10,13,15,18,32,33,38,39,46,50,51,54,62,63,66,73,78,80,83,85,89,92,94,95,100,101,104,105,106,107,109,110],wai:[13,39,42,65,74,76,78,90,92,95,96,97,98,102,105,107,114,115],wait:[50,81],walk:[90,112,120],wang:[87,100,101],want:[3,10,11,12,13,26,32,33,35,36,45,70,79,81,85,88,91,92,93,94,95,96,97,100,103,105,106,107,108,110,111,112,114,115,116,117,119],warn:[13,33,50,73,104],warrant:1,warranti:42,wasn:[80,107],watch:101,we:[0,3,6,7,10,11,12,13,15,18,21,24,26,29,31,32,33,35,36,79,80,81,85,86,87,89,92,94,95,98,99,100,101,102,103,104,105,106,107,108,109,110,112,115,116,117],weak_filename_match:86,websit:100,webster:87,wedg:[35,89,92,95],wei:76,weigh:[48,59,70],weight:[42,43,48,49,50,56,71,73,76,77,85,89,96,104,106,107],weird:99,welcom:[0,109,110],well:[3,13,33,39,44,45,49,50,51,54,56,59,65,70,73,74,90,92,95,98,99,102,103,104,106,107,110,112,115],were:[10,13,33,47,55,59,63,68,73,78,79,81,87,89,92,95,102,103,104,108,110,111,113,115],weren:79,wget:[102,103,104,107,108,109],what:[0,35,46,80,84,88,91,95,96,99,102,103,104,105,107,109,110,119],whatev:[33,94,96],wheel:[92,116],when:[0,1,10,11,13,24,28,33,35,38,43,45,47,48,49,50,53,54,55,56,61,62,63,66,69,70,73,74,76,78,79,81,85,88,89,90,92,93,94,95,96,97,98,99,100,102,103,104,106,108,109,110,112,115,116,117,118,119],whenev:80,where:[3,10,13,27,33,39,43,45,49,50,51,53,54,56,57,59,61,62,64,67,70,73,74,76,77,79,80,83,85,86,88,89,91,92,95,96,98,102,106,113,115,116],wherev:91,whether:[4,10,13,14,15,16,17,18,19,21,22,23,24,25,27,28,29,30,31,32,33,35,42,43,45,48,50,54,59,70,73,79,81,82,84,85,86,89,92,95,96,100,118],which:[0,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28,29,30,32,33,35,38,39,40,45,46,48,49,50,53,54,55,58,59,61,62,64,66,67,70,71,73,74,76,77,79,80,81,82,84,85,86,87,88,89,90,91,92,94,95,96,97,98,100,102,103,104,105,107,110,112,115,116,117,119],whichev:[49,94],white:[35,87,89],who:[0,42],whole:[76,88,92,105,110],whom:42,whose:[10,40,66,85],why:92,wide:[42,70,98,107],widget:89,width:[10,15,33,34,35,38,39,43,44,45,47,48,49,53,54,56,62,63,66,67,69,72,73,75,76,77,84,89,96],width_:33,wiki:0,win:103,window:[13,81,89,92,94,95,96,98,101,102,103,104,105,106,108,117,118,119],window_s:81,wingl:[103,104,105,106,109],wingr:[103,104,105,106,109],wise:[45,48,55,59,76,79],wish:[88,95],with_centroid:107,with_imag:[13,104],with_offset:54,with_track_onli:[13,66,82],with_user_labels_onli:13,withheld:92,within:[0,9,10,13,27,28,33,38,39,45,47,48,50,55,62,66,68,70,72,73,76,78,85,86,90,92,96,102,104,108,112],without:[0,9,10,13,14,15,16,17,18,19,22,23,24,25,27,28,29,30,33,36,41,42,49,50,55,63,68,70,75,76,78,79,85,89,94,96,101,102,103,106,108,112],won:[45,48,80,81,88,92,95,98],work:[1,3,12,13,26,28,32,33,42,50,55,73,74,78,86,87,88,89,90,95,96,98,99,100,101,103,110,112,113,114,116,117],worker:87,workflow:[93,101,105,106,112,113,116,120],workshop:101,worri:[74,90,95],worst:[74,88],worth:88,would:[1,26,55,62,67,68,73,77,79,80,88,92,94,100,102,104,106,107,108,110,116],wouldn:95,wrap:[8,15,18,65,73,76,78,105],wrapper:[4,13,33,34,55,67,70,75,76,79,85,86],write:[1,9,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,33,34,35,46,50,73,86],write_csv_fil:9,write_log:[50,109],write_occupancy_fil:9,writer:[34,35],written:[9,14,15,16,17,18,19,22,23,24,25,27,28,29,30,35,50,110],wrong:[33,95],wt_gold:[106,107],www:[38,73,79,104,106,107,108],x1:[10,53,62,77,83],x2:[10,53,62,77,83],x86_64:[102,104,105,106,107,108,109],x:[3,10,13,15,38,39,43,45,49,53,54,56,62,64,69,73,76,77,83,87,92,102,104,105,106,109],x_hat:77,x_in:[38,39,40,42,43,44,71],x_main:42,x_middl:39,x_out:[39,43],x_scale:66,x_up:39,xcode:102,xferd:[105,106],xiao:95,xla:104,xlabel:[103,105,107],xlim:103,xq:103,xtick:103,xv:[54,56,64,69,77],xy:77,xy_max:61,xy_mid:61,xy_min:61,y1:[10,53,62,77,83],y2:[10,53,62,77,83],y:[3,10,13,15,49,53,54,56,62,64,69,73,76,77,92,100,101,102,104,105,106,107,108,109,110],y_gt:74,y_hat:77,y_pr:74,y_pred:74,y_scale:66,y_true:74,yakubovskii:42,yaml:[12,18,86,92],yan:[87,100,101],yang:77,yaser:76,ye:[85,97,100],year:[100,101],yellow:[92,115,119],yet:[3,36,81,86,98,102,115,116,118],yield:[4,11,13,55,58,62,73],ylabel:[103,105,107],ylim:103,yml:102,you:[3,8,12,13,14,24,26,33,35,36,50,70,74,80,81,85,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120],your:[1,24,26,70,88,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,113,115,116,117,118,119,120],yourself:113,ytick:103,yuv420p:100,yv:[54,56,64,69,77],z:[87,100,101],zero:[9,10,33,54,59,64,67,71,89,95,103,104,105,106,107,108,109],zeromq:[50,82],zeros_lik:103,zhe:76,zip:[12,24,50,82,91,96,104,105,107,109,110],zip_output:[50,109],zmq:[36,50,89,109],zmq_config:82,zmqconfig:[50,82],zoom:[88,92,98,116],zprofil:102,zsh:102},titles:["Contributor Covenant Code of Conduct","Contributing to SLEAP","Developer API","sleap.info.align","sleap.info.feature_suggestions","sleap.info.labels","sleap.info.metrics","sleap.info.summary","sleap.info.trackcleaner","sleap.info.write_tracking_h5","sleap.instance","sleap.io.asyncvideo","sleap.io.convert","sleap.io.dataset","sleap.io.format.adaptor","sleap.io.format.alphatracker","sleap.io.format.coco","sleap.io.format.csv","sleap.io.format.deeplabcut","sleap.io.format.deepposekit","sleap.io.format.dispatch","sleap.io.format.filehandle","sleap.io.format.genericjson","sleap.io.format.hdf5","sleap.io.format.labels_json","sleap.io.format.leap_matlab","sleap.io.format.main","sleap.io.format.ndx_pose","sleap.io.format.nix","sleap.io.format.sleap_analysis","sleap.io.format.text","sleap.io.legacy","sleap.io.pathutils","sleap.io.video","sleap.io.videowriter","sleap.io.visuals","sleap.message","sleap.nn.architectures.common","sleap.nn.architectures.encoder_decoder","sleap.nn.architectures.hourglass","sleap.nn.architectures.hrnet","sleap.nn.architectures.leap","sleap.nn.architectures.pretrained_encoders","sleap.nn.architectures.resnet","sleap.nn.architectures.unet","sleap.nn.architectures.upsampling","sleap.nn.callbacks","sleap.nn.config.data","sleap.nn.config.model","sleap.nn.config.optimization","sleap.nn.config.outputs","sleap.nn.config.training_job","sleap.nn.config.utils","sleap.nn.data.augmentation","sleap.nn.data.confidence_maps","sleap.nn.data.dataset_ops","sleap.nn.data.edge_maps","sleap.nn.data.general","sleap.nn.data.grouping","sleap.nn.data.identity","sleap.nn.data.inference","sleap.nn.data.instance_centroids","sleap.nn.data.instance_cropping","sleap.nn.data.normalization","sleap.nn.data.offset_regression","sleap.nn.data.pipelines","sleap.nn.data.providers","sleap.nn.data.resizing","sleap.nn.data.training","sleap.nn.data.utils","sleap.nn.evals","sleap.nn.heads","sleap.nn.identity","sleap.nn.inference","sleap.nn.losses","sleap.nn.model","sleap.nn.paf_grouping","sleap.nn.peak_finding","sleap.nn.system","sleap.nn.tracker.components","sleap.nn.tracker.kalman","sleap.nn.tracking","sleap.nn.training","sleap.nn.utils","sleap.nn.viz","sleap.skeleton","sleap.util","Datasets","Configuring models","Command line interfaces","Run training and inference on Colab","Creating a custom training profile","GUI","Guides","Importing predictions for labeling","Tracking and proofreading","Running SLEAP remotely","Skeleton design","Training with GUI","Troubleshooting workflows","Help","Social LEAP Estimates Animal Poses (SLEAP)","Installation","Analysis examples","Data structures","Interactive and realtime inference","Interactive and resumable training","Model evaluation","Post-inference tracking","Training and inference on an example dataset","Training and inference on your own data using Google Drive","<no title>","Notebooks","Overview","Export Data For Analysis","Prediction-assisted labeling","Initial Labeling","Training and Inference","Creating a project","Tracking instances across frames","Tutorial"],titleterms:{"0":103,"1":[103,104,105,106,108],"2":[104,105,106,108],"3":[105,106,108],"4":[105,106,108],"5":106,"do":100,"export":[89,110,114],"import":[94,102,110],For:114,Of:1,The:95,about:90,across:[103,119],adaptor:14,advanc:[103,112],align:3,alphatrack:15,alreadi:100,an:[109,112],analysi:[103,112,114],anim:101,anoth:100,api:2,appear:100,applic:92,ar:102,architectur:[37,38,39,40,41,42,43,44,45],assist:115,asyncvideo:11,attribut:0,augment:53,basic:112,bee:87,better:93,between:103,bug:100,callback:46,can:100,clean:95,cluster:103,coco:16,code:[0,1],colab:[90,109,110],color:[95,103],command:89,common:37,compon:79,comput:100,conda:102,conduct:[0,1],confidence_map:54,config:[47,48,49,50,51,52],configur:88,contact:101,content:[1,102],continu:106,contribut:1,contributor:[0,101],convert:[12,89],correct:100,covari:103,coven:0,creat:[91,110,118],csv:17,cuda:100,custom:91,data:[47,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,90,95,100,103,104,105,106,108,109,110,112,114],dataset:[13,87,89,109,112],dataset_op:55,debug:89,deeplabcut:18,deepposekit:19,design:97,develop:2,diagnost:89,discuss:1,dispatch:20,document:101,doe:100,down:110,download:109,drive:[110,112],dynam:103,edge_map:56,encoder_decod:38,enforc:0,estim:101,eval:70,evalu:[107,112],exampl:[89,103,109,112],featur:101,feature_suggest:4,file:[89,92],filehandl:21,fill:103,find:103,first:116,fix:115,flies13:87,fly32:87,fly:103,format:[14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,100],found:100,frame:[110,116,119],from:[90,102],gener:[57,93],genericjson:22,gerbil:87,get:[93,100,101,102],go:92,googl:[110,112],gpu:[100,102],group:58,gui:[89,92,98,102],guid:[1,93],have:100,hdf5:23,head:71,help:[92,100,102],hourglass:39,how:100,hrnet:40,hyperparamet:88,i:100,ident:[59,72],imag:100,improv:100,infer:[60,73,89,90,96,104,105,108,109,110,112,117],info:[3,4,5,6,7,8,9],initi:116,inspect:[89,108],instal:[100,101,102,108,109,110],instanc:[10,110,119],instance_centroid:61,instance_crop:62,interact:[105,106,112],interfac:89,io:[11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35],issu:1,job:[106,110],just:100,kalman:80,kei:92,label:[5,89,92,94,115,116],labels_json:24,leap:[41,101],leap_matlab:25,learn:101,legaci:31,licens:101,line:89,load:103,loss:74,m1:102,mac:102,magnitud:103,main:26,mambaforg:102,matlab:114,menu:92,messag:36,method:[95,102],metric:6,mice_hc:87,mice_of:87,miss:103,model:[48,75,88,107,109,110,112],more:[95,100,103,116],mount:110,mous:92,move:90,movement:103,my:100,navig:92,ndx_pose:27,need:100,nix:28,nn:[37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84],normal:63,note:[10,13,46,50,53,54,56,59,61,62,63,65,66,70,72,73,76,77,78,81,83,110],notebook:112,offset_regress:64,open:118,optim:49,option:117,orient:95,our:0,out:100,output:[50,100],overview:113,own:[110,112],packag:[102,110],paf_group:76,palett:95,particular:100,pathutil:32,peak_find:77,perform:105,pip:102,pipelin:65,pledg:0,pose:[100,101],post:[108,112],pre:102,predict:[92,94,100,110,115],pretrained_encod:42,problem:100,process:110,profil:[91,110],project:118,proofread:[95,119],provid:66,pull:1,python:114,quick:101,realtim:[105,112],refer:101,rel:100,remot:[93,96],render:89,request:1,resiz:67,resnet:43,respons:0,result:[93,100],resum:[106,112],review:115,run:[90,93,96,110],sampl:109,save:[108,116],scope:0,script:95,seekbar:92,select:[92,116],set:100,setup:[104,105,106,108],shift:100,skeleton:[85,97,118],sleap:[1,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,89,96,100,101,104,105,106,108,109,110,112,118],sleap_analysi:29,social:101,some:101,someon:100,sourc:102,speed:103,standard:0,start:[117,118],strang:100,structur:[104,112],style:1,suggest:[92,110],summari:7,support:102,system:[78,100],t:100,tabl:1,talk:100,test:[102,108],text:30,thank:1,thing:102,thorax:103,tip:97,top:110,track:[81,89,95,108,110,112,119],trackclean:8,tracker:[79,80],train:[68,82,89,90,91,95,96,98,106,109,110,112,117],training_job:51,troubleshoot:99,tutori:120,type:88,unet:44,uninstal:102,up:100,upgrad:102,upload:110,upsampl:45,us:[100,110,112],usag:[100,112],util:[52,69,83,86],valu:103,ve:100,veloc:103,video:[33,103,110,118],videowrit:34,view:92,visual:[35,103],viz:84,what:100,where:100,without:100,work:102,workflow:99,write_tracking_h5:9,x:103,y:103,you:1,your:[110,112]}}) \ No newline at end of file +Search.setIndex({docnames:["CODE_OF_CONDUCT","CONTRIBUTING","api","api/sleap.info.align","api/sleap.info.feature_suggestions","api/sleap.info.labels","api/sleap.info.metrics","api/sleap.info.summary","api/sleap.info.trackcleaner","api/sleap.info.write_tracking_h5","api/sleap.instance","api/sleap.io.asyncvideo","api/sleap.io.convert","api/sleap.io.dataset","api/sleap.io.format.adaptor","api/sleap.io.format.alphatracker","api/sleap.io.format.coco","api/sleap.io.format.csv","api/sleap.io.format.deeplabcut","api/sleap.io.format.deepposekit","api/sleap.io.format.dispatch","api/sleap.io.format.filehandle","api/sleap.io.format.genericjson","api/sleap.io.format.hdf5","api/sleap.io.format.labels_json","api/sleap.io.format.leap_matlab","api/sleap.io.format.main","api/sleap.io.format.ndx_pose","api/sleap.io.format.nix","api/sleap.io.format.sleap_analysis","api/sleap.io.format.text","api/sleap.io.legacy","api/sleap.io.pathutils","api/sleap.io.video","api/sleap.io.videowriter","api/sleap.io.visuals","api/sleap.message","api/sleap.nn.architectures.common","api/sleap.nn.architectures.encoder_decoder","api/sleap.nn.architectures.hourglass","api/sleap.nn.architectures.hrnet","api/sleap.nn.architectures.leap","api/sleap.nn.architectures.pretrained_encoders","api/sleap.nn.architectures.resnet","api/sleap.nn.architectures.unet","api/sleap.nn.architectures.upsampling","api/sleap.nn.callbacks","api/sleap.nn.config.data","api/sleap.nn.config.model","api/sleap.nn.config.optimization","api/sleap.nn.config.outputs","api/sleap.nn.config.training_job","api/sleap.nn.config.utils","api/sleap.nn.data.augmentation","api/sleap.nn.data.confidence_maps","api/sleap.nn.data.dataset_ops","api/sleap.nn.data.edge_maps","api/sleap.nn.data.general","api/sleap.nn.data.grouping","api/sleap.nn.data.identity","api/sleap.nn.data.inference","api/sleap.nn.data.instance_centroids","api/sleap.nn.data.instance_cropping","api/sleap.nn.data.normalization","api/sleap.nn.data.offset_regression","api/sleap.nn.data.pipelines","api/sleap.nn.data.providers","api/sleap.nn.data.resizing","api/sleap.nn.data.training","api/sleap.nn.data.utils","api/sleap.nn.evals","api/sleap.nn.heads","api/sleap.nn.identity","api/sleap.nn.inference","api/sleap.nn.losses","api/sleap.nn.model","api/sleap.nn.paf_grouping","api/sleap.nn.peak_finding","api/sleap.nn.system","api/sleap.nn.tracker.components","api/sleap.nn.tracker.kalman","api/sleap.nn.tracking","api/sleap.nn.training","api/sleap.nn.utils","api/sleap.nn.viz","api/sleap.skeleton","api/sleap.util","datasets","guides/choosing-models","guides/cli","guides/colab","guides/custom-training","guides/gui","guides/index","guides/merging","guides/proofreading","guides/remote","guides/skeletons","guides/training","guides/troubleshooting-workflows","help","index","installation","notebooks/Analysis_examples","notebooks/Data_structures","notebooks/Interactive_and_realtime_inference","notebooks/Interactive_and_resumable_training","notebooks/Model_evaluation","notebooks/Post_inference_tracking","notebooks/Training_and_inference_on_an_example_dataset","notebooks/Training_and_inference_using_Google_Drive","notebooks/analysis_example/README","notebooks/index","overview","tutorials/analysis","tutorials/assisted-labeling","tutorials/initial-labeling","tutorials/initial-training","tutorials/new-project","tutorials/proofreading","tutorials/tutorial"],envversion:{"sphinx.domains.c":2,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":5,"sphinx.domains.index":1,"sphinx.domains.javascript":2,"sphinx.domains.math":2,"sphinx.domains.python":3,"sphinx.domains.rst":2,"sphinx.domains.std":2,sphinx:56},filenames:["CODE_OF_CONDUCT.md","CONTRIBUTING.md","api.rst","api/sleap.info.align.rst","api/sleap.info.feature_suggestions.rst","api/sleap.info.labels.rst","api/sleap.info.metrics.rst","api/sleap.info.summary.rst","api/sleap.info.trackcleaner.rst","api/sleap.info.write_tracking_h5.rst","api/sleap.instance.rst","api/sleap.io.asyncvideo.rst","api/sleap.io.convert.rst","api/sleap.io.dataset.rst","api/sleap.io.format.adaptor.rst","api/sleap.io.format.alphatracker.rst","api/sleap.io.format.coco.rst","api/sleap.io.format.csv.rst","api/sleap.io.format.deeplabcut.rst","api/sleap.io.format.deepposekit.rst","api/sleap.io.format.dispatch.rst","api/sleap.io.format.filehandle.rst","api/sleap.io.format.genericjson.rst","api/sleap.io.format.hdf5.rst","api/sleap.io.format.labels_json.rst","api/sleap.io.format.leap_matlab.rst","api/sleap.io.format.main.rst","api/sleap.io.format.ndx_pose.rst","api/sleap.io.format.nix.rst","api/sleap.io.format.sleap_analysis.rst","api/sleap.io.format.text.rst","api/sleap.io.legacy.rst","api/sleap.io.pathutils.rst","api/sleap.io.video.rst","api/sleap.io.videowriter.rst","api/sleap.io.visuals.rst","api/sleap.message.rst","api/sleap.nn.architectures.common.rst","api/sleap.nn.architectures.encoder_decoder.rst","api/sleap.nn.architectures.hourglass.rst","api/sleap.nn.architectures.hrnet.rst","api/sleap.nn.architectures.leap.rst","api/sleap.nn.architectures.pretrained_encoders.rst","api/sleap.nn.architectures.resnet.rst","api/sleap.nn.architectures.unet.rst","api/sleap.nn.architectures.upsampling.rst","api/sleap.nn.callbacks.rst","api/sleap.nn.config.data.rst","api/sleap.nn.config.model.rst","api/sleap.nn.config.optimization.rst","api/sleap.nn.config.outputs.rst","api/sleap.nn.config.training_job.rst","api/sleap.nn.config.utils.rst","api/sleap.nn.data.augmentation.rst","api/sleap.nn.data.confidence_maps.rst","api/sleap.nn.data.dataset_ops.rst","api/sleap.nn.data.edge_maps.rst","api/sleap.nn.data.general.rst","api/sleap.nn.data.grouping.rst","api/sleap.nn.data.identity.rst","api/sleap.nn.data.inference.rst","api/sleap.nn.data.instance_centroids.rst","api/sleap.nn.data.instance_cropping.rst","api/sleap.nn.data.normalization.rst","api/sleap.nn.data.offset_regression.rst","api/sleap.nn.data.pipelines.rst","api/sleap.nn.data.providers.rst","api/sleap.nn.data.resizing.rst","api/sleap.nn.data.training.rst","api/sleap.nn.data.utils.rst","api/sleap.nn.evals.rst","api/sleap.nn.heads.rst","api/sleap.nn.identity.rst","api/sleap.nn.inference.rst","api/sleap.nn.losses.rst","api/sleap.nn.model.rst","api/sleap.nn.paf_grouping.rst","api/sleap.nn.peak_finding.rst","api/sleap.nn.system.rst","api/sleap.nn.tracker.components.rst","api/sleap.nn.tracker.kalman.rst","api/sleap.nn.tracking.rst","api/sleap.nn.training.rst","api/sleap.nn.utils.rst","api/sleap.nn.viz.rst","api/sleap.skeleton.rst","api/sleap.util.rst","datasets.md","guides/choosing-models.md","guides/cli.md","guides/colab.rst","guides/custom-training.md","guides/gui.md","guides/index.md","guides/merging.rst","guides/proofreading.md","guides/remote.md","guides/skeletons.md","guides/training.rst","guides/troubleshooting-workflows.md","help.md","index.rst","installation.md","notebooks/Analysis_examples.ipynb","notebooks/Data_structures.ipynb","notebooks/Interactive_and_realtime_inference.ipynb","notebooks/Interactive_and_resumable_training.ipynb","notebooks/Model_evaluation.ipynb","notebooks/Post_inference_tracking.ipynb","notebooks/Training_and_inference_on_an_example_dataset.ipynb","notebooks/Training_and_inference_using_Google_Drive.ipynb","notebooks/analysis_example/README.md","notebooks/index.rst","overview.rst","tutorials/analysis.rst","tutorials/assisted-labeling.md","tutorials/initial-labeling.rst","tutorials/initial-training.rst","tutorials/new-project.md","tutorials/proofreading.rst","tutorials/tutorial.rst"],objects:{"sleap.info":[[3,0,0,"-","align"],[4,0,0,"-","feature_suggestions"],[5,0,0,"-","labels"],[6,0,0,"-","metrics"],[7,0,0,"-","summary"],[8,0,0,"-","trackcleaner"],[9,0,0,"-","write_tracking_h5"]],"sleap.info.align":[[3,1,1,"","align_instance_points"],[3,1,1,"","align_instances"],[3,1,1,"","align_instances_on_most_stable"],[3,1,1,"","get_instances_points"],[3,1,1,"","get_mean_and_std_for_points"],[3,1,1,"","get_most_stable_node_pair"],[3,1,1,"","get_stable_node_pairs"],[3,1,1,"","get_template_points_array"]],"sleap.info.feature_suggestions":[[4,2,1,"","FrameGroupSet"],[4,2,1,"","FrameItem"],[4,2,1,"","ItemStack"],[4,2,1,"","ParallelFeaturePipeline"]],"sleap.info.feature_suggestions.FrameGroupSet":[[4,3,1,"","all_items"],[4,4,1,"","append_to_group"],[4,4,1,"","extend_group_items"],[4,4,1,"","get_item_group"],[4,5,1,"","group_data"],[4,3,1,"","groups"],[4,5,1,"","groupset_data"],[4,5,1,"","item_group"],[4,5,1,"","method"],[4,4,1,"","sample"]],"sleap.info.feature_suggestions.ItemStack":[[4,4,1,"","brisk_bag_of_features"],[4,3,1,"","current_groupset"],[4,5,1,"","data"],[4,4,1,"","extend_ownership"],[4,4,1,"","flatten"],[4,4,1,"","get_all_items_from_group"],[4,4,1,"","get_item_data"],[4,4,1,"","get_item_data_idxs"],[4,4,1,"","get_raw_images"],[4,5,1,"","group_sets"],[4,4,1,"","hog_bag_of_features"],[4,5,1,"","items"],[4,4,1,"","kmeans"],[4,4,1,"","make_sample_group"],[4,5,1,"","meta"],[4,5,1,"","ownership"],[4,4,1,"","pca"],[4,4,1,"","sample_groups"]],"sleap.info.feature_suggestions.ParallelFeaturePipeline":[[4,4,1,"","get"],[4,4,1,"","make"],[4,4,1,"","run"],[4,4,1,"","tuples_to_suggestions"]],"sleap.info.metrics":[[6,1,1,"","calculate_pairwise_cost"],[6,1,1,"","compare_instance_lists"],[6,1,1,"","list_points_array"],[6,1,1,"","match_instance_lists"],[6,1,1,"","match_instance_lists_nodewise"],[6,1,1,"","matched_instance_distances"],[6,1,1,"","nodeless_point_dist"],[6,1,1,"","point_dist"],[6,1,1,"","point_match_count"],[6,1,1,"","point_nonmatch_count"]],"sleap.info.summary":[[7,2,1,"","StatisticSeries"]],"sleap.info.summary.StatisticSeries":[[7,4,1,"","get_instance_score_series"],[7,4,1,"","get_point_count_series"],[7,4,1,"","get_point_displacement_series"],[7,4,1,"","get_point_score_series"],[7,4,1,"","get_primary_point_displacement_series"]],"sleap.info.trackcleaner":[[8,1,1,"","fit_tracks"]],"sleap.info.write_tracking_h5":[[9,1,1,"","get_edges_as_np_strings"],[9,1,1,"","get_nodes_as_np_strings"],[9,1,1,"","get_occupancy_and_points_matrices"],[9,1,1,"","get_tracks_as_np_strings"],[9,1,1,"","main"],[9,1,1,"","remove_empty_tracks_from_matrices"],[9,1,1,"","write_csv_file"],[9,1,1,"","write_occupancy_file"]],"sleap.instance":[[10,2,1,"","Instance"],[10,2,1,"","InstancesList"],[10,2,1,"","LabeledFrame"],[10,2,1,"","Point"],[10,2,1,"","PointArray"],[10,2,1,"","PredictedInstance"],[10,2,1,"","PredictedPoint"],[10,2,1,"","PredictedPointArray"],[10,2,1,"","Track"],[10,1,1,"","make_instance_cattr"]],"sleap.instance.Instance":[[10,3,1,"","bounding_box"],[10,3,1,"","centroid"],[10,4,1,"","fill_missing"],[10,3,1,"","frame_idx"],[10,4,1,"","from_numpy"],[10,4,1,"","from_pointsarray"],[10,4,1,"","get_points_array"],[10,4,1,"","matches"],[10,3,1,"","midpoint"],[10,3,1,"","n_visible_points"],[10,3,1,"","nodes"],[10,3,1,"","nodes_points"],[10,4,1,"","numpy"],[10,3,1,"","points"],[10,3,1,"","points_array"],[10,4,1,"","transform_points"],[10,3,1,"","video"]],"sleap.instance.InstancesList":[[10,4,1,"","append"],[10,4,1,"","clear"],[10,4,1,"","copy"],[10,4,1,"","extend"],[10,4,1,"","insert"],[10,3,1,"","labeled_frame"],[10,4,1,"","pop"],[10,4,1,"","remove"]],"sleap.instance.LabeledFrame":[[10,4,1,"","complex_frame_merge"],[10,4,1,"","complex_merge_between"],[10,4,1,"","find"],[10,3,1,"","has_predicted_instances"],[10,3,1,"","has_tracked_instances"],[10,3,1,"","has_user_instances"],[10,3,1,"","image"],[10,4,1,"","index"],[10,4,1,"","insert"],[10,3,1,"","instances"],[10,3,1,"","instances_to_show"],[10,4,1,"","merge_frames"],[10,3,1,"","n_predicted_instances"],[10,3,1,"","n_tracked_instances"],[10,3,1,"","n_user_instances"],[10,4,1,"","numpy"],[10,4,1,"","plot"],[10,4,1,"","plot_predicted"],[10,3,1,"","predicted_instances"],[10,4,1,"","remove_empty_instances"],[10,4,1,"","remove_untracked"],[10,3,1,"","tracked_instances"],[10,3,1,"","training_instances"],[10,3,1,"","unused_predictions"],[10,3,1,"","user_instances"]],"sleap.instance.Point":[[10,5,1,"","dtype"],[10,4,1,"","isnan"],[10,4,1,"","numpy"]],"sleap.instance.PointArray":[[10,4,1,"","from_array"],[10,4,1,"","make_default"]],"sleap.instance.PredictedInstance":[[10,4,1,"","from_arrays"],[10,4,1,"","from_instance"],[10,4,1,"","from_numpy"],[10,4,1,"","from_pointsarray"],[10,3,1,"","points_and_scores_array"],[10,3,1,"","scores"]],"sleap.instance.PredictedPoint":[[10,5,1,"","dtype"],[10,4,1,"","from_point"]],"sleap.instance.PredictedPointArray":[[10,4,1,"","to_array"]],"sleap.instance.Track":[[10,4,1,"","matches"]],"sleap.io":[[11,0,0,"-","asyncvideo"],[12,0,0,"-","convert"],[13,0,0,"-","dataset"],[31,0,0,"-","legacy"],[32,0,0,"-","pathutils"],[33,0,0,"-","video"],[34,0,0,"-","videowriter"],[35,0,0,"-","visuals"]],"sleap.io.asyncvideo":[[11,2,1,"","AsyncVideo"],[11,2,1,"","AsyncVideoServer"]],"sleap.io.asyncvideo.AsyncVideo":[[11,3,1,"","chunks"],[11,4,1,"","close"],[11,4,1,"","from_video"],[11,4,1,"","load_by_chunk"]],"sleap.io.asyncvideo.AsyncVideoServer":[[11,4,1,"","run"]],"sleap.io.convert":[[12,1,1,"","main"]],"sleap.io.dataset":[[13,2,1,"","Labels"],[13,2,1,"","LabelsDataCache"],[13,1,1,"","find_path_using_paths"],[13,1,1,"","load_file"]],"sleap.io.dataset.Labels":[[13,4,1,"","add_instance"],[13,4,1,"","add_suggestion"],[13,4,1,"","add_track"],[13,4,1,"","add_video"],[13,3,1,"","all_instances"],[13,4,1,"","append"],[13,4,1,"","append_suggestions"],[13,4,1,"","clear_suggestions"],[13,4,1,"","complex_merge_between"],[13,4,1,"","copy"],[13,4,1,"","delete_suggestions"],[13,4,1,"","describe"],[13,4,1,"","export"],[13,4,1,"","export_csv"],[13,4,1,"","export_nwb"],[13,4,1,"","extend_from"],[13,4,1,"","extract"],[13,4,1,"","find"],[13,4,1,"","find_first"],[13,4,1,"","find_last"],[13,4,1,"","find_suggestion"],[13,4,1,"","find_track_occupancy"],[13,4,1,"","finish_complex_merge"],[13,4,1,"","frames"],[13,4,1,"","get"],[13,4,1,"","get_next_suggestion"],[13,4,1,"","get_suggestions"],[13,4,1,"","get_track_count"],[13,4,1,"","get_track_occupancy"],[13,4,1,"","get_unlabeled_suggestion_inds"],[13,4,1,"","get_video_suggestions"],[13,4,1,"","has_frame"],[13,3,1,"","has_missing_videos"],[13,4,1,"","index"],[13,4,1,"","insert"],[13,4,1,"","instance_count"],[13,4,1,"","instances"],[13,3,1,"","is_multi_instance"],[13,5,1,"","labeled_frames"],[13,3,1,"","labels"],[13,4,1,"","load_file"],[13,4,1,"","make_video_callback"],[13,4,1,"","merge_container_dicts"],[13,4,1,"","merge_matching_frames"],[13,4,1,"","merge_nodes"],[13,5,1,"","negative_anchors"],[13,4,1,"","numpy"],[13,3,1,"","predicted_instances"],[13,5,1,"","provenance"],[13,4,1,"","remove"],[13,4,1,"","remove_all_tracks"],[13,4,1,"","remove_empty_frames"],[13,4,1,"","remove_empty_instances"],[13,4,1,"","remove_frame"],[13,4,1,"","remove_frames"],[13,4,1,"","remove_instance"],[13,4,1,"","remove_predictions"],[13,4,1,"","remove_suggestion"],[13,4,1,"","remove_track"],[13,4,1,"","remove_untracked_instances"],[13,4,1,"","remove_unused_tracks"],[13,4,1,"","remove_user_instances"],[13,4,1,"","remove_video"],[13,4,1,"","save"],[13,4,1,"","save_file"],[13,4,1,"","save_frame_data_hdf5"],[13,4,1,"","save_frame_data_imgstore"],[13,4,1,"","set_suggestions"],[13,3,1,"","skeleton"],[13,5,1,"","skeletons"],[13,4,1,"","split"],[13,5,1,"","suggestions"],[13,4,1,"","to_dict"],[13,4,1,"","to_json"],[13,4,1,"","to_pipeline"],[13,4,1,"","track_set_instance"],[13,4,1,"","track_swap"],[13,5,1,"","tracks"],[13,3,1,"","unlabeled_suggestions"],[13,3,1,"","user_instances"],[13,3,1,"","user_labeled_frame_inds"],[13,3,1,"","user_labeled_frames"],[13,3,1,"","video"],[13,5,1,"","videos"],[13,4,1,"","with_user_labels_only"]],"sleap.io.dataset.LabelsDataCache":[[13,4,1,"","add_instance"],[13,4,1,"","add_track"],[13,4,1,"","find_fancy_frame_idxs"],[13,4,1,"","find_frames"],[13,4,1,"","get_filtered_frame_idxs"],[13,4,1,"","get_frame_count"],[13,4,1,"","get_track_occupancy"],[13,4,1,"","get_video_track_occupancy"],[13,4,1,"","remove_frame"],[13,4,1,"","remove_instance"],[13,4,1,"","remove_video"],[13,4,1,"","track_swap"],[13,4,1,"","update"],[13,4,1,"","update_counts_for_frame"]],"sleap.io.format":[[14,0,0,"-","adaptor"],[15,0,0,"-","alphatracker"],[16,0,0,"-","coco"],[17,0,0,"-","csv"],[18,0,0,"-","deeplabcut"],[19,0,0,"-","deepposekit"],[20,0,0,"-","dispatch"],[21,0,0,"-","filehandle"],[22,0,0,"-","genericjson"],[23,0,0,"-","hdf5"],[24,0,0,"-","labels_json"],[25,0,0,"-","leap_matlab"],[26,0,0,"-","main"],[27,0,0,"-","ndx_pose"],[28,0,0,"-","nix"],[29,0,0,"-","sleap_analysis"],[30,0,0,"-","text"]],"sleap.io.format.adaptor":[[14,2,1,"","Adaptor"],[14,2,1,"","SleapObjectType"]],"sleap.io.format.adaptor.Adaptor":[[14,3,1,"","all_exts"],[14,4,1,"","can_read_file"],[14,4,1,"","can_write_filename"],[14,3,1,"","default_ext"],[14,4,1,"","does_match_ext"],[14,4,1,"","does_read"],[14,4,1,"","does_write"],[14,3,1,"","formatted_ext_options"],[14,3,1,"","handles"],[14,3,1,"","name"],[14,4,1,"","read"],[14,4,1,"","write"]],"sleap.io.format.alphatracker":[[15,2,1,"","AlphaTrackerAdaptor"]],"sleap.io.format.alphatracker.AlphaTrackerAdaptor":[[15,3,1,"","all_exts"],[15,4,1,"","can_read_file"],[15,4,1,"","can_write_filename"],[15,3,1,"","default_ext"],[15,4,1,"","does_match_ext"],[15,4,1,"","does_read"],[15,4,1,"","does_write"],[15,3,1,"","formatted_ext_options"],[15,4,1,"","get_alpha_tracker_frame_dict"],[15,4,1,"","get_alpha_tracker_instance_dict"],[15,4,1,"","get_alpha_tracker_point_dict"],[15,3,1,"","handles"],[15,4,1,"","make_video_for_image_list"],[15,3,1,"","name"],[15,4,1,"","read"],[15,4,1,"","write"]],"sleap.io.format.coco":[[16,2,1,"","LabelsCocoAdaptor"]],"sleap.io.format.coco.LabelsCocoAdaptor":[[16,3,1,"","all_exts"],[16,4,1,"","can_read_file"],[16,4,1,"","can_write_filename"],[16,3,1,"","default_ext"],[16,4,1,"","does_read"],[16,4,1,"","does_write"],[16,3,1,"","handles"],[16,3,1,"","name"],[16,4,1,"","read"]],"sleap.io.format.csv":[[17,2,1,"","CSVAdaptor"]],"sleap.io.format.csv.CSVAdaptor":[[17,3,1,"","all_exts"],[17,4,1,"","can_read_file"],[17,4,1,"","can_write_filename"],[17,3,1,"","default_ext"],[17,4,1,"","does_read"],[17,4,1,"","does_write"],[17,3,1,"","handles"],[17,3,1,"","name"],[17,4,1,"","write"]],"sleap.io.format.deeplabcut":[[18,2,1,"","LabelsDeepLabCutCsvAdaptor"],[18,2,1,"","LabelsDeepLabCutYamlAdaptor"]],"sleap.io.format.deeplabcut.LabelsDeepLabCutCsvAdaptor":[[18,3,1,"","all_exts"],[18,4,1,"","can_read_file"],[18,4,1,"","can_write_filename"],[18,3,1,"","default_ext"],[18,4,1,"","does_read"],[18,4,1,"","does_write"],[18,3,1,"","handles"],[18,4,1,"","make_video_for_image_list"],[18,3,1,"","name"],[18,4,1,"","read"]],"sleap.io.format.deeplabcut.LabelsDeepLabCutYamlAdaptor":[[18,3,1,"","all_exts"],[18,4,1,"","can_read_file"],[18,4,1,"","can_write_filename"],[18,3,1,"","default_ext"],[18,4,1,"","does_read"],[18,4,1,"","does_write"],[18,3,1,"","handles"],[18,3,1,"","name"],[18,4,1,"","read"]],"sleap.io.format.deepposekit":[[19,2,1,"","LabelsDeepPoseKitAdaptor"]],"sleap.io.format.deepposekit.LabelsDeepPoseKitAdaptor":[[19,3,1,"","all_exts"],[19,4,1,"","can_read_file"],[19,4,1,"","can_write_filename"],[19,3,1,"","default_ext"],[19,4,1,"","does_read"],[19,4,1,"","does_write"],[19,3,1,"","handles"],[19,3,1,"","name"],[19,4,1,"","read"]],"sleap.io.format.filehandle":[[21,2,1,"","FileHandle"]],"sleap.io.format.filehandle.FileHandle":[[21,4,1,"","close"],[21,3,1,"","file"],[21,3,1,"","format_id"],[21,3,1,"","is_hdf5"],[21,3,1,"","is_json"],[21,3,1,"","json"],[21,4,1,"","open"],[21,3,1,"","text"]],"sleap.io.format.genericjson":[[22,2,1,"","GenericJsonAdaptor"]],"sleap.io.format.genericjson.GenericJsonAdaptor":[[22,3,1,"","all_exts"],[22,4,1,"","can_read_file"],[22,4,1,"","can_write_filename"],[22,3,1,"","default_ext"],[22,4,1,"","does_read"],[22,4,1,"","does_write"],[22,3,1,"","handles"],[22,3,1,"","name"],[22,4,1,"","read"],[22,4,1,"","write"]],"sleap.io.format.hdf5":[[23,2,1,"","LabelsV1Adaptor"]],"sleap.io.format.hdf5.LabelsV1Adaptor":[[23,3,1,"","all_exts"],[23,4,1,"","can_read_file"],[23,4,1,"","can_write_filename"],[23,3,1,"","default_ext"],[23,4,1,"","does_read"],[23,4,1,"","does_write"],[23,3,1,"","handles"],[23,3,1,"","name"],[23,4,1,"","read"],[23,4,1,"","write"]],"sleap.io.format.labels_json":[[24,2,1,"","LabelsJsonAdaptor"]],"sleap.io.format.labels_json.LabelsJsonAdaptor":[[24,3,1,"","all_exts"],[24,4,1,"","can_read_file"],[24,4,1,"","can_write_filename"],[24,3,1,"","default_ext"],[24,4,1,"","does_read"],[24,4,1,"","does_write"],[24,4,1,"","from_json_data"],[24,3,1,"","handles"],[24,3,1,"","name"],[24,4,1,"","read"],[24,4,1,"","write"]],"sleap.io.format.leap_matlab":[[25,2,1,"","LabelsLeapMatlabAdaptor"]],"sleap.io.format.leap_matlab.LabelsLeapMatlabAdaptor":[[25,3,1,"","all_exts"],[25,4,1,"","can_read_file"],[25,4,1,"","can_write_filename"],[25,3,1,"","default_ext"],[25,4,1,"","does_read"],[25,4,1,"","does_write"],[25,3,1,"","handles"],[25,3,1,"","name"],[25,4,1,"","read"]],"sleap.io.format.main":[[26,1,1,"","read"],[26,1,1,"","write"]],"sleap.io.format.ndx_pose":[[27,2,1,"","NDXPoseAdaptor"]],"sleap.io.format.ndx_pose.NDXPoseAdaptor":[[27,3,1,"","all_exts"],[27,4,1,"","can_read_file"],[27,4,1,"","can_write_filename"],[27,3,1,"","default_ext"],[27,4,1,"","does_read"],[27,4,1,"","does_write"],[27,3,1,"","handles"],[27,3,1,"","name"],[27,4,1,"","read"],[27,4,1,"","write"]],"sleap.io.format.nix":[[28,2,1,"","NixAdaptor"]],"sleap.io.format.nix.NixAdaptor":[[28,3,1,"","all_exts"],[28,4,1,"","can_read_file"],[28,4,1,"","can_write_filename"],[28,3,1,"","default_ext"],[28,4,1,"","does_read"],[28,4,1,"","does_write"],[28,3,1,"","handles"],[28,3,1,"","name"],[28,4,1,"","read"],[28,4,1,"","write"]],"sleap.io.format.sleap_analysis":[[29,2,1,"","SleapAnalysisAdaptor"]],"sleap.io.format.sleap_analysis.SleapAnalysisAdaptor":[[29,3,1,"","all_exts"],[29,4,1,"","can_read_file"],[29,4,1,"","can_write_filename"],[29,3,1,"","default_ext"],[29,4,1,"","does_read"],[29,4,1,"","does_write"],[29,3,1,"","handles"],[29,3,1,"","name"],[29,4,1,"","read"],[29,4,1,"","write"]],"sleap.io.format.text":[[30,2,1,"","TextAdaptor"]],"sleap.io.format.text.TextAdaptor":[[30,3,1,"","all_exts"],[30,4,1,"","can_read_file"],[30,4,1,"","can_write_filename"],[30,3,1,"","default_ext"],[30,4,1,"","does_read"],[30,4,1,"","does_write"],[30,3,1,"","handles"],[30,3,1,"","name"],[30,4,1,"","read"],[30,4,1,"","write"]],"sleap.io.legacy":[[31,1,1,"","load_labels_json_old"],[31,1,1,"","load_predicted_labels_json_old"]],"sleap.io.pathutils":[[32,1,1,"","filenames_prefix_change"],[32,1,1,"","find_changed_subpath"],[32,1,1,"","list_file_missing"]],"sleap.io.video":[[33,2,1,"","DummyVideo"],[33,2,1,"","HDF5Video"],[33,2,1,"","ImgStoreVideo"],[33,2,1,"","MediaVideo"],[33,2,1,"","NumpyVideo"],[33,2,1,"","SingleImageVideo"],[33,2,1,"","Video"],[33,1,1,"","available_video_exts"],[33,1,1,"","load_video"]],"sleap.io.video.HDF5Video":[[33,3,1,"","channels"],[33,4,1,"","check"],[33,4,1,"","close"],[33,3,1,"","dtype"],[33,3,1,"","embedded_frame_inds"],[33,3,1,"","enable_source_video"],[33,3,1,"","frames"],[33,4,1,"","get_frame"],[33,3,1,"","has_embedded_images"],[33,3,1,"","height"],[33,3,1,"","last_frame_idx"],[33,4,1,"","matches"],[33,4,1,"","reset"],[33,3,1,"","source_video"],[33,3,1,"","source_video_available"],[33,3,1,"","width"]],"sleap.io.video.ImgStoreVideo":[[33,3,1,"","channels"],[33,4,1,"","close"],[33,3,1,"","dtype"],[33,3,1,"","frames"],[33,4,1,"","get_frame"],[33,3,1,"","height"],[33,3,1,"","imgstore"],[33,3,1,"","last_frame_idx"],[33,4,1,"","matches"],[33,4,1,"","open"],[33,4,1,"","reset"],[33,3,1,"","width"]],"sleap.io.video.MediaVideo":[[33,3,1,"","channels"],[33,3,1,"","dtype"],[33,3,1,"","fps"],[33,3,1,"","frames"],[33,4,1,"","get_frame"],[33,3,1,"","height"],[33,4,1,"","matches"],[33,4,1,"","reset"],[33,3,1,"","width"]],"sleap.io.video.NumpyVideo":[[33,3,1,"","channels"],[33,3,1,"","dtype"],[33,3,1,"","frames"],[33,4,1,"","get_frame"],[33,3,1,"","height"],[33,3,1,"","is_missing"],[33,4,1,"","matches"],[33,4,1,"","reset"],[33,3,1,"","width"]],"sleap.io.video.SingleImageVideo":[[33,3,1,"","channels"],[33,3,1,"","dtype"],[33,3,1,"","frames"],[33,4,1,"","get_frame"],[33,3,1,"","height"],[33,4,1,"","matches"],[33,4,1,"","reset"],[33,3,1,"","width"]],"sleap.io.video.Video":[[33,4,1,"","cattr"],[33,4,1,"","fixup_path"],[33,4,1,"","from_filename"],[33,4,1,"","from_hdf5"],[33,4,1,"","from_image_filenames"],[33,4,1,"","from_media"],[33,4,1,"","from_numpy"],[33,4,1,"","get_frame"],[33,4,1,"","get_frames"],[33,4,1,"","get_frames_safely"],[33,4,1,"","imgstore_from_filenames"],[33,3,1,"","is_missing"],[33,3,1,"","last_frame_idx"],[33,3,1,"","num_frames"],[33,3,1,"","shape"],[33,4,1,"","to_hdf5"],[33,4,1,"","to_imgstore"],[33,4,1,"","to_pipeline"]],"sleap.io.videowriter":[[34,2,1,"","VideoWriter"],[34,2,1,"","VideoWriterOpenCV"],[34,2,1,"","VideoWriterSkvideo"]],"sleap.io.videowriter.VideoWriter":[[34,4,1,"","safe_builder"]],"sleap.io.videowriter.VideoWriterSkvideo":[[34,5,1,"","crf"],[34,5,1,"","filename"],[34,5,1,"","fps"],[34,5,1,"","height"],[34,5,1,"","preset"],[34,5,1,"","width"]],"sleap.io.visuals":[[35,2,1,"","VideoMarkerThread"],[35,1,1,"","img_to_cv"],[35,1,1,"","reader"],[35,1,1,"","resize_image"],[35,1,1,"","save_labeled_video"],[35,1,1,"","writer"]],"sleap.io.visuals.VideoMarkerThread":[[35,4,1,"","run"]],"sleap.message":[[36,2,1,"","BaseMessageParticipant"],[36,2,1,"","Receiver"],[36,2,1,"","Sender"]],"sleap.message.Receiver":[[36,4,1,"","check_message"],[36,4,1,"","check_messages"],[36,4,1,"","push_back_message"]],"sleap.message.Sender":[[36,4,1,"","send_array"],[36,4,1,"","send_dict"]],"sleap.nn":[[46,0,0,"-","callbacks"],[70,0,0,"-","evals"],[71,0,0,"-","heads"],[72,0,0,"-","identity"],[73,0,0,"-","inference"],[74,0,0,"-","losses"],[75,0,0,"-","model"],[76,0,0,"-","paf_grouping"],[77,0,0,"-","peak_finding"],[78,0,0,"-","system"],[81,0,0,"-","tracking"],[82,0,0,"-","training"],[83,0,0,"-","utils"],[84,0,0,"-","viz"]],"sleap.nn.architectures":[[37,0,0,"-","common"],[38,0,0,"-","encoder_decoder"],[39,0,0,"-","hourglass"],[40,0,0,"-","hrnet"],[41,0,0,"-","leap"],[42,0,0,"-","pretrained_encoders"],[43,0,0,"-","resnet"],[44,0,0,"-","unet"],[45,0,0,"-","upsampling"]],"sleap.nn.architectures.common":[[37,2,1,"","IntermediateFeature"]],"sleap.nn.architectures.common.IntermediateFeature":[[37,3,1,"","scale"],[37,5,1,"","stride"],[37,5,1,"","tensor"]],"sleap.nn.architectures.encoder_decoder":[[38,2,1,"","DecoderBlock"],[38,2,1,"","EncoderBlock"],[38,2,1,"","EncoderDecoder"],[38,2,1,"","SimpleConvBlock"],[38,2,1,"","SimpleUpsamplingBlock"]],"sleap.nn.architectures.encoder_decoder.DecoderBlock":[[38,4,1,"","make_block"],[38,5,1,"","upsampling_stride"]],"sleap.nn.architectures.encoder_decoder.EncoderBlock":[[38,4,1,"","make_block"],[38,5,1,"","pool"],[38,5,1,"","pooling_stride"]],"sleap.nn.architectures.encoder_decoder.EncoderDecoder":[[38,3,1,"","decoder_features_stride"],[38,3,1,"","decoder_stack"],[38,3,1,"","encoder_features_stride"],[38,3,1,"","encoder_stack"],[38,4,1,"","make_backbone"],[38,4,1,"","make_decoder"],[38,4,1,"","make_encoder"],[38,4,1,"","make_stem"],[38,3,1,"","maximum_stride"],[38,3,1,"","output_stride"],[38,5,1,"","stacks"],[38,3,1,"","stem_features_stride"],[38,3,1,"","stem_stack"]],"sleap.nn.architectures.encoder_decoder.SimpleConvBlock":[[38,5,1,"","activation"],[38,5,1,"","batch_norm"],[38,5,1,"","batch_norm_before_activation"],[38,5,1,"","block_prefix"],[38,5,1,"","filters"],[38,5,1,"","kernel_size"],[38,4,1,"","make_block"],[38,5,1,"","num_convs"],[38,5,1,"","pool"],[38,5,1,"","pool_before_convs"],[38,5,1,"","pooling_stride"],[38,5,1,"","use_bias"]],"sleap.nn.architectures.encoder_decoder.SimpleUpsamplingBlock":[[38,5,1,"","interp_method"],[38,4,1,"","make_block"],[38,5,1,"","refine_convs"],[38,5,1,"","refine_convs_activation"],[38,5,1,"","refine_convs_batch_norm"],[38,5,1,"","refine_convs_batch_norm_before_activation"],[38,5,1,"","refine_convs_filters"],[38,5,1,"","refine_convs_first_filters"],[38,5,1,"","refine_convs_kernel_size"],[38,5,1,"","refine_convs_use_bias"],[38,5,1,"","skip_add"],[38,5,1,"","skip_connection"],[38,5,1,"","transposed_conv"],[38,5,1,"","transposed_conv_activation"],[38,5,1,"","transposed_conv_batch_norm"],[38,5,1,"","transposed_conv_batch_norm_before_activation"],[38,5,1,"","transposed_conv_filters"],[38,5,1,"","transposed_conv_kernel_size"],[38,5,1,"","transposed_conv_use_bias"],[38,5,1,"","upsampling_stride"]],"sleap.nn.architectures.hourglass":[[39,2,1,"","DownsamplingBlock"],[39,2,1,"","Hourglass"],[39,2,1,"","StemBlock"],[39,2,1,"","UpsamplingBlock"],[39,1,1,"","conv"]],"sleap.nn.architectures.hourglass.DownsamplingBlock":[[39,5,1,"","filters"],[39,4,1,"","make_block"]],"sleap.nn.architectures.hourglass.Hourglass":[[39,3,1,"","decoder_stack"],[39,5,1,"","down_blocks"],[39,3,1,"","encoder_stack"],[39,5,1,"","filter_increase"],[39,5,1,"","filters"],[39,4,1,"","from_config"],[39,5,1,"","interp_method"],[39,5,1,"","stacks"],[39,5,1,"","stem_filters"],[39,3,1,"","stem_stack"],[39,5,1,"","stem_stride"],[39,5,1,"","up_blocks"]],"sleap.nn.architectures.hourglass.StemBlock":[[39,5,1,"","filters"],[39,5,1,"","first_conv_stride"],[39,4,1,"","make_block"],[39,5,1,"","output_filters"],[39,5,1,"","pool"],[39,5,1,"","pooling_stride"]],"sleap.nn.architectures.hourglass.UpsamplingBlock":[[39,5,1,"","filters"],[39,5,1,"","interp_method"],[39,4,1,"","make_block"]],"sleap.nn.architectures.hrnet":[[40,2,1,"","HigherHRNet"],[40,1,1,"","adjust_prefix"],[40,1,1,"","bottleneck_block"],[40,1,1,"","simple_block"]],"sleap.nn.architectures.hrnet.HigherHRNet":[[40,5,1,"","C"],[40,5,1,"","bilinear_upsampling"],[40,5,1,"","bottleneck"],[40,5,1,"","deconv_filters"],[40,3,1,"","down_blocks"],[40,5,1,"","initial_downsampling_steps"],[40,5,1,"","n_deconv_modules"],[40,4,1,"","output"],[40,3,1,"","output_scale"]],"sleap.nn.architectures.leap":[[41,2,1,"","LeapCNN"]],"sleap.nn.architectures.leap.LeapCNN":[[41,3,1,"","decoder_stack"],[41,5,1,"","down_blocks"],[41,5,1,"","down_convs_per_block"],[41,3,1,"","encoder_stack"],[41,5,1,"","filters"],[41,5,1,"","filters_rate"],[41,4,1,"","from_config"],[41,5,1,"","up_blocks"],[41,5,1,"","up_convs_per_block"],[41,5,1,"","up_interpolate"]],"sleap.nn.architectures.pretrained_encoders":[[42,2,1,"","UnetPretrainedEncoder"]],"sleap.nn.architectures.pretrained_encoders.UnetPretrainedEncoder":[[42,5,1,"","decoder_filters"],[42,3,1,"","down_blocks"],[42,5,1,"","encoder"],[42,4,1,"","from_config"],[42,4,1,"","make_backbone"],[42,3,1,"","maximum_stride"],[42,3,1,"","output_stride"],[42,5,1,"","pretrained"],[42,3,1,"","up_blocks"]],"sleap.nn.architectures.resnet":[[43,2,1,"","ResNet101"],[43,2,1,"","ResNet152"],[43,2,1,"","ResNet50"],[43,2,1,"","ResNetv1"],[43,1,1,"","block_v1"],[43,1,1,"","imagenet_preproc_v1"],[43,1,1,"","make_backbone_fn"],[43,1,1,"","make_resnet_model"],[43,1,1,"","stack_v1"],[43,1,1,"","tile_channels"]],"sleap.nn.architectures.resnet.ResNet101":[[43,5,1,"","features_output_stride"],[43,5,1,"","frozen"],[43,5,1,"","pretrained"],[43,5,1,"","skip_connections"],[43,5,1,"","upsampling_stack"]],"sleap.nn.architectures.resnet.ResNet152":[[43,5,1,"","features_output_stride"],[43,5,1,"","frozen"],[43,5,1,"","pretrained"],[43,5,1,"","skip_connections"],[43,5,1,"","upsampling_stack"]],"sleap.nn.architectures.resnet.ResNet50":[[43,5,1,"","features_output_stride"],[43,5,1,"","frozen"],[43,5,1,"","pretrained"],[43,5,1,"","skip_connections"],[43,5,1,"","upsampling_stack"]],"sleap.nn.architectures.resnet.ResNetv1":[[43,3,1,"","down_blocks"],[43,5,1,"","features_output_stride"],[43,4,1,"","from_config"],[43,5,1,"","frozen"],[43,4,1,"","make_backbone"],[43,3,1,"","maximum_stride"],[43,5,1,"","model_name"],[43,3,1,"","output_scale"],[43,3,1,"","output_stride"],[43,5,1,"","pretrained"],[43,5,1,"","skip_connections"],[43,5,1,"","stack_configs"],[43,5,1,"","upsampling_stack"]],"sleap.nn.architectures.unet":[[44,2,1,"","PoolingBlock"],[44,2,1,"","UNet"]],"sleap.nn.architectures.unet.PoolingBlock":[[44,4,1,"","make_block"],[44,5,1,"","pool"],[44,5,1,"","pooling_stride"]],"sleap.nn.architectures.unet.UNet":[[44,5,1,"","block_contraction"],[44,5,1,"","convs_per_block"],[44,3,1,"","decoder_stack"],[44,5,1,"","down_blocks"],[44,3,1,"","encoder_stack"],[44,5,1,"","filters"],[44,5,1,"","filters_rate"],[44,4,1,"","from_config"],[44,5,1,"","kernel_size"],[44,5,1,"","middle_block"],[44,5,1,"","stem_blocks"],[44,5,1,"","stem_kernel_size"],[44,3,1,"","stem_stack"],[44,5,1,"","up_blocks"],[44,5,1,"","up_interpolate"]],"sleap.nn.architectures.upsampling":[[45,2,1,"","UpsamplingStack"]],"sleap.nn.architectures.upsampling.UpsamplingStack":[[45,4,1,"","from_config"],[45,5,1,"","make_skip_connection"],[45,4,1,"","make_stack"],[45,5,1,"","output_stride"],[45,5,1,"","refine_convs"],[45,5,1,"","refine_convs_batchnorm"],[45,5,1,"","refine_convs_filters"],[45,5,1,"","refine_convs_filters_rate"],[45,5,1,"","skip_add"],[45,5,1,"","transposed_conv"],[45,5,1,"","transposed_conv_batchnorm"],[45,5,1,"","transposed_conv_filters"],[45,5,1,"","transposed_conv_filters_rate"],[45,5,1,"","transposed_conv_kernel_size"],[45,5,1,"","upsampling_stride"]],"sleap.nn.callbacks":[[46,2,1,"","MatplotlibSaver"],[46,2,1,"","ModelCheckpointOnEvent"],[46,2,1,"","ProgressReporterZMQ"],[46,2,1,"","TensorBoardMatplotlibWriter"],[46,2,1,"","TrainingControllerZMQ"]],"sleap.nn.callbacks.MatplotlibSaver":[[46,4,1,"","on_epoch_end"],[46,5,1,"","plot_fn"],[46,5,1,"","prefix"],[46,5,1,"","save_folder"]],"sleap.nn.callbacks.ModelCheckpointOnEvent":[[46,5,1,"","event"],[46,5,1,"","filepath"],[46,4,1,"","on_epoch_end"],[46,4,1,"","on_train_begin"],[46,4,1,"","on_train_end"]],"sleap.nn.callbacks.ProgressReporterZMQ":[[46,4,1,"","on_batch_begin"],[46,4,1,"","on_batch_end"],[46,4,1,"","on_epoch_begin"],[46,4,1,"","on_epoch_end"],[46,4,1,"","on_train_begin"],[46,4,1,"","on_train_end"]],"sleap.nn.callbacks.TensorBoardMatplotlibWriter":[[46,5,1,"","logdir"],[46,4,1,"","on_epoch_end"],[46,5,1,"","plot_fn"],[46,5,1,"","tag"]],"sleap.nn.callbacks.TrainingControllerZMQ":[[46,4,1,"","on_batch_end"],[46,4,1,"","set_lr"]],"sleap.nn.config":[[47,0,0,"-","data"],[48,0,0,"-","model"],[49,0,0,"-","optimization"],[50,0,0,"-","outputs"],[51,0,0,"-","training_job"],[52,0,0,"-","utils"]],"sleap.nn.config.data":[[47,2,1,"","DataConfig"],[47,2,1,"","InstanceCroppingConfig"],[47,2,1,"","LabelsConfig"],[47,2,1,"","PreprocessingConfig"]],"sleap.nn.config.data.InstanceCroppingConfig":[[47,5,1,"","center_on_part"],[47,5,1,"","crop_size"],[47,5,1,"","crop_size_detection_padding"]],"sleap.nn.config.data.LabelsConfig":[[47,5,1,"","search_path_hints"],[47,5,1,"","skeletons"],[47,5,1,"","split_by_inds"],[47,5,1,"","test_inds"],[47,5,1,"","test_labels"],[47,5,1,"","training_inds"],[47,5,1,"","training_labels"],[47,5,1,"","validation_fraction"],[47,5,1,"","validation_inds"],[47,5,1,"","validation_labels"]],"sleap.nn.config.data.PreprocessingConfig":[[47,5,1,"","ensure_grayscale"],[47,5,1,"","ensure_rgb"],[47,5,1,"","imagenet_mode"],[47,5,1,"","input_scale"],[47,5,1,"","pad_to_stride"],[47,5,1,"","resize_and_pad_to_target"],[47,5,1,"","target_height"],[47,5,1,"","target_width"]],"sleap.nn.config.model":[[48,2,1,"","BackboneConfig"],[48,2,1,"","CenteredInstanceConfmapsHeadConfig"],[48,2,1,"","CentroidsHeadConfig"],[48,2,1,"","ClassMapsHeadConfig"],[48,2,1,"","ClassVectorsHeadConfig"],[48,2,1,"","HeadsConfig"],[48,2,1,"","HourglassConfig"],[48,2,1,"","LEAPConfig"],[48,2,1,"","ModelConfig"],[48,2,1,"","MultiClassBottomUpConfig"],[48,2,1,"","MultiClassTopDownConfig"],[48,2,1,"","MultiInstanceConfig"],[48,2,1,"","MultiInstanceConfmapsHeadConfig"],[48,2,1,"","PartAffinityFieldsHeadConfig"],[48,2,1,"","PretrainedEncoderConfig"],[48,2,1,"","ResNetConfig"],[48,2,1,"","SingleInstanceConfmapsHeadConfig"],[48,2,1,"","UNetConfig"],[48,2,1,"","UpsamplingConfig"]],"sleap.nn.config.model.BackboneConfig":[[48,5,1,"","hourglass"],[48,5,1,"","leap"],[48,5,1,"","resnet"],[48,5,1,"","unet"]],"sleap.nn.config.model.CenteredInstanceConfmapsHeadConfig":[[48,5,1,"","anchor_part"],[48,5,1,"","loss_weight"],[48,5,1,"","offset_refinement"],[48,5,1,"","output_stride"],[48,5,1,"","part_names"],[48,5,1,"","sigma"]],"sleap.nn.config.model.CentroidsHeadConfig":[[48,5,1,"","anchor_part"],[48,5,1,"","loss_weight"],[48,5,1,"","offset_refinement"],[48,5,1,"","output_stride"],[48,5,1,"","sigma"]],"sleap.nn.config.model.ClassMapsHeadConfig":[[48,5,1,"","classes"],[48,5,1,"","loss_weight"],[48,5,1,"","output_stride"],[48,5,1,"","sigma"]],"sleap.nn.config.model.ClassVectorsHeadConfig":[[48,5,1,"","classes"],[48,5,1,"","loss_weight"],[48,5,1,"","num_fc_layers"],[48,5,1,"","num_fc_units"],[48,5,1,"","output_stride"]],"sleap.nn.config.model.HeadsConfig":[[48,5,1,"","centered_instance"],[48,5,1,"","centroid"],[48,5,1,"","multi_class_bottomup"],[48,5,1,"","multi_class_topdown"],[48,5,1,"","multi_instance"],[48,5,1,"","single_instance"]],"sleap.nn.config.model.HourglassConfig":[[48,5,1,"","filters"],[48,5,1,"","filters_increase"],[48,5,1,"","max_stride"],[48,5,1,"","output_stride"],[48,5,1,"","stacks"],[48,5,1,"","stem_stride"]],"sleap.nn.config.model.LEAPConfig":[[48,5,1,"","filters"],[48,5,1,"","filters_rate"],[48,5,1,"","max_stride"],[48,5,1,"","output_stride"],[48,5,1,"","stacks"],[48,5,1,"","up_interpolate"]],"sleap.nn.config.model.ModelConfig":[[48,5,1,"","backbone"],[48,5,1,"","base_checkpoint"],[48,5,1,"","heads"]],"sleap.nn.config.model.MultiClassBottomUpConfig":[[48,5,1,"","class_maps"],[48,5,1,"","confmaps"]],"sleap.nn.config.model.MultiClassTopDownConfig":[[48,5,1,"","class_vectors"],[48,5,1,"","confmaps"]],"sleap.nn.config.model.MultiInstanceConfig":[[48,5,1,"","confmaps"],[48,5,1,"","pafs"]],"sleap.nn.config.model.MultiInstanceConfmapsHeadConfig":[[48,5,1,"","loss_weight"],[48,5,1,"","offset_refinement"],[48,5,1,"","output_stride"],[48,5,1,"","part_names"],[48,5,1,"","sigma"]],"sleap.nn.config.model.PartAffinityFieldsHeadConfig":[[48,5,1,"","edges"],[48,5,1,"","loss_weight"],[48,5,1,"","output_stride"],[48,5,1,"","sigma"]],"sleap.nn.config.model.PretrainedEncoderConfig":[[48,5,1,"","decoder_batchnorm"],[48,5,1,"","decoder_filters"],[48,5,1,"","decoder_filters_rate"],[48,5,1,"","encoder"],[48,5,1,"","output_stride"],[48,5,1,"","pretrained"]],"sleap.nn.config.model.ResNetConfig":[[48,5,1,"","max_stride"],[48,5,1,"","output_stride"],[48,5,1,"","upsampling"],[48,5,1,"","version"],[48,5,1,"","weights"]],"sleap.nn.config.model.SingleInstanceConfmapsHeadConfig":[[48,5,1,"","loss_weight"],[48,5,1,"","offset_refinement"],[48,5,1,"","output_stride"],[48,5,1,"","part_names"],[48,5,1,"","sigma"]],"sleap.nn.config.model.UNetConfig":[[48,5,1,"","filters"],[48,5,1,"","filters_rate"],[48,5,1,"","max_stride"],[48,5,1,"","middle_block"],[48,5,1,"","output_stride"],[48,5,1,"","stacks"],[48,5,1,"","stem_stride"],[48,5,1,"","up_interpolate"]],"sleap.nn.config.model.UpsamplingConfig":[[48,5,1,"","block_stride"],[48,5,1,"","conv_batchnorm"],[48,5,1,"","filters"],[48,5,1,"","filters_rate"],[48,5,1,"","method"],[48,5,1,"","refine_convs"],[48,5,1,"","skip_connections"],[48,5,1,"","transposed_conv_kernel_size"]],"sleap.nn.config.optimization":[[49,2,1,"","AugmentationConfig"],[49,2,1,"","EarlyStoppingConfig"],[49,2,1,"","HardKeypointMiningConfig"],[49,2,1,"","LearningRateScheduleConfig"],[49,2,1,"","OptimizationConfig"]],"sleap.nn.config.optimization.AugmentationConfig":[[49,5,1,"","brightness"],[49,5,1,"","brightness_max_val"],[49,5,1,"","brightness_min_val"],[49,5,1,"","contrast"],[49,5,1,"","contrast_max_gamma"],[49,5,1,"","contrast_min_gamma"],[49,5,1,"","flip_horizontal"],[49,5,1,"","gaussian_noise"],[49,5,1,"","gaussian_noise_mean"],[49,5,1,"","gaussian_noise_stddev"],[49,5,1,"","random_crop"],[49,5,1,"","random_crop_height"],[49,5,1,"","random_crop_width"],[49,5,1,"","random_flip"],[49,5,1,"","rotate"],[49,5,1,"","rotation_max_angle"],[49,5,1,"","rotation_min_angle"],[49,5,1,"","scale"],[49,5,1,"","scale_max"],[49,5,1,"","scale_min"],[49,5,1,"","translate"],[49,5,1,"","translate_max"],[49,5,1,"","translate_min"],[49,5,1,"","uniform_noise"],[49,5,1,"","uniform_noise_max_val"],[49,5,1,"","uniform_noise_min_val"]],"sleap.nn.config.optimization.EarlyStoppingConfig":[[49,5,1,"","plateau_min_delta"],[49,5,1,"","plateau_patience"],[49,5,1,"","stop_training_on_plateau"]],"sleap.nn.config.optimization.HardKeypointMiningConfig":[[49,5,1,"","hard_to_easy_ratio"],[49,5,1,"","loss_scale"],[49,5,1,"","max_hard_keypoints"],[49,5,1,"","min_hard_keypoints"],[49,5,1,"","online_mining"]],"sleap.nn.config.optimization.LearningRateScheduleConfig":[[49,5,1,"","min_learning_rate"],[49,5,1,"","plateau_cooldown"],[49,5,1,"","plateau_min_delta"],[49,5,1,"","plateau_patience"],[49,5,1,"","reduce_on_plateau"],[49,5,1,"","reduction_factor"]],"sleap.nn.config.optimization.OptimizationConfig":[[49,5,1,"","augmentation_config"],[49,5,1,"","batch_size"],[49,5,1,"","batches_per_epoch"],[49,5,1,"","early_stopping"],[49,5,1,"","epochs"],[49,5,1,"","hard_keypoint_mining"],[49,5,1,"","initial_learning_rate"],[49,5,1,"","learning_rate_schedule"],[49,5,1,"","min_batches_per_epoch"],[49,5,1,"","min_val_batches_per_epoch"],[49,5,1,"","online_shuffling"],[49,5,1,"","optimizer"],[49,5,1,"","prefetch"],[49,5,1,"","preload_data"],[49,5,1,"","shuffle_buffer_size"],[49,5,1,"","val_batches_per_epoch"]],"sleap.nn.config.outputs":[[50,2,1,"","CheckpointingConfig"],[50,2,1,"","OutputsConfig"],[50,2,1,"","TensorBoardConfig"],[50,2,1,"","ZMQConfig"]],"sleap.nn.config.outputs.CheckpointingConfig":[[50,5,1,"","best_model"],[50,5,1,"","every_epoch"],[50,5,1,"","final_model"],[50,5,1,"","initial_model"],[50,5,1,"","latest_model"]],"sleap.nn.config.outputs.OutputsConfig":[[50,5,1,"","checkpointing"],[50,5,1,"","keep_viz_images"],[50,5,1,"","log_to_csv"],[50,5,1,"","run_name"],[50,5,1,"","run_name_prefix"],[50,5,1,"","run_name_suffix"],[50,3,1,"","run_path"],[50,5,1,"","runs_folder"],[50,5,1,"","save_outputs"],[50,5,1,"","save_visualizations"],[50,5,1,"","tags"],[50,5,1,"","tensorboard"],[50,5,1,"","zip_outputs"],[50,5,1,"","zmq"]],"sleap.nn.config.outputs.TensorBoardConfig":[[50,5,1,"","architecture_graph"],[50,5,1,"","loss_frequency"],[50,5,1,"","profile_graph"],[50,5,1,"","visualizations"],[50,5,1,"","write_logs"]],"sleap.nn.config.outputs.ZMQConfig":[[50,5,1,"","controller_address"],[50,5,1,"","controller_polling_timeout"],[50,5,1,"","publish_address"],[50,5,1,"","publish_updates"],[50,5,1,"","subscribe_to_controller"]],"sleap.nn.config.training_job":[[51,2,1,"","TrainingJobConfig"],[51,1,1,"","load_config"]],"sleap.nn.config.training_job.TrainingJobConfig":[[51,5,1,"","data"],[51,5,1,"","description"],[51,5,1,"","filename"],[51,4,1,"","from_json"],[51,4,1,"","from_json_dicts"],[51,4,1,"","load_json"],[51,5,1,"","model"],[51,5,1,"","name"],[51,5,1,"","optimization"],[51,5,1,"","outputs"],[51,4,1,"","save_json"],[51,5,1,"","sleap_version"],[51,4,1,"","to_json"]],"sleap.nn.config.utils":[[52,1,1,"","oneof"]],"sleap.nn.data":[[53,0,0,"-","augmentation"],[54,0,0,"-","confidence_maps"],[55,0,0,"-","dataset_ops"],[56,0,0,"-","edge_maps"],[57,0,0,"-","general"],[58,0,0,"-","grouping"],[59,0,0,"-","identity"],[60,0,0,"-","inference"],[61,0,0,"-","instance_centroids"],[62,0,0,"-","instance_cropping"],[63,0,0,"-","normalization"],[64,0,0,"-","offset_regression"],[65,0,0,"-","pipelines"],[66,0,0,"-","providers"],[67,0,0,"-","resizing"],[68,0,0,"-","training"],[69,0,0,"-","utils"]],"sleap.nn.data.augmentation":[[53,2,1,"","AlbumentationsAugmenter"],[53,2,1,"","RandomCropper"],[53,2,1,"","RandomFlipper"],[53,1,1,"","flip_instances_lr"],[53,1,1,"","flip_instances_ud"]],"sleap.nn.data.augmentation.AlbumentationsAugmenter":[[53,5,1,"","augmenter"],[53,4,1,"","from_config"],[53,5,1,"","image_key"],[53,3,1,"","input_keys"],[53,5,1,"","instances_key"],[53,3,1,"","output_keys"],[53,4,1,"","transform_dataset"]],"sleap.nn.data.augmentation.RandomCropper":[[53,5,1,"","crop_height"],[53,5,1,"","crop_width"],[53,4,1,"","transform_dataset"]],"sleap.nn.data.augmentation.RandomFlipper":[[53,4,1,"","from_skeleton"],[53,5,1,"","horizontal"],[53,5,1,"","probability"],[53,5,1,"","symmetric_inds"],[53,4,1,"","transform_dataset"]],"sleap.nn.data.confidence_maps":[[54,2,1,"","InstanceConfidenceMapGenerator"],[54,2,1,"","MultiConfidenceMapGenerator"],[54,2,1,"","SingleInstanceConfidenceMapGenerator"],[54,1,1,"","make_confmaps"],[54,1,1,"","make_multi_confmaps"],[54,1,1,"","make_multi_confmaps_with_offsets"]],"sleap.nn.data.confidence_maps.InstanceConfidenceMapGenerator":[[54,5,1,"","all_instances"],[54,5,1,"","flatten_offsets"],[54,3,1,"","input_keys"],[54,5,1,"","offsets_threshold"],[54,3,1,"","output_keys"],[54,5,1,"","output_stride"],[54,5,1,"","sigma"],[54,4,1,"","transform_dataset"],[54,5,1,"","with_offsets"]],"sleap.nn.data.confidence_maps.MultiConfidenceMapGenerator":[[54,5,1,"","centroids"],[54,5,1,"","flatten_offsets"],[54,3,1,"","input_keys"],[54,5,1,"","offsets_threshold"],[54,3,1,"","output_keys"],[54,5,1,"","output_stride"],[54,5,1,"","sigma"],[54,4,1,"","transform_dataset"],[54,5,1,"","with_offsets"]],"sleap.nn.data.confidence_maps.SingleInstanceConfidenceMapGenerator":[[54,5,1,"","flatten_offsets"],[54,3,1,"","input_keys"],[54,5,1,"","offsets_threshold"],[54,3,1,"","output_keys"],[54,5,1,"","output_stride"],[54,5,1,"","sigma"],[54,4,1,"","transform_dataset"],[54,5,1,"","with_offsets"]],"sleap.nn.data.dataset_ops":[[55,2,1,"","Batcher"],[55,2,1,"","LambdaFilter"],[55,2,1,"","Prefetcher"],[55,2,1,"","Preloader"],[55,2,1,"","Repeater"],[55,2,1,"","Shuffler"],[55,2,1,"","Unbatcher"]],"sleap.nn.data.dataset_ops.Batcher":[[55,5,1,"","batch_size"],[55,5,1,"","drop_remainder"],[55,3,1,"","input_keys"],[55,3,1,"","output_keys"],[55,4,1,"","transform_dataset"],[55,5,1,"","unrag"]],"sleap.nn.data.dataset_ops.LambdaFilter":[[55,5,1,"","filter_fn"],[55,3,1,"","input_keys"],[55,3,1,"","output_keys"],[55,4,1,"","transform_dataset"]],"sleap.nn.data.dataset_ops.Prefetcher":[[55,5,1,"","buffer_size"],[55,3,1,"","input_keys"],[55,3,1,"","output_keys"],[55,5,1,"","prefetch"],[55,4,1,"","transform_dataset"]],"sleap.nn.data.dataset_ops.Preloader":[[55,5,1,"","examples"],[55,3,1,"","input_keys"],[55,3,1,"","output_keys"],[55,4,1,"","transform_dataset"]],"sleap.nn.data.dataset_ops.Repeater":[[55,5,1,"","epochs"],[55,3,1,"","input_keys"],[55,3,1,"","output_keys"],[55,5,1,"","repeat"],[55,4,1,"","transform_dataset"]],"sleap.nn.data.dataset_ops.Shuffler":[[55,5,1,"","buffer_size"],[55,3,1,"","input_keys"],[55,3,1,"","output_keys"],[55,5,1,"","reshuffle_each_iteration"],[55,5,1,"","shuffle"],[55,4,1,"","transform_dataset"]],"sleap.nn.data.dataset_ops.Unbatcher":[[55,3,1,"","input_keys"],[55,3,1,"","output_keys"],[55,4,1,"","transform_dataset"]],"sleap.nn.data.edge_maps":[[56,2,1,"","PartAffinityFieldsGenerator"],[56,1,1,"","distance_to_edge"],[56,1,1,"","get_edge_points"],[56,1,1,"","make_edge_maps"],[56,1,1,"","make_multi_pafs"],[56,1,1,"","make_pafs"]],"sleap.nn.data.edge_maps.PartAffinityFieldsGenerator":[[56,5,1,"","flatten_channels"],[56,3,1,"","input_keys"],[56,3,1,"","output_keys"],[56,5,1,"","output_stride"],[56,5,1,"","sigma"],[56,5,1,"","skeletons"],[56,4,1,"","transform_dataset"]],"sleap.nn.data.general":[[57,2,1,"","KeyDeviceMover"],[57,2,1,"","KeyFilter"],[57,2,1,"","KeyRenamer"],[57,2,1,"","LambdaMap"]],"sleap.nn.data.general.KeyDeviceMover":[[57,3,1,"","input_keys"],[57,3,1,"","output_keys"],[57,4,1,"","transform_dataset"]],"sleap.nn.data.general.KeyFilter":[[57,3,1,"","input_keys"],[57,3,1,"","output_keys"],[57,4,1,"","transform_dataset"]],"sleap.nn.data.general.KeyRenamer":[[57,3,1,"","input_keys"],[57,3,1,"","output_keys"],[57,4,1,"","transform_dataset"]],"sleap.nn.data.general.LambdaMap":[[57,5,1,"","func"],[57,5,1,"","input_key_names"],[57,3,1,"","input_keys"],[57,5,1,"","output_key_names"],[57,3,1,"","output_keys"],[57,4,1,"","transform_dataset"]],"sleap.nn.data.grouping":[[58,1,1,"","group_examples"],[58,1,1,"","group_examples_iter"]],"sleap.nn.data.identity":[[59,2,1,"","ClassMapGenerator"],[59,2,1,"","ClassVectorGenerator"],[59,1,1,"","make_class_maps"],[59,1,1,"","make_class_vectors"]],"sleap.nn.data.identity.ClassMapGenerator":[[59,5,1,"","centroids"],[59,5,1,"","class_map_threshold"],[59,3,1,"","input_keys"],[59,3,1,"","output_keys"],[59,5,1,"","output_stride"],[59,5,1,"","sigma"],[59,4,1,"","transform_dataset"]],"sleap.nn.data.identity.ClassVectorGenerator":[[59,3,1,"","input_keys"],[59,3,1,"","output_keys"],[59,4,1,"","transform_dataset"]],"sleap.nn.data.inference":[[60,2,1,"","GlobalPeakFinder"],[60,2,1,"","KerasModelPredictor"],[60,2,1,"","LocalPeakFinder"],[60,2,1,"","MockGlobalPeakFinder"],[60,2,1,"","PredictedCenterInstanceNormalizer"]],"sleap.nn.data.inference.PredictedCenterInstanceNormalizer":[[60,3,1,"","input_keys"],[60,3,1,"","output_keys"],[60,4,1,"","transform_dataset"]],"sleap.nn.data.instance_centroids":[[61,2,1,"","InstanceCentroidFinder"],[61,1,1,"","find_points_bbox_midpoint"],[61,1,1,"","get_instance_anchors"]],"sleap.nn.data.instance_centroids.InstanceCentroidFinder":[[61,5,1,"","anchor_part_names"],[61,5,1,"","center_on_anchor_part"],[61,4,1,"","from_config"],[61,3,1,"","input_keys"],[61,5,1,"","instances_key"],[61,3,1,"","output_keys"],[61,5,1,"","skeletons"],[61,4,1,"","transform_dataset"]],"sleap.nn.data.instance_cropping":[[62,2,1,"","InstanceCropper"],[62,1,1,"","crop_bboxes"],[62,1,1,"","find_instance_crop_size"],[62,1,1,"","make_centered_bboxes"],[62,1,1,"","normalize_bboxes"],[62,1,1,"","unnormalize_bboxes"]],"sleap.nn.data.instance_cropping.InstanceCropper":[[62,5,1,"","centroids_key"],[62,5,1,"","crop_height"],[62,5,1,"","crop_width"],[62,4,1,"","from_config"],[62,5,1,"","image_key"],[62,3,1,"","input_keys"],[62,5,1,"","instances_key"],[62,5,1,"","keep_full_image"],[62,5,1,"","mock_centroid_confidence"],[62,3,1,"","output_keys"],[62,4,1,"","transform_dataset"],[62,5,1,"","unbatch"]],"sleap.nn.data.normalization":[[63,2,1,"","Normalizer"],[63,1,1,"","convert_rgb_to_bgr"],[63,1,1,"","ensure_float"],[63,1,1,"","ensure_grayscale"],[63,1,1,"","ensure_int"],[63,1,1,"","ensure_min_image_rank"],[63,1,1,"","ensure_rgb"],[63,1,1,"","scale_image_range"],[63,1,1,"","scale_to_imagenet_caffe_mode"],[63,1,1,"","scale_to_imagenet_tf_mode"],[63,1,1,"","scale_to_imagenet_torch_mode"]],"sleap.nn.data.normalization.Normalizer":[[63,5,1,"","ensure_float"],[63,5,1,"","ensure_grayscale"],[63,5,1,"","ensure_rgb"],[63,4,1,"","from_config"],[63,5,1,"","image_key"],[63,5,1,"","imagenet_mode"],[63,3,1,"","input_keys"],[63,3,1,"","output_keys"],[63,4,1,"","transform_dataset"]],"sleap.nn.data.offset_regression":[[64,1,1,"","make_offsets"],[64,1,1,"","mask_offsets"]],"sleap.nn.data.pipelines":[[65,2,1,"","BottomUpMultiClassPipeline"],[65,2,1,"","BottomUpPipeline"],[65,2,1,"","CentroidConfmapsPipeline"],[65,2,1,"","Pipeline"],[65,2,1,"","SingleInstanceConfmapsPipeline"],[65,2,1,"","TopDownMultiClassPipeline"],[65,2,1,"","TopdownConfmapsPipeline"]],"sleap.nn.data.pipelines.BottomUpMultiClassPipeline":[[65,5,1,"","class_maps_head"],[65,5,1,"","confmaps_head"],[65,5,1,"","data_config"],[65,4,1,"","make_base_pipeline"],[65,4,1,"","make_training_pipeline"],[65,4,1,"","make_viz_pipeline"],[65,5,1,"","offsets_head"],[65,5,1,"","optimization_config"]],"sleap.nn.data.pipelines.BottomUpPipeline":[[65,5,1,"","confmaps_head"],[65,5,1,"","data_config"],[65,4,1,"","make_base_pipeline"],[65,4,1,"","make_training_pipeline"],[65,4,1,"","make_viz_pipeline"],[65,5,1,"","offsets_head"],[65,5,1,"","optimization_config"],[65,5,1,"","pafs_head"]],"sleap.nn.data.pipelines.CentroidConfmapsPipeline":[[65,5,1,"","centroid_confmap_head"],[65,5,1,"","data_config"],[65,4,1,"","make_base_pipeline"],[65,4,1,"","make_training_pipeline"],[65,4,1,"","make_viz_pipeline"],[65,5,1,"","offsets_head"],[65,5,1,"","optimization_config"]],"sleap.nn.data.pipelines.Pipeline":[[65,4,1,"","append"],[65,4,1,"","describe"],[65,4,1,"","from_blocks"],[65,4,1,"","from_pipelines"],[65,4,1,"","make_dataset"],[65,3,1,"","output_keys"],[65,4,1,"","peek"],[65,5,1,"","providers"],[65,4,1,"","run"],[65,5,1,"","transformers"],[65,4,1,"","validate_pipeline"]],"sleap.nn.data.pipelines.SingleInstanceConfmapsPipeline":[[65,5,1,"","data_config"],[65,4,1,"","make_base_pipeline"],[65,4,1,"","make_training_pipeline"],[65,4,1,"","make_viz_pipeline"],[65,5,1,"","offsets_head"],[65,5,1,"","optimization_config"],[65,5,1,"","single_instance_confmap_head"]],"sleap.nn.data.pipelines.TopDownMultiClassPipeline":[[65,5,1,"","class_vectors_head"],[65,5,1,"","confmaps_head"],[65,5,1,"","data_config"],[65,4,1,"","make_base_pipeline"],[65,4,1,"","make_training_pipeline"],[65,4,1,"","make_viz_pipeline"],[65,5,1,"","offsets_head"],[65,5,1,"","optimization_config"]],"sleap.nn.data.pipelines.TopdownConfmapsPipeline":[[65,5,1,"","data_config"],[65,5,1,"","instance_confmap_head"],[65,4,1,"","make_base_pipeline"],[65,4,1,"","make_training_pipeline"],[65,4,1,"","make_viz_pipeline"],[65,5,1,"","offsets_head"],[65,5,1,"","optimization_config"]],"sleap.nn.data.providers":[[66,2,1,"","LabelsReader"],[66,2,1,"","VideoReader"]],"sleap.nn.data.providers.LabelsReader":[[66,5,1,"","example_indices"],[66,4,1,"","from_filename"],[66,4,1,"","from_unlabeled_suggestions"],[66,4,1,"","from_user_instances"],[66,4,1,"","from_user_labeled_frames"],[66,3,1,"","is_from_multi_size_videos"],[66,5,1,"","labels"],[66,4,1,"","make_dataset"],[66,3,1,"","max_height_and_width"],[66,3,1,"","output_keys"],[66,3,1,"","tracks"],[66,5,1,"","user_instances_only"],[66,3,1,"","videos"],[66,5,1,"","with_track_only"]],"sleap.nn.data.providers.VideoReader":[[66,5,1,"","example_indices"],[66,4,1,"","from_filepath"],[66,4,1,"","make_dataset"],[66,3,1,"","max_height_and_width"],[66,3,1,"","output_keys"],[66,5,1,"","video"],[66,5,1,"","video_ind"],[66,3,1,"","videos"]],"sleap.nn.data.resizing":[[67,2,1,"","PointsRescaler"],[67,2,1,"","Resizer"],[67,2,1,"","SizeMatcher"],[67,1,1,"","find_padding_for_stride"],[67,1,1,"","pad_to_stride"],[67,1,1,"","resize_image"]],"sleap.nn.data.resizing.PointsRescaler":[[67,3,1,"","input_keys"],[67,3,1,"","output_keys"],[67,4,1,"","transform_dataset"]],"sleap.nn.data.resizing.Resizer":[[67,4,1,"","from_config"],[67,5,1,"","full_image_key"],[67,5,1,"","image_key"],[67,3,1,"","input_keys"],[67,5,1,"","keep_full_image"],[67,3,1,"","output_keys"],[67,5,1,"","pad_to_stride"],[67,5,1,"","points_key"],[67,5,1,"","scale"],[67,5,1,"","scale_key"],[67,4,1,"","transform_dataset"]],"sleap.nn.data.resizing.SizeMatcher":[[67,5,1,"","center_pad"],[67,4,1,"","from_config"],[67,5,1,"","full_image_key"],[67,5,1,"","image_key"],[67,3,1,"","input_keys"],[67,5,1,"","keep_full_image"],[67,5,1,"","max_image_height"],[67,5,1,"","max_image_width"],[67,3,1,"","output_keys"],[67,5,1,"","points_key"],[67,5,1,"","scale_key"],[67,4,1,"","transform_dataset"]],"sleap.nn.data.training":[[68,2,1,"","KeyMapper"],[68,1,1,"","split_labels"],[68,1,1,"","split_labels_reader"],[68,1,1,"","split_labels_train_val"]],"sleap.nn.data.training.KeyMapper":[[68,3,1,"","input_keys"],[68,5,1,"","key_maps"],[68,3,1,"","output_keys"],[68,4,1,"","transform_dataset"]],"sleap.nn.data.utils":[[69,1,1,"","describe_tensors"],[69,1,1,"","ensure_list"],[69,1,1,"","expand_to_rank"],[69,1,1,"","gaussian_pdf"],[69,1,1,"","make_grid_vectors"],[69,1,1,"","unrag_example"],[69,1,1,"","unrag_tensor"]],"sleap.nn.evals":[[70,1,1,"","compute_dist_metrics"],[70,1,1,"","compute_dists"],[70,1,1,"","compute_generalized_voc_metrics"],[70,1,1,"","compute_instance_area"],[70,1,1,"","compute_oks"],[70,1,1,"","compute_pck_metrics"],[70,1,1,"","compute_visibility_conf"],[70,1,1,"","evaluate"],[70,1,1,"","evaluate_model"],[70,1,1,"","find_frame_pairs"],[70,1,1,"","load_metrics"],[70,1,1,"","match_frame_pairs"],[70,1,1,"","match_instances"],[70,1,1,"","replace_path"]],"sleap.nn.heads":[[71,2,1,"","CenteredInstanceConfmapsHead"],[71,2,1,"","CentroidConfmapsHead"],[71,2,1,"","ClassMapsHead"],[71,2,1,"","ClassVectorsHead"],[71,2,1,"","Head"],[71,2,1,"","MultiInstanceConfmapsHead"],[71,2,1,"","OffsetRefinementHead"],[71,2,1,"","PartAffinityFieldsHead"],[71,2,1,"","SingleInstanceConfmapsHead"]],"sleap.nn.heads.CenteredInstanceConfmapsHead":[[71,5,1,"","anchor_part"],[71,3,1,"","channels"],[71,5,1,"","config"],[71,4,1,"","from_config"],[71,5,1,"","loss_weight"],[71,5,1,"","output_stride"],[71,5,1,"id0","part_names"],[71,5,1,"","sigma"]],"sleap.nn.heads.CentroidConfmapsHead":[[71,5,1,"","anchor_part"],[71,3,1,"","channels"],[71,5,1,"","config"],[71,4,1,"","from_config"],[71,5,1,"","loss_weight"],[71,5,1,"","output_stride"],[71,5,1,"","sigma"]],"sleap.nn.heads.ClassMapsHead":[[71,3,1,"","activation"],[71,3,1,"","channels"],[71,5,1,"id1","classes"],[71,5,1,"","config"],[71,4,1,"","from_config"],[71,5,1,"","loss_weight"],[71,5,1,"","output_stride"],[71,5,1,"","sigma"]],"sleap.nn.heads.ClassVectorsHead":[[71,3,1,"","activation"],[71,3,1,"","channels"],[71,5,1,"id2","classes"],[71,5,1,"","config"],[71,4,1,"","from_config"],[71,3,1,"","loss_function"],[71,5,1,"","loss_weight"],[71,4,1,"","make_head"],[71,5,1,"","num_fc_layers"],[71,5,1,"","num_fc_units"],[71,5,1,"","output_stride"]],"sleap.nn.heads.Head":[[71,3,1,"","activation"],[71,3,1,"","channels"],[71,3,1,"","loss_function"],[71,4,1,"","make_head"]],"sleap.nn.heads.MultiInstanceConfmapsHead":[[71,3,1,"","channels"],[71,5,1,"","config"],[71,4,1,"","from_config"],[71,5,1,"","loss_weight"],[71,5,1,"","output_stride"],[71,5,1,"id3","part_names"],[71,5,1,"","sigma"]],"sleap.nn.heads.OffsetRefinementHead":[[71,3,1,"","channels"],[71,5,1,"","config"],[71,4,1,"","from_config"],[71,5,1,"id6","loss_weight"],[71,5,1,"","output_stride"],[71,5,1,"id4","part_names"],[71,5,1,"id5","sigma_threshold"]],"sleap.nn.heads.PartAffinityFieldsHead":[[71,3,1,"","channels"],[71,5,1,"","config"],[71,5,1,"id7","edges"],[71,4,1,"","from_config"],[71,5,1,"","loss_weight"],[71,5,1,"","output_stride"],[71,5,1,"","sigma"]],"sleap.nn.heads.SingleInstanceConfmapsHead":[[71,3,1,"","channels"],[71,5,1,"","config"],[71,4,1,"","from_config"],[71,5,1,"","loss_weight"],[71,5,1,"","output_stride"],[71,5,1,"id8","part_names"],[71,5,1,"","sigma"]],"sleap.nn.identity":[[72,1,1,"","classify_peaks_from_maps"],[72,1,1,"","classify_peaks_from_vectors"],[72,1,1,"","group_class_peaks"]],"sleap.nn.inference":[[73,2,1,"","BottomUpInferenceLayer"],[73,2,1,"","BottomUpInferenceModel"],[73,2,1,"","BottomUpMultiClassInferenceLayer"],[73,2,1,"","BottomUpMultiClassInferenceModel"],[73,2,1,"","BottomUpMultiClassPredictor"],[73,2,1,"","BottomUpPredictor"],[73,2,1,"","CentroidCrop"],[73,2,1,"","CentroidCropGroundTruth"],[73,2,1,"","CentroidInferenceModel"],[73,2,1,"","FindInstancePeaks"],[73,2,1,"","FindInstancePeaksGroundTruth"],[73,2,1,"","InferenceLayer"],[73,2,1,"","InferenceModel"],[73,2,1,"","MoveNetInferenceLayer"],[73,2,1,"","MoveNetInferenceModel"],[73,2,1,"","MoveNetPredictor"],[73,2,1,"","Predictor"],[73,2,1,"","RateColumn"],[73,2,1,"","SingleInstanceInferenceLayer"],[73,2,1,"","SingleInstanceInferenceModel"],[73,2,1,"","SingleInstancePredictor"],[73,2,1,"","TopDownInferenceModel"],[73,2,1,"","TopDownMultiClassFindPeaks"],[73,2,1,"","TopDownMultiClassInferenceModel"],[73,2,1,"","TopDownMultiClassPredictor"],[73,2,1,"","TopDownPredictor"],[73,2,1,"","VisualPredictor"],[73,1,1,"","export_cli"],[73,1,1,"","export_model"],[73,1,1,"","find_head"],[73,1,1,"","get_keras_model_path"],[73,1,1,"","get_model_output_stride"],[73,1,1,"","load_model"],[73,1,1,"","main"],[73,1,1,"","make_model_movenet"]],"sleap.nn.inference.BottomUpInferenceLayer":[[73,4,1,"","call"],[73,5,1,"","cm_output_stride"],[73,5,1,"","confmaps_ind"],[73,4,1,"","find_peaks"],[73,4,1,"","forward_pass"],[73,5,1,"","input_scale"],[73,5,1,"","integral_patch_size"],[73,5,1,"","keras_model"],[73,5,1,"","offsets_ind"],[73,5,1,"","paf_output_stride"],[73,5,1,"","paf_scorer"],[73,5,1,"","pafs_ind"],[73,5,1,"","peak_threshold"],[73,5,1,"","refinement"],[73,5,1,"","return_confmaps"],[73,5,1,"","return_paf_graph"],[73,5,1,"","return_pafs"]],"sleap.nn.inference.BottomUpInferenceModel":[[73,5,1,"","bottomup_layer"],[73,4,1,"","call"]],"sleap.nn.inference.BottomUpMultiClassInferenceLayer":[[73,4,1,"","call"],[73,5,1,"","class_maps_ind"],[73,5,1,"","class_maps_output_stride"],[73,5,1,"","cm_output_stride"],[73,5,1,"","confmaps_ind"],[73,4,1,"","find_peaks"],[73,4,1,"","forward_pass"],[73,5,1,"","input_scale"],[73,5,1,"","integral_patch_size"],[73,5,1,"","keras_model"],[73,5,1,"","offsets_ind"],[73,5,1,"","peak_threshold"],[73,5,1,"","refinement"],[73,5,1,"","return_class_maps"],[73,5,1,"","return_confmaps"]],"sleap.nn.inference.BottomUpMultiClassInferenceModel":[[73,4,1,"","call"],[73,5,1,"","inference_layer"]],"sleap.nn.inference.BottomUpMultiClassPredictor":[[73,5,1,"","batch_size"],[73,5,1,"","config"],[73,4,1,"","from_trained_models"],[73,5,1,"","inference_model"],[73,5,1,"","integral_patch_size"],[73,5,1,"","integral_refinement"],[73,3,1,"","is_grayscale"],[73,5,1,"","model"],[73,5,1,"","peak_threshold"],[73,5,1,"","pipeline"],[73,5,1,"","tracks"]],"sleap.nn.inference.BottomUpPredictor":[[73,5,1,"","batch_size"],[73,5,1,"","bottomup_config"],[73,5,1,"","bottomup_model"],[73,5,1,"","dist_penalty_weight"],[73,4,1,"","from_trained_models"],[73,5,1,"","inference_model"],[73,5,1,"","integral_patch_size"],[73,5,1,"","integral_refinement"],[73,3,1,"","is_grayscale"],[73,5,1,"","max_edge_length_ratio"],[73,5,1,"","max_instances"],[73,5,1,"","min_line_scores"],[73,5,1,"","paf_line_points"],[73,5,1,"","peak_threshold"],[73,5,1,"","pipeline"],[73,5,1,"","tracker"]],"sleap.nn.inference.CentroidCrop":[[73,4,1,"","call"],[73,5,1,"","confmaps_ind"],[73,5,1,"","crop_size"],[73,5,1,"","input_scale"],[73,5,1,"","integral_patch_size"],[73,5,1,"","keras_model"],[73,5,1,"","max_instances"],[73,5,1,"","offsets_ind"],[73,5,1,"","output_stride"],[73,5,1,"","pad_to_stride"],[73,5,1,"","peak_threshold"],[73,5,1,"","refinement"],[73,5,1,"","return_confmaps"],[73,5,1,"","return_crops"]],"sleap.nn.inference.CentroidCropGroundTruth":[[73,4,1,"","call"],[73,5,1,"","crop_size"]],"sleap.nn.inference.CentroidInferenceModel":[[73,4,1,"","call"],[73,5,1,"","centroid_crop"]],"sleap.nn.inference.FindInstancePeaks":[[73,4,1,"","call"],[73,5,1,"","confmaps_ind"],[73,5,1,"","input_scale"],[73,5,1,"","integral_patch_size"],[73,5,1,"","keras_model"],[73,5,1,"","offsets_ind"],[73,5,1,"","output_stride"],[73,5,1,"","peak_threshold"],[73,5,1,"","refinement"],[73,5,1,"","return_confmaps"]],"sleap.nn.inference.FindInstancePeaksGroundTruth":[[73,4,1,"","call"]],"sleap.nn.inference.InferenceLayer":[[73,4,1,"","call"],[73,5,1,"","ensure_float"],[73,5,1,"","ensure_grayscale"],[73,5,1,"","input_scale"],[73,5,1,"","keras_model"],[73,5,1,"","pad_to_stride"],[73,4,1,"","preprocess"]],"sleap.nn.inference.InferenceModel":[[73,4,1,"","export_model"],[73,4,1,"","predict"],[73,4,1,"","predict_on_batch"]],"sleap.nn.inference.MoveNetInferenceLayer":[[73,4,1,"","call"],[73,5,1,"","ensure_float"],[73,5,1,"","ensure_grayscale"],[73,5,1,"","input_scale"],[73,5,1,"","keras_model"],[73,5,1,"","model_name"],[73,5,1,"","pad_to_stride"]],"sleap.nn.inference.MoveNetInferenceModel":[[73,4,1,"","call"],[73,5,1,"","inference_layer"]],"sleap.nn.inference.MoveNetPredictor":[[73,5,1,"","batch_size"],[73,4,1,"","from_trained_models"],[73,5,1,"","inference_model"],[73,3,1,"","is_grayscale"],[73,5,1,"","model_name"],[73,5,1,"","peak_threshold"],[73,5,1,"","pipeline"]],"sleap.nn.inference.Predictor":[[73,4,1,"","export_model"],[73,4,1,"","from_model_paths"],[73,3,1,"","is_grayscale"],[73,4,1,"","make_pipeline"],[73,4,1,"","predict"],[73,3,1,"","report_period"]],"sleap.nn.inference.RateColumn":[[73,4,1,"","render"]],"sleap.nn.inference.SingleInstanceInferenceLayer":[[73,4,1,"","call"],[73,5,1,"","confmaps_ind"],[73,5,1,"","input_scale"],[73,5,1,"","integral_patch_size"],[73,5,1,"","keras_model"],[73,5,1,"","offsets_ind"],[73,5,1,"","output_stride"],[73,5,1,"","pad_to_stride"],[73,5,1,"","peak_threshold"],[73,5,1,"","refinement"],[73,5,1,"","return_confmaps"]],"sleap.nn.inference.SingleInstanceInferenceModel":[[73,4,1,"","call"],[73,5,1,"","single_instance_layer"]],"sleap.nn.inference.SingleInstancePredictor":[[73,5,1,"","batch_size"],[73,5,1,"","confmap_config"],[73,5,1,"","confmap_model"],[73,4,1,"","export_model"],[73,4,1,"","from_trained_models"],[73,5,1,"","inference_model"],[73,5,1,"","integral_patch_size"],[73,5,1,"","integral_refinement"],[73,3,1,"","is_grayscale"],[73,5,1,"","peak_threshold"],[73,5,1,"","pipeline"]],"sleap.nn.inference.TopDownInferenceModel":[[73,4,1,"","call"],[73,5,1,"","centroid_crop"],[73,5,1,"","instance_peaks"]],"sleap.nn.inference.TopDownMultiClassFindPeaks":[[73,4,1,"","call"],[73,5,1,"","class_vectors_ind"],[73,5,1,"","confmaps_ind"],[73,5,1,"","input_scale"],[73,5,1,"","integral_patch_size"],[73,5,1,"","keras_model"],[73,5,1,"","offsets_ind"],[73,5,1,"","optimal_grouping"],[73,5,1,"","output_stride"],[73,5,1,"","peak_threshold"],[73,5,1,"","refinement"],[73,5,1,"","return_class_vectors"],[73,5,1,"","return_confmaps"]],"sleap.nn.inference.TopDownMultiClassInferenceModel":[[73,4,1,"","call"],[73,5,1,"","centroid_crop"],[73,4,1,"","export_model"],[73,5,1,"","instance_peaks"]],"sleap.nn.inference.TopDownMultiClassPredictor":[[73,5,1,"","batch_size"],[73,5,1,"","centroid_config"],[73,5,1,"","centroid_model"],[73,5,1,"","confmap_config"],[73,5,1,"","confmap_model"],[73,4,1,"","export_model"],[73,4,1,"","from_trained_models"],[73,5,1,"","inference_model"],[73,5,1,"","integral_patch_size"],[73,5,1,"","integral_refinement"],[73,3,1,"","is_grayscale"],[73,4,1,"","make_pipeline"],[73,5,1,"","peak_threshold"],[73,5,1,"","pipeline"],[73,5,1,"","tracker"],[73,5,1,"","tracks"]],"sleap.nn.inference.TopDownPredictor":[[73,5,1,"","batch_size"],[73,5,1,"","centroid_config"],[73,5,1,"","centroid_model"],[73,5,1,"","confmap_config"],[73,5,1,"","confmap_model"],[73,4,1,"","export_model"],[73,4,1,"","from_trained_models"],[73,5,1,"","inference_model"],[73,5,1,"","integral_patch_size"],[73,5,1,"","integral_refinement"],[73,3,1,"","is_grayscale"],[73,4,1,"","make_pipeline"],[73,5,1,"","max_instances"],[73,5,1,"","peak_threshold"],[73,5,1,"","pipeline"],[73,5,1,"","tracker"]],"sleap.nn.inference.VisualPredictor":[[73,4,1,"","make_pipeline"],[73,4,1,"","predict"],[73,4,1,"","safely_generate"]],"sleap.nn.losses":[[74,2,1,"","OHKMLoss"],[74,2,1,"","PartLoss"],[74,1,1,"","compute_ohkm_loss"]],"sleap.nn.losses.OHKMLoss":[[74,4,1,"","call"],[74,4,1,"","from_config"],[74,5,1,"","hard_to_easy_ratio"],[74,5,1,"","loss_scale"],[74,5,1,"","max_hard_keypoints"],[74,5,1,"","min_hard_keypoints"]],"sleap.nn.losses.PartLoss":[[74,5,1,"","channel_ind"],[74,5,1,"","name"],[74,4,1,"","result"],[74,4,1,"","update_state"]],"sleap.nn.model":[[75,2,1,"","Model"]],"sleap.nn.model.Model":[[75,5,1,"","backbone"],[75,4,1,"","from_config"],[75,5,1,"","heads"],[75,5,1,"","keras_model"],[75,4,1,"","make_model"],[75,3,1,"","maximum_stride"]],"sleap.nn.paf_grouping":[[76,2,1,"","EdgeConnection"],[76,2,1,"","EdgeType"],[76,2,1,"","PAFScorer"],[76,2,1,"","PeakID"],[76,1,1,"","assign_connections_to_instances"],[76,1,1,"","compute_distance_penalty"],[76,1,1,"","get_connection_candidates"],[76,1,1,"","get_paf_lines"],[76,1,1,"","group_instances_batch"],[76,1,1,"","group_instances_sample"],[76,1,1,"","make_line_subs"],[76,1,1,"","make_predicted_instances"],[76,1,1,"","match_candidates_batch"],[76,1,1,"","match_candidates_sample"],[76,1,1,"","score_paf_lines"],[76,1,1,"","score_paf_lines_batch"],[76,1,1,"","toposort_edges"]],"sleap.nn.paf_grouping.EdgeConnection":[[76,5,1,"","dst_peak_ind"],[76,5,1,"","score"],[76,5,1,"","src_peak_ind"]],"sleap.nn.paf_grouping.EdgeType":[[76,5,1,"","dst_node_ind"],[76,5,1,"","src_node_ind"]],"sleap.nn.paf_grouping.PAFScorer":[[76,5,1,"","dist_penalty_weight"],[76,5,1,"","edge_inds"],[76,5,1,"","edge_types"],[76,5,1,"","edges"],[76,4,1,"","from_config"],[76,4,1,"","group_instances"],[76,4,1,"","match_candidates"],[76,5,1,"","max_edge_length_ratio"],[76,5,1,"","min_instance_peaks"],[76,5,1,"","min_line_scores"],[76,5,1,"","n_edges"],[76,5,1,"","n_nodes"],[76,5,1,"","n_points"],[76,5,1,"","pafs_stride"],[76,5,1,"","part_names"],[76,4,1,"","predict"],[76,4,1,"","score_paf_lines"],[76,5,1,"","sorted_edge_inds"]],"sleap.nn.paf_grouping.PeakID":[[76,5,1,"","node_ind"],[76,5,1,"","peak_ind"]],"sleap.nn.peak_finding":[[77,1,1,"","crop_bboxes"],[77,1,1,"","find_global_peaks"],[77,1,1,"","find_global_peaks_integral"],[77,1,1,"","find_global_peaks_rough"],[77,1,1,"","find_global_peaks_with_offsets"],[77,1,1,"","find_local_peaks"],[77,1,1,"","find_local_peaks_integral"],[77,1,1,"","find_local_peaks_rough"],[77,1,1,"","find_local_peaks_with_offsets"],[77,1,1,"","find_offsets_local_direction"],[77,1,1,"","integral_regression"],[77,1,1,"","make_gaussian_kernel"],[77,1,1,"","smooth_imgs"]],"sleap.nn.system":[[78,1,1,"","best_logical_device_name"],[78,1,1,"","disable_preallocation"],[78,1,1,"","enable_preallocation"],[78,1,1,"","get_all_gpus"],[78,1,1,"","get_available_gpus"],[78,1,1,"","get_current_gpu"],[78,1,1,"","get_gpu_memory"],[78,1,1,"","initialize_devices"],[78,1,1,"","is_gpu_system"],[78,1,1,"","is_initialized"],[78,1,1,"","summary"],[78,1,1,"","use_cpu_only"],[78,1,1,"","use_first_gpu"],[78,1,1,"","use_gpu"],[78,1,1,"","use_last_gpu"]],"sleap.nn.tracker":[[79,0,0,"-","components"],[80,0,0,"-","kalman"]],"sleap.nn.tracker.components":[[79,2,1,"","FrameMatches"],[79,2,1,"","Match"],[79,1,1,"","centroid_distance"],[79,1,1,"","connect_single_track_breaks"],[79,1,1,"","cull_frame_instances"],[79,1,1,"","cull_instances"],[79,1,1,"","factory_object_keypoint_similarity"],[79,1,1,"","first_choice_matching"],[79,1,1,"","greedy_matching"],[79,1,1,"","hungarian_matching"],[79,1,1,"","instance_iou"],[79,1,1,"","instance_similarity"],[79,1,1,"","nms_fast"]],"sleap.nn.tracker.components.FrameMatches":[[79,5,1,"","cost_matrix"],[79,4,1,"","from_candidate_instances"],[79,3,1,"","has_only_first_choice_matches"],[79,5,1,"","matches"],[79,5,1,"","unmatched_instances"]],"sleap.nn.tracker.kalman":[[80,1,1,"","get_track_instance_matches"],[80,1,1,"","match_dict_from_match_function"],[80,1,1,"","remove_second_bests_from_cost_matrix"]],"sleap.nn.tracking":[[81,2,1,"","BaseTracker"],[81,2,1,"","FlowCandidateMaker"],[81,2,1,"","FlowMaxTracker"],[81,2,1,"","FlowMaxTracksCandidateMaker"],[81,2,1,"","FlowTracker"],[81,2,1,"","KalmanTracker"],[81,2,1,"","SimpleCandidateMaker"],[81,2,1,"","SimpleMaxTracker"],[81,2,1,"","SimpleMaxTracksCandidateMaker"],[81,2,1,"","SimpleTracker"],[81,2,1,"","TrackCleaner"],[81,2,1,"","Tracker"],[81,1,1,"","run_tracker"]],"sleap.nn.tracking.FlowCandidateMaker":[[81,4,1,"","flow_shift_instances"],[81,4,1,"","get_shifted_instances"],[81,4,1,"","get_shifted_instances_from_earlier_time"],[81,5,1,"","img_scale"],[81,5,1,"","min_points"],[81,5,1,"","of_max_levels"],[81,5,1,"","of_window_size"],[81,4,1,"","prune_shifted_instances"],[81,5,1,"","save_shifted_instances"],[81,5,1,"","track_window"]],"sleap.nn.tracking.FlowMaxTracker":[[81,4,1,"","matching_function"],[81,4,1,"","similarity_function"]],"sleap.nn.tracking.FlowMaxTracksCandidateMaker":[[81,4,1,"","get_ref_instances"],[81,5,1,"","max_tracks"]],"sleap.nn.tracking.KalmanTracker":[[81,3,1,"","is_valid"],[81,4,1,"","make_tracker"],[81,4,1,"","track"]],"sleap.nn.tracking.TrackCleaner":[[81,5,1,"","instance_count"],[81,5,1,"","iou_threshold"]],"sleap.nn.tracking.Tracker":[[81,5,1,"","candidate_maker"],[81,5,1,"","cleaner"],[81,4,1,"","final_pass"],[81,5,1,"","matching_function"],[81,5,1,"","max_tracking"],[81,5,1,"","min_new_track_points"],[81,5,1,"","robust_best_instance"],[81,5,1,"","similarity_function"],[81,4,1,"","track"],[81,5,1,"","track_window"],[81,3,1,"","unique_tracks_in_queue"]],"sleap.nn.training":[[82,2,1,"","BottomUpModelTrainer"],[82,2,1,"","BottomUpMultiClassModelTrainer"],[82,2,1,"","CentroidConfmapsModelTrainer"],[82,2,1,"","DataReaders"],[82,2,1,"","SingleInstanceModelTrainer"],[82,2,1,"","TopDownMultiClassModelTrainer"],[82,2,1,"","TopdownConfmapsModelTrainer"],[82,2,1,"","Trainer"],[82,1,1,"","create_trainer_using_cli"],[82,1,1,"","get_timestamp"],[82,1,1,"","main"],[82,1,1,"","sanitize_scope_name"],[82,1,1,"","setup_checkpointing"],[82,1,1,"","setup_losses"],[82,1,1,"","setup_metrics"],[82,1,1,"","setup_new_run_folder"],[82,1,1,"","setup_optimization_callbacks"],[82,1,1,"","setup_optimizer"],[82,1,1,"","setup_output_callbacks"],[82,1,1,"","setup_tensorboard"],[82,1,1,"","setup_visualization"],[82,1,1,"","setup_zmq_callbacks"]],"sleap.nn.training.BottomUpModelTrainer":[[82,3,1,"","has_offsets"],[82,3,1,"","input_keys"],[82,3,1,"","output_keys"]],"sleap.nn.training.BottomUpMultiClassModelTrainer":[[82,3,1,"","has_offsets"],[82,3,1,"","input_keys"],[82,3,1,"","output_keys"]],"sleap.nn.training.CentroidConfmapsModelTrainer":[[82,3,1,"","has_offsets"],[82,3,1,"","input_keys"],[82,3,1,"","output_keys"]],"sleap.nn.training.DataReaders":[[82,4,1,"","from_config"],[82,4,1,"","from_labels"],[82,3,1,"","test_labels"],[82,5,1,"","test_labels_reader"],[82,3,1,"","training_labels"],[82,5,1,"","training_labels_reader"],[82,3,1,"","validation_labels"],[82,5,1,"","validation_labels_reader"]],"sleap.nn.training.SingleInstanceModelTrainer":[[82,3,1,"","has_offsets"],[82,3,1,"","input_keys"],[82,3,1,"","output_keys"]],"sleap.nn.training.TopDownMultiClassModelTrainer":[[82,3,1,"","has_offsets"],[82,3,1,"","input_keys"],[82,3,1,"","output_keys"]],"sleap.nn.training.TopdownConfmapsModelTrainer":[[82,3,1,"","has_offsets"],[82,3,1,"","input_keys"],[82,3,1,"","output_keys"]],"sleap.nn.training.Trainer":[[82,3,1,"","callbacks"],[82,4,1,"","cleanup"],[82,5,1,"","config"],[82,5,1,"","data_readers"],[82,4,1,"","evaluate"],[82,4,1,"","from_config"],[82,5,1,"","initial_config"],[82,3,1,"","input_keys"],[82,3,1,"","keras_model"],[82,5,1,"","model"],[82,5,1,"","optimization_callbacks"],[82,5,1,"","output_callbacks"],[82,3,1,"","output_keys"],[82,4,1,"","package"],[82,5,1,"","pipeline_builder"],[82,5,1,"","run_path"],[82,4,1,"","setup"],[82,4,1,"","train"],[82,5,1,"","training_pipeline"],[82,5,1,"","training_viz_pipeline"],[82,5,1,"","validation_pipeline"],[82,5,1,"","validation_viz_pipeline"],[82,5,1,"","visualization_callbacks"]],"sleap.nn.utils":[[83,1,1,"","compute_iou"],[83,1,1,"","group_array"],[83,1,1,"","match_points"],[83,1,1,"","reset_input_layer"],[83,1,1,"","tf_linear_sum_assignment"]],"sleap.nn.viz":[[84,1,1,"","generate_skeleton_preview_image"],[84,1,1,"","imgfig"],[84,1,1,"","plot_confmaps"],[84,1,1,"","plot_img"],[84,1,1,"","plot_instance"],[84,1,1,"","plot_instances"],[84,1,1,"","plot_pafs"],[84,1,1,"","plot_peaks"]],"sleap.skeleton":[[85,2,1,"","EdgeType"],[85,2,1,"","Node"],[85,2,1,"","Skeleton"]],"sleap.skeleton.Node":[[85,4,1,"","as_node"],[85,4,1,"","from_names"],[85,4,1,"","matches"],[85,5,1,"","name"],[85,5,1,"","weight"]],"sleap.skeleton.Skeleton":[[85,5,1,"","_is_template"],[85,5,1,"","_skeleton_idx"],[85,4,1,"","add_edge"],[85,4,1,"","add_node"],[85,4,1,"","add_nodes"],[85,4,1,"","add_symmetry"],[85,4,1,"","clear_edges"],[85,4,1,"","delete_edge"],[85,4,1,"","delete_node"],[85,4,1,"","delete_symmetry"],[85,5,1,"","description"],[85,3,1,"","edge_inds"],[85,3,1,"","edge_names"],[85,4,1,"","edge_to_index"],[85,3,1,"","edges"],[85,3,1,"","edges_full"],[85,4,1,"","find_neighbors"],[85,4,1,"","find_node"],[85,4,1,"","find_unique_nodes"],[85,4,1,"","from_dict"],[85,4,1,"","from_json"],[85,4,1,"","from_names_and_edge_inds"],[85,4,1,"","get_symmetry"],[85,4,1,"","get_symmetry_name"],[85,3,1,"","graph"],[85,3,1,"","graph_symmetry"],[85,4,1,"","has_edge"],[85,4,1,"","has_node"],[85,4,1,"","has_nodes"],[85,3,1,"","is_arborescence"],[85,3,1,"","is_template"],[85,4,1,"","load_all_hdf5"],[85,4,1,"","load_hdf5"],[85,4,1,"","load_json"],[85,4,1,"","load_mat"],[85,4,1,"","make_cattr"],[85,4,1,"","matches"],[85,3,1,"","name"],[85,3,1,"","node_names"],[85,4,1,"","node_to_index"],[85,3,1,"","nodes"],[85,5,1,"","preview_image"],[85,4,1,"","relabel_node"],[85,4,1,"","relabel_nodes"],[85,4,1,"","rename_skeleton"],[85,4,1,"","save_all_hdf5"],[85,4,1,"","save_hdf5"],[85,4,1,"","save_json"],[85,3,1,"","symmetric_inds"],[85,3,1,"","symmetries"],[85,3,1,"","symmetries_full"],[85,3,1,"","symmetry_names"],[85,4,1,"","to_dict"],[85,4,1,"","to_json"]],"sleap.util":[[86,1,1,"","attr_to_dtype"],[86,1,1,"","decode_preview_image"],[86,1,1,"","dict_cut"],[86,1,1,"","find_files_by_suffix"],[86,1,1,"","frame_list"],[86,1,1,"","get_config_file"],[86,1,1,"","get_package_file"],[86,1,1,"","json_dumps"],[86,1,1,"","json_loads"],[86,1,1,"","make_scoped_dictionary"],[86,1,1,"","parse_uri_path"],[86,1,1,"","save_dict_to_hdf5"],[86,1,1,"","uniquify"],[86,1,1,"","usable_cpu_count"],[86,1,1,"","weak_filename_match"]],sleap:[[10,0,0,"-","instance"],[36,0,0,"-","message"],[85,0,0,"-","skeleton"],[86,0,0,"-","util"]]},objnames:{"0":["py","module","Python module"],"1":["py","function","Python function"],"2":["py","class","Python class"],"3":["py","property","Python property"],"4":["py","method","Python method"],"5":["py","attribute","Python attribute"]},objtypes:{"0":"py:module","1":"py:function","2":"py:class","3":"py:property","4":"py:method","5":"py:attribute"},terms:{"0":[3,4,10,13,15,27,33,35,36,37,38,43,44,45,46,47,48,49,50,53,54,55,56,57,59,60,62,63,64,66,67,68,69,70,71,72,73,74,76,77,79,80,81,83,84,85,86,89,92,95,102,104,105,106,107,108,109,110],"00":[104,105,106,109],"0000":[105,106,109],"0000e":[106,109],"0001":[49,109],"0001038":105,"00012":105,"00022":109,"00025":109,"00031":109,"00032":109,"00037":109,"00038":109,"00045":109,"00046":109,"0010":[106,109],"0011":[106,109],"0012":[106,109],"0013":[106,109],"0014":[106,109],"0015":[106,109],"0016":[106,109],"0017":[106,109],"0018":[106,109],"0018e":109,"0019":[106,109],"001_second":89,"0020":[106,109],"0021":[106,109],"0022":[106,109],"0023":[106,109],"0024":[106,109],"0025":[106,109],"0026":[106,109],"0027":[106,109],"0028":[106,109],"0029":[106,109],"0030":[106,109],"00305":105,"0031":[106,109],"0032":[106,109],"0032e":109,"0033":[106,109],"0034":[106,109],"0035":[106,109],"0036":[106,109],"0037":[106,109],"0038":[106,109],"0039":[106,109],"003_my_video":[13,27],"0040":[106,109],"0041":[106,109],"0042":109,"0043":109,"0044":109,"0045":109,"0046":109,"0046191":105,"0047":109,"0048":109,"0049":109,"0050":109,"0051":109,"0052":109,"0053":109,"0054":109,"0054291":105,"00543":105,"0055e":109,"0056":109,"0057":109,"0058":109,"0060":109,"0061":109,"0062":109,"0063":109,"0063e":109,"0064":109,"0064e":106,"0065":109,"0066":109,"0067":109,"0067e":109,"0068":109,"0069":109,"0070":109,"0071":109,"0072":109,"0073":109,"0074e":109,"0075":109,"0076":109,"0078":109,"0079":109,"0080":109,"0081":109,"0082":109,"0083":109,"0085":109,"0085e":106,"0086":109,"0087":109,"0088":109,"0089":109,"009":105,"0091":109,"00915":43,"0092":109,"0093":109,"0097":109,"00977":105,"0098":105,"0099":109,"00995":105,"00m":[107,109],"01":[70,103,104,105,106,107,108,109],"0100e":109,"0102":109,"0105":109,"0106":109,"0108":109,"0111":109,"01126":105,"01157":105,"0116":109,"0118455":105,"0118e":109,"0123":109,"0125":109,"0126":109,"0127":109,"0128":109,"01282":105,"0128e":109,"0131":109,"01324":105,"0134e":106,"0152":105,"0159e":109,"01648":105,"0166608700891056":107,"018":38,"0190e":109,"0192e":109,"0193176269531":104,"01931763":104,"0196e":109,"0197e":106,"0198":105,"0198e":109,"02":[70,79,105,106],"02057":105,"0210e":109,"0213e":109,"0215":105,"0233e":109,"0234":38,"02444":105,"025":70,"0259":105,"0259e":109,"0263e":109,"0264e":109,"0266e":109,"0270e":109,"02728":105,"0275":105,"0277e":109,"02960205":104,"02960205078125":104,"03":[13,27,70,103,104,105,109],"0301":105,"0303e":106,"0311976":105,"03162":105,"03174":105,"0318":105,"0318e":109,"0323e":109,"03244":105,"0365":105,"03793":105,"0385e":106,"038687":109,"0386e":109,"03918":105,"0394e":109,"03998":105,"04":[70,103,104,105,106,107,109],"0420e":109,"0426e":109,"04318":105,"04324":105,"04352":105,"04425":105,"04437362":105,"0444e":109,"0446e":109,"0451e":109,"0462":105,"0466e":109,"04684":105,"0474e":109,"04776":105,"04788":105,"0479":105,"04814":105,"0488e":109,"04938014":105,"04953":105,"04962":105,"0497":105,"04d":50,"05":[70,103,105,109],"0507e":109,"0515":105,"0518e":109,"05255":105,"0531e":[106,109],"05379":105,"05388":107,"0541e":106,"0545800141197903":107,"05463":105,"05493":105,"055738":106,"05611448":105,"0561e":109,"056597":106,"057389":106,"0575e":109,"0576e":109,"058046":106,"058048":104,"0581e":106,"0584":105,"05853":105,"0585e":109,"06":[49,70,106,109],"060007":104,"060013":104,"0606e":109,"0607e":109,"0612e":109,"06203796":105,"06238":105,"0630e":106,"0631e":109,"06328589":105,"0634":105,"0634e":109,"0639e":109,"06403984":105,"06436":105,"0646795":105,"06516132":105,"0652":105,"0657e":109,"06647":105,"0668":105,"066840":109,"0668e":109,"06784":105,"0690e":106,"06937":38,"07":[70,107,109],"07055778":105,"0711e":109,"0713":105,"072":70,"0720e":109,"0727e":109,"07603623":105,"0771e":109,"0772e":106,"0778e":109,"07797408":105,"08":[49,70,104,106,109],"08127":105,"08318384":105,"0835e":109,"08496":105,"08594":105,"08648682":105,"08688":105,"08721923828125":104,"08721924":104,"0888e":109,"089801":109,"08987":105,"08994":105,"08m":104,"09":[70,105,106,107,108,109],"09042":105,"0904e":109,"0905e":109,"090652":109,"09125":105,"09143":105,"091464":109,"09204":105,"09212":40,"092164":109,"09326":38,"09349":105,"09372":105,"09384":105,"0939e":106,"0943e":106,"0944e":109,"097":105,"09735":105,"0978":105,"0986e":109,"098811":109,"09885":105,"0989e":109,"0k":[104,105,106],"0m":[105,106,107,109,110],"0m0":109,"0m2023":109,"0m31m48":109,"0m31m49":109,"0m31m51":109,"0m31m52":109,"0mb":109,"0mcould":107,"0mfp":109,"0mm":109,"0munabl":107,"1":[0,3,4,9,10,12,13,27,33,35,36,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54,55,56,59,60,61,62,63,64,65,66,67,68,69,70,71,73,74,76,77,79,80,81,83,84,85,87,89,95,98,102,107,109,110,119],"10":[36,41,46,49,50,70,73,76,81,84,102,103,104,105,106,107,108,109,117],"100":[49,81,87,92,103,104,105,106,108,109],"1000":[87,89,105],"10000":33,"1004e":109,"1007e":109,"101":[103,106,109],"1018e":109,"1019":105,"1024":[87,103,104,105,107],"103":[43,63,104,107],"103255":109,"10357":40,"103658":105,"103982":109,"104":104,"10415649":104,"10415649414062":104,"104377":105,"104556":106,"105059":105,"10544":105,"10553":105,"106":109,"106019":105,"1060e":109,"107":70,"1078e":109,"107m":109,"108":109,"10843":105,"1089e":106,"109":109,"1097e":109,"10m":101,"11":[70,87,102,103,104,105,106,107,108,109],"110":109,"1100":33,"11035":105,"11078":105,"11148":105,"111973079":109,"1119e":109,"112":104,"11206":105,"1129e":109,"113":[103,109],"114":109,"1149e":109,"11572":105,"1158e":109,"116":[43,63],"1164e":109,"11816":105,"1183e":109,"1192":105,"11ea":109,"12":[70,90,102,103,104,105,106,107,108,109],"120":105,"1201e":109,"1204e":109,"120k":[105,106],"121":103,"1218e":109,"122":103,"1221e":109,"1223e":109,"123":[43,63,96],"1233e":109,"12372":105,"1238e":109,"12497":105,"12512":105,"127":[36,43,46,50,63,109],"12731166":105,"1278e":109,"128":[39,42,43,48,49,84,103,109],"1280":87,"12836":105,"12885":105,"12k":[104,105,106],"13":[70,87,103,105,106,107,109],"13065":105,"13086":105,"13202":105,"1323e":109,"13245":105,"13287":105,"132k":106,"133":[103,109],"13306":105,"13345":105,"1338":105,"1339":105,"134":109,"13475017":105,"13495":105,"1350":108,"1375e":106,"1395":105,"13pt":[106,107],"14":[70,87,104,105,106,107,108,109],"140":103,"1400e":109,"14189687":105,"142":104,"1421":105,"14230077":105,"14267":105,"14295959":104,"14295959472656":104,"14362":105,"144":[104,109],"1440":106,"145283":105,"1452e":109,"14550781":105,"14614868":104,"1461486816406":104,"1474":87,"1484228079076315":107,"1486e":109,"1497e":106,"149k":104,"14m":109,"15":[35,48,70,71,88,98,100,101,103,104,105,106,107,108,109,110],"150":[87,107],"1500":87,"15000":[104,105],"15082283":105,"1508674":105,"1508e":109,"150k":104,"151":[103,105,106,107,109],"1523e":109,"1525":[105,106,109],"15356":105,"1536":87,"1550e":109,"1555e":109,"1558":105,"1559":105,"156":109,"1560e":109,"15668":105,"15704":105,"157392":109,"1578e":109,"157k":[105,106],"158019":109,"1581400":104,"15857":105,"1588":87,"158864":109,"15892":105,"158k":105,"15924":105,"159656":109,"15m":109,"16":[43,45,47,48,70,79,104,105,106,107,108,109],"160":106,"1600e":109,"1603":38,"1604":87,"1606":43,"1611":38,"16116264":105,"1619e":109,"1631":105,"16318":105,"16357":105,"16394":105,"16397":105,"164":105,"16411652":105,"16653292":105,"1667":105,"16724":105,"16742":105,"16777216":[104,107],"16904":105,"1692e":106,"1696e":109,"1699e":109,"16df8d00":109,"16m":109,"17":[70,73,106,108,109],"1707":107,"17175":105,"172":104,"17218":105,"17297":105,"17343":105,"1743e":106,"1751e":106,"1753e":109,"17560":[104,105],"1757":105,"17578":105,"176":104,"1763e":109,"176m":105,"1774":[105,106,109],"17917":105,"17926":105,"179k":106,"18":[34,40,70,87,106,109],"180":[49,88],"1800":[104,105,107],"1802e":109,"18051867":105,"1807e":106,"1815e":109,"1817":105,"1826e":106,"1827e":109,"18298":105,"1831665":105,"185":109,"1850":[107,108],"1859":105,"18735":105,"188":104,"18854":105,"189":104,"18994":105,"18m":109,"19":[70,100,101,109],"1902":40,"1903e":109,"19041":102,"19046":105,"1905e":109,"190719_090330_wt_18":104,"190719_090330_wt_18159206_rig1":[104,105],"1907e":106,"1908":40,"191205_162402":96,"191205_163413":96,"1913e":109,"192":[87,109],"1925e":109,"193":104,"1934":104,"1936":105,"19464":105,"19696":105,"19714":105,"19766915":105,"19778":105,"197896466395166":107,"197k":[104,105],"1985e":109,"199":109,"1998e":109,"19m":[106,109],"1a2":[51,102],"1e":[49,106,109],"1f":105,"1g":105,"1k":[104,105,106],"1m":[104,105,109],"1s":[104,106],"1x1":[38,45,48],"2":[3,6,9,10,12,13,34,37,38,39,41,43,44,45,48,49,53,54,55,56,59,60,61,62,63,64,66,67,70,71,72,73,74,76,77,80,81,83,84,87,89,92,100,102,103,107,109,119],"20":[4,76,81,87,103,104,105,106,107,109,116,117],"200":[15,49,103,104,109,110],"2000":[33,87,89],"20065":105,"2012e":[106,109],"2014":87,"2015":[44,79],"2016":77,"2017":[70,76,117],"2018":[42,95],"2019":[41,87,101],"20190128_113421":109,"2020":101,"2021":[103,104,105],"2022":[87,100,101],"2022e":109,"2023":[101,104,105,106,107,108,109],"20230901t203033z":109,"20264":105,"203":105,"20336914":105,"2035e":109,"2043":105,"2048":87,"20544":105,"20596":105,"2068":105,"20728":105,"20752":105,"20844":105,"20847":105,"2087e":106,"208933":107,"2092e":106,"209734":107,"209771":107,"209801":107,"209829":107,"209859":107,"209886":107,"2098e":106,"2099":105,"209912":107,"209939":107,"209945":107,"20filenam":109,"20m":106,"21":[1,34,70,81,87,89,102,104,105,106,107,108,109],"210205":106,"21050":104,"210504_182918":[104,105],"210505_0126":104,"210505_012601":[104,105,107],"210506_230852":104,"210519_111253":105,"21084":109,"211":103,"2110e":109,"21112":105,"21129":105,"21145":109,"21151":109,"21155":105,"21188":105,"212":[103,105],"21204":105,"21255928":105,"21261":106,"2130e":106,"2156e":109,"2159e":109,"216":105,"2162e":[106,109],"21640316":105,"2166":105,"2169e":109,"217":104,"2172e":109,"2174e":109,"21753":105,"2177e":109,"2181147":105,"219":105,"21m":106,"22":[70,109],"220":105,"22018598":105,"2208":105,"22192":105,"222":105,"2224":105,"2224e":109,"223":105,"223182":104,"223923":104,"223968":104,"223999":104,"224":[43,63,105],"224028":104,"224057":104,"224084":104,"224111":104,"224140":104,"224144":104,"2247":105,"2248e":109,"225":[63,105],"2254e":106,"2262":105,"22705":105,"2276387":105,"22766":105,"2278e":106,"22808443":105,"2288e":106,"229":[63,105],"22980":109,"23":[43,70,87,100,105,106,109],"23050":109,"23056":109,"23196":105,"232":105,"2339e":106,"234":[104,105],"23578":105,"2364e":109,"2365e":109,"23718":105,"2374e":109,"2377":105,"237m":109,"2389":105,"239":105,"2397":105,"2397e":109,"239m":104,"24":[70,90,103,106,109],"240":[104,105],"2402e":106,"2403":105,"241":105,"2417e":109,"242":[104,105],"2425":105,"2428e":109,"243":105,"2437":105,"2438e":109,"244":105,"24440002":104,"24440002441406":104,"2447e":109,"2449e":109,"245":[104,105],"245745":107,"246":[104,105],"2467":105,"24688721":105,"2471e":[106,109],"2476":105,"24774":105,"24854":105,"2485e":109,"2486e":109,"24900974":105,"24979575":105,"24988":105,"24997":105,"24999984211172e":109,"249999968422344e":109,"24m":106,"25":[70,73,76,77,87,89,103,105,108,109],"250":[92,104],"2500e":109,"2502e":109,"250591":108,"250602":108,"251":105,"2511e":109,"2513e":109,"252":105,"25208":105,"25244":105,"2535e":109,"25458":105,"2546":105,"254912":109,"255":[33,43,47,49,63,92,109],"2551e":109,"255468":109,"25574":105,"256":[39,40,42,48,49,53,105,109],"2560":[104,105],"256291":109,"2563e":109,"257158":109,"2579e":109,"258":101,"25829":105,"25912":105,"25969282":105,"25983":105,"25hfinish":109,"25hinfo":109,"26":[70,92,95,104,109],"2600708":105,"2600e":109,"2604e":109,"26096":105,"2615":105,"26282":105,"2632598876953":104,"26325989":104,"2633":105,"263375180":109,"2635e":106,"26373":105,"2637e":106,"2648e":109,"2650e":106,"26575":105,"26588":105,"26732486":105,"26816":105,"268435456":[104,107],"2695e":109,"26993":105,"27":[70,104,107,109],"271":[104,105],"27118":105,"2713":105,"272":[104,105],"273":105,"27322":105,"274":105,"2743e":109,"275":105,"2752e":109,"27567":105,"2759":105,"2764":105,"27682":105,"27792":105,"2783e":109,"2793e":109,"27942":105,"28":[70,107,109],"280029296875":104,"2800293":104,"2823e":109,"28253":105,"2828e":109,"283":105,"2838e":109,"284":105,"285":[104,105],"286":105,"28660768":105,"287":105,"2873":105,"2879":105,"288":105,"2889e":106,"2893e":109,"28958":105,"29":[70,104,107,108,109],"29004":105,"29108":105,"292":105,"2922e":109,"2925e":106,"2940e":109,"29464462":105,"2947e":109,"2948":87,"2950":87,"29553":105,"29578":105,"296230286359787":104,"29968":105,"29m":104,"2d":[9,54,56,59,76,77],"2e65b":109,"2f":107,"2f20230901":109,"2faws4_request":109,"2foctet":109,"2fs3":109,"2fu":109,"2kpredict":109,"2m":105,"2s":[105,106,109],"3":[1,3,10,13,27,33,38,39,41,42,43,44,48,49,54,56,61,62,63,66,70,76,77,80,81,83,86,87,89,95,100,102,103,104,107,109,110,119],"30":[34,87,100,104,105,109],"300":109,"3000":103,"3003e":109,"3006e":109,"30078":105,"30173":105,"30188":105,"30194":105,"302":[103,109],"3027e":109,"3028e":109,"30325472":105,"30384466":105,"304":105,"30457":105,"305":[104,105],"3055e":109,"306":105,"30673":105,"307":[104,105],"30713":105,"30775963":104,"3077e":109,"308":[104,105],"30814":105,"3086853":105,"309":105,"3093e":106,"3099":105,"30m":[40,104,105],"31":[70,104,105,106,109],"310":105,"311":[105,109],"3113e":109,"312":105,"3123e":106,"3126e":109,"313":105,"31342":105,"3135e":109,"31372":105,"3139":105,"314":105,"315":105,"31561279":105,"3157":105,"3157e":109,"316":105,"31602":105,"3161e":109,"31635":105,"317":[104,105],"317060":107,"318":105,"3180e":106,"319":[104,105],"31976":105,"31982":105,"31m":[105,106,109,110],"31m126":109,"31m14":109,"31m184":109,"31m270":109,"31m33":109,"31m39":109,"31m51":109,"31m7":109,"31me":107,"31merror":[105,106,109,110],"32":[34,38,42,43,47,48,70,87,105,106,109],"320":105,"32009887695312":104,"32009888":104,"3201e":106,"32022":105,"320224":107,"3208e":109,"321":[104,105],"3215e":106,"3218e":109,"322":[104,105],"3221e":109,"32227":105,"32256":105,"323":105,"32303":105,"32346":105,"324":105,"324520":109,"32465":105,"325":[104,105],"32507":105,"32578":105,"326":[105,109],"3265e":109,"3269":105,"327":[104,105],"3279e":109,"328":105,"32881752":105,"329":[104,105],"329181":109,"3299":105,"329961":109,"32m":[106,109],"32m20190128_113421":109,"32mcourtship_label":109,"33":[70,109],"330":105,"331":[104,105],"33124":105,"332":105,"333":105,"334":105,"33406225":105,"3346e":109,"33477783":105,"335":105,"33521563":105,"33566353":105,"3358e":109,"336":105,"3368e":109,"337":105,"337645":109,"338":105,"339":105,"33m":105,"34":[44,70,106,109],"340":105,"341":105,"3421e":109,"3431e":109,"34476":105,"345":105,"3458":105,"3465":105,"347":105,"3472e":109,"348":105,"3483e":106,"3487e":106,"3493":105,"3497e":109,"3499":105,"34m__macosx":109,"34mcourtship":109,"34mdataset":109,"34mdrosophila":109,"34mmodel":109,"34mtd_fast":107,"35":[70,87,105,109],"35016":105,"351":105,"35138":105,"3515e":109,"3519e":109,"353":105,"35394":105,"354":[104,105],"35414153":105,"35440978":105,"3545e":109,"35481":105,"355":105,"35507":105,"356":105,"3565":105,"357":105,"3573e":109,"35754":105,"358":105,"3584":105,"35846":105,"358483":105,"35867":105,"3589e":109,"359":105,"35m":[104,109],"35m100":109,"35mexampl":109,"35mnone":109,"36":[70,109],"360":[105,106],"3600":[104,107],"3604":105,"36052382":105,"361":105,"36105":105,"3611e":109,"3617e":[106,109],"362":105,"36204475":105,"36255":105,"36267":105,"363":[104,105],"3632":105,"36377":105,"3638e":109,"364":105,"3648e":109,"36536":105,"3658e":106,"366":[105,106,109],"36603":105,"3664e":106,"36795":105,"368":104,"369":105,"36913":105,"36966":105,"3697e":109,"36m":109,"36m0":109,"36m1":109,"36m4":109,"36m7":109,"37":[70,105,109],"370":105,"3719":105,"372":105,"3721e":109,"3737e":106,"374":105,"375":105,"3752e":106,"376":104,"37636":105,"377":105,"3770e":109,"3774":105,"3775":105,"3776e":106,"378":105,"379":105,"3791":105,"3792":105,"38":[70,104,109],"38037":105,"38046":105,"3809e":109,"381":105,"38232":105,"38303":105,"384":[33,105],"3846e":109,"3847992":105,"385":[104,105],"3852":105,"3858":105,"3859e":109,"386":105,"3863e":109,"3869":105,"387":105,"388":105,"3881e":109,"3886e":109,"389":105,"389239":108,"3896":105,"38m":109,"39":[70,104,105,106,109],"390":105,"390139":108,"390188":108,"390230":108,"390267":108,"390306":108,"390345":108,"390383":108,"390421":108,"390425":108,"3906e":109,"3908":105,"391":105,"3911e":109,"39127233624458313":104,"39133":105,"3913e":109,"393":[104,105,109],"3931e":109,"39355":105,"394":105,"3947":105,"39497375":105,"39508":105,"3959e":109,"396":105,"397":105,"39786857":105,"398":[104,105],"39813":105,"3986":105,"398k":104,"399":105,"39m":104,"3b":109,"3d":9,"3d1800":[104,105,107],"3ddrosophila":109,"3m":105,"3mb":104,"3s":[106,109],"3x3":[45,48,62,77],"4":[0,3,13,33,35,39,40,42,43,44,45,48,49,51,54,56,62,70,73,77,80,83,84,87,89,92,98,100,101,102,103,104,107,109,110],"40":[4,87,106,109],"400":[49,105],"4000":87,"40005":105,"40057":105,"4005e":106,"401":105,"40115":105,"4015000":[104,105],"4018e":109,"40190646":105,"4019e":106,"402":105,"40244":105,"4029e":109,"4033e":109,"40347":105,"404":105,"4047e":109,"405":105,"40552":105,"4058":105,"406":[63,104,105],"4065":105,"4066":105,"407":105,"40717":105,"408":105,"4080e":109,"4087e":109,"409":105,"4097":105,"41":[70,109],"410":105,"4100e":109,"4107e":109,"4109717":105,"411":105,"4111":105,"4112e":109,"41144":105,"412":105,"412k":105,"413":[104,105],"414":105,"41422":105,"4143e":109,"4145e":106,"41486":105,"4151e":106,"4152e":109,"41534":105,"416":105,"417":105,"4179e":106,"418":105,"41803":105,"419":105,"4191e":106,"4193":105,"42":[70,105,106,107,109],"420":[104,105],"42017":105,"421":[104,105],"4215e":109,"42197":105,"422":105,"422k":105,"423":105,"42343":105,"42352":105,"42374":105,"42407":105,"4241":105,"425":[87,104,105],"42508":105,"4254e":109,"4258":105,"426":105,"427":105,"42723":105,"428":105,"42874":105,"4288e":106,"42896":105,"429":105,"4292e":109,"42938":105,"4297":105,"43":[70,105,106,107,109],"430":[104,105],"43085":105,"431":105,"43195":105,"432":105,"43228":105,"43257":105,"4325e":106,"4326e":109,"433":[104,105],"43307":105,"4330e":109,"43337214":105,"434":105,"4342":105,"4343e":109,"435":[104,105],"43555":105,"436":[104,105],"437":105,"43756":105,"4376e":106,"438":[104,105],"4382e":109,"43842":105,"43861":105,"43884":105,"439":105,"4398e":106,"44":[70,105,106,107,109],"440":[104,105],"441":[104,105],"4413e":106,"4415e":109,"442":105,"4425e":109,"4428":105,"443":[103,104,105,109],"4437e":109,"444":105,"4440e":[106,109],"4441e":106,"44467":105,"445":[104,105],"445179":104,"445232":104,"445236":104,"4453":105,"446":105,"44635":105,"4464":105,"44681":105,"4471e":109,"44776785":105,"448":105,"44873":105,"449":105,"44904":105,"4493e":109,"45":[70,87,104,109],"450":[104,105],"4500e":109,"4505e":109,"45065":105,"4506e":109,"4507":105,"451":105,"45117":105,"4526":105,"4529e":109,"4532":105,"45367":105,"45417705":105,"4541e":109,"4546e":106,"455046":105,"455402":109,"45566":105,"456":[63,96,105],"456138":109,"4567e":109,"456803":109,"457":105,"45706":105,"457464":109,"45755":105,"458":105,"45853":105,"459":[104,105],"4593":105,"4597148":105,"46":[70,104,109],"460":105,"461":105,"46105212":105,"46127":105,"462":105,"46237":105,"46246":105,"46274":105,"4627e":106,"46356":105,"4637":105,"4640e":109,"46423":105,"4643e":109,"46442":105,"465":105,"46533":105,"4653e":109,"4657e":106,"466":105,"467":105,"4673":105,"46782":105,"46788":105,"4680e":106,"4682":105,"469":105,"46994":105,"47":[70,104],"4706e":109,"471":105,"4712e":106,"4716e":109,"472":105,"4725":105,"4725e":109,"4726e":109,"4728e":109,"473":105,"47393468022346497":104,"474":[104,105],"475":[104,105],"4751":105,"47512543":105,"47549438":105,"4755":105,"4756":105,"47607":105,"4763e":109,"4767e":109,"4768":105,"4770e":106,"477220":106,"47867":105,"4787e":109,"479":105,"47983":105,"48":[70,104,107],"480":104,"481":105,"4811":105,"481k":[105,106],"4821e":109,"4829e":106,"48315":105,"4831e":109,"48407":105,"48416":105,"4847e":106,"485":63,"48532":105,"48575":105,"4858":105,"4860e":106,"48629727959632874":104,"48642":105,"4865":105,"486k":104,"48721":105,"4886e":109,"4893e":106,"4898e":109,"48993":105,"49":[70,104,105,107,109],"4912":105,"49136":105,"49152":[104,107],"4916":105,"4916717":105,"4919e":106,"4927e":109,"49347":105,"49423":105,"49429995":105,"49533":105,"4963e":109,"49683":105,"49707":105,"49756864":105,"49778372":105,"49817":105,"498908":104,"49898362":105,"499999936844688e":109,"4d":[9,33,40],"4m":106,"4s":[104,109],"5":[1,4,6,13,27,37,38,42,43,48,49,53,60,62,63,70,71,73,74,76,77,81,83,86,87,89,102,103,104,105,107,108,109,110],"50":[95,103,104,107],"500":92,"5000e":109,"5004723":105,"5007e":109,"5009e":109,"501":106,"50101817":105,"5017098":105,"5036":105,"5036e":109,"50397":105,"5043":105,"5052e":109,"50543":105,"5054e":106,"5058":105,"5058e":109,"50616":105,"5061e":109,"50806":105,"508754":106,"50894":105,"5089e":109,"50916994":105,"50th":[70,107],"51":70,"5118":105,"512":[105,109],"51236":105,"51400757":105,"51434":105,"5147":105,"5150e":109,"51591":105,"51675177":105,"5170047":105,"5174e":106,"5177e":109,"5178":105,"51843":105,"51874":105,"51895":105,"5190e":[106,109],"51m":104,"52":[70,104,105],"52002":105,"52005":105,"52008056640625":104,"52008057":104,"5206e":109,"5207e":109,"5212e":109,"52148":105,"5228e":[106,109],"5232e":106,"523632":105,"524288":[104,107],"52533":105,"52646":105,"52814":105,"5282e":106,"529680":106,"53":[70,104,105],"53275":105,"53324103":105,"53396606":105,"53412354":105,"5342":105,"5347014":105,"535":105,"5352e":106,"5362e":109,"5364e":109,"5365":105,"5365e":109,"53745":105,"538":103,"5381e":109,"5387e":109,"5388288":105,"5396e":106,"539k":103,"53m":109,"54":[70,104,109],"54178":105,"5420e":109,"54233":105,"5428e":109,"5451e":109,"5454":105,"54587":105,"546117":109,"5463986":105,"5468":105,"546866":109,"5469":105,"5473":105,"547533":109,"5475e":109,"5481076":105,"548184":109,"5494046":105,"54964":105,"5496521":105,"54977":105,"55":[70,109],"55066":105,"5512e":106,"55141157":105,"551501":103,"5518e":109,"5519e":109,"5523e":106,"5540e":106,"55441":105,"5555e":106,"5559":105,"55792":105,"5580e":109,"5588e":106,"5589e":109,"559":105,"5590857":105,"559100":106,"5591e":109,"55927":105,"5596e":109,"55972":105,"55m":109,"56":[70,104,105],"5609e":109,"56104":105,"5611e":106,"561211":105,"5621643066406":104,"56216431":104,"5624":105,"56253":105,"5631e":106,"5642e":109,"56442":105,"5647e":109,"5649e":106,"565":105,"5654e":109,"5656e":109,"56747":105,"56854":105,"56874":105,"56883":105,"56894":105,"5694e":109,"56982":105,"56m":109,"57":[70,104,105,109],"57007":105,"570176":105,"57062":105,"57127994":105,"57135009765625":104,"5713501":104,"57254":105,"57278":105,"5733776":105,"5735":105,"57388":105,"5739e":109,"5740245":105,"5744":105,"574921":106,"57523":105,"5752e":109,"5753":105,"5754e":109,"575856":105,"5764e":109,"57666":105,"5772e":109,"57848":105,"5797":105,"5798e":109,"57m":109,"58":[70,104,106],"5806e":109,"5809e":109,"5814e":109,"58252":105,"5831e":109,"58366936":105,"58368":105,"58414":105,"58466":105,"58485055":83,"585451":106,"5855e":109,"5856":105,"586040":106,"5861632227897644":104,"5869e":109,"5874e":109,"5877e":109,"588":105,"58817774":105,"5883e":106,"5890152":105,"5894165":104,"58941650390625":104,"58961":105,"58k":103,"58m":109,"59":[70,87,104],"59024":105,"59042":105,"5914":105,"5916":105,"5931e":106,"59384":105,"59448":105,"5945e":109,"5949e":109,"5957e":109,"5965e":106,"5981e":109,"59887695":104,"598876953125":104,"5989e":109,"59937":105,"59984":105,"5998e":109,"5k":104,"5m":[44,104,105],"5s":109,"5x":48,"6":[43,70,84,89,100,102,103,104,105,106,107,108,109,110],"60":101,"600":101,"60114":105,"6015e":106,"60196":105,"60254":105,"6026":105,"6030e":109,"60315":105,"6031595":105,"6039":105,"6045e":109,"6051e":109,"6053466796875":104,"60534668":104,"60617":105,"6061791":105,"6070e":106,"6076e":109,"6084e":109,"609":101,"6091":105,"6096e":106,"61":[70,109],"6100e":109,"61078":105,"61108":105,"6120859":105,"61237":105,"6125536":105,"6145e":106,"61487":105,"6160e":109,"6171893":105,"6172e":109,"61740112":105,"6176859":105,"6177351":105,"6194322":105,"6195e":109,"619m":106,"62":70,"620m":[105,106],"6215":105,"6223k":105,"6224e":109,"62262":105,"62274":105,"6229":105,"622m":106,"6231525":105,"624":105,"6250e":109,"62582":105,"62598":105,"6272e":109,"6274e":109,"6281e":109,"62988":105,"63":[70,105,109],"63016":105,"6322e":109,"63318":105,"6341":105,"6343123":105,"63477":105,"6352e":109,"63538":105,"6368e":109,"6372537":104,"63763":105,"6378e":106,"63806784":105,"6394e":109,"6399e":109,"64":[11,38,40,41,43,44,45,48,55,70,71,102,103,104,107,108],"64005":105,"6401e":109,"64023":105,"6407e":109,"6409":105,"641":105,"6411":105,"6412e":109,"64131":105,"64159":105,"6417e":109,"6432e":109,"64355469":105,"64372706":105,"64392":105,"6439e":106,"6440e":109,"6441":105,"6446":105,"64484":105,"64542":105,"6464e":109,"6468e":109,"64728":105,"6477e":109,"6479e":109,"6483e":109,"64882857":105,"64886":105,"64966":105,"65":70,"65015":105,"6513e":106,"65207":105,"6521e":109,"6535e":109,"65408":105,"6547e":109,"6551e":106,"6553":105,"65547":105,"6554e":109,"6555e":109,"65576":105,"65726":105,"6575725":105,"6584e":109,"6591e":109,"65952":105,"65994":105,"66":70,"6601":105,"66077":105,"6607e":109,"6610e":109,"66180676":105,"661k":105,"6627722":105,"66278":105,"66385":105,"66406":105,"6642":105,"6647e":109,"6663e":109,"6666e":109,"6669e":109,"6671":105,"66855":105,"66882":105,"67":[70,109],"6708e":109,"67142":105,"6716e":109,"6717e":109,"67194":105,"67218":105,"6727e":109,"6739e":109,"6743e":106,"6751":105,"6759e":109,"6765e":109,"6766":105,"6766811":105,"67697":105,"67744":105,"67786":105,"6780e":109,"6782e":109,"67886":105,"67926":105,"6795893":105,"68":[43,63,70,104,105],"68062663":105,"68115":105,"68118":105,"6811e":109,"6819e":109,"68225":105,"6822e":109,"68262":105,"68353":105,"6837e":109,"684":109,"68488":105,"6862":105,"68756":105,"6879568":105,"68842":105,"6884535":105,"68896":105,"69":[70,104],"690":[104,107],"6906e":106,"691378":109,"6915e":109,"6921e":109,"6930795":105,"69318":105,"6934e":109,"6936e":109,"6939e":109,"6943":105,"6945e":[106,109],"6946":105,"6961e":106,"69723856":105,"6987e":109,"69904":105,"69998":105,"6b0":1,"6c03a2f89e1c":109,"6j":87,"6m":[104,105],"7":[39,70,86,87,89,102,103,104,105,106,107,108,109],"70065":105,"7012927":105,"7020806":105,"7034e":109,"7035529":105,"7037247":105,"7037e":106,"7041355":105,"7051566":105,"7055e":109,"7064677":105,"7064e":109,"70679":105,"70728":105,"70898":105,"71":[70,104],"7110e":106,"7111":105,"7111e":109,"71122557":105,"71146":105,"7118e":106,"71207":105,"71269846":105,"7130e":106,"713k":[104,105,106],"7147":105,"71594":105,"71674":105,"71683":105,"71751094":105,"71759033":104,"71759033203125":104,"7180e":106,"71852":105,"71884066":105,"7197965":105,"7199e":106,"72":[70,84,104,109],"7203e":109,"72043":105,"72051835":105,"7208e":109,"7216":105,"72241":105,"72244436":105,"72284":105,"7234e":109,"72357":105,"7239725":105,"7244":105,"7247e":109,"72516":105,"725241":109,"7256":101,"72562":105,"7257e":106,"72635":105,"7274184":105,"7278":105,"72796327":105,"72803":105,"72806":105,"7281":105,"72864616":105,"7287e":109,"7288e":109,"7290425":105,"7290e":109,"73":[70,109],"73026":105,"7307":105,"7312":105,"731425":105,"7323e":106,"73245":105,"7324e":109,"7328e":109,"7331":105,"7343e":109,"73447":105,"7345e":106,"73501164":105,"73508":105,"7351e":106,"7352e":109,"7357e":109,"735933":105,"7361e":109,"736867":105,"73703":105,"7370e":106,"7373e":109,"7375747":105,"73767":105,"7378067":105,"7379e":109,"7396e":106,"7399e":109,"74":[70,105,109],"7404":105,"74078":105,"7414":105,"74188":105,"743163":105,"7434e":106,"74356":105,"74454":105,"74457":105,"74493":105,"7453e":106,"7456":105,"74594":105,"7461e":109,"74677":105,"7468e":[106,109],"7469e":109,"74753":105,"7489":105,"7489e":109,"7494e":109,"7495e":109,"75":70,"7511e":109,"7513e":[106,109],"75169766":105,"75269":105,"7544447":105,"755154":109,"7552497":105,"7553143":105,"7555":105,"7555e":109,"75566101":105,"75584614":105,"756024":109,"75647":105,"7566e":109,"757213":109,"7574282":105,"758315":109,"7586e":109,"75934":105,"75th":[70,107],"76":70,"7613073":105,"7613e":109,"7617":105,"7624657":105,"76257":105,"7625e":109,"7628807":105,"76299024":105,"7635e":109,"7636e":109,"7640e":106,"7656e":109,"7662":105,"76627":105,"76758":105,"7679e":109,"7682":105,"7685":105,"7697851":105,"77":[70,104],"7702941894531":104,"77029419":104,"77054":105,"7713":105,"77133":105,"7715297":105,"7721256017684937":104,"77222":105,"77227783":105,"7722e":109,"77295":105,"77327":105,"77335":105,"77365":105,"7738e":109,"7741e":[106,109],"77439654":105,"7750215":105,"775633":106,"775644779205322":109,"7761":105,"77646":105,"776555":106,"77664":105,"77673894":105,"77695":105,"77728":105,"777493":106,"77814513":105,"778196":106,"779":[43,63],"78":[70,104,105,106,107,108,109],"78006":105,"7803e":109,"780803382396698":104,"7812":105,"781426":105,"78146":105,"78155517578125":104,"78155518":104,"78204":105,"7820e":109,"7827e":106,"7838e":109,"7842e":109,"78436":105,"7844e":109,"78534484":105,"7854e":106,"78555703":105,"7855e":109,"78564":105,"7869e":109,"78735":105,"7880e":109,"7884":105,"7885e":109,"7888e":109,"7891e":109,"78940654":105,"7895":105,"78m":105,"79":[70,109],"7902795":105,"7903e":109,"79062":105,"7908e":109,"79095":105,"7911e":109,"79128":105,"79132":105,"7932":105,"79385":105,"7938e":109,"7941327":105,"79416":105,"7941e":109,"7946e":106,"794787":105,"7948513":105,"79486":105,"7954e":109,"79565":105,"7970e":109,"7977e":109,"797836431061851":107,"7978e":109,"79828":105,"7989652":105,"798996":105,"799":106,"7991047":105,"7991e":109,"79m":109,"7m":105,"7mb":104,"7s":[106,109],"8":[13,43,48,49,55,70,81,87,89,102,103,104,105,106,107,108,109],"80":[87,104],"80017":105,"80063":105,"80096":105,"8017e":109,"8021e":109,"8027e":109,"8031e":109,"80396":105,"804":87,"8041":105,"8042e":109,"80545":105,"8055":105,"806004":105,"8066e":109,"807011":105,"8070e":109,"8071e":109,"8074e":109,"8076":105,"8076e":106,"80786":105,"807970":105,"8081e":109,"8082221":105,"8082359":105,"8082982":105,"80847":105,"8088e":109,"808962":105,"8091e":109,"80968696":105,"81":[70,104,105],"8100913":105,"8101312":105,"8105e":109,"81119704":105,"8112e":109,"81192":105,"8121e":109,"8127704":105,"81348":105,"81354":105,"81366":105,"8137":105,"81372":105,"8141":105,"81424":105,"814560":109,"81458":105,"8147":105,"8150621709973537":107,"8156":105,"816599":105,"81688696":105,"81714":105,"8173e":109,"81768798828125":104,"81768799":104,"81785023":105,"8180281":105,"81816167":105,"81857":105,"8189e":[106,109],"81934":105,"81m":104,"82":[70,103,109],"8201":[105,106,109],"82016":105,"8213e":109,"82147":105,"8217e":106,"8224e":109,"8229":105,"82294524":105,"8234e":109,"8240589":105,"8240e":109,"8241":105,"82428":105,"8243384":105,"82465":105,"8248e":109,"82546026":105,"8261":105,"8262e":109,"8265212":105,"82654":105,"82689875":105,"8269":105,"827290":109,"8279644":105,"82819":105,"8283e":109,"8284e":109,"8288708":105,"82891417":105,"82898":105,"8293e":109,"8294e":109,"8295e":109,"82977":105,"82m":[104,105],"83":[70,104,105],"83106405":105,"83140534":105,"8317e":109,"831845":109,"8321578":105,"832633":109,"8339e":109,"83435":105,"8343e":109,"8346e":109,"83553046":105,"8356":105,"83655":105,"83666444":105,"83694":105,"83694774":105,"8370e":106,"8374":105,"83746":105,"8376e":109,"83797425":105,"8379e":109,"8384e":106,"8386477":105,"8388201":105,"83882904":105,"8390e":109,"83948356":105,"8396003":105,"84":[70,104,105],"84057474":105,"84071857":105,"8409559":105,"8414e":109,"8417":105,"8417e":106,"84183":105,"8423e":[106,109],"842469":109,"8434063":105,"84363":105,"8436978":105,"8439":105,"8445456":105,"8446":105,"8454e":106,"8461558":105,"84665924":105,"8467e":106,"84747":105,"84778":105,"8496e":109,"84995":105,"85":70,"850639":105,"8507803":105,"8509916":105,"8509e":109,"8510e":106,"8512343":105,"8518939":105,"85189575":105,"8525362":105,"85304886":105,"85324234":105,"85343812":104,"85375595":105,"85390973":105,"8547e":109,"8551e":109,"85558087":105,"8557e":106,"8559173":105,"85625255":105,"85666":105,"85703963":105,"8572e":109,"8575352":105,"85782766":105,"85786":105,"85938":105,"86":[70,105],"86021763":105,"8602e":109,"8608399":105,"8608e":106,"8609162":105,"8611444":105,"8616991":105,"8620718":105,"86227":105,"86304706":105,"86414":105,"8643":105,"864786":105,"86514":105,"8651793":105,"8653e":109,"8655":105,"86606":105,"86616135":105,"86683005":105,"8676515":105,"8684657":105,"8689e":109,"8693e":109,"86963":105,"8699e":106,"87":[70,105],"8703e":109,"87045":105,"87049603":105,"870526":109,"87054":105,"87125":105,"87129986":105,"87139845":105,"8714e":106,"87155":105,"87157995":105,"87177":105,"8718e":109,"8726":105,"87274":105,"87278444":105,"87323":105,"8733":105,"8735":105,"8743328":105,"8750135":105,"8751741":105,"87518":105,"87591183":105,"8761287":105,"87616193":105,"8762751":105,"8765895":105,"8768972":105,"877":109,"8772":105,"8775":105,"87766":105,"8776e":109,"8778":105,"87787":105,"8778759":105,"8782499999999999":107,"8785":105,"8788193":105,"8793":105,"88":[70,104,105,109],"880064":105,"88055":105,"88107586":105,"8814398":105,"8816869":105,"8817":105,"8818e":109,"8820076":105,"8822638":105,"8824023":105,"8825e":109,"8828186":105,"88284":105,"88294595":105,"8831e":109,"883279":105,"8834407":105,"88361436":105,"883681":105,"88368326":105,"8839093":105,"88438815":105,"8845e":109,"88504":105,"8853136":105,"8855596780776978":104,"886":105,"8863e":109,"88647026":105,"886791":105,"88775337":105,"8885":107,"88854957":105,"8892915":105,"8896506":105,"88998085":105,"89":[70,104,105],"89014":105,"8901e":109,"89034307":105,"89056396":105,"89063996":105,"8906e":106,"89081717":105,"89086473":105,"8910252":105,"89124495":105,"8912647":105,"89133":105,"8916":105,"8923e":109,"89285":105,"8932258":105,"89369905":105,"89383173":105,"8941e":109,"89442694":105,"89460224":105,"89484":105,"8954e":109,"89554":105,"8958":105,"89645":105,"89681005":105,"8968e":109,"8971772":105,"89723104":105,"8972577":105,"8973187":105,"8976605":105,"8979453":105,"89824754":105,"8984147543126978":107,"89858156":105,"8985e":109,"89860517":105,"89868015":105,"89886":105,"899":105,"89908":105,"8990e":109,"899237":109,"89928836":105,"8997":105,"8997571":105,"8997e":109,"89996":105,"89m":105,"8m":41,"8s":109,"9":[49,70,87,102,103,104,105,106,109,119],"90":[104,105,107],"9000":[46,50,109],"9001":[36,46,50,109],"90029544":105,"9007e":[106,109],"9010":11,"9010142093245521":107,"9011465":105,"90115":105,"9016738":105,"9018014":105,"90228":105,"90283":105,"9031525":105,"9033977":105,"9033e":109,"90368915":105,"9041e":109,"9042e":109,"9046e":109,"9048104":105,"90489644":105,"9048e":109,"90536344":105,"90552235":105,"9058e":109,"9067393":105,"90770215":105,"9081669":105,"9090e":109,"9092e":109,"9093149":105,"90th":[70,107],"91":[70,104,105],"9105379":105,"91081876":105,"9112e":109,"911333":105,"9113763":105,"9116395":105,"91168":105,"9121e":109,"9128e":106,"9131e":106,"9136e":109,"9138":105,"9141492":105,"91429555":105,"9143e":109,"91440874":105,"9149e":109,"9152e":109,"9153e":109,"91552734":104,"91552734375":104,"9155e":106,"9156e":109,"9157e":109,"91586":105,"91632":105,"9163557":105,"9167":105,"9169966":105,"9171e":106,"91743165":105,"9176925420761108":104,"918121":105,"9181e":109,"9189269":105,"91900206":105,"9191e":109,"91922":105,"9194614":105,"9197768":105,"91993105":105,"91998947":105,"91mfals":109,"92":[70,104,105],"9200019240379333":104,"9202296":105,"9207018":105,"9208387":105,"92098916":105,"92133":105,"9214447":105,"92154":105,"92188":105,"92344654":105,"923466":104,"9236755":105,"923717":104,"9238624":105,"9239":105,"9241573":105,"92460406":105,"925":[105,106],"9252076":105,"9255538":105,"9256e":109,"9257e":109,"9260271":105,"926044":104,"92618316":105,"9266":105,"9266098":105,"92688":105,"92693084":105,"9271338":105,"92730576":105,"92737":105,"9277581":105,"92798":105,"9286875":105,"9289e":106,"9293e":106,"9294e":106,"9295e":106,"92982674":105,"93":70,"9305":105,"9313457":105,"9313e":109,"9316707":105,"93173":105,"93176":105,"9318":105,"9318335":105,"931835":105,"93198806":105,"9319e":106,"93260366":105,"9328e":109,"9330e":106,"9332":105,"93347":105,"9335175":105,"93381244":105,"9344":105,"93462956":105,"93469065":105,"9352003":105,"9353e":109,"9354":105,"93542594":105,"9355017":105,"9358043670654297":104,"936":[107,108],"93606567":104,"9360656738281":104,"93695":105,"93707":105,"9372e":109,"9375356":105,"93761605":105,"93762034":105,"9381855":105,"9381e":109,"93841267":105,"93872":105,"939":[43,63,105,106,109],"9391487":105,"93915":105,"9391e":109,"9396e":109,"93973":105,"94":[70,104,105],"940083":109,"9400e":106,"940585":109,"94125":105,"94138":105,"9413e":106,"94214964":105,"9421855":105,"9422818":105,"9423e":109,"94244254":105,"9426196":105,"94275":105,"94284":105,"9439e":109,"9446315":105,"94498163":105,"9450149":105,"94503784":104,"9450378417969":104,"9452e":109,"94554764":105,"9460e":106,"94632":105,"94662":105,"9466e":106,"9470e":109,"94733":105,"94746464":105,"94770956":105,"9486e":106,"94920886":105,"9492276":105,"94934":105,"9497375488281":104,"94973755":104,"9499294":105,"94f1":109,"94k":[105,106],"95":[70,79,81,104,105,107],"9501":105,"9501e":106,"9504":105,"9505e":109,"95087":105,"9508924":105,"95218":105,"9522048":105,"9527973":105,"953":109,"95354944":105,"9537":105,"9539e":109,"95540506":105,"95544":105,"9554e":106,"95602":105,"95603913":105,"95605":105,"9561e":106,"9564e":109,"95667875":105,"95673":105,"9570074":105,"9572475":105,"9573141":105,"9573e":106,"9577e":109,"9581e":109,"9582136":105,"95822":105,"9582e":109,"9585e":106,"95904541":105,"9591119":105,"95961505":105,"9598888":105,"95th":[70,107],"96":[70,105],"9603e":109,"96054":105,"96090955":105,"9611e":106,"96142364":105,"9617e":109,"96207":105,"9620e":109,"9628e":109,"9629":105,"9633726":105,"96359974":105,"9639e":109,"96436":105,"96454924":105,"9653242":105,"96551245":105,"9657e":109,"9660537":105,"9668305":105,"96696764":105,"9671":105,"9674e":109,"96838":105,"9694":105,"9696":105,"9697e":109,"9698766":105,"9699e":109,"97":[70,87,105],"97024536":105,"9704e":109,"9705e":109,"9706679":105,"97103214":105,"9711":105,"97113":105,"9716":105,"9723e":109,"9726e":106,"97273135":105,"97276276":105,"97341204":105,"9735":105,"97403":105,"974096":105,"9743e":109,"97470093":105,"97501004":105,"97522974":105,"97578657":105,"9765e":109,"9771716":105,"9773e":109,"97743154":105,"97747803":105,"9776":105,"97779256":105,"97818244":105,"97897":105,"9789e":109,"97906494":105,"9790770411491394":104,"9790e":109,"9794":105,"97974":105,"9798533":105,"9799493":105,"98":[70,104],"98030627":105,"98035":105,"9804845":105,"9807":105,"981":104,"981288":105,"9814e":109,"9819":105,"9821":105,"982109":107,"982120":107,"9826e":106,"9830136":105,"9832e":109,"9833999":105,"98342896":105,"98374254":105,"9841e":109,"98425347":105,"9845507":105,"98462":105,"9847":105,"9849":105,"98565674":105,"9866e":109,"98671097":105,"9867e":106,"9871e":[106,109],"98755246":105,"9876475":105,"98822":105,"9882784":105,"98843":105,"9886":105,"98887885":105,"989133":104,"98916876":105,"98956":105,"98962784":105,"9896e":109,"9898":105,"98d1":109,"99":[70,104,105],"99023":105,"9910501":105,"9914025":105,"9914e":[106,109],"9915406":105,"99155337":105,"9916019":105,"9916197":105,"99162734":105,"991653":105,"99172956":105,"9917e":109,"9920751":105,"99216":105,"9929e":106,"9932013":105,"9932473":105,"9933716":105,"993386":105,"9933976":105,"99394447":105,"9940315":105,"9943127":105,"9944642":105,"9945123":105,"9946308":105,"99465877":105,"9947187":105,"99476504":105,"9948527":105,"99486005":105,"9949":105,"99496":105,"99503":105,"99526805":105,"9953135":105,"99564207":105,"99573624":105,"9959078":105,"99593395":105,"99603134":105,"99658":105,"9967":105,"9968e":109,"9973e":109,"99805":105,"9981":105,"9987816":105,"9988":105,"999999873689376e":109,"99m":109,"99mb":104,"99th":[70,107],"9m":106,"9s":[104,106,109],"\u03bb":102,"abstract":[13,34,71,73,81,82],"boolean":[13,27,73,84],"break":[8,79,81,89,100,102],"byte":[84,85,86],"case":[1,8,13,26,33,43,62,73,88,89,90,91,94,95,96,99,103,106,116,119],"catch":[13,73],"class":[4,7,10,11,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28,29,30,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,59,60,61,62,63,65,66,67,68,71,72,73,74,75,76,79,81,82,83,85,86,105],"default":[3,7,9,10,12,13,14,15,16,17,18,19,22,23,24,25,26,27,28,29,30,33,34,39,41,42,43,44,48,50,51,53,61,62,70,71,73,78,79,85,86,89,91,92,93,95,96,98,102,104,106,107,108,109,117,119],"do":[0,10,13,38,42,44,45,48,50,61,73,74,79,81,92,94,95,97,102,103,104,105,106,107,108,119],"export":[12,13,28,47,73,90,91,92,96,100,102,103,112,113,119,120],"final":[1,38,40,43,45,48,55,65,95,102,104,113,116],"float":[3,6,7,10,13,15,33,35,37,41,43,44,45,47,48,49,50,53,54,56,59,60,62,63,64,67,68,69,70,71,73,74,76,77,79,80,81,82,83,84,85,104],"function":[3,6,7,9,13,14,15,24,26,33,35,38,43,46,48,51,55,57,62,65,67,69,70,71,72,73,74,76,77,78,79,81,82,83,86,89,92,93,95,98,105,106,107,112],"import":[1,9,13,15,18,66,70,76,88,92,93,95,97,100,103,104,105,106,107,108,109,113,114,118],"int":[3,4,6,7,8,10,11,13,15,23,24,33,34,35,36,37,38,39,40,41,42,43,44,45,47,48,49,50,53,54,55,56,59,60,62,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,81,83,84,85,86,105],"long":[1,50,55,72,90,104,105],"new":[1,4,10,13,14,24,26,32,33,38,40,50,55,65,67,68,73,79,81,82,85,89,90,91,92,94,95,96,97,98,100,101,102,106,107,110,112,113,115,116,118,119],"null":109,"public":0,"return":[3,4,6,7,9,10,11,13,14,15,16,17,18,19,21,22,23,24,25,27,28,29,30,31,32,33,35,37,38,39,40,41,42,43,44,45,46,50,51,52,53,54,55,56,57,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,103,104,105,106,107,108,109,110,115],"short":[49,50,76,86],"static":[10,13,33,34,81,85],"switch":[49,74,92,95],"true":[4,9,10,13,24,25,27,31,33,35,36,38,39,40,41,42,43,44,45,47,48,49,50,51,52,53,54,55,56,57,59,60,61,62,63,65,66,67,69,70,71,73,75,77,78,79,80,81,84,85,86,89,102,103,104,105,106,107,108,109],"try":[1,13,26,33,80,81,86,88,92,95,96,97,98,99,100,102,103,105,112,116,117,120],"var":[107,109],"while":[13,21,26,39,48,49,55,91,92,95,98,100,102,105,115,116,117],A:[10,12,13,15,24,27,31,33,36,38,39,40,42,43,45,46,47,48,50,51,53,54,55,56,57,59,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,81,82,83,84,85,86,89,92,96,100,101,104,106,107,110],AND:42,AS:42,And:[104,109],As:[1,74,88,92,94,95,106,109,110,116],At:[38,49,98],BE:42,BUT:[42,104],Being:0,But:[91,95,96,104,105,106,108],By:[9,33,92,98,105,119],FOR:42,For:[3,6,10,13,24,26,28,33,38,42,50,62,70,73,76,77,79,81,85,87,88,89,90,91,92,96,98,99,100,101,102,103,104,105,107,109,110,113,115,116,117,118,119,120],IN:42,IS:42,If:[1,6,7,9,10,12,13,15,17,18,24,25,26,27,29,32,33,38,39,40,41,42,43,44,45,47,48,49,50,51,52,53,54,55,56,59,61,62,63,65,66,67,68,69,70,71,73,75,76,77,78,79,80,81,82,84,85,86,88,89,90,91,92,94,95,96,97,98,99,100,101,102,103,104,105,106,108,109,110,111,116,117,118,119],In:[0,8,39,44,51,73,76,77,88,92,95,96,97,99,103,104,105,106,108,109,110,112,113,117,119],It:[10,13,33,36,43,46,47,70,73,76,80,82,89,90,91,92,95,97,101,104,105,107,116],NO:42,NOT:[13,42],No:[45,47,48,49,63,73,95,102,104,107,108],Not:[13,38,89,102],OF:42,OR:42,On:[88,92,102,118],One:[68,73,79,85,95],Or:[33,100,102,117],THE:42,THe:[13,27],TO:42,That:33,The:[0,1,4,7,8,9,10,11,12,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28,29,30,31,32,33,35,37,38,39,40,42,43,44,45,47,48,49,50,51,52,53,54,55,56,59,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,85,86,88,89,90,91,92,94,96,97,98,100,102,103,104,105,106,107,109,110,111,113,114,115,116,117,119,120],Their:68,Then:[80,91,94,97,102,105,110,120],There:[13,89,91,92,95,98,103,116,119],These:[1,13,29,36,38,39,41,42,44,45,47,48,50,51,54,55,56,61,66,68,69,70,72,73,76,87,88,90,92,95,102,103,104,105,106,107,113,119],To:[13,14,26,27,29,50,54,56,62,66,70,73,77,85,89,92,94,95,96,98,100,102,104,105,106,107,109,110,114,115,117,118],WITH:42,Will:72,With:97,_1:50,_20190128_113421:109,_:[12,13,27,38,70,89,103,109],__call__:73,__getitem__:13,__init__:[52,105],__macosx:109,_courtship_label:109,_cvpr_:76,_european:77,_exampl:109,_hl:[33,85,86],_is_templ:85,_skeleton_idx:85,a5000:[105,106,109],ab:[43,107],abdo_index:103,abdo_loc:103,abdomen:[103,104,105,106,109],abid:1,abil:1,abl:[41,44,48,89,90,92,101,102,105,106,109,110,112,117,118],abort:13,about:[1,4,5,13,16,48,62,73,74,89,91,92,93,94,96,97,99,100,105,106,107,108,114,115,116,117,119],abov:[3,12,42,49,50,73,76,87,91,92,95,100,102,104,107,108],absolut:[31,33,37,47,49,50,62,66,76],abus:0,academ:101,acceler:[101,102,105,106,109,110,113],accept:[0,33,73,85],access:[10,11,13,27,33,49,55,76,89,90,92,96,100,102,104,110,112],accord:[43,63,68,106],accordingli:[3,13,49,110],account:[0,53,54,56,59,62,70,90,110,116],accumul:[74,76],accur:[88,101,113,115,117],accuraci:[47,48,70,81,106,107,108,113,115,117],achiev:[38,43,48,88,113,117],acquir:[107,109],acquisit:[100,105],across:[10,13,33,39,47,49,50,55,56,66,68,70,73,74,76,83,85,92,93,95,96,108,113,115,120],acryl:87,act:[0,1,36],action:[0,42,46,92],activ:[35,38,39,42,43,45,48,71,98,101,102,113,115,118],actor_id:109,actual:[13,33,51,68,75,81,97,104,105,106,107,108],ad:[1,10,13,38,39,44,49,62,63,67,69,73,74,90,92,94,95,97,107,109,115,116],adam:[49,109],adapt:[0,43],adaptor:[15,16,17,18,19,21,22,23,24,25,26,27,28,29,30],add:[1,3,4,10,13,14,26,40,44,48,49,61,62,68,74,79,85,92,94,97,102,115,116,118],add_edg:85,add_fram:34,add_inst:13,add_nod:85,add_subplot:103,add_suggest:13,add_symmetri:85,add_track:13,add_video:13,addelementwis:49,addit:[1,13,26,38,44,45,48,49,51,62,73,79,96,99,103,107,113,117],addition:[28,42,48,53,107],additivegaussiannois:49,address:[0,36,46,50],adher:1,adjac:[95,100],adjust:[31,43,46,47,49,53,54,60,64,67,73,76,110],adjust_matlab_index:31,adjust_prefix:40,admin:102,admonit:13,adopt:99,adult:87,advanc:[0,101,102],advantag:[42,48,73,88,105],advic:91,advis:103,affect:[50,92,100,102],affin:[10,48,49,56,65,71,73,76,88,92,96,97,117],after:[3,13,38,39,41,43,45,47,48,49,50,55,65,67,69,71,73,77,81,89,91,92,94,95,96,97,98,99,102,103,104,105,107,112,113,115,116,117,118],ag:0,again:[13,49,106],against:[13,81,86,89,95],agenc:100,aggreg:51,agnost:104,agreement:76,aim:1,akiaiwnjyax4csveh53a:109,al:[41,44,87,95,101,117],albument:53,albumentationsaugment:53,alejandro:77,alert:115,algorithm:[72,76,77,79,80,83,92,109,113,115],alia:[10,13,46,82],alias:[38,45,48],align:[0,10,54,67,73,77],align_inst:3,align_instance_point:3,align_instances_on_most_st:3,aligned_points_arrai:3,all:[0,1,3,4,9,10,11,13,14,15,16,17,18,19,22,23,24,25,26,27,28,29,30,32,33,38,39,42,45,47,48,49,50,51,54,56,59,61,62,65,66,67,68,70,73,74,75,76,78,79,80,81,82,85,87,88,90,92,94,95,96,97,99,100,101,102,103,104,105,106,107,108,110,113,115,116,117,118,119],all_ext:[14,15,16,17,18,19,22,23,24,25,27,28,29,30],all_fram:[9,13],all_inst:[13,54,62],all_instance_confidence_map:54,all_item:4,all_label:[13,23,24],all_labels_adaptor:26,all_peaks_in_kei:60,all_points_arrai:3,alloc:[10,13,78,104,109],allow:[10,13,21,24,26,36,48,49,50,65,73,75,85,89,92,96,100,102,104,106,110,113,119],almost:[33,119],alon:48,along:[3,15,24,28,48,55,56,61,73,76,77,83,99,103,109],alphabet:[35,89,92,95],alphatrackeradaptor:15,alreadi:[1,8,10,13,21,31,33,47,50,63,68,69,73,78,80,81,85,89,90,91,92,95,96,97,98,102,103,106,119],also:[9,13,24,26,33,42,47,48,51,54,59,61,62,63,64,66,67,69,70,72,73,76,77,78,79,81,83,89,90,91,92,94,95,96,98,100,102,103,104,105,106,107,110,113,115,116,117,119],alt:[88,92,102,116,118],altern:[10,78,89,96,102,118],although:[9,10,26,48,94,95,96,102,115,117],altogeth:[49,74,104,108],alwai:[55,66,73,95,102,116],amen:76,among:113,amongst:[89,96],amount:[98,113],amsgrad:49,amz:109,an:[0,1,3,4,6,9,10,12,13,14,15,21,24,26,27,29,33,36,37,38,39,41,42,43,44,45,46,47,48,49,50,52,53,55,57,61,62,63,65,67,68,69,70,71,73,74,75,76,77,78,79,80,81,83,84,85,86,87,88,89,91,92,94,95,96,97,98,100,101,102,103,104,105,106,107,108,110,114,115,116,117,119],anaconda:[101,102,118],analog:10,analysi:[9,12,13,17,23,26,28,29,89,100,107,111,113,119,120],analysis_exampl:[103,104,105,106],analysis_video_0:89,anatom:70,anchor:[13,48,61,71,73,77,88,117],anchor_ind:61,anchor_part:[48,71,106,109],anchor_part_nam:61,angl:[3,49],ani:[0,1,4,6,9,10,13,21,22,26,28,30,33,35,36,38,42,43,46,47,48,49,50,51,55,56,60,61,62,63,65,66,67,68,69,70,73,74,75,76,80,81,82,85,86,89,90,92,94,95,96,97,99,100,101,102,103,107,108,112,113,116,119],anim:[10,15,41,48,59,85,87,88,89,91,92,93,95,99,100,103,107,109,110,112,113,115,116,117],annegret:[87,100,101],annot:[13,15,18,28,35,92],anonym:100,anoth:[3,10,13,33,50,74,80,85,89,90,92,95,96,97,98,106,107,117,119],answer:93,anyth:[13,50,89,90,102,112],anywher:110,aoc:101,ap:107,apart:76,api:[8,26,28,73,76,82,85,100,101,104,105,107,112],app:[101,102,110,118],appear:[0,10,87,89,92,94,98,116,119],append:[10,13,23,24,27,38,46,50,63,65,70,89,105,108],append_suggest:13,append_to_group:4,appendag:95,appl:[90,101,102],appli:[0,4,7,10,32,38,39,44,45,47,48,49,53,55,62,63,67,73,74,76,77,81,89,92,95,97,102,108,113,119],applic:[43,47,48,63,66,73,77,89,103,104,105,106,109,112],appoint:0,approach:[28,48,70,73,76,83,88,92,105,110,113,117],appropri:[0,14,15,16,18,19,22,23,24,25,26,27,28,29,30,33,38,47,65,70,73,80,82,92,97,98,104,105,106,107,109,116],approxim:[63,88,113],apt:[107,109],ar:[0,1,3,4,6,7,8,9,10,11,12,13,17,24,26,27,28,29,32,33,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,59,60,61,62,63,64,65,66,67,68,69,70,72,73,74,76,77,78,79,80,81,82,85,86,87,88,89,91,92,94,95,96,97,98,99,100,103,104,105,106,107,108,109,112,114,115,116,117,119],arang:[83,103],arbitrari:[13,33,50,57],arboresc:85,architectur:[47,48,50,51,62,75,91,96,98,101,102,104,109],architecture_graph:[50,109],archiv:[24,109],are_too_close_funct:80,area:[1,70,83,92,99],aren:[13,80,81,93,94,95,99],arena:87,arg:[10,12,13,16,18,19,22,23,24,25,26,29,30,33,35,48,73,74,81,82,107,109],argument:[9,12,13,24,33,35,43,45,46,61,62,66,67,73,77,80,89,96,109],ari:[100,101],aris:42,arithmet:49,arlo:101,arm64:102,arm:85,around:[13,15,35,43,47,48,49,59,64,71,73,75,77,86,92,98,103,104,105],arrai:[4,6,9,10,13,33,53,66,69,70,73,76,77,81,83,85,103,104,105],arrow:92,art:[42,101],articl:[38,100,101],arxiv:[38,40,43,107],as_format:26,as_nod:85,ascend:80,ask:[1,92,101,116,118],aspect:[47,66,103],assembl:[76,116],assess:115,asset:[33,109],assign:[1,10,13,48,66,68,72,73,76,80,81,83,92,95,119],assign_connections_to_inst:76,assigne:1,assist:[101,113,117,120],associ:[10,13,27,39,42,48,54,61,66,70,71,73,76,81,104,108,113],associt:73,assum:[9,13,33,38,61,63,73,84,85,86,92,102,107,110,117],assumpt:48,async:11,asynchron:50,asyncvideoserv:11,atrou:43,attach:109,attack:0,attempt:[13,25,33,36,50,81],attent:[0,88],attr:[33,52,85,104,107],attr_to_dtyp:86,attribut:[10,13,33,38,42,43,45,47,48,49,50,51,52,54,55,56,59,61,62,63,65,66,67,68,71,73,82,85,105],attrs_cl:52,aug:[104,105,106],augment:[49,88,91,96],augmentation_config:[49,106,109],augmentationconfig:[49,53],author:[28,42,100,101,110],auto:[33,50,89,92,103,109],automat:[10,12,13,25,26,42,47,49,50,55,73,76,90,98,102,110,113],autotun:55,avail:[0,1,9,33,34,38,49,62,68,70,73,78,88,89,90,96,102,103,104,105,106,107,108,109],available_video_ext:33,avc1:24,averag:[48,49,70,76,77,88,92,105,106,107],avg:[70,107],avi:[24,33,34,96,100,118],avoid:[28,54,81,116],avx2:[104,105,106,107,109],avx512_vnni:104,avx512f:[104,105,106,107,109],avx:[104,107],awai:13,await:[103,104,109],aws4:109,ax1:103,ax2:103,ax:[56,73,103],axi:[3,43,54,55,56,61,62,63,64,69,73,76,77,83,103,105],b990gxjt3d3j3jh:106,b9b0638744af3144affdc46668c749128bd6c4f23ca2a1313821c7bbcd54ccdd:109,b:[1,6,62,86,92,102],back:[4,10,33,36,55,62,76,80,81,89,92,100,110],backbon:[38,39,40,42,43,45,48,75,98,106,109,117],backbone_fn:43,backboneconfig:48,backend:[13,33,104,105,106],background:[11,35,87,89,95],backlight:87,backward:[46,85,92],bag:4,balanc:49,ban:0,bar:[73,89,116],bare:33,barekalmantrack:81,base:[4,7,10,13,14,21,33,34,36,38,39,40,41,43,44,45,46,47,48,50,53,63,65,70,71,73,76,77,79,81,82,84,89,92,93,94,95,98,99,100,101,102,113],base_checkpoint:[48,89,109],base_fram:10,base_label:[10,13],base_nod:13,base_port:11,base_run_nam:82,baselin:[50,91,109],baseline_medium_rf:[96,109],baseline_model:106,basemessageparticip:36,basenam:102,basetrack:81,bash:102,basic:[13,33,39,40,61,73,86,95,99,100,105],batch:[13,33,38,39,45,46,48,49,50,55,56,72,73,74,76,77,88,98,101,105],batch_norm:[38,48],batch_norm_before_activ:38,batch_siz:[13,33,49,55,73,74,89,105,109],batcher:55,batches_per_epoch:[49,109],bbox1:83,bbox2:83,bbox:[62,77,84],bear:44,becaus:[10,24,81,85,90,92,96,97,100,102,103,106],becom:62,bed:87,been:[1,8,10,13,36,75,78,80,81,89,92,95,102,105,115,116],beeswax:87,befor:[1,8,9,10,13,32,33,35,38,44,45,48,49,50,55,62,67,69,73,75,77,80,81,82,85,89,91,92,94,96,104,105,106,109,110,115,116],begin:[9,46,49,50,90],behavior:[0,1,33,52,87,92,101,113],being:[15,34,49,56,73,74,85,100,101],believ:1,belong:[4,10,13,62,76,77,108],below:[38,44,47,49,54,59,62,64,70,71,74,76,77,87,92,95,100,102,106,108,110,113],benchmark:[47,70,87,104,105,112],bendalab:28,benefici:[48,49,88],benefit:48,berman:87,best:[0,1,3,6,78,79,80,92,95,96,97,116,117],best_logical_device_nam:78,best_model:[50,73,89,96,104,106,107,109],better:[8,24,73,76,80,88,90,94,107,115,117],between:[3,6,7,9,10,12,13,35,36,43,47,48,56,61,67,68,70,73,76,79,81,83,85,89,92,95,97,107,116,119],beyond:[48,49,73,81,92],bgr:[33,43,47,63,104],bia:38,bias:43,biasadd:[106,109],bibtex:[100,101],big:95,bilinear:[38,39,40,41,44,45,48,104,107],bilinear_upsampl:40,bin:[102,105,109],binari:[59,104,105,106,107,109],binrang:107,biolog:101,bipartit:[79,81],bit:[99,108,117],black:[1,35,89,115],blob:108,block:[38,39,40,41,42,43,44,48,65],block_contract:[44,106,109],block_prefix:38,block_strid:48,block_v1:43,blog:[83,100],blow:104,blue:[33,88,98,115,116],bmp:24,bn:38,bodi:[0,3,48,49,53,61,70,71,73,74,85,95,97,113,116,117,118],bombu:87,bone:70,bookworm:[104,105,106,107,108,109],bool:[3,4,9,10,13,14,15,16,17,18,19,21,22,23,24,25,27,28,29,30,31,32,33,35,36,38,39,40,41,42,43,44,45,47,48,49,50,51,52,53,54,55,56,57,59,60,61,62,63,65,66,67,69,70,71,73,75,78,79,80,81,82,84,85,86],both:[0,1,13,15,24,39,47,48,50,54,56,62,67,68,69,70,73,79,80,88,91,94,95,96,106,117],bottleneck:[40,43,44,49,55],bottleneck_block:40,bottom:[47,48,67,73,88,89,91,92,97,101,104,110,117],bottomup:[73,96,110],bottomup_config:73,bottomup_lay:73,bottomup_model:73,bottomupinferencelay:73,bottomupinferencemodel:73,bottomupmodeltrain:82,bottomupmulticlassinferencelay:73,bottomupmulticlassinferencemodel:73,bottomupmulticlassmodeltrain:82,bottomupmulticlasspipelin:65,bottomupmulticlasspredictor:73,bottomuppipelin:65,bottomuppredictor:73,bound:[10,15,47,48,49,53,61,62,69,70,71,73,77,79,83,95],boundari:[55,71],bounding_box:10,bounds_error:103,box:[10,15,33,47,48,53,61,62,70,71,73,77,79,83,88,95],box_height:62,box_width:62,brain:101,branch:[1,38,48],brew:102,briefli:70,bright:[49,88,109],brightness_max_v:[49,109],brightness_min_v:[49,109],brisk:4,brisk_bag_of_featur:4,brisk_threshold:4,broadcast:[50,56,69],broadest:100,broadfield:49,browser:[50,109],bsd:101,bu:[104,105,106,109],buf:10,buffer:[49,55],buffer_s:55,bug:1,build:[9,13,33,34,37,38,40,42,52,61,62,63,65,67,73,75,101,102,103,105,106,109,113],builder:[65,82,106,109],built:[75,96,101,113,116],bumblebe:87,bundl:96,button:[1,91,98,109,110,116,117,118],byteord:10,bytes_:9,c57bl:87,c:[10,40,42,62,95,100,101,102,103,104,105,106,108],cach:[13,33,55,79],caff:[43,47,63],cage:87,calcul:[3,6,7,61,62,67,69,70,74,79,83,107],calculate_pairwise_cost:6,call:[4,13,14,15,16,17,18,19,22,23,24,25,26,27,28,29,30,32,33,43,46,55,70,73,74,77,79,81,86,91,96,105,106,110,113],callabl:[6,13,23,24,32,35,43,46,55,57,79,80,81,82],callback:[13,33,82],callback_funct:13,came:100,camera:[87,88,105],can:[1,3,4,7,10,11,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28,29,30,31,33,35,38,39,42,43,45,47,48,49,50,51,53,54,55,56,59,62,64,65,66,69,70,73,74,76,77,78,80,81,85,87,88,89,90,91,92,93,94,95,96,97,98,99,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,119,120],can_read_fil:[14,15,16,17,18,19,22,23,24,25,27,28,29,30],can_write_filenam:[14,15,16,17,18,19,22,23,24,25,27,28,29,30],cancel:13,candid:[48,70,73,76,79,81,89,95,116],candidate_inst:79,candidate_mak:81,cannot:[13,25,26,29,33,43,48,78,85,86,97,102,104,105,106,107,108,109,110],canon:[43,44,45],cao:[76,117],cap:89,capabl:[65,105,106,109],capac:[41,43,44,48],captur:[73,105],care:[4,44,104,105,106,107,108],castro:[87,100,101],catalin:[87,100,101],categor:74,categori:1,cattr:[10,33,85],caus:95,cbmm:101,cc:[102,104,105,106,107,108,109],cd:102,cell:[104,105,106,108],center:[10,13,47,48,49,54,60,61,62,64,65,67,69,71,73,77,82,87,88,91,96,98,103,104,109,117],center_inst:[54,62],center_instance_ind:62,center_on_anchor_part:61,center_on_part:[47,61,106,109],center_pad:67,centered_inst:[48,89,91,104,105,106,107,109,110],centered_instance_id_model:105,centered_pair_smal:33,centered_patch:77,centeredinstanceconfmapshead:[65,71,73,106,109],centeredinstanceconfmapsheadconfig:[48,71,106],centroid:[10,28,47,48,54,59,60,61,62,63,65,67,71,73,77,79,82,88,89,91,95,96,98,104,105,109,110,117],centroid_confid:[60,62],centroid_confidence_kei:60,centroid_confidence_map:[54,60],centroid_config:73,centroid_confmap:73,centroid_confmap_head:65,centroid_crop:73,centroid_dist:79,centroid_kei:60,centroid_model:[73,105],centroid_model_path:73,centroid_v:[73,105],centroidconfmapshead:[65,71,73,109],centroidconfmapsmodeltrain:82,centroidconfmapspipelin:65,centroidcrop:73,centroidcropgroundtruth:73,centroidinferencemodel:73,centroids_kei:62,centroidsheadconfig:[48,71],certain:[81,85,95,98,99],certainli:33,cfg:[70,76,106],chain:[65,73],chanc:36,chang:[1,13,32,39,45,46,47,48,49,62,63,66,68,73,78,85,92,95,97,102,105,106,116,119],changed_on_load:13,channel:[10,33,35,38,39,40,42,43,45,47,48,54,59,62,63,66,67,71,72,73,74,75,76,77,84,96,104,118],channel_ind:74,channels_:33,channels_first:[33,43],channels_last:[33,43,96,104,109],channelwis:[38,74,77],charg:42,chdir:110,check:[1,10,13,15,29,32,33,36,50,52,65,73,78,81,85,86,89,92,95,100,101,102,104,109,110],check_messag:36,checkbox:95,checkerboard:[38,45,48],checkout:1,checkpoint:[46,48,50,82,89,104,109],checkpointingconfig:[50,82],child:10,children:97,chmod:102,choic:[79,80,117],choos:[88,92,94,95,96,97,102,114,116,117,119],chose:110,chosen:[95,110],chrome:109,chunk:[11,28,35],circular:87,circumst:0,citat:100,cite:[100,101],cl:86,claim:42,clarifi:0,class_ind:[59,72],class_map:[48,59,72,73],class_map_threshold:59,class_maps_head:65,class_maps_ind:73,class_maps_output_strid:73,class_prob:72,class_vector:[48,73],class_vectors_head:65,class_vectors_ind:73,classif:[48,71,72,73],classifi:[48,72,73,76,107],classification_model:42,classify_peaks_from_map:72,classify_peaks_from_vector:72,classmapgener:59,classmapshead:[65,71,73],classmapsheadconfig:[48,71],classmethod:[4,10,11,13,16,17,18,19,23,24,25,28,29,33,39,41,42,43,44,45,51,53,61,62,63,65,66,67,71,73,74,75,76,79,81,82,85],classvectorgener:59,classvectorshead:[65,71,73],classvectorsheadconfig:[48,71],clean:[79,81,89],clean_instance_count:[89,108,109],clean_iou_threshold:[89,108,109],cleaner:[8,81],cleanli:[10,13],cleanup:82,clear:[10,13,80,81,87,89,92,101],clear_edg:85,clear_suggest:13,cli:[8,12,73,82,89,100,102,105,106,108,112],click:[88,91,92,94,97,98,102,104,105,106,108,109,110,115,116,117,118,119],client:50,clip:[87,89,92,99,103,107,113,115],clipboard:92,clone:102,close:[1,11,21,33,34,48,80,102,105,112,116],closest:[6,7,73,83],cloth:70,cloud:117,cluster:[4,73,89],cm:[73,77,87],cm_output_strid:73,cmap:[84,103],cmd:[102,118],cmder:[102,118],cnn:[38,41,45],coco:[12,26,70,92],cocoapi:70,cocodataset:[16,70],cocoev:70,code:[15,26,41,70,74,85,90,92,95,100,102,103,110,119],codec:24,codecov:1,coeffici:[73,76,89],coher:48,col:[76,83],colab:[89,91,93,102,103,104,105,106,108,112,117],colab_demo:110,colaboratori:[90,112],collabor:101,collect:[13,33,50,74,100],color:[33,35,84,87,89,92,115,119],color_by_nod:84,color_by_track:84,color_manag:35,colormanag:35,column:[9,10,12,67,73,77,79,80,89,102,114],column_item:80,com:[38,79,83,102,103,104,105,106,107,108,109],comapar:33,combin:[13,28,48,55,56],come:[33,38,48,53,66,96,102,107],comma:89,command:[5,12,24,26,50,91,92,93,94,95,96,100,102,109,112,116,117,118,119],comment:[0,1],commerci:101,commit:[0,1],common:[21,26,33,34,38,39,40,42,43,45,57,65,76,85,92,95,100,105],common_runtim:[104,105,106,107,108,109],commonli:[47,63,77],commun:[0,1,2,11,100,101,102],compar:[6,13,33,85,86,89,107],compare_instance_list:6,comparison:[50,83,107,112],compat:[46,62,73,85,96,100,102],compens:[43,44,49],compet:80,compil:[104,105,106,107,109],complaint:0,complet:[10,13,15,50,76,85,104,113],complex:[41,44,48,100,102],complex_frame_merg:10,complex_merge_between:[10,13],complic:97,compon:[33,45,76,80,81],compos:[13,53,65],composit:[49,53,86],comprehens:93,compress:[24,34,50,100,102],comput:[10,13,33,38,45,47,48,49,50,54,56,61,62,63,67,69,70,73,74,76,77,79,81,82,83,90,91,101,102,103,104,105,106,107,108,109,110,112],compute_dist:70,compute_dist_metr:70,compute_distance_penalti:76,compute_generalized_voc_metr:70,compute_i:83,compute_instance_area:70,compute_ohkm_loss:74,compute_ok:70,compute_pck_metr:70,compute_visibility_conf:70,concaten:[38,45,48,55,65],concret:104,conda:[1,100,101,103,104,105,106,108,109,110,118],conda_dev:102,conda_jupyt:102,conda_prefix:102,condit:42,confer:77,confid:[10,48,54,56,59,62,64,65,71,72,73,76,77,82,84,88,89,92,96,104],confidence_map:[59,64],confidenti:0,config:[39,41,42,43,44,45,53,61,62,63,65,67,70,71,73,74,75,76,78,82,86,89,96,102,106,110],configur:[38,39,40,41,42,43,44,45,47,48,49,50,51,53,61,62,63,65,67,71,73,75,81,82,89,91,92,93,96,98,99,105,106,107,110,113,117],confirm:[32,36,92,102],confirm_callback:32,conflict:[10,13,38,39,50,94,102],confmap:[48,54,59,64,73,84],confmap_config:73,confmap_model:73,confmap_model_path:73,confmapconfig:71,confmaps_head:65,confmaps_in_kei:60,confmaps_ind:73,confmaps_kei:60,confmaps_out_kei:60,confmaps_strid:60,confus:70,conncet:76,connect:[8,36,37,38,39,41,42,43,44,45,48,71,73,75,76,79,85,89,90,92,95,96,97,103,104,109,113,118],connect_single_track_break:79,connected:76,consecut:[43,48,76],consequ:[100,113],consid:[0,49,70,73,74,76,81,85,89,100],consider:[47,48,49,50,55,80,86,88],consist:[45,48,97,110,116],consol:[73,89,102],constant:48,constitu:85,constraint:[63,67],constrast:49,construct:[0,10,13,31,38,43,75,105],constructor:[35,66,73],consum:50,consumpt:55,contact:[0,89],contain:[4,10,13,15,18,24,28,29,33,38,42,43,47,48,50,51,53,54,55,56,57,59,60,61,62,63,66,67,68,70,72,73,76,77,80,82,83,85,86,87,89,90,91,94,95,96,104,105,106,107,110,112],content:[13,105,109,110],context:[9,13,36,78,98],continu:[55,87,105,115,116,117,118],contract:42,contrast:[48,49,87,88,109],contrast_max_gamma:[49,109],contrast_min_gamma:[49,109],contrib:[104,105,106,107,108,109,110],contribut:[0,59,88,100],control:[8,34,45,48,50,76,84,88,91,92,98,109,110],controller_address:[50,109],controller_polling_timeout:[50,109],conv:[38,39,43,44,45,48],conv_batchnorm:48,conv_block:[38,44],conv_shortcut:43,conveni:[13,39,51,56,62,65,66,67,76,77,78,84,85,102,104,105],convent:89,converg:49,convers:[1,33,89],convert:[1,4,10,13,21,26,33,43,47,55,62,63,66,67,69,73,76,85,86,92,94,100,104,105,114,115],convert_image_dtyp:63,convert_rang:33,convert_rgb_to_bgr:63,convolut:[38,39,40,41,42,43,44,45,48],convolv:77,convs_per_block:[44,106,109],cooldown:81,coor:15,coordin:[9,10,13,15,21,48,49,53,54,56,60,62,64,66,70,72,73,76,77,83,103,104],copi:[10,13,15,36,42,48,49,66,73,82,83,85,86,90,92,94,96,103,110,112,116],copyright:42,core:[53,73,104,105,106,107,108,109,112],corner:[15,83],corr:103,corr_rol:103,correct:[0,13,26,70,71,76,92,93,94,95,97,102,107,113,115,117,119],correctli:[49,50,102,105,106,112,117],correl:103,correspond:[3,4,6,7,9,10,13,32,36,38,54,56,62,63,64,70,72,73,76,77,81,83,85,88,92,95,104,108],cost:[6,39,41,44,47,48,49,55,62,73,79,80,81,83,88,95,104,107],cost_funct:6,cost_matrix:[79,80,83],could:[0,13,14,33,70,91,102,104,105,107,108,109],count:[13,33,45,48,49,73,76,79,80,81,89,95,103,105],counter:50,courtship:[87,103,109,111],courtship_label:109,cov_vel:103,covari:[54,77],cover:[1,48,91,95,100],coverag:1,covert:[13,27],cpu:[57,73,78,86,89,102,104,105,106,107,109],cpu_feature_guard:[104,105,106,107,109],cpu_instruction_set:[104,107],cpuset:86,crash:100,creat:[0,1,4,9,10,11,13,14,15,18,24,26,27,33,38,39,40,41,42,43,44,45,46,47,50,51,53,54,55,56,57,59,60,61,62,63,64,65,66,67,68,69,71,73,75,76,78,79,81,82,84,85,86,89,92,93,94,96,97,101,102,103,104,105,106,108,109,113,120],create_trainer_using_cli:82,creation:[38,43,51],credenti:109,credit:87,crf:[34,100],criteria:[13,47,55,67,92,107],critic:[0,48,73,104,105,106,107,109],crop:[13,35,47,48,49,53,60,61,62,66,67,73,77,88,89,92,98,104],crop_and_res:[62,77],crop_bbox:[53,62,77],crop_height:[53,62,77],crop_offset:73,crop_output:73,crop_sample_ind:72,crop_siz:[47,62,73,77,109],crop_size_detection_pad:[47,109],crop_size_xi:35,crop_width:[53,62,77],cropandres:[104,107],cropper:73,cross:[95,96],crossentropi:74,csv:[9,12,13,18,50,89,92,96,107,109],csvadaptor:17,ctrl:[102,118],cuda:[78,102,104,105,106,107,108,109],cuda_bla:[105,106,109],cuda_dnn:[105,106,109],cuda_gpu_executor:[104,105,106,107,108,109],cudart:[104,107,108],cudart_stub:[104,107,108],cudatoolkit:102,cudnn:[100,102,105,106,109],cull:[8,79,80,81,89,95],cull_frame_inst:79,cull_funct:81,cull_inst:79,curl:[102,105,106],current:[4,13,15,24,27,33,38,43,45,46,48,50,54,56,75,78,80,81,82,85,86,88,90,92,95,98,101,102,105,106,110,116,118],current_groupset:4,current_strid:[38,39,43,45],curv:107,custom:[26,73,74,79,92,93,96,101,104,105,106,112],customiz:[101,112],cv2:[104,107,108],cycl:[92,95,117],d0:74,d:[4,62,73,83,85,86,87,90,92,93,94,95,100,101,102,104,105,106,107,108,109],d_0:56,d_n:56,dai:87,damag:42,dan:[87,100,101],dark:115,dashboard:50,data:[4,5,6,7,9,10,11,13,15,16,17,18,21,24,25,26,27,28,29,32,33,35,36,43,46,48,49,50,51,70,73,81,82,85,86,87,88,89,91,92,93,94,96,97,98,99,107,113,119,120],data_config:65,data_dict:9,data_path:[31,89,109],data_provid:[65,73],data_read:82,data_structur:[104,105,106],dataconfig:[47,51,65],datai:103,dataread:82,dataset:[6,7,9,12,15,16,17,18,19,20,23,24,26,27,28,29,31,33,35,46,47,49,53,54,55,56,57,59,60,61,62,63,65,66,67,68,70,73,82,85,91,92,96,101,103,104,105,106,107,111,113,114,117,118,120],dataset_h5:33,dataset_op:[53,54,56,57,59,60,61,62,63,65,66,67,68,73],datasetv2:[53,54,55,56,57,59,60,61,62,63,65,66,67,68,73],datax:103,date:[82,96,109],datetim:[13,27],david:[100,101],de:102,deactiv:102,deal:42,debian:[104,105,106,107,108,109],dec:38,decid:[91,92,94],decod:[38,39,41,42,44,45,48,51,85,86,103],decode_preview_imag:86,decoder_batchnorm:48,decoder_features_strid:38,decoder_filt:[42,48],decoder_filters_r:48,decoder_stack:[38,39,41,44],decoderblock:[38,39],deconv:40,deconv_filt:40,deconv_modul:40,deconvolut:40,decor:52,decoupl:51,decreas:[40,41,44,48,49,55,81,88],deem:0,deep:[13,15,41,85,86,100,101,104,105,106,107,109,113],deeplabcut:[12,92,100],deeplabv2:43,deepposekit:[12,92],def:[103,105],default_ext:[14,15,16,17,18,19,22,23,24,25,27,28,29,30],default_suffix:13,defin:[0,10,15,28,38,39,43,44,45,48,53,54,56,59,65,69,71,73,75,76,79,85,96,97,103,104,105,106,113],definit:[28,39,43,71],deflat:109,degre:49,delai:50,delet:[13,81,82,85,92,94,104,106,109],delete_edg:85,delete_nod:85,delete_suggest:13,delete_symmetri:85,delimit:40,deliv:101,delta:77,demand:90,demo:110,demonstr:[39,107,112],deng:77,deni:[107,109],denot:[9,10,13,42,62,70,72,73,76,83,107],dens:[38,55,92],densenet121:[42,48],densenet169:[42,48],densenet201:[42,48],densenet:[38,47,63],densiti:[48,77],dep:[105,106,109,110],depend:[34,45,50,54,59,69,88,90,92,96,100,102,104,105,106,107,108,110,113],deprec:[8,24],depth:86,dequ:81,deriv:103,derogatori:0,descend:[49,70],describ:[12,13,38,39,43,44,50,65,73,75,76,77,82,93,97,114,120],describe_tensor:[69,73],descript:[13,27,48,51,65,69,70,85,87,104,106,109],descriptor:4,deselect:92,deseri:[4,13,14,15,16,18,19,22,23,24,25,27,28,29,30,33,51,85],design:[51,93],desir:[4,13,39,41,43,44,45,48,50,53,61,62,63,67,81,91,95,108,113,117],dest_nam:85,destin:[56,71,76,85,95,97,102],destination_nod:[48,71],detail:[0,7,13,16,38,39,41,44,70,73,76,88,89,91,95,100,113,115],detect:[10,12,13,16,26,33,47,48,49,50,73,76,81,84,88,89,92,97,102,104,107,108],detect_video:13,detector:73,determin:[0,6,13,14,15,16,17,18,19,21,22,23,24,25,27,28,29,30,33,35,39,41,44,45,47,48,50,66,67,70,71,73,79,80,81,92,95,98,109,116],determinist:48,deutsch:[100,101],dev:[3,102],dev_requir:1,develop:[1,51,100,101,102,105,112],deviat:[3,47,49,54,56,59,63,70,77],devic:[57,78,102,104,105,106,107,108,109],device_ind:78,device_nam:[57,60],device_typ:102,diagnosi:70,diagnost:102,diagon:54,diagram:62,dialog:[14,15,35,88,89,91,98,110,117,119],dic:86,dict:[4,7,9,10,13,15,22,24,31,36,46,51,55,57,65,68,69,70,73,76,79,80,81,83,85,86,107],dict_a:13,dict_b:13,dict_cut:86,dictionari:[4,7,9,10,13,15,21,24,26,36,43,50,51,55,57,58,65,66,68,69,70,73,79,81,83,85,86,107],did:89,didn:[36,100,103,109,116],diez:[87,100,101],differ:[0,12,13,15,26,33,38,42,43,44,45,47,49,61,64,66,70,73,76,81,83,85,88,91,92,93,95,96,99,102,103,104,105,106,107,110,116,119],differenti:103,difficult:[48,49,95],difficulti:[70,107],dilat:[43,48],dilation_r:43,dim:[103,104,107],dimens:[47,48,54,56,63,66,67,69,70,71,73,76,83,103],direct:[13,45,48,56,71,76,77,92],directli:[33,45,47,48,55,73,76,82,89,92,102,103,105,107,110,118],director:101,directori:[13,15,26,33,46,50,51,73,86,89,90,92,96,102,104,106,107,108,109,110],directoryimgstor:33,direntri:86,disabl:[0,73,78,109],disable_gpu_prealloc:[73,78],disable_prealloc:[78,104,105],disambigu:48,discard:[73,76],discover:78,discuss:[2,95,100,101,102],dish:87,disk:[13,33,46,50,51],dispatch:[14,15,16,17,18,19,21,22,23,24,25,27,28,29,30],displac:[7,76,81],displai:[50,73,89,103,108,115],disposit:109,dist:[70,107],dist_arrai:6,dist_penalty_weight:[73,76,89,109],distanc:[3,6,7,48,56,70,73,76,79,83,89,95,107],distance_to_edg:56,distinct:[26,48,80,81,88,90,92,95,96,103,111,116,117],distinctly_color:[35,89],distinguish:[21,87],distribut:[42,48,49,54,56,59,69,77,92,102,107],dists_dict:70,divid:[54,63,64,73,76,77],divis:[38,43,47,62,67,73],dl:106,dlc:45,dlerror:[102,104,107,108],dload:[105,106],dlopen:[104,107,108],dm:109,dn:74,doc:[7,28,101,102,103],dock:92,docstr:[1,39,41,44],document:[1,42,43,51,76,89,108],doe:[13,26,42,44,46,48,50,53,54,56,59,61,62,65,68,85,86,89,104,107,108,115],does_match_ext:[14,15],does_read:[14,15,16,17,18,19,22,23,24,25,27,28,29,30],does_writ:[14,15,16,17,18,19,22,23,24,25,27,28,29,30],doesn:[1,3,10,13,33,55,86,91,92,96,97,98,115],don:[10,12,29,33,74,86,89,90,91,99,100,102,104,105,106,109,110,112,117],done:[35,55,61,62,68,73,81,90,112,117,119],dot:[76,84],doubl:[38,45,48,92,94,97,115,116,118,119],down:[1,41,44,48,49,50,72,73,76,88,89,91,95,96,100,101,104,105,109,116,117,118],down_block:[39,40,41,42,43,44,106,109],down_convs_per_block:41,downgrad:102,download:[87,89,90,100,102,103,104,105,106,107,108,110,111,112],downsampl:[39,40,42,43,44,48,67,88],downsampling_lay:40,downsamplingblock:39,downsid:95,downstream:[55,66],dpi:[84,105,107],dpkg:[107,109],draft:1,drag:[88,92,98,116,118],draw:[35,89],drawn:[4,88,92,95],drive:[90,92,96,103,106,108],driver:102,drop:[10,36,55,65,95,117,118],drop_old:57,drop_remaind:55,dropbox:[90,106],dropdown:119,drosophila:[87,103,109,111],drwxrwxr:[104,105,106],ds:73,ds_index:66,ds_input:[55,61,62,63,67,68],ds_store:109,dset_nam:103,dso_load:[102,104,107,108],dst_node:[76,85],dst_node_ind:[76,85],dst_peak_ind:76,dt:105,dt_float:[104,107],dt_int32:[104,107],dt_uint8:[104,107],dtype:[10,33,43,53,54,56,59,61,62,63,64,66,67,69,72,76,77,86,104,105,106,107,109],due:[76,104],dummi:[33,73],dummyvideo:33,duplic:[24,85,86],dure:[13,33,38,46,47,48,49,50,51,55,65,71,73,74,76,89,91,95,98,102,104,105,107,109,110,115,117],dx_i:77,dy_i:77,dynam:[20,73,74,102,104,107,108],e:[0,1,3,6,10,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28,29,30,33,37,38,43,45,48,49,50,53,54,55,56,59,61,62,66,67,68,69,70,72,73,74,77,78,79,80,81,85,86,88,89,91,92,93,94,95,96,101,102,104,108,109,110,113,118],each:[3,4,6,7,10,13,24,27,28,32,33,36,38,39,40,41,42,43,44,45,46,48,49,50,53,54,55,56,57,59,61,62,64,65,66,68,70,71,72,73,74,76,77,78,79,81,83,85,88,89,90,91,92,95,96,97,98,102,103,104,105,108,109,110,113,117],eager:[74,78],earli:[36,47,49,50,106,109,110],earlier:[7,81],early_stop:[49,109,110],earlystoppingconfig:[49,106,109],easi:[1,4,48,49,70,74,75,78,91,95,96,97,101,102,104,107],easier:[8,48,51,70,74,88,95,102,113],easiest:[70,90,96,114],easili:[51,89,102],east:109,echo:102,eclos:87,edg:[1,3,9,35,48,49,56,71,76,84,85,89,92,95,97,104,118],edge_destin:56,edge_ind:[9,12,56,73,76,85],edge_inds_sampl:76,edge_is_wedg:[35,89],edge_nam:[9,12,85],edge_peak_ind:[73,76],edge_peak_inds_sampl:76,edge_sourc:56,edge_to_index:85,edge_typ:76,edgeconnect:76,edges_ful:85,edgetyp:[76,85],edit:[0,51,91,92,94,95,96,102,106,112,115,119],editor:[91,96,106],edna:[100,101],edu:[0,1,99,100,101],educ:90,effect:[33,37,38,39,40,41,43,44,45,47,48,49,54,55,56,59,61,63,73,98,102,119],effici:[49,54,78],efficientnetb0:[42,48],efficientnetb1:[42,48],efficientnetb2:[42,48],efficientnetb3:[42,48],efficientnetb4:[42,48],efficientnetb5:[42,48],efficientnetb6:[42,48],efficientnetb7:[42,48],eg:1,eigen:[104,107],either:[1,9,10,18,33,35,36,50,54,59,62,67,68,70,73,77,85,89,92,94,95,96,102,116],elaps:[35,81,89],electron:0,element:[10,13,43,45,48,53,54,55,56,57,59,60,61,62,63,66,67,68,73,76,77,86],elementwis:54,eleni:[87,100,101],elimin:55,els:[13,76,110],elsewher:[90,92],email:99,embed:[13,33,39,87,104],embed_all_label:[13,104],embed_suggest:13,embedded_frame_ind:33,empathi:0,empti:[9,13,33,40,66,79,89,116,118],en:76,enabl:[4,33,42,48,49,50,54,55,73,78,89,95,100,102,104,105,106,107,109,112,113],enable_gpu_prealloc:78,enable_prealloc:78,enable_source_video:33,enc:38,encapsul:[73,79],enclos:87,encod:[33,38,39,41,42,44,45,48,51,77,84,85,86,89,92,95,100],encoder_decod:[39,41,44],encoder_features_strid:38,encoder_stack:[38,39,41,44],encoderblock:[38,39],encoderdecod:38,encourag:[1,48,49],end:[9,13,38,39,44,46,49,50,51,55,63,65,86,92,95,100,103,113],endpoint:50,enforc:[73,76,89],engag:87,engin:[43,60,65,73,75,82,83],enhanc:1,enough:[81,88,93,95,99,117],ensur:[4,13,24,44,47,50,52,62,67,68,73,76,78,80,87,96,100,102,119],ensure_float:[63,73],ensure_grayscal:[47,63,73,109],ensure_int:63,ensure_list:69,ensure_min_image_rank:63,ensure_rgb:[47,63,109],entail:77,enter:[102,117,118],entir:[4,9,13,27,33,38,49,54,66,77,89,90,92,94,96,105,106,107,115,116,120],entireti:92,entiti:[10,28],entrypoint:[12,73],enumer:103,env:[1,86,102,104,107,108,109],environ:[0,78,87,101,102,103,104,107,118],environment_mac:102,environment_no_cuda:102,epoch:[46,49,50,55,88,98,106,109,110,117],equal:[33,39,40,41,44,45,49,55,62,67,79,84,89],equival:[26,37,38,55,62,69,77],error:[1,33,52,70,76,78,79,98,100,102,104,105,106,107,108,109,113,115],escap:92,especi:[15,18,48,49,50,55,62,66,88,92],essenti:97,establish:85,estim:[41,48,70,76,77,81,85,107,109,112,113,117],et:[41,44,87,95,101,117],eta:109,etc:[1,4,13,33,45,86,102,104,117],ethnic:0,ethogram:103,euclidean:[70,76,83],eval:[102,106,107,109],evalu:[48,49,62,65,70,73,76,77,82,92,106,109],evaluate_model:70,even:[13,38,47,48,49,54,56,61,62,68,74,79,92,95,102,116],evenli:[73,92,116],event:[0,42,46],ever:92,everi:[1,3,6,13,27,38,39,43,45,48,49,50,55,70,79,89,92,95],every_epoch:[50,109],everyon:[0,1],everyth:[10,81,92,117],ex:[13,27,73],exact:[50,69,100,107],exactli:[43,62,70,77,81,88,89,95,100,103],exampl:[0,13,21,22,26,30,33,38,45,46,47,49,50,53,54,55,57,58,61,62,65,66,67,68,69,73,74,76,77,82,83,85,87,88,90,91,92,96,100,104,106,110,111,113,117],example_gt:73,example_ind:66,example_indic:[66,68],except:[10,13,26,28,38,55,73,74,97,101,102],exclud:[24,48,76,79,81,86],exclude_nod:86,exclude_non:86,exclus:13,execut:[49,74,76,82],exist:[1,13,26,27,32,33,38,39,46,50,53,85,86,92,96,97,102,106,108,112],exit:89,expand:[43,47,63,69],expand_dim:105,expand_to_rank:[63,69],expans:[43,55],expansion_r:40,expect:[0,1,9,12,13,50,53,54,55,56,57,59,60,61,62,63,67,68,70,71,73,76,77,89,103,114],experi:[0,1,48,87,100,105,108,112,113],experiment:[55,95],expir:109,explain:[91,95,96],explan:[88,114],explicit:[0,62,67,78],explicitli:[47,49,50,51],explor:[104,105,106,108],export_cli:73,export_csv:13,export_model:[73,89],export_nwb:13,export_path:89,exportanalysisfil:26,exported_model:[73,89],express:[0,42],ext:26,extend:[4,10,87],extend_from:13,extend_group_item:4,extend_ownership:4,extens:[12,13,14,15,16,17,18,19,22,23,24,25,26,27,28,29,30,33],extern:[13,50,70,92,100,102],extra:[4,47,48,102],extract:[13,38,39,42,73,86,103],extran:73,extrapolation_valu:[104,107],ey:70,eyel:[103,104,105,106,109],eyer:[103,104,105,106,109],f8:10,f:[89,95,102,103,104,105,107,114],face:[0,15,51,99],facecolor:[105,107],facilit:[33,76],fact:95,factor:[34,40,41,43,44,45,47,48,49,54,62,64,66,67,70,73,74,81,84,107],factori:79,factory_object_keypoint_similar:79,fail:[1,49,50,55,70,89,95,100,102,109,110,119],fair:0,fairli:[3,87,91],faith:0,fake:33,falkner:[87,100,101],fall:1,fals:[3,9,10,13,16,21,23,24,27,33,35,36,38,40,41,42,43,44,45,47,48,49,50,52,54,55,56,59,61,62,63,65,66,67,69,70,73,75,79,81,82,84,85,86,89,92,102,103,104,105,106,107,109],false_neg:70,familiar:94,far:[13,28,76,93,95,99,107],fashion:48,fast:[41,43,81,101,104,105],faster:[13,41,44,73,79,89,110,115],fc:38,featur:[4,37,38,39,42,43,45,47,48,70,71,79,88,92,100,113,116],features_output_strid:43,featuresuggestionpipelin:4,feautur:1,feedback:115,feel:[1,99,100,116],femal:[87,105,116],fetch:[11,65],few:[48,49,74,88,90,92,98,101,102,104,113,119],fewer:[38,45,48,55,68,76,81,97],ffmpeg:[33,34,100],field:[10,39,41,43,44,48,50,52,56,65,67,71,73,75,76,87,88,92,96,97,98,109,110,117],fifth:15,fig:103,figsiz:[103,105,107],figur:[10,46,82,84,103,105,107],file:[1,5,9,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,42,43,47,48,50,51,66,70,73,82,85,86,87,90,91,94,95,96,100,102,103,104,105,106,107,108,109,110,111,112,113,114,118],file_h5:33,filehandl:[14,15,16,17,18,19,22,23,24,25,27,28,29,30],filenam:[8,12,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28,29,30,32,33,34,35,46,51,66,70,85,86,89,90,91,96,102,103,104,105,109,110],filename_a:86,filename_b:86,filenames_prefix_chang:32,filenotfounderror:[33,86],filepath:[46,47],filetyp:13,fill:[55,73,105,116],fill_miss:[10,103],fill_valu:103,filter:[13,38,39,40,41,42,43,44,45,48,55,57,66,73,76,80,81,89,103,106,108,109],filter_connection_candid:76,filter_fn:55,filter_increas:[39,48],filters_increas:48,filters_r:[41,44,48,106,109],final_model:[50,96,109],final_pass:81,find:[3,6,10,13,15,18,25,32,33,45,48,49,57,60,61,70,73,76,77,79,80,85,89,90,92,95,101,105,110,117,119],find_changed_subpath:32,find_fancy_frame_idx:13,find_files_by_suffix:86,find_first:13,find_fram:13,find_frame_pair:70,find_global_peak:77,find_global_peaks_integr:77,find_global_peaks_rough:77,find_global_peaks_with_offset:77,find_head:73,find_instance_crop_s:62,find_last:13,find_local_peak:77,find_local_peaks_integr:77,find_local_peaks_rough:77,find_local_peaks_with_offset:77,find_neighbor:85,find_nod:85,find_offsets_local_direct:77,find_padding_for_strid:67,find_path_using_path:13,find_peak:73,find_points_bbox_midpoint:61,find_suggest:13,find_track_occup:13,find_unique_nod:85,finder:76,findinstancepeak:73,findinstancepeaksgroundtruth:73,fine:[39,43,49,74,88,116],finer:[49,76,81],finish:[13,50,89,94,96,98,102,106,109,110,115],finish_complex_merg:13,finish_timestamp:109,first:[6,7,9,12,13,15,17,29,33,35,38,39,41,43,44,45,49,53,54,55,56,62,63,65,66,69,73,78,79,80,81,85,86,89,91,92,94,95,97,102,103,104,105,106,107,108,109,110,113,114,115,117,118,119,120],first_choice_match:79,first_conv_strid:39,first_gpu:109,first_inference_tim:105,fit:[3,42,92,103],fit_predict:103,fit_track:8,five:[35,89,92,95],fix:[1,3,31,33,43,46,47,48,50,63,67,69,86,95,120],fix_rel_path:31,fixup_path:33,flag:[36,84,89,104,105,106,107,109],flat_dict:86,flatnonzero:103,flatten:[4,54,56,69,71,103,107],flatten_channel:56,flatten_offset:54,flexibl:[38,101,105],fli:[87,103],flies13:[104,105,107],flip:[47,49,53,63],flip_horizont:[49,109],flip_instances_lr:53,flip_instances_ud:53,float32:[10,43,53,54,56,59,61,62,63,64,66,69,72,73,76,77,105,106,109],float64:[77,86,105],floor:87,flow:[73,81,89,95,96,108],flow_shift_inst:81,flowcandidatemak:81,flowmaxtrack:[81,89],flowmaxtrackscandidatemak:81,flowtrack:81,fly:87,fly_clip:[105,108],fly_id:103,fly_node_loc:103,fly_node_veloc:103,fma:[104,105,106,107,109],fn:[13,70,107],focu:[48,49,74],focus:0,folder:[1,13,33,46,48,50,51,70,73,82,89,90,91,102,104,105,106,107,109,118],follow:[0,1,13,28,33,38,42,43,48,55,62,70,85,87,89,97,99,100,101,102,103,104,105,106,107,108,109],font_scal:103,foo:[26,86],footag:113,for_object:26,forc:[24,92,105,106,109,110],forelegl4:[103,104,105,106,109],forelegr4:[103,104,105,106,109],forg:[101,102,104,105,106,108],forget:[105,106],fork:1,form:[10,13,38,39,43,44,45,48,50,53,55,56,57,65,68,70,71,73,76,85,97,105,108],format:[9,10,12,13,31,33,43,51,62,63,65,73,85,86,89,91,92,95,96,104,105],format_id:21,formatted_ext_opt:[14,15],former:73,forum:100,forward:[73,92,103],forward_pass:73,foster:0,found:[3,13,25,26,33,38,55,70,73,76,81,85,86,95,98,102,103,105,106,109,110,117],fourth:[15,92],fp:[33,34,35,70,87,89,101,107,109],fraction:[13,47,68,73,76,89,106,109],fragment:80,frame:[4,6,7,9,10,11,12,13,15,17,18,24,29,33,34,35,47,48,56,58,62,66,68,70,73,76,79,80,81,84,87,88,89,90,91,92,93,94,95,96,97,98,99,100,103,104,105,106,108,109,112,113,115,117,120],frame_count:[103,105],frame_data_format:[23,24],frame_gt:70,frame_idx:[4,10,11,13,70,104,105],frame_ind:[58,66],frame_index:[13,33],frame_indic:[13,33],frame_list:86,frame_numb:33,frame_pair:70,frame_pr:70,frame_predict:105,frame_rang:[6,13],frame_str:86,framegroupset:4,frameitem:4,framematch:[79,81],framer:34,frames_per_chunk:11,frames_record:105,framework:[37,38,39,42,43,44,45,53,54,55,56,57,59,61,62,63,64,65,67,69,71,72,73,74,76,77,82,83,101],free:[0,1,42,90,99,100,102,109,116],freeli:87,freez:[50,73],frequenc:[50,104,107],frequent:87,fresh:[36,102],friend:100,from:[0,1,2,3,4,6,7,9,10,11,13,14,15,17,18,21,24,26,27,28,29,31,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,53,54,55,59,61,62,63,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,91,92,93,94,95,96,98,100,101,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119],from_arrai:10,from_block:65,from_candidate_inst:79,from_config:[39,41,42,43,44,45,53,61,62,63,67,71,74,75,76,82,106],from_cost_matrix:79,from_dict:85,from_filenam:[33,66],from_filepath:66,from_frame_idx:13,from_hdf5:33,from_image_filenam:33,from_inst:10,from_json:[51,85],from_json_data:24,from_json_dict:51,from_label:82,from_media:33,from_model_path:73,from_nam:85,from_names_and_edge_ind:85,from_numpi:[10,33],from_pipelin:65,from_point:10,from_pointsarrai:10,from_predict:10,from_skeleton:53,from_trained_model:73,from_unlabeled_suggest:66,from_user_inst:66,from_user_labeled_fram:66,from_video:11,fron:110,front:13,frontend:[107,109],frozen:[43,48,73,89],frozen_graph:73,fruit:87,fssl:102,full:[10,11,13,15,18,26,29,35,43,47,48,55,62,65,66,67,69,73,76,78,86,87,90,96,98,101,103],full_imag:67,full_image_height:62,full_image_kei:67,full_image_width:62,full_video:[15,18],fulli:[38,42,43,44,48,71],func:57,functon:43,fund:[100,101],furnish:42,further:[0,49,88,113],fuse:[38,45,48],futur:[46,96,115],g:[1,6,10,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28,29,30,33,37,45,48,50,53,55,62,66,67,70,72,73,74,78,79,85,86,89,90,92,95,96,101,102,103,104,108,113],gain:49,gamma:49,gammacontrast:49,gap:81,gather:61,gather_nd:76,gaussian:[48,54,56,59,69,77],gaussian_nois:[49,109],gaussian_noise_mean:[49,109],gaussian_noise_stddev:[49,109],gaussian_pdf:69,gender:0,gener:[1,4,9,11,13,22,27,28,30,35,38,39,41,43,44,45,47,48,49,50,51,53,54,55,56,59,62,64,65,66,68,69,70,73,74,76,77,79,81,82,83,84,88,89,92,94,95,96,97,100,101,102,104,105,106,107,108,109,110,112,113,115,116],generaliz:38,generate_skeleton_preview_imag:84,genericjsonadaptor:[22,26],genuineintel:[104,107],geometr:49,geometri:48,get:[1,2,3,4,7,9,10,13,17,29,33,35,36,38,42,45,62,65,76,78,79,85,86,88,89,90,92,94,95,96,98,99,103,104,105,106,108,109,110,112,115,116,117,119],get_all_gpu:78,get_all_items_from_group:4,get_alpha_tracker_frame_dict:15,get_alpha_tracker_instance_dict:15,get_alpha_tracker_point_dict:15,get_available_gpu:78,get_candid:81,get_config:74,get_config_fil:86,get_connection_candid:76,get_current_gpu:78,get_default:86,get_edge_point:56,get_edges_as_np_str:9,get_filtered_frame_idx:13,get_fram:33,get_frame_count:13,get_frames_saf:33,get_gpu_memori:78,get_instance_anchor:61,get_instance_score_seri:7,get_instances_point:3,get_item_data:4,get_item_data_idx:4,get_item_group:4,get_keras_model_path:73,get_mean_and_std_for_point:3,get_model_output_strid:73,get_most_stable_node_pair:3,get_next_suggest:13,get_nodes_as_np_str:9,get_occupancy_and_points_matric:9,get_package_fil:86,get_paf_lin:76,get_point_count_seri:7,get_point_displacement_seri:7,get_point_score_seri:7,get_points_arrai:10,get_primary_point_displacement_seri:7,get_raw_imag:4,get_ref_inst:81,get_shifted_inst:81,get_shifted_instances_from_earlier_tim:81,get_stable_node_pair:3,get_suggest:13,get_symmetri:85,get_symmetry_nam:85,get_template_points_arrai:3,get_timestamp:82,get_track_count:13,get_track_instance_match:80,get_track_occup:13,get_tracks_as_np_str:9,get_unlabeled_suggestion_ind:13,get_video_suggest:13,get_video_track_occup:13,git:[1,102],github:[1,99,101,102,103,108,109],githubusercont:[102,103,109],give:[7,73,85,88,89,90,92,95,96,98,102,110,115,116],given:[1,3,6,9,10,13,24,26,27,32,33,48,62,70,73,75,76,80,81,84,85,88,89,102,107,108],global:[48,49,60,73,77],global_pool:[48,71],globalpeakfind:60,go:[1,11,34,55,80,81,95,96,102,105,116,117],goal:[85,115,117],goe:[1,95,119],golai:103,good:[0,1,22,26,30,36,49,70,79,80,81,88,91,93,95,99,112,117],googl:[1,90,102,103,106,108,109],googleapi:[104,105,106,107],gordon:87,got:[79,117],gotten:95,govern:1,gpl:24,gpu:[49,55,73,78,88,89,90,98,101,104,105,106,107,108,109,112,117],gpu_devic:[104,105,106,107,108,109],grab:105,grab_fram:105,grabber:105,grace:[87,100,101],gracefulli:0,gracious:42,gradient:[49,73,77,88],grant:[42,100],graph:[48,56,71,73,74,76,85,89,92,97,105,117],graph_symmetri:85,graphic:[50,115],grappler:[104,107],grayscal:[33,42,43,47,63,66,73,104,118],grayscale_to_rgb:63,great:[33,106,107,112],greater:[38,45,47,48,69,73,76,89,95],greedi:[73,76,79,80,81,89,95,108],greedili:70,greedy_match:[79,81],green:[33,115],grei:[35,89,115,119],grew:28,grid:[54,56,59,64,66,69,73,77,105],grid_height:[54,56,59,64,69],grid_width:[54,56,59,64,69],gridlin:21,gritti:106,ground:[6,60,70,73,74,84,89,92,107,109,113],group:[4,10,48,49,72,73,74,76,81,83,85,86,88,97,100,101,105,107,116,117],group_arrai:83,group_class_peak:72,group_data:4,group_exampl:58,group_examples_it:58,group_inst:76,group_instances_batch:76,group_instances_sampl:76,group_set:4,groupset:4,groupset_data:4,grow:1,growth:[78,102,105,106,109],gt:107,guarante:[13,15,18],guess:94,gui:[9,10,13,25,26,35,50,90,91,93,94,95,96,100,101,106,110,111,112,113,115,118],gui_progress:35,guid:[13,27,73,76,89,91,96,100,101,104,107,108,117,119],guidelin:[1,100],gvoc:70,h264:[24,100],h5:[12,13,26,33,48,50,73,89,92,95,96,103,104,106,107,109,111,114,118],h5file:86,h5py:[33,85,86,103,114],h5read:114,h:[35,84,87,89,100,101],ha:[1,3,9,10,12,13,26,27,33,38,39,40,43,44,47,48,50,52,55,61,65,68,69,73,75,76,78,79,81,85,88,89,90,92,95,96,98,102,109,115,116,117,119],had:[55,81,90,102,104,105,106,107,108,109],hand:[15,85,91],handi:[66,92],handl:[14,15,16,17,18,19,22,23,24,25,27,28,29,30,33,46,73,76,81,85,105,106],handshak:36,hang:100,happen:[26,78,104],happi:[93,95],harass:0,hard:[49,70,74,88,92,95],hard_keypoint_min:[49,109],hard_to_easy_ratio:[49,74,109],harder:95,hardest:70,hardkeypointminingconfig:[49,74],hardwar:90,harm:0,has_edg:85,has_embedded_imag:33,has_fram:13,has_missing_video:13,has_nod:85,has_offset:82,has_only_first_choice_match:79,has_predicted_inst:10,has_tracked_inst:10,has_user_inst:10,hash:85,hashabl:86,hassl:108,have:[0,1,3,4,8,9,10,13,24,26,29,32,33,36,38,39,42,43,44,47,48,49,50,53,54,55,56,57,59,60,61,62,63,66,67,68,69,70,72,73,76,79,80,81,85,86,88,89,90,91,92,93,94,95,96,97,98,99,102,103,104,105,106,107,108,110,112,115,116,117,118,119],haven:[95,98,102,118],hdf5:[9,12,13,19,21,24,26,28,29,33,85,86,89,96,103,104,111,112,114],hdf5video:[13,33],head:[2,3,13,27,38,40,43,45,48,65,73,75,76,102,103,104,105,106,109],head_index:103,head_loc:103,header:92,header_data:36,headless:73,headsconfig:48,hear:100,heart:1,heatmap:77,heavili:48,height:[10,15,33,34,35,38,39,43,44,45,47,48,49,53,54,56,62,63,66,67,69,72,73,75,76,77,84,89,96],height_:33,held:47,help:[1,2,38,45,48,49,66,73,74,89,95,99,101,107,108,113],helper:[33,86],here:[1,21,33,70,73,77,80,86,87,88,92,95,96,97,100,103,106,107,108,110,111,112,113,114],herebi:42,heurist:[49,89,95,115],hexagon:87,hidden:78,hide:[78,92,104],high:[13,28,33,49,50,51,55,65,73,76,81,82,104,105,113],higher:[34,38,39,40,41,44,45,47,48,49,55,59,69,73,75,88,95,107],higher_hrnet_model:40,higherhrnet:40,highest:[40,49,72,89],highli:100,highlight:92,hindlegl4:[103,104,105,106,109],hindlegr4:[103,104,105,106,109],hint:[1,105,106,109,110],hip:70,hist:105,histori:73,histplot:107,hit:[1,95,110,117,118],hmac:109,hoc:48,hog:4,hog_bag_of_featur:4,hold:[10,21,33,75,76,92,95,116],holder:42,holist:107,home:[87,92,101,102,104,107,108,109],homebrew:102,hook:[10,85],horizont:[10,53],host:[90,109],hostnam:50,hotkei:95,hour:90,hourglass:[38,45,48,77,109],hourglassconfig:[39,48],hover:88,how:[8,11,35,39,47,48,50,67,70,79,81,86,87,89,90,91,92,93,94,95,96,97,98,99,103,104,105,106,107,108,110,112,113,115,116,117],howev:[48,92,100,106,113],hpc:89,hrnet32:40,http:[0,16,38,40,43,73,79,83,102,103,104,105,106,107,108,109],human:[14,15,16,17,18,19,22,23,24,25,27,28,29,30,51,77,101,113,117],hungarian:[72,79,83,89,95],hungarian_match:[79,81],hyperpamet:91,hyperparamet:[47,49,91,93,98,99,106],hyphen:89,i:[3,8,13,24,33,38,43,48,49,54,56,59,61,65,66,68,69,73,77,79,80,81,85,88,89,91,92,93,94,95,96,97,102,103,104,105,106,107,108,109,110,118],iccv:70,icloud:90,icon:109,id:[4,21,66,76,89,105,106,109,112],idea:[1,80,91,100,115,117],ideal:[10,55,97],idempot:74,ident:[0,6,38,43,44,48,55,66,68,69,71,73,80,81,84,85,87,89,92,93,95,96,103,115,119],identifi:[10,13,27,48,76,88,92,116],idl:90,idx:[4,6,13,33,105],idx_to_nod:85,idx_train:68,idx_val:68,ignor:[6,9,10,38,47,50,61,70,76,77,85,100,104,107,108],ignore_file_not_found:86,ii:8,illumin:49,illustr:112,imag:[4,10,13,15,18,24,33,35,39,40,42,43,46,47,48,49,50,53,54,56,59,62,63,66,67,69,73,76,77,81,82,84,85,86,87,88,89,90,91,92,95,96,97,98,104,105,106,107,108,110,113,116,117],image_dir:[15,18],image_height:[62,67,69],image_kei:[53,62,63,67],image_width:[62,67,69],imagenet:[42,43,47,48,63],imagenet_mod:[47,63,109],imagenet_preproc_v1:43,imageri:0,img:[33,34,35,73,77,81,84,104,105,108],img_b64:86,img_dir:16,img_height:53,img_scal:[81,89,108,109],img_to_cv:35,img_width:53,imgaug:49,imgfig:84,imgstor:[13,24,33],imgstore_from_filenam:33,imgstorevideo:[13,33],immedi:[54,95],immut:85,impact:[49,50,73,74,100],impatien:87,implement:[14,26,33,38,39,40,41,42,43,44,46,51,63,67,70,72,73,76,80,82,85,112],impli:[42,55],importanalysisfil:26,importantli:[54,56],improv:[1,39,48,49,50,55,62,73,74,81,98,99,106,109,110],imshow:103,in_q:35,in_transact:13,inappropri:0,inceptionresnetv2:[42,48],inceptionv3:[42,48],inch:84,incid:0,includ:[0,8,9,10,13,23,24,29,33,35,38,42,43,70,73,78,86,88,89,91,92,94,96,100,101,102,104,105,107,112,113,115],include_top:43,inclus:0,incom:[45,48,53,54,55,56,57,59,60,61,62,63,67,68],incomplet:82,incorpor:[81,107],incorrectli:[89,92],increas:[39,41,44,47,48,49,50,54,56,59,62,73,81,84,88,116],increment:[39,81],incur:41,ind:[13,76],indefinit:55,independ:[49,62,103],index:[4,7,9,10,12,13,27,31,33,35,46,47,56,59,61,62,66,72,73,74,76,77,78,81,83,85,86,89,96,100,104,105,106,109],index_by_origin:33,indic:[6,11,13,33,46,47,53,54,56,59,61,62,66,68,70,72,73,76,77,79,83,85,89,92,95,115],indirectli:45,individu:[0,10,15,18,33,42,49,54,55,62,64,65,66,74,81,89,95,104,108,117],inds1:83,inds2:83,induc:69,inf:[80,83],infer:[10,13,33,47,48,50,51,55,58,62,65,66,67,72,75,76,77,83,88,91,92,93,94,95,97,98,101,103,106,107,113,115,116,119,120],inference_lay:73,inference_model:[73,105],inference_tim:105,inferencelay:73,inferencemodel:[73,89],infin:76,infinit:55,inflat:109,info:[42,73,95,100,104,106,109],inform:[0,13,15,28,39,41,42,44,48,51,61,73,79,89,91,92,94,96,99,100,104,105,106,114,116,117,119],inherit:[14,38],init:[81,102,105,106,109],init_don:81,init_frame_count:81,init_set:81,init_track:81,initi:[32,36,38,39,40,42,43,44,48,49,50,55,56,66,73,76,78,80,81,82,89,99,101,103,105,106,109,112,113,117,118,120],initial_config:[51,82,96,106,107,109],initial_downsampling_step:40,initial_learning_r:[49,109],initial_model:[50,109],initial_shap:103,initialize_devic:78,innov:101,input:[12,33,37,38,39,40,41,42,43,44,45,47,48,53,54,55,56,57,59,61,62,63,64,65,66,67,68,69,71,73,74,75,76,77,81,82,83,86,88,89,98,100,104,105,106,107,109],input_d:[53,54,56,57,59,60,62,67],input_format:[33,89,96,104,109],input_ind:73,input_kei:[53,54,55,56,57,59,60,61,62,63,67,68,82],input_key_nam:57,input_path:89,input_predict:89,input_sc:[47,62,109],input_scal:[47,73],input_shap:[43,75],input_tensor:43,input_video:89,inquiri:101,insert:[10,13],insid:[73,86,88,89,92,96,114],inspect:[15,18,65,92,93,104,105,109,110,113],inspir:52,inst_a:6,inst_b:6,instal:[1,24,28,89,90,96,98,103,104,105,106,107,112,114,118],instanc:[0,3,6,7,8,9,13,15,24,26,28,31,33,35,39,41,42,43,44,45,47,48,49,51,53,54,56,59,60,61,62,63,65,66,67,68,70,71,72,73,74,75,76,79,80,81,82,84,85,87,88,89,90,91,92,94,95,96,97,98,103,104,105,107,108,109,113,115,116,117,120],instance_assign:76,instance_confidence_map:[54,60],instance_confmap:73,instance_confmap_head:65,instance_count:[8,13,79,81,103],instance_crop:[47,106,109],instance_gt:70,instance_i:[79,81],instance_idx:103,instance_imag:[54,60,62],instance_iou_threshold:81,instance_node_veloc:103,instance_peak:[73,105],instance_peak_v:[73,105],instance_pr:70,instance_scor:[9,10,12,73,105],instance_similar:[79,81],instancecentroidfind:[61,73],instanceconfidencemapgener:54,instancecropp:62,instancecroppingconfig:[47,61,62],instances_a:6,instances_b:6,instances_kei:[53,61,62],instances_list:79,instances_to_show:10,instanceslist:10,instancetyp:[79,80,81],instanti:[24,33,38,39,42,43,44,51,65,71,74,75,81,82,85],instead:[13,38,40,41,44,45,48,49,53,65,69,82,89,107,109,110],institut:101,instruct:[1,96,100,101,102,104,105,106,107,109,118],insult:0,int32:[53,56,59,61,62,66,72,76,77,83,105],int64:[66,86],integ:[9,13,38,42,43,45,46,47,48,49,50,59,62,63,67,69,72,73,76,77,89],integr:[39,60,73,76,77,101],integral_patch_s:[60,73,77],integral_refin:73,integral_regress:77,intend:[13,51,82,100,101],inter:110,interact:[11,13,50,73,87,102],interactive_and_realtime_infer:[104,105,106],interactive_and_resumable_train:[104,105,106],interest:[0,100],interfac:[13,33,73,85,92,93,96,102,104,105,109,112,113],interfer:102,intermedi:[37,38,39,42,43,45,48,73,92],intermediate_activ:42,intermediate_feat:43,intermediateactiv:42,intermediatefeatur:[37,38,39,42,43,45],intern:[13,81],interp1d:103,interp:103,interp_method:[38,39],interpol:[38,39,41,44,48,76,95,103],interpret:[59,76,112],intersect:[79,81,83,95],intimid:91,introduc:[40,44,48],intuit:107,invalid:[43,80],invalid_v:80,invert:[67,85],investig:0,invis:10,invisible_as_nan:10,invok:[33,35,74,110],involv:113,io:[4,6,7,9,10,62,66,68,70,73,82,89,114],iou:[79,81,89,95],iou_threshold:[79,81],ip:50,ip_address:50,ipynb:[104,105,106],is_arboresc:85,is_first_choic:79,is_from_multi_size_video:66,is_gpu_system:78,is_grayscal:73,is_hdf5:21,is_initi:78,is_json:21,is_miss:33,is_multi_inst:13,is_open:21,is_templ:85,is_valid:81,isinst:[13,27],isn:[1,33,88,91,92,96,100],isnan:[10,103],isol:102,isomorph:85,issu:[0,67,99,100,101,102,104],item:[1,4,10,13,66,86,92,105],item_group:4,item_list:4,itemstack:4,iter:[4,11,13,33,55,58,66,68,85,86,113,117],its:[0,4,13,26,33,49,55,61,62,63,67,73,74,76,78,80,88,92,95,96,100,101,102,113,116,117,118,119],itself:[3,10,49,75,86,89,94,95,103,104],j:101,jan:28,jia:77,job:[50,51,73,82,89,90,91,96,105,107,109,113],john:[1,87,100,101],join:[92,95,107],joint:[73,88,103,118],joshua:[87,100,101],journal:[100,101],jpg:[13,24,109],json:[12,13,14,15,16,17,18,19,21,22,23,24,25,27,28,29,30,31,50,51,73,85,86,89,91,92,96,104,106,107,109,110],json_data:51,json_data_dict:51,json_dump:86,json_load:86,json_str:[85,86],jump:[92,95],jun:[104,105,106],junyu:[87,100,101],jupyt:[102,112],just:[4,10,13,24,33,50,62,73,80,85,86,88,92,94,95,96,97,98,102,103,104,105,106,108,110,111,115,116,117,119],k:[4,74,103],kaiyu:77,kalman:[81,89],kalman_track:81,kalmaninitset:81,kalmantrack:81,kanad:81,kb:[103,104],kde:107,kde_kw:107,keep:[21,36,47,48,49,50,55,66,67,81,86,89,92,97,115],keep_confmap:60,keep_empty_fram:13,keep_full_imag:[62,67],keep_kei:57,keep_viz:89,keep_viz_imag:[50,109],kei:[4,7,9,10,13,15,27,43,46,50,53,54,55,56,57,58,59,60,61,62,63,65,66,67,68,69,70,73,79,80,82,83,85,86,95,103,104,105,107,116,119],kept:[55,62],kera:[38,40,42,43,46,47,49,60,63,65,69,73,75,82,83,104,106,107,109],keras_model:[60,65,73,75,82,83,106],kerasmodelpredictor:60,kerastensor:[106,109],kernel:[38,39,43,44,45,48,77],kernel_s:[38,39,43,44,77,106,109],key_by_column:80,key_id:109,key_map:68,keyboard:[92,94,95],keydevicemov:57,keyerror:13,keyfilt:57,keymapp:[65,68],keypoint:[12,16,26,49,70,74,79,88,92,107],keypoint_error:79,keyrenam:57,keyword:[1,35,43,66],kf_init_frame_count:[89,109],kf_node_indic:[89,109],kind:[24,42,99,103],kislin:[87,100,101],km:103,kmean:[4,103],knew:95,know:[10,92,102,105,119],knowledg:62,known:32,kocher:[87,100,101],kp:103,kwarg:[13,16,18,19,22,23,24,25,26,29,30,33,35,48,66,73,74,84],l1_cache_s:[104,107],l2_cache_s:[104,107],l3_cache_s:[104,107],l:[100,101,105,106],lab:[101,102],label:[4,6,7,9,10,13,15,16,17,18,19,23,24,26,27,29,31,33,35,43,46,47,48,49,62,66,68,70,73,81,82,83,85,87,88,90,93,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,117,118,119,120],labeled_fram:[10,13,104,105,108],labeledfram:[10,13,31,33,66,70,79,81,104],labels_a:13,labels_b:13,labels_config:82,labels_gt:[6,70,107,109],labels_path:[9,89,109],labels_pr:[6,70,106,107,109],labels_read:68,labels_test:13,labels_train:[13,68],labels_v:[13,68],labels_val_test:13,labels_with_imag:[104,105],labels_with_predict:89,labelscocoadaptor:16,labelsconfig:[47,82],labelsdatacach:13,labelsdeeplabcutcsvadaptor:18,labelsdeeplabcutyamladaptor:18,labelsdeepposekitadaptor:19,labelsjsonadaptor:24,labelsleapmatlabadaptor:25,labelsread:[13,65,66,68,70,73,82],labelsv1adaptor:[21,23,26],labori:113,lack:29,lag:92,lah:[104,105,106],lambdafilt:55,lambdamap:57,landmark:[48,76,77,85,92,97,104,107],languag:0,larg:[28,48,49,50,54,62,88,92,95,100,101],larger:[33,48,49,62,73,76,88,89,98,100],largest:[47,48,49,55,62],last:[9,13,33,36,38,42,43,54,56,62,63,64,69,73,76,77,78,81,89,92,96,100,118],last_frame_idx:33,last_gpu:109,last_init_t:81,last_match:81,last_t:81,latenc:[55,101,105],later:[49,92,95,102,110],latest:[50,101,102,109,110],latest_model:[50,109],latter:[55,73,89,99],launch:[100,102,118],lauri:101,layer:[37,38,39,40,41,42,43,44,45,47,48,67,68,71,73,83,106,109],ld_library_path:[102,104,107,108],lead:[49,55,78,88,103,104],leadership:0,leap:[12,25,31,38,45,48,85,92,109,117],leapcnn:[38,41],leapconfig:[41,48],learn:[41,43,44,46,47,48,49,50,72,77,88,91,96,98,100,106,109,113,115,116],learnabl:[38,45,48],learning_rate_schedul:[49,109],learningratescheduleconfig:[49,106,109],least:[49,68,96,104,105,106,107,108,109],leav:[55,69],left:[15,47,49,53,55,67,68,70,73,85,88,92,94,105,106,107,118],legend:[92,95,103,107],len:[13,33,105],length:[3,10,42,55,62,67,68,69,70,73,76,77,79,83,89,92,95,103,104,105,109],lenient:90,less:[34,48,68,100],let:[8,90,91,92,94,96,98,103,104,105,107,108,109,110,116,117,119],level:[0,10,13,15,28,33,44,45,51,62,65,70,73,75,76,81,82,89,104,105,106,113],lewi:101,lf:[13,108],li:[87,100,101],liabil:42,liabl:42,lib64:[104,107,108],lib:[86,102,104,107,108,109],libcubla:[104,107,108],libcublaslt:[104,107,108],libcudart:[102,104,107,108],libcudnn:[104,107,108],libcufft:[104,107,108],libcurand:[104,107,108],libcusolv:[104,107,108],libcuspars:[104,107,108],libmamba:102,libnvinf:104,libnvinfer_plugin:104,librari:[28,42,53,102,104,105,106,107,108,109],libx264:[34,100],licens:[24,42],liezl:101,lighter:115,lightli:87,lightn:73,lightweight:[33,102],like:[3,13,33,36,38,42,45,47,50,70,74,80,81,88,90,92,93,94,95,96,98,100,102,103,104,105,106,107,108,109,110,114,116,118],likewis:[88,109],limit:[13,33,36,42,48,62,77,81,89,92],linalg:103,line:[1,3,5,9,12,35,48,73,76,91,92,93,94,95,96,98,101,109,112,115],line_scor:[73,76],line_scores_sampl:76,linear:[13,38,45,48,103],linear_sum_assign:[76,83],linearli:[39,48],liner:102,link:[81,104],lint:1,linux:[96,101,102,104,105,106,107,108,109,118],list:[3,4,6,9,10,11,12,13,14,15,16,17,18,19,22,23,24,25,27,28,29,30,31,32,33,35,36,38,39,40,41,42,43,44,45,47,48,50,53,54,55,56,57,58,59,60,61,62,63,65,66,67,68,69,70,71,73,75,76,78,79,80,81,82,83,84,85,86,89,92,93,95,97,102,103,104,113,116],list_file_miss:32,list_physical_devic:102,list_points_arrai:6,listen:50,literatur:107,littl:[97,99,102],ll:[3,7,10,13,14,15,18,24,26,32,36,70,81,85,86,88,90,91,92,94,95,96,97,98,100,102,103,104,105,106,107,108,109,110,112,114,115,116,118,119],load:[10,11,13,21,24,31,33,42,43,48,49,51,55,66,70,73,85,102,104,105,106,107,108,109,112],load_all_hdf5:85,load_by_chunk:11,load_config:[51,106,107],load_fil:[13,70,104,107,108],load_hdf5:85,load_json:[51,85],load_labels_json_old:31,load_mat:85,load_metr:[70,107],load_model:[73,104,105,107],load_predicted_labels_json_old:31,load_training_config:51,load_video:[33,104,105],load_weight:106,loader:13,loc:[103,107],local:[11,48,49,59,60,64,70,72,73,77,91,92,96,103,104,105,106,107,108,110,112,117],localhost:[105,106,109],localpeakfind:60,locat:[3,7,9,10,13,15,29,33,35,51,64,70,73,77,88,90,92,95,97,103,107,109,110,116,117],locations_matrix:9,lock:[107,109],log:[45,46,50,73,89,105,106,109,110],log_dir:46,log_to_csv:[50,109],logdir:46,logic:[51,72,73,78,79,105],logicaldevic:78,longer:[49,62,73,76,89,90,92,94,108],look:[1,26,33,38,56,61,70,81,86,88,89,90,91,92,95,107,111,116,117],lookup:13,loop:[13,48,49,50,55,76,82,101,105,106,109,112,113,117],loopbio:33,looser:80,lose:[39,89,90,116],loss:[40,41,48,49,50,71,82,88,98,106,109,110,117],loss_frequ:[50,109],loss_funct:71,loss_scal:[49,74,109],loss_weight:[48,71,106,109],lossi:[13,34,100],lossless:[13,33,100],lost:[79,88,89,95,119],lot:[50,92],love:100,low:[28,38,45,49,73,87,92,105,106],lower:[15,34,43,48,49,70,76,80,86,88,95,100,107],lowest:[42,49,74,81,92,109,110],lr:[46,50,106,109],ls:[104,105,106,110],luca:81,lw:84,m:[83,86,89,95,96,100,101,108,109,110],mac:[92,116,118],machin:[73,89,91,93,96,98,100,102,103,104,107,108,110,112,113,117],maco:102,macosx:102,made:[1,42,95,101,119],magnitud:49,mai:[0,1,12,13,21,35,38,39,41,43,44,46,47,48,49,50,51,53,55,61,62,66,68,70,73,74,76,88,89,92,95,96,99,100,102,103,104,105,107,112,113,114,116,117,119],mail:0,main:[1,9,12,13,39,48,73,75,79,82,85,92,95,103,108,115,118,119],maintain:[0,13,43,49,54,55,101],major:[9,12,99,104,114],make:[0,1,4,9,10,13,33,48,51,54,56,59,64,66,68,69,71,73,74,78,80,83,85,88,91,92,94,95,96,97,102,104,105,106,107,108,113,116,117],make_arch:24,make_backbon:[38,42,43],make_backbone_fn:43,make_base_pipelin:65,make_block:[38,39,44],make_cattr:85,make_centered_bbox:[62,77],make_class_map:59,make_class_vector:59,make_confmap:[54,59,64],make_dataset:[65,66],make_decod:38,make_default:10,make_edge_map:56,make_encod:38,make_gaussian_kernel:77,make_grid_vector:[54,56,64,69],make_head:71,make_instance_cattr:10,make_label:73,make_line_sub:76,make_model:75,make_model_movenet:73,make_multi_confmap:54,make_multi_confmaps_with_offset:54,make_multi_paf:56,make_offset:64,make_paf:56,make_pipelin:73,make_predicted_inst:76,make_resnet_model:43,make_sample_group:4,make_scoped_dictionari:86,make_skip_connect:45,make_stack:45,make_stem:38,make_track:81,make_tracker_by_nam:108,make_training_pipelin:65,make_video_callback:13,make_video_for_image_list:[15,18],make_viz_pipelin:65,mala:[87,100,101],male:[87,105,116],mamba:102,mambaforge3:102,manag:[100,102],mani:[10,11,13,38,48,73,81,86,89,92,95,98,100,102,113,115,117],manipul:[10,104],manner:10,manual:[15,18,49,50,92,106,110,113,115],map:[4,6,28,38,43,45,48,50,54,56,57,59,62,64,65,66,68,70,71,72,73,76,77,81,82,83,84,85,88,89,92,96,104,106,107,109,113],mar:[70,107],mare:101,margin:62,marielisa:[87,100,101],mark:[10,49,92,97,115,116,117],marker:[35,89],marker_s:[35,89],markers:103,mask:[13,56,59,64,73,103],mask_offset:64,masking_and_pad:73,mat:[12,85,92],match:[4,10,12,13,24,33,35,38,45,47,48,58,61,66,70,72,73,76,79,80,81,83,85,86,89,92,95,96,108,109,114,119],match_candid:76,match_candidates_batch:76,match_candidates_sampl:76,match_dict_from_match_funct:80,match_dst_peak_ind:76,match_dst_peak_inds_sampl:76,match_edge_ind:76,match_edge_inds_sampl:76,match_frame_pair:70,match_funct:80,match_inst:70,match_instance_list:6,match_instance_lists_nodewis:6,match_line_scor:76,match_line_scores_sampl:76,match_lists_funct:6,match_point:83,match_scor:[70,107],match_score_threshold:[70,107],match_src_peak_ind:76,match_src_peak_inds_sampl:76,match_threshold:70,match_to:[13,23,24],matched_instance_dist:6,matchedframeinst:81,matching_funct:[79,81],matlab:[9,12,25,31,85,89,103,113,120],matplotlib:[46,82,84,103,105,107],matplotlibsav:46,matric:[3,6,9,103,113],matrix:[3,6,9,10,33,54,70,79,80,81,83,103,105,106,109],matsliah:[100,101],matter:[53,96,97],max:[7,38,39,44,47,54,56,67,73,76,79,81,88,89,98,106,109],max_edge_length:76,max_edge_length_ratio:[73,76,89,109],max_hard_keypoint:[49,74,109],max_height_and_width:[66,67],max_i:10,max_image_height:67,max_image_width:67,max_inst:[73,89,109],max_level:81,max_siz:69,max_strid:[48,67,109],max_track:[81,89],max_val:63,max_x:10,maxim:[95,100,117],maxima:77,maximum:[38,41,42,43,44,49,54,59,63,66,67,69,73,74,75,76,77,79,81,89,106],maximum_strid:[38,42,43,62,75],maxpool:39,mayb:13,mb:[103,104,105,106,109],mckenzi:[87,100,101],mean:[3,4,7,12,13,33,34,43,47,49,54,63,70,74,79,80,89,90,92,95,100,102,103,105,107,114,117],meant:[73,76],measur:[70,76,95],mechan:106,media:[0,33],median:[10,70],mediavideo:[33,104,105],medium:92,meet:[47,55,65,67,92],melanogast:[87,103,109,111],member:[0,1],memori:[28,41,44,47,48,49,54,55,62,73,78,88,89,98,102,104,105,106,109],memory_s:[104,107],mention:[104,107,108],menu:[91,94,95,98,100,102,109,110,114,116,117,118,119],merchant:42,merg:[1,10,13,24,42,79,81,89,92,94,96,110,119],merge_container_dict:13,merge_fram:10,merge_matching_fram:13,merge_nod:13,merion:87,meshgrid:69,mess:80,messag:[50,73,89,100,115],message_queu:36,meta:[4,73,85],metadata:[4,10,13,15,18,21,28,29,37,50,73,104,106,107,112],method:[4,7,11,13,14,15,16,17,18,19,22,23,24,25,27,28,29,30,33,35,36,38,39,45,46,48,52,55,62,70,73,75,76,77,78,79,81,82,83,85,87,89,92,96,100,101,104,107,108,115,116,118,119],metric:[46,47,50,70,74,82,89,92,106,107,109,112],mib:[78,109],mice:87,micromamba:[104,107,108,109],microsecond:50,microsoft:90,middl:44,middle_block:[44,48,106,109],midlegl4:[103,104,105,106,109],midlegr4:[103,104,105,106,109],midpixel:21,midpoint:[10,48,61],might:[13,79,91,94,95,102,103,105,106,108,109,110],mikhail:[87,100,101],millisecond:105,mimic:60,min:[3,7,101,106,107,109],min_batches_per_epoch:[49,109],min_crop_s:62,min_dist:3,min_edge_scor:76,min_hard_keypoint:[49,74,109],min_instance_peak:76,min_learning_r:[49,106,109],min_line_scor:[73,76],min_match_point:[89,108,109],min_new_track_point:[81,89,108,109],min_point:81,min_shifted_point:81,min_stable_dist:3,min_val:63,min_val_batches_per_epoch:[49,109],mine:[49,74,88],mini:[38,49,55,74],minibatch:[49,88],miniconda:[86,101,118],miniforg:102,minim:[49,50,55,95],minima:49,minimum:[33,49,54,59,63,64,70,71,73,74,76,77,80,81,89],minut:[87,117],mirror:53,miscellan:[69,86],misidentifi:[95,119],mismatch:67,miss:[10,13,32,33,47,54,70,72,76,81,92,95,104,107,108],missing_path:13,mistak:[95,119],mistaken:[95,119],mit:[42,101],mitelut:[87,100,101],mix:[38,45,47,48],mjpeg:[24,33],mkdir:[102,109],mkv:24,mm:87,mobilenet:[42,48],mobilenetv1:[47,63],mobilenetv2:[42,47,48,63],mock_centroid_confid:62,mockglobalpeakfind:60,mode:[46,47,63,73,74,88,96,102,108,110,117],model:[28,37,38,39,40,41,42,43,44,45,46,47,49,50,51,56,59,60,62,63,65,66,67,70,71,72,73,74,76,82,83,87,89,90,91,92,93,94,95,96,97,98,99,103,104,105,106,113,115,116,117,119],model_evalu:[104,105,106],model_info:107,model_input_kei:60,model_nam:[43,73],model_output_kei:60,model_path:[70,73,107,109],modelcheckpointonev:46,modelconfig:[48,51,75],modifi:[10,13,39,40,42,53,66,78,79,80,83,92],modul:[4,6,7,10,31,34,35,36,38,39,41,42,43,44,45,51,65,66,73,75,76,77,78,80,83,85,86,107],mok:[70,107],moment:102,monitor:[50,73,74,87,98,115],monochrom:43,monterei:102,month:87,more:[4,8,10,13,28,38,39,41,42,43,44,45,48,49,52,59,65,68,69,73,76,78,80,81,82,85,88,89,90,91,92,97,99,101,102,107,108,113,114,115,117,118,119,120],most:[3,4,8,13,34,36,38,40,45,49,72,73,74,88,90,92,96,100,102,105,106,107,113,115,119],mostli:[8,13,50,55,78,115],motif:33,mount:[96,106,108],mous:[95,116],move:[13,47,50,57,76,87,92,94,95,97,115,116,119],movement:[81,92,113],movenet:73,movenetinferencelay:73,movenetinferencemodel:73,movenetpredictor:73,movi:[34,87],mp4:[13,24,27,33,34,87,89,96,100,104,105,108,109,110,118],mpck:[70,107],mpck_part:107,mpl:[103,107],ms:[84,105],mse:74,mu:87,much:[39,40,47,90,92,93,105],multi:[10,38,42,43,45,48,54,55,62,67,70,71,73,76,77,78,82,88,89,96,100,101,117],multi_class_bottomup:[48,109],multi_class_topdown:[48,105,109],multi_inst:[48,76,91,104,109,110],multiclassbottomupconfig:48,multiclasstopdownconfig:48,multiconfidencemapgener:54,multiinstanceconfig:[48,76],multiinstanceconfmapshead:[65,71,73],multiinstanceconfmapsheadconfig:[48,71],multipl:[1,10,13,15,18,20,21,26,33,36,38,39,47,48,50,54,56,62,65,67,68,72,76,78,79,80,85,89,91,92,94,105,106,109,116,117],multipli:[39,54,56,62],munkr:76,murthi:[87,100,101],musculu:87,must:[13,15,24,33,38,43,47,48,49,50,54,56,61,67,69,70,71,73,80,81,82,83,85,86,94,97,100,104,105,106,107,108,109],must_be_set:52,musuculu:87,mutual:13,my:[97,110],my_model:89,my_video:[13,27],n:[13,65,80,83,86,89,95,101,102,103,104,105,106,107,108,109],n_bbox:[62,77],n_candid:76,n_centroid:[62,73],n_channel:72,n_class:[59,72,73],n_cluster:[4,103],n_compon:4,n_connect:76,n_deconv_modul:40,n_down_block:67,n_dst:83,n_ed:70,n_edg:[56,76],n_frame:13,n_gt:70,n_instanc:[53,54,56,59,61,62,66,73,76],n_instances_gt:73,n_line_point:76,n_node:[10,13,53,54,56,61,62,66,70,73,76],n_output_channel:40,n_peak:[72,76,77],n_point:[61,64,76],n_positive_pair:70,n_pr:70,n_predicted_inst:10,n_sampl:[72,76],n_src:83,n_symmetri:53,n_total:13,n_track:[13,59],n_tracked_inst:10,n_user_inst:10,n_valid:[73,105],n_visible_point:10,name:[1,7,9,10,13,14,15,16,17,18,19,22,23,24,25,27,28,29,30,33,34,37,38,39,42,43,46,47,48,49,50,51,53,57,61,62,63,67,68,70,71,73,74,76,78,82,85,86,87,89,92,96,97,100,102,103,104,105,106,107,109,110,116,118,119],name_list:85,name_prefix:40,nan:[10,13,54,55,61,69,70,72,73,76,77,80,81,83,89,103,104,105],narrow:1,nasnet:[47,63],nat:101,nathaniel:[100,101],nation:0,nativ:[46,69,89],natur:[38,87,100,101],navig:95,nc:102,ndarrai:[3,4,6,9,10,11,13,33,35,36,53,66,69,70,73,76,79,80,81,83,84,85,86,105],ndx:27,ndx_pose:13,ndxposeadaptor:27,nearbi:[48,80,92],nearest:[38,39,76,92,103],nearli:100,necessari:[0,13,73,82,91,96,100,102,104,106],necessarili:[1,76],need:[1,12,13,21,26,33,35,42,44,47,48,50,61,63,66,67,70,74,76,80,81,85,86,87,88,89,90,92,93,94,95,96,97,102,103,104,105,106,107,109,110,113,114,115,116,118,119],needn:[21,32],neg:[13,70,79,104,105,106,107,108,109],negative_anchor:13,neglig:73,neighbor:[39,76,85],neighborhood:[48,59,64,77],neither:94,nest:[13,68],net:[38,98],network:[38,39,41,42,43,44,45,47,48,49,50,61,73,75,76,77,92,96,98,101,104,105,106,107,109,117],neural:[41,42,76,98,101,104,105,106,107,109],neurosci:[100,101],never:[47,55,94],new_centroid_confidence_kei:60,new_centroid_kei:60,new_fold:106,new_fram:[10,13],new_img:81,new_key_nam:57,new_label:13,new_nam:85,new_path:[32,70],new_peak_confidences_kei:60,new_peaks_kei:60,new_prefix:32,new_shap:83,new_skeleton:85,new_track:13,newaxi:103,newel:77,newer:107,newest:102,newli:[24,31,95,117],next:[4,13,89,92,95,102,105,106,107,108,113,116,117,119],nice:26,nicer:1,nih:101,nitti:106,nix:[78,89],nixadaptor:28,nixio:28,nixtrack:28,nm91:87,nms_fast:79,nn:[10,89,106,107,108,109],no_empty_fram:109,node1:85,node2:85,node:[3,6,7,9,10,12,13,15,27,28,29,35,47,48,53,54,56,61,62,70,71,72,73,76,81,85,87,88,89,92,94,95,96,97,98,103,104,105,106,107,108,109,115,116,118],node_a:3,node_b:3,node_count:103,node_ind:76,node_indic:81,node_loc:103,node_loc_vel:103,node_nam:[3,9,12,13,85,103],node_to_idx:85,node_to_index:85,node_type_ind:76,node_vel:103,node_veloc:103,nodeless_point_dist:6,nodes_point:10,nois:49,non:[10,13,26,33,49,50,67,73,77,79,81,89,92,93,97,102,103,105],none:[4,6,7,9,10,11,12,13,15,17,18,21,23,24,26,27,28,29,31,32,33,35,36,38,39,40,43,45,46,47,48,49,50,52,53,56,60,61,62,63,65,66,67,69,70,71,73,74,75,76,77,78,79,81,82,83,84,85,86,89,98,102,103,104,106,108,109],nonetyp:33,noninfring:42,nonn:89,nonzero:48,norm:[45,48,103],normal:[10,38,39,47,48,49,54,62,69,70,73,76,77,79,95,100,106],normalization_keypoint:79,normalize_bbox:62,normalized_bbox:62,normand:[100,101],not_set:46,note:[3,4,9,12,23,24,29,33,45,49,55,74,85,86,92,94,98,100,102,103,104,105,107,108,109,111,114,116,119],notebook:[73,89,90,93,100,101,103,104,105,106,107,108,109,110,111,113],noth:[4,10,13,33,36,43,47,48,49,50,51,57,65,73,79,81],notic:42,notimplementederror:[15,26],now:[24,63,80,91,95,103,105,106,109,110,115,116],np:[9,13,33,73,76,77,83,86,103,105,107],npy:[24,33],npz:[70,106,107,109],ns104899:101,nstate:103,num:87,num_color_channel:73,num_conv:38,num_cor:[104,107],num_fc_lay:[48,71],num_fc_unit:[48,71],num_fram:33,numa:[104,105,106,107,108,109],number:[4,6,7,10,13,27,33,34,38,39,40,41,42,43,44,45,47,48,49,50,52,54,55,59,62,63,65,67,70,71,72,73,74,76,79,80,81,86,87,88,89,92,95,98,100,101,103,106,109,110,113,119],numer:[7,13,15,81,86,104],numpi:[3,4,6,9,10,11,13,27,28,33,35,36,53,66,69,70,73,76,77,79,80,81,83,84,85,86,102,103,104,105,106,107,108,109],numpyvideo:33,nutshel:113,nvidia:[101,102,104,105,106,108,109],nwb:[13,27],nwbfile:[13,27],o:[13,33,65,66,89,96,102,103,107,108,109,110],obj:85,object:[4,6,7,10,11,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28,29,30,31,33,35,51,68,70,79,81,84,85,86,102,104,105,107,108,109],objectss:10,oblig:0,obtain:[42,70,73],obvious:95,occlud:[48,70,92,116],occup:[9,13,113],occupancy_matrix:[9,114],occupi:[13,48],occur:[10,13,50,55,95,113,115,116,119],occurr:13,octet:[103,104,109],odd:77,of_max_level:[81,89,108,109],of_window_s:[81,89,108,109],off:[1,46,70,73,90,95,99,104,106,107],offens:0,offic:101,offici:[0,100,102],offlin:0,offset:[10,48,54,59,64,65,67,71,73,77,82],offset_i:67,offset_refin:[48,109],offset_x:67,offsetrefinementhead:[65,71,73],offsets_head:65,offsets_ind:73,offsets_threshold:54,often:[50,70,74,77,95,96,100],ohkm:[49,74],ohkmloss:74,ok:[70,103,104,106,107,109],oks_scal:70,oks_stddev:70,oks_voc:[70,107],old:[24,31,32,85,87,94],old_key_nam:57,old_nam:85,old_path:32,old_prefix:32,old_skeleton:85,old_track:13,older:81,ommit:89,on_batch_begin:46,on_batch_end:46,on_epoch_begin:46,on_epoch_end:46,on_train_batch_begin:46,on_train_batch_end:46,on_train_begin:46,on_train_end:46,onc:[1,48,55,78,90,91,94,95,96,99,100,102,104,105,106,109,110,112,113,115,117,118,119],one:[4,10,13,33,43,48,50,51,52,53,59,65,67,68,69,70,73,75,81,82,85,89,91,92,95,97,98,101,102,104,105,106,107,108,109,117,118,119,120],oneapi:[104,105,106,107,109],onednn:[104,105,106,107,109],onedr:90,oneof:52,ones:[13,44,62,68,73,76,82,102],onli:[1,9,10,13,33,35,39,43,44,46,47,48,49,50,52,62,65,66,68,73,76,78,79,80,81,85,89,90,91,92,94,95,96,98,100,101,102,105,106,107,108,109,110,113],onlin:[0,49,74,88],online_min:[49,109],online_shuffl:[49,109],only_labeled_fram:109,only_suggested_fram:109,onto:[62,68,105],op:[37,38,39,42,43,44,45,53,54,55,56,57,59,60,61,62,63,64,65,66,67,68,69,71,72,73,74,76,77,78,82,83,104,107],op_level_cost_estim:[104,107],open:[0,1,13,21,33,85,86,87,89,91,92,94,99,100,101,102,104,107,108,109,110,111,120],open_in_gui:109,opencv:[33,34,35,96,104,105,106,107,108,109,110],oper:[4,13,38,39,41,44,47,54,55,56,62,63,65,66,67,68,69,70,73,74,76,77,100,104,105,106,107,109],oppos:51,opt:[100,102],optic:[81,89,95,96,108],optim:[47,48,50,51,53,55,65,71,74,76,82,83,88,100,104,105,106,107,108,109],optimal_group:73,optimization_callback:82,optimization_config:65,optimizationconfig:[49,51,65,82],optimizer_v2:82,optimizerv2:82,option:[1,4,6,8,9,10,11,12,13,14,15,17,18,21,23,24,26,27,28,29,31,32,33,35,36,38,39,42,43,44,45,46,47,48,49,50,51,53,56,60,61,62,63,65,66,67,68,69,70,71,73,75,76,77,78,79,81,82,83,84,85,86,88,89,92,95,96,102,105,108,113,116,119,120],orang:[92,95,116],order:[4,10,13,33,38,43,47,48,49,53,55,61,63,66,67,68,73,74,76,77,80,81,86,96,97,103,104,116,117],org:[0,16,28,38,40,43,73,104,107,108],organ:50,orient:[0,33,88,92],origin:[1,9,10,13,33,35,38,39,41,44,54,56,66,67,86,88,89,93,94,96,98,102,115],os:[86,101,102,104,105,106,107,108,109,110],osf:87,other:[0,3,6,10,13,24,26,29,33,42,44,49,50,51,65,66,67,68,75,79,80,81,85,86,89,90,91,92,96,98,99,100,101,102,103,104,105,106,107,109,111,112,116,117],otherwis:[0,1,9,10,13,15,18,33,38,42,43,55,63,65,69,73,85,89,92,96,102,103,110,116],our:[1,2,80,90,91,96,100,101,102,103,104,105,107,109,117,118,120],out:[3,10,13,28,42,47,49,50,55,65,73,76,88,90,92,95,98,99,101,102,104,105,106,107,108],out_q:35,outgo:[53,54,55,56,57,59,60,61,62,63,67,68],outlin:92,output:[9,10,12,13,17,27,29,33,35,37,38,39,40,41,42,43,44,45,48,51,53,54,56,57,59,61,62,65,66,67,68,69,71,73,74,75,76,82,85,88,89,92,96,102,104,105,106,107,109,110],output_callback:82,output_dir:13,output_filenam:33,output_filt:39,output_height:73,output_ind:73,output_kei:[53,54,55,56,57,59,60,61,62,63,65,66,67,68,82],output_key_nam:57,output_path:[9,13,109],output_predict:89,output_scal:[40,43,84],output_strid:[38,42,43,45,48,54,56,59,69,71,73,106,109],output_width:73,outputsconfig:[50,51,82],outsid:[10,85],over:[3,4,6,8,10,13,49,50,51,55,66,68,69,73,76,77,79,81,83,84,88,89,90,92,95,103,105,106,107],overal:[6,10,48],overfit:[49,88],overlai:35,overlap:[13,79,81,89,92,95,99],overload:73,overrid:[33,35,46,89],overridden:[11,73],overview:[100,101,104,120],overwrit:[13,27,50,82],own:[4,26,55,90,91,92,101,102,105,106,113,116,120],ownership:4,p15:87,p50:[70,107],p75:[70,107],p90:[70,107],p95:[70,107],p99:[70,107],p:102,packag:[47,82,86,89,90,91,94,96,100,101,103,104,105,106,107,108,109,114,118],pad:[47,55,62,66,67,69,73,89],pad_bottom:67,pad_right:67,pad_to_strid:[47,67,73,109],pade:73,paf:[10,48,49,56,65,73,74,76,82,84,89],paf_group:73,paf_line_point:73,paf_lines_sampl:76,paf_output_strid:73,paf_scor:73,pafs_head:65,pafs_ind:73,pafs_sampl:76,pafs_strid:76,pafscor:[73,76],page:[1,2,101,102,109,110],pai:90,pair:[3,6,48,53,70,71,73,76,79,83,84,85,87,89,95,107,110,118,119],pairedreceiv:36,pairedsend:36,pairwis:[6,56,70,81],palett:[35,89,92],pan:88,panda:[103,107],panel:[95,109,116,118,119],papadoyanni:[87,100,101],paper:[39,41,70,87,100,101],parallel:[4,48,49,50,55],parallelfeaturepipelin:4,param:[13,25,33,40,66],paramet:[4,6,7,9,10,11,12,13,15,17,24,26,27,29,31,32,33,35,38,39,40,41,42,43,44,45,49,51,52,53,54,55,56,59,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,88,89,91,95,96,98,99,100,106,108,109,110,112,113],parametr:51,parent:[50,97],pars:[31,51,73,86],parse_uri_path:86,parsed_json:31,part:[3,32,47,48,49,53,56,61,65,70,71,73,74,76,85,88,89,92,96,97,113,116,117,118],part_affinity_field:[56,73],part_nam:[48,71,76,82,106,109],partaffinityfieldsgener:56,partaffinityfieldshead:[65,71,73],partaffinityfieldsheadconfig:[48,71],partial:[85,87,113],particip:0,particular:[24,42,68,92],particularli:[44,66,76,78],partit:76,partloss:74,pascal:70,pass:[1,10,12,21,33,35,38,46,60,73,76,95],patch:[62,73,77],path:[9,12,13,17,27,31,32,33,34,35,39,43,46,47,48,50,51,66,70,73,82,86,89,90,91,92,95,96,100,102,103,106,107,108,109,110,114],path_a:13,path_b:13,path_to_video:[13,27],pathlib:[13,27],pattern:[38,45,46,50],pavel:42,paw:87,pb:73,pca:4,pci:[105,106,109],pck:[70,107],pck_voc:[70,107],pckage:110,pd:[103,107],pdf:[38,40,54,69,77,105],peak:[48,54,55,59,60,64,72,73,76,77,84,89,105],peak_channel_ind:[72,73,76,77],peak_channel_inds_kei:60,peak_channel_inds_sampl:76,peak_class_prob:72,peak_confidences_kei:60,peak_ind:[72,76],peak_point:[72,77],peak_sample_ind:[72,77],peak_sample_inds_kei:60,peak_scor:76,peak_scores_sampl:76,peak_threshold:[60,73,89,109],peak_val:[72,73,76,77],peak_vals_kei:60,peakid:76,peaks_kei:60,peaks_out_kei:60,peaks_sampl:76,peek:[65,103],penal:[73,76,89],penalti:[73,76,89],pep8:1,per:[4,7,11,33,35,41,44,48,49,73,79,80,81,84,88,89,95],per_group:4,percentag:[70,89,107],percentil:[70,107],pereira2022sleap:[100,101],pereira:[41,87,100,101],perf_count:105,perfect:[10,49,70],perfectli:[10,13,15,18,54,103],perform:[38,39,40,45,46,47,48,49,50,51,55,60,62,70,73,74,76,78,79,81,83,88,89,99,102,104,106,107,109,113],perhap:90,period:81,perman:0,permiss:[0,42,107,109],permit:42,perona:70,persist:79,person:[0,42,76,85,102,118],petri:87,pgm:24,physic:[0,78,101],physical_devic:[102,105,106,109],physicaldevic:[78,102],pi:77,pick:[79,91,92,95,106,116],pil:86,pip:[28,100,101,103,104,105,106,107,108,109,110],pipelin:[4,13,33,49,55,57,62,66,70,73,76,81,82,89,91,95,98,103,106,109,110,117],pipeline_build:82,pipelinebuild:82,pix_fmt:100,pixel:[10,33,35,47,48,49,53,54,56,59,62,67,70,73,76,77,79,89,98],pkg:[87,91,96,104,105,106,107,110],pkzip:24,place:[1,13,55,66,70,79,86,90,92,93,95,96,102,110,112,113,119],placement:[78,92,97,116],plai:104,plan:90,plateau:49,plateau_cooldown:[49,106,109],plateau_min_delta:[49,106,109],plateau_pati:[49,106,109],platform:[102,104,105,106,107,108,109],playback:[34,100],pleas:[1,87,100,101,104,107,108],plot:[10,84,92,103,104,105,107,108],plot_confmap:84,plot_fn:46,plot_img:[10,84],plot_inst:[10,84],plot_instance_node_veloc:103,plot_paf:84,plot_peak:84,plot_predict:10,plt:[103,105,107],plu:[4,10,95],png:[13,23,24,33,46,50],point:[1,3,6,7,9,10,13,15,35,48,53,54,56,59,61,62,64,65,66,67,70,72,73,76,77,79,81,83,86,89,91,95,98,104,105,107,116,117],point_confid:10,point_dist:6,point_match_count:6,point_nonmatch_count:6,point_scor:[9,12],point_val:72,pointarrai:10,points1:83,points2:83,points_and_scores_arrai:10,points_arrai:10,points_gt:70,points_kei:67,points_pr:70,pointsrescal:67,poli:103,polici:[0,78],polit:0,poll:50,poll_timeout:46,poller:50,polynomi:103,pool:[4,38,39,41,44,48,67,70],pool_before_conv:38,pooling_strid:[38,39,44],poolingblock:44,poor:[48,95,107],poorli:115,pop:[10,92,102,116],popul:79,popular:42,port:[11,50,104],port_numb:50,portabl:[33,82],portion:[42,45],pose:[13,27,41,48,70,76,77,81,85,89,99,105,106,107,108,109,112,113,117],poseestim:[13,27],poseestimationseri:[13,27],posit:[0,13,28,43,70,88,89,92,95,104,107,116,117],positive_pair:70,posix:86,possibl:[13,42,73,76,80,81,82,88,91,95,96,97,100,101,106],post:[0,48,81,83,87,100,103],post_connect_single_break:[81,89,108,109],post_inference_track:[104,105,106],postpon:13,postprocess:73,potenti:[18,50,55,61,73,102,106,113],power8:102,ppm:24,pr:1,practic:49,pre:[43,48,78,81,89,90,92,105,108,109],pre_cull_funct:81,pre_cull_iou_threshold:[89,108,109],pre_cull_to_target:[89,108,109],pre_track:81,preact:43,prealloc:[73,78],preced:89,preceed:89,precis:[41,48,70,92,107,113],predecessor:85,predict:[6,8,10,13,31,47,48,50,62,65,70,71,73,74,76,79,81,88,89,91,93,95,96,98,101,103,104,105,106,107,108,109,111,112,113,116,117,119,120],predict_on_batch:[73,105],predictcost:[104,107],predicted_center_instance_confid:60,predicted_center_instance_point:60,predicted_centroid:60,predicted_centroid_channel_ind:60,predicted_centroid_confid:60,predicted_centroid_sample_ind:60,predicted_inst:[10,13,60,67,76],predicted_instance_confid:60,predicted_instance_confidence_map:60,predicted_instance_scor:76,predicted_peak_scor:76,predicted_suggest:110,predictedcenterinstancenorm:60,predictedinst:[6,10,13,27,70,73,104,105],predictedpoint:[10,79,104],predictedpointarrai:10,predictions_fil:108,predictor:[73,104,105,107,109],preexist:[13,27],prefer:[33,48,51,80,89,92,97,99,100,102,118],prefetch:[13,33,49,55,73,109],prefix:[38,39,40,44,46,70,86,89,109],preform:92,preload:[49,55],preload_data:[49,109],prepar:[35,110],prepend:[38,39,46,50,69,89],preprocess:[13,42,43,47,49,63,73,75,109],preprocessingconfig:[47,63,67],preprocesss:106,present:[10,13,33,38,48,51,54,56,61,62,65,73,77,81,85,89,92],preserv:[13,47,86],preset:[34,100],press:[88,102,118],pretrain:[42,43,47,48,50,63,101,106],pretrained_encod:109,pretrainedencoderconfig:[42,48],pretti:[76,105,107],prev:116,prevent:[13,38,45,48,49,50,55,73,100,104,105],preview:[84,85,86,88,98],preview_imag:85,previou:[21,50,54,56,59,81,94,95,96,102,106,119],previous:[73,85],primari:39,primarili:[13,43,67,97],primary_nod:7,primit:[13,69,73],princeton:101,principl:26,print:[5,13,65,69,73,78,102,103,104,105,106,107,114],prior:[13,54,55,56,71,81,92,95,106,116],prioriti:[1,90],privat:0,privileg:[26,102],pro:90,probabl:[13,48,53,56,59,72,73,77,86,88,90,103,105,107],problem:[1,76,89,95,99,102,115],procedur:[10,49,70,104,107],process:[4,11,13,27,33,36,48,49,55,57,62,65,66,67,69,81,86,88,90,91,95,96,98,100,106,112,113,115,117],processingmodul:[13,27],produc:[6,33,48,54,55,56,63,65,66,71,73,81,88],product:[76,109],profession:0,profil:[50,51,89,93,96,109],profile_graph:[50,109],program:50,programmat:73,progress:[13,24,28,35,41,44,73,89,115],progress_callback:[13,23,24],progress_queu:35,progress_report:73,progressreporterzmq:46,project:[0,10,13,27,89,90,91,92,93,94,96,98,104,110,113,116,117,120],promot:[49,55],prompt:[25,89,91,92,102,110,118],prone:1,proof:115,proofread:[89,92,93,96,101,113,116,120],propag:[92,95],properli:[66,104,107,108],properti:[4,10,11,13,14,15,16,17,18,19,21,22,23,24,25,27,28,29,30,33,37,38,39,40,41,42,43,44,50,53,54,55,56,57,59,60,61,62,63,65,66,67,68,71,73,75,79,81,82,85],proport:[54,56],propos:1,protobuff:52,protocol:50,proven:[9,13,68,109],provid:[13,15,26,33,38,39,41,42,43,44,45,47,48,49,51,53,61,62,65,67,68,70,71,73,75,76,77,78,81,82,85,87,89,90,92,93,102,105,107,113,115],prune:81,prune_shifted_inst:81,pseudo:13,pt:104,pts_gt:84,pts_pr:84,pub:[36,50],publish:[0,36,42,50,100,101],publish_address:[50,109],publish_upd:[50,109],pull:[47,65,76,109],pup:87,pure:105,purepath:[13,27],purpos:[10,38,42,45,48,51,57,73,101,113],push:1,push_back_messag:36,put:[42,76,86,95],px:[87,107],py:[11,13,26,86,89],py_funct:76,py_util:104,pyimagesearch:79,pynwb:[13,27],pypi:[101,102,104,105,106,107,108,109,110],pyplot:[103,105,107],pyramid:[81,89],python3:[86,104,107,108],python:[12,13,24,28,37,38,39,42,43,44,45,53,54,55,56,57,59,60,61,62,63,64,65,66,67,68,69,71,72,73,74,76,77,78,79,82,83,86,89,90,95,100,101,102,103,104,105,106,107,108,109,110,112,113,120],pytorch:40,q:[107,108],qq:107,qqq:[104,105,106,107,108,109,110],qt:[14,15,35,89],qualiti:[34,100,113],quantif:101,quantil:[79,81,89],quantit:113,quarter:[73,77],qubvel:42,queri:[75,78,79,85],query_inst:[79,81],question:[1,93,100],queue:[35,81],quick:[87,89,92,104],quickli:[65,92,95,115],quiver:84,r01:101,r:[89,92,103,104,105,106,109,113,114],race:0,rag:[55,69,73,76,89],ragged_tensor:[69,73,76],raggedtensor:[55,69,73,76],rais:[13,15,33,43,50,52,61,62,65,67,68,73,78,85,86],raise_error:[13,33],raise_warn:33,ran:98,random:[43,48,49,50,53,68,98,116,117],random_crop:[49,109],random_crop_height:[49,109],random_crop_width:[49,109],random_flip:[49,109],randomcropp:53,randomflipp:53,randomli:[13,42,49,92,106],rang:[6,10,13,27,33,34,42,43,49,62,63,69,70,73,76,86,88,89,92,96,98,103,107],rangelist:13,rank:[13,33,42,54,55,56,61,63,69,73,77],rapidli:101,rate:[34,43,46,47,49,50,73,91,96,106,109],ratecolumn:73,rather:[50,54,55,59,61,67,90,96,103],ratio:[47,49,66,67,73,74,83],ravindranath:[87,100,101],raw:[4,21,47,49,51,53,54,56,66,73,102,103,105,108],raw_image_s:66,rc:102,rcparam:103,re:[1,8,12,13,26,81,89,90,91,92,93,94,95,96,97,99,100,102,103,104,105,106,107,108,109,110,112,114,115,117,119],re_init_aft:81,re_init_cooldown:81,reach:[36,55,99,100,101],read:[12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,33,35,51,66,68,70,89,91,95,96,100,101,104,105,106,107,108,109,112,114,115,120],readabl:33,reader:[13,33,35,66,82],readi:[1,73,106,112,115,117,120],real:[33,73,76],realiz:92,realli:[55,86],realtim:[76,100,101],reappli:73,reason:[0,49,76],rebuild:[13,104,105,106,107,109],rec:105,recal:[70,92,107,117],recall_threshold:[70,107],recarrai:10,receiv:[35,36,42,50,105,106,117],recent:[4,119],recept:[39,41,43,44,48,88,98],reciproc:[37,48,54,56,59,69],recogn:102,recommend:[1,50,55,73,99,100,101,102,104,105,106,107,108,117,118],recomput:112,reconstruct:100,record:[10,33,87,105,106,109,110,113],recording_dur:105,recov:[41,44,48,62,105,106,109,110],rectangl:92,rectangular:92,recurs:86,red:[33,95,115],reduc:[39,44,48,49,50,54,61,74,84,109],reduce_on_plateau:[49,106,109],reducelronplateau:109,reduct:[7,49,54,56,67],reduction_factor:[49,106,109],redund:[13,80,81],ref:[40,79],ref_img:81,ref_inst:[79,81],ref_t:81,refer:[10,13,21,33,47,70,73,76,77,79,81,83,92,95,100,104,105,107],referenc:[13,70],refin:[38,39,45,48,54,62,65,71,73,77,82,99,113],refine_conv:[38,45,48],refine_convs_:38,refine_convs_activ:38,refine_convs_batch_norm:38,refine_convs_batch_norm_before_activ:38,refine_convs_batchnorm:45,refine_convs_filt:[38,45],refine_convs_filters_r:45,refine_convs_first_filt:38,refine_convs_kernel_s:38,refine_convs_use_bia:38,reflect:[49,53,70],refrain:102,regard:0,regardless:[0,13,49,50,73,86,88],regim:49,region:[48,53,88,92],regist:[10,14,15,16,17,18,19,22,23,24,25,27,28,29,30,85,102,104,107,108],regress:[64,73,77],regular:[10,81,89,92,115],regularli:115,reinstal:[105,106,109,110],reject:[0,73,76],rel:[3,10,37,38,40,42,43,45,48,49,50,54,56,59,61,62,66,73,76,77,88,95,97,98,117],relabel:85,relabel_nod:85,relat:[26,46,47,48,49,50,51,65,68,82,85,104],relationship:[10,48,85],releas:[1,101,102,109,110],relev:[1,14,15,73,92,119],reli:[43,48,51,73,81],reliabl:[48,81,100],relianc:48,religion:0,reload:[33,104,105,106,108],relu:[38,39,45,48],remain:[13,47,48,69,70,73,80,95,102],remaind:55,remap:65,remot:[13,89,91,101,102,117],remov:[0,9,10,13,66,70,72,79,80,81,85,86,89,94,95,97,102,108,110],remove_all_track:13,remove_empty_fram:13,remove_empty_inst:[10,13],remove_empty_tracks_from_matric:9,remove_fram:13,remove_inst:13,remove_predict:13,remove_redund:10,remove_second_bests_from_cost_matrix:80,remove_suggest:13,remove_track:13,remove_untrack:10,remove_untracked_inst:13,remove_unused_track:13,remove_user_inst:13,remove_video:13,renam:[57,85,118],rename_skeleton:85,render:[46,50,73],repeat:[1,38,39,48,55,67,113,115,118],repeatedli:[13,105],repercuss:0,replac:[10,13,24,32,33,39,54,59,64,68,69,70,71,77,80,83,85,91,92,100,102,106,108,115],replace_path:70,replic:[43,62],replica:[105,106,109],repo_id:109,report:[0,1,13,73,87,89,100],report_period:73,report_r:73,repositori:[42,87,102,109,112],repres:[0,4,10,13,15,33,35,42,48,59,66,70,76,77,81,85,86,92,97,99,104],represent:[0,13,41,43,44,48,51,73,76,77,85,86],reproduc:106,request:[11,33,55,103,104,109],requir:[10,13,24,26,33,38,47,48,49,50,51,62,63,65,67,73,75,76,88,89,96,102,104,107,108],rescal:67,research:101,reset:[33,55,83,89,102,117],reset_input_lay:83,reshap:[77,103],reshuffle_each_iter:55,residu:[38,39,40,43],resiz:[35,47,62,66,73],resize_and_pad_to_target:[47,67,109],resize_imag:[35,67],resize_input_lay:73,resnet101:[42,43,48],resnet152:[42,43,48],resnet18:[42,48],resnet34:[42,48],resnet50:[42,43,48],resnet:[48,109,117],resnetconfig:[43,48],resnetv1:[43,47,48,63],resnetv2:[43,47,63],resnext101:[42,48],resnext50:[42,48],resnext:43,resolut:[37,38,39,40,42,45,47,48,49,84,87,102],resolv:[76,94,103,104,109],resolved_fram:13,resourc:[48,49,74],respect:[0,28,35,38,43,44,48,49,50,55,56,69,74,77,87,116],respons:[38,50,89,103,104,109],rest:[38,85,105],restart:[102,104,105,106,108],restor:103,restrict:[42,64,86],result:[0,3,4,10,13,15,18,21,28,33,38,39,43,44,45,46,48,49,58,62,68,73,74,81,82,85,86,88,89,90,92,95,99,103,104,105,106,108,112],resum:89,retain:[48,79],retrack:[89,105,108],retriev:[10,76,107],return_class_map:73,return_class_vector:73,return_confid:13,return_confmap:73,return_crop:73,return_descript:[65,69],return_dict:85,return_new:13,return_paf:73,return_paf_graph:73,reus:[13,38],revers:[13,43,63],review:[0,1,13,81,95,100,101,120],reweight:74,rgb:[33,42,43,47,63,73],rgb_to_grayscal:63,rich:[73,89,109],richer:[41,44],right:[0,1,42,47,49,53,67,85,92,95,97,103,113,116,118,119],rm:[102,104,109],roadmap:1,robust:[79,81,88,89,92,109],robust_best_inst:[79,81],roll:103,ronch:70,ronneberg:44,root:[76,107,109,110],root_dir:86,rotat:[3,49,88,92,103,106,109,116],rotate_on_node_a:3,rotation_max_angl:[49,109],rotation_min_angl:[49,109],rough:[73,77],roughli:[26,76,87],round:[68,104,106],routin:73,row:[4,9,10,53,59,62,64,67,76,79,80,83],row_count:4,row_item:80,rst:[104,105,106],rtx:[105,106,109],rubric:38,rule:[88,97],run:[4,8,11,13,35,46,50,51,65,66,73,76,78,81,82,83,88,89,91,92,94,95,98,100,102,103,105,106,108,109,112,117,119,120],run_fold:50,run_nam:[50,89,96,106,109],run_name_prefix:[50,109],run_name_suffix:[50,109],run_path:[50,82],run_track:81,runs_fold:[50,109],runtim:[41,44,51,78,90,104,105,106,108,109],rw:[104,105,106],s0:109,s1:103,s2:103,s41592:38,s:[0,1,10,13,15,17,18,21,24,26,29,31,33,35,36,38,40,42,43,45,47,50,54,55,56,59,61,63,65,66,67,69,70,73,75,76,79,80,81,83,85,86,87,88,89,90,91,92,94,95,96,97,98,100,101,102,103,104,105,106,107,108,109,110,112,113,116,117,119],safari:109,safe:[13,100],safe_build:34,safely_gener:73,sai:90,salk:[0,1,99,100,101],same:[7,10,13,15,28,38,39,40,41,42,43,44,45,48,49,50,51,53,54,55,56,59,62,63,64,65,66,67,68,69,70,71,72,73,74,76,77,79,80,84,85,86,88,90,91,92,93,94,95,96,100,102,104,108,109,110],sampl:[4,13,43,46,47,49,54,55,56,59,64,68,69,72,73,76,77,87,88,92,98,99,103,111,112,113,116,120],sample_group:4,sample_ind:77,sample_method:4,sample_weight:74,samples_per_group:4,samples_per_video:4,samuel:[87,100,101],sane:[87,100,101],sanit:82,sanitize_scope_nam:82,sarah:[87,100,101],satisfactori:113,satisfi:[109,110,119],save:[9,12,13,24,26,31,33,34,35,46,47,48,49,50,51,66,70,73,81,82,85,86,87,89,91,92,94,96,100,103,104,106,107,109,110,117,120],save_all_hdf5:85,save_dict_to_hdf5:86,save_fil:[13,26],save_fold:46,save_frame_data:[23,24],save_frame_data_hdf5:13,save_frame_data_imgstor:13,save_hdf5:85,save_json:[51,85],save_labeled_video:35,save_output:[50,109],save_path:73,save_shifted_inst:[81,89,109],save_trac:73,save_tracked_inst:81,save_visu:[50,109],save_viz:[89,109],savedmodel:73,savgol_filt:103,savitzki:103,saw:102,scalar:[9,10,13,47,48,55,62,66,67,69,70,73,76,77,79,83,84],scale:[4,10,35,37,38,39,40,41,43,44,45,47,48,49,53,54,56,59,62,63,64,66,67,69,70,72,73,74,76,77,81,84,88,89,98,104,105,108,109],scale_i:67,scale_image_rang:63,scale_kei:67,scale_max:[49,109],scale_min:[49,109],scale_to_imagenet_caffe_mod:63,scale_to_imagenet_tf_mod:63,scale_to_imagenet_torch_mod:63,scale_x:67,scatter:103,schedul:[46,49,50,106,109],scientif:28,scikit:34,scipi:[76,79,103],scope:[82,86],score:[7,9,10,13,28,48,70,73,76,79,81,89,92,104,105,107],score_paf_lin:76,score_paf_lines_batch:76,score_weight:79,scorer:76,scratch:[94,106,109,115],screen:1,screenshot:99,script:[89,91,105,106,112],scroll:116,seaborn:[103,107],search:[13,45,47,73,86,101,102,118],search_path:13,search_path_hint:[47,109],sec:109,second:[6,15,33,35,50,73,80,85,89,95,98,115],secondary_kei:13,section:[32,95,113],see:[1,7,10,13,15,16,20,21,28,33,38,39,41,42,43,44,45,46,48,49,54,55,59,62,63,64,67,69,70,72,73,74,76,77,78,79,83,87,88,89,91,92,94,95,96,98,99,100,101,102,103,104,105,106,107,108,109,110,112,113,114,115,116,117,118,119],seek:[13,100],seek_direct:13,seekabl:100,seekbar:[95,115,116,117,119],seem:107,seen:15,segment:[48,76],segmentation_model:42,select:[8,13,33,45,47,68,79,81,87,89,91,94,95,96,98,99,102,109,113,117,118,119,120],self:[1,81,82,87,105,110],sell:42,semant:48,send:[11,35,36],send_arrai:36,send_dict:36,sender:36,senet154:[42,48],sens:100,sent:[36,103,104,109],sep:[105,106],separ:[0,1,13,24,27,50,73,88,89,94,96,103,104,105,108,110,117],seq:86,sequenc:[13,38,43,45,48,65,66,68,71,92,105,110],sequenti:[35,50,100],seresnet101:[42,48],seresnet152:[42,48],seresnet18:[42,48],seresnet34:[42,48],seresnet50:[42,48],seresnext101:[42,48],seresnext50:[42,48],seri:[7,103],serial:[4,13,33,50,51,73,85,104],serialiaz:33,serializ:51,serv:[38,39,45,48,51,62,74,77,82,97,105],server:[11,90,102],servic:90,serving_default:73,session1:89,session:[78,90,105,117],session_descript:[13,27],session_start_tim:[13,27],set:[0,1,3,4,6,9,10,13,24,27,33,38,39,41,43,44,45,47,48,49,50,52,53,54,55,56,59,61,62,63,64,66,67,69,70,71,73,76,77,80,81,82,83,86,87,89,91,92,94,95,96,97,98,102,103,104,105,106,107,108,109,110,112,113,116,117,119],set_lr:[46,50],set_suggest:13,set_titl:103,set_xlabel:103,set_xlim:103,set_xtick:103,set_ylabel:103,set_ylim:103,set_ytick:103,set_yticklabel:103,setup:[82,87,102,107],setup_checkpoint:82,setup_loss:82,setup_metr:82,setup_new_run_fold:82,setup_optim:82,setup_optimization_callback:82,setup_output_callback:82,setup_tensorboard:82,setup_visu:82,setup_zmq_callback:82,sever:[49,89,107,112,113],sexual:0,sh:[91,102],sha256:109,shaevitz:[87,100,101],shall:42,shallow:[10,13,45,97],shape:[3,9,10,12,13,33,35,43,53,54,55,56,59,61,62,63,64,66,67,69,70,71,72,73,74,75,76,77,79,83,95,103,104,105,106,107,109,114],share:[4,78,86,96,100,102,104,107,108],sharex:103,shave:87,sheikh:76,shell:102,shellenv:102,sheridan:101,shiboken2:[105,106,109,110],shift:[81,89,92,95],shifted_inst:81,shiftedinst:81,shih:76,ship:102,shortcut:[38,43,86,92,94,95,104],shortnam:86,shot:49,should:[1,10,11,13,24,26,33,39,43,45,46,47,48,49,50,51,53,55,61,68,70,72,73,74,76,77,79,80,81,82,83,84,85,86,88,89,91,92,94,95,97,98,102,103,104,105,106,108,113,115,117],shouldn:26,show:[0,10,35,73,89,92,95,103,109,110,112,116,117,119],show_edg:[35,89],shown:[92,94,95,116],shruthi:[87,100,101],shuffl:[49,55],shuffle_buffer_s:[49,109],shuffler:55,shutil:24,sid:[104,105,106,107,108,109],side:[62,88,92,109,118,119],sigler:101,sigma:[48,54,56,59,69,71,77,106,109],sigma_threshold:71,sign:1,signal:[13,103],signatur:[43,73,80,109],signedhead:109,signific:92,significantli:[48,79],silicon:[101,102],similar:[38,39,45,48,49,55,70,79,81,89,90,92,95,96,102,107,108,109,113],similarity_funct:[79,81],simon:76,simpl:[4,22,26,30,36,38,39,40,41,50,51,73,81,86,89,95,96,103,110],simple_block:40,simplecandidatemak:81,simpleconvblock:[38,41,44],simplemaxtrack:[81,89],simplemaxtrackscandidatemak:81,simpler:[39,45],simpletrack:81,simpleupsamplingblock:[38,41,44],simpli:[39,49,74,100,102,105,106,107,108,118],simplifi:[39,73],simul:[49,73,105],simulatedcamera:105,sinc:[10,21,24,26,33,36,47,48,49,54,55,70,73,76,79,80,81,86,88,89,91,92,95,97,98,102,107,108,109,110,112,113,115,116,117],singl:[3,4,7,10,13,15,18,24,33,35,36,43,47,48,49,50,51,52,54,56,61,62,63,65,66,67,71,73,76,78,79,81,82,84,85,87,88,89,90,91,92,94,95,101,104,105,110,117],single_inst:[48,91,109,110],single_instance_confmap_head:65,single_instance_lay:73,single_path_to_search:13,singleimagevideo:33,singleinstanceconfidencemapgener:54,singleinstanceconfmapshead:[65,71,73],singleinstanceconfmapsheadconfig:[48,71],singleinstanceconfmapspipelin:65,singleinstanceinferencelay:73,singleinstanceinferencemodel:73,singleinstancemodeltrain:82,singleinstancepredictor:73,singleton:[13,63,69,79],site:[86,104,107,108],situat:100,sixth:92,size:[0,10,35,38,39,42,43,44,45,47,48,49,50,55,62,63,66,67,69,70,73,76,77,81,84,87,88,89,98,104,107],sizematch:67,skeleton:[3,10,13,15,27,28,29,47,48,49,53,56,61,66,73,75,76,79,80,84,86,87,88,92,93,95,103,104,105,108,109,113,116,120],skeleton_edg:76,skeleton_ind:[56,61,66],skeleton_path:19,skew:[49,74],skip:[13,37,38,39,41,42,43,44,45,48,92,102,104,107,108],skip_add:[38,45],skip_connect:[38,43,48],skip_in:39,skip_label:13,skip_sourc:[38,39,45],skip_source_featur:38,sklearn:103,sleap:[2,87,88,90,91,92,93,94,95,97,98,99,102,103,107,111,113,114,115,116,117,120],sleap_activ:102,sleap_ci:86,sleap_deactiv:102,sleap_develop:102,sleap_jupyt:[104,107,108],sleap_label:92,sleap_old_ld_library_path:102,sleap_vers:[51,109],sleap_video_:[13,27],sleap_wt_gold:106,sleapanalysisadaptor:[26,29],sleapobjecttyp:[14,15,27],slice:[13,61,83,103],slightli:[102,104],slow:[13,49,50,88,92],slower:[73,79,88,95,105],slowli:117,slp:[9,12,13,23,33,70,87,89,91,96,103,104,105,106,107,108,109,110,111],small:[48,50,74,80,92,95],smaller:[39,48,54,56,59,64,67,69,70,76,98,116],smallest:[3,32,47,67],smith:[87,100,101],smooth:[77,103],smooth_diff:103,smooth_img:77,sn:[103,107],so:[3,9,10,12,13,21,28,31,33,35,39,42,44,47,48,50,54,62,63,64,70,74,76,78,79,81,87,88,90,92,93,94,95,96,100,102,103,104,105,106,107,108,109,110,114,115,117],social:0,socket:[36,50],softwar:[1,42,90,100,101,102],solar:[35,89],solv:1,solver:102,some:[1,3,7,13,21,29,31,44,55,65,73,76,78,85,87,88,92,93,94,95,96,100,102,103,104,105,106,107,108,109,110,112,115,116,117],some_issu:1,someth:[1,3,26,92],sometim:[77,81,95,99,108],somewher:110,soon:[100,109,110],sooner:90,sort:[3,6,49,70,80],sorted_edge_ind:76,souce_object:15,sound:91,sourc:[1,3,4,6,7,8,9,10,11,12,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,95,97,100,101,104,107],source_nam:85,source_nod:[48,71],source_object:[9,14,15,17,22,23,24,26,28,29,30],source_path:[17,28,29],source_points_arrai:3,source_video:33,source_video_avail:33,sp0:102,space:[0,10,48,50,69,76,90,92,100,102,116,118],span:[62,69,72,77],spars:74,spatial:[39,41,48],spatial_vec_length:76,spawn:[10,81,89,92,95,119],spawned_on:[10,105],spawned_track:81,speak:1,special:[42,50,73,90],specif:[0,10,13,14,15,26,27,45,48,50,51,63,68,73,74,79,82,85,92,98,100,105],specifi:[4,7,9,10,12,13,17,26,27,29,33,35,38,39,41,42,43,44,45,46,47,48,49,50,51,53,61,62,63,64,66,67,68,69,71,73,75,76,77,80,81,82,83,84,85,86,89,92,95,96,100,106,107,109],speed:[48,49,50,73,89,93,105,106,115,116],speedi:102,spent:[105,106],split:[13,47,50,62,66,68,70,82,86,106,107,109],split_by_ind:[47,109],split_fract:68,split_label:68,split_labels_read:68,split_labels_train_v:68,split_nam:70,spread:[48,54,56,59,70,71],spuriou:[73,76],squar:[73,77,84],square_bb:84,squash:1,squeez:99,src_node:[76,85],src_node_ind:[76,85],src_peak_ind:76,sse2:[104,107],sse3:[104,107],sse4:[104,107],sse:[104,107],ssse3:[104,107],stabl:[3,88,95,117],stack:[4,38,39,41,42,43,44,45,48,49,55,77,106,109],stack_config:43,stack_fn:43,stack_v1:43,stackoverflow:83,stage:[1,62,73,99,104,116,117],standalon:[76,104],standard:[3,35,38,43,45,47,48,49,54,55,56,59,63,70,77,79,80,87,89,96,104,105],start:[11,13,42,43,44,45,46,49,50,70,76,80,81,86,88,90,91,92,93,95,99,100,102,103,104,105,106,107,109,110,112,116,120],start_timestamp:109,startup:78,stat:107,state:[42,74,78,89,101,102],statist:[1,7,13,50,74],statisticseri:7,statu:1,std:[3,105],stddev:70,stem:[13,27,38,39,40,44,48,107],stem_block:[44,106,109],stem_features_strid:38,stem_filt:[39,40,43,48],stem_kernel_s:[44,106,109],stem_stack:[38,39,44],stem_strid:[39,48,109],stem_stride1:43,stem_stride2:43,stemblock:39,step:[1,3,13,38,39,40,41,42,43,44,45,48,49,54,56,59,63,67,69,73,76,80,81,88,92,95,99,100,101,102,105,106,109,113,117],still:[33,48,92,95,97,99,106],sto:85,stop:[47,49,50,98,106,109,110,117],stop_training_on_plateau:[49,106,109],storag:[13,47,49,50,90,104,105,106,107],store:[4,9,10,12,13,21,24,27,33,37,47,49,50,53,55,61,62,66,67,68,73,79,85,90,96,100,103,104,106,109,114,118],stori:100,str:[4,7,8,9,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,38,39,42,43,44,46,47,48,49,50,51,53,54,55,56,57,59,60,61,62,63,65,66,67,68,69,70,71,73,76,77,78,79,82,84,85,86,107],straight:102,straightforward:[3,97],strain:87,strategi:[95,101],stream:[61,63,67,103,104,109],stream_executor:[102,104,105,106,107,108,109],strictli:[73,76,89,102],stride1:43,stride:[4,10,37,38,39,40,41,42,43,44,45,47,48,54,56,59,62,64,67,71,73,75,76,84,88,92,98,106,109],string:[13,14,15,26,33,38,39,43,46,47,48,50,51,55,61,63,65,67,68,69,70,71,73,76,82,84,85,86],string_:9,stringent:107,strong:48,strongli:[101,102],structur:[10,13,38,39,49,51,68,73,85,87,105,106],stuck:100,studi:101,style:[41,42,43,92,95,107],sub:[10,11,36,50],subclass:[35,46,73,82],subdictionari:86,subdir:86,subdirectori:[50,82,86,96],subgraph:85,subject:42,sublay:39,sublicens:42,submenu:[95,119],submit:1,subpixel:[48,77],subplot:103,subsampl:[13,69],subscribe_to_control:[50,109],subscript:[76,85],subsequ:[39,44,62,92,95,102,104,105,106,108,116,119],subset:[10,13,33,66,68,83,86,89],substanti:[42,62],substitut:92,subtest:1,subtract:[43,47,63],success:[104,105,106,107,108,109,117],successfulli:[33,81,112,115],successor:[85,101],suffic:45,suffici:[43,48,88],suffix:[13,50,86,89,109],sugar:36,suggest:[4,13,23,24,66,81,89,93,95,98,99,100,115,116],suggestionfram:[4,13],suit:90,suitabl:100,sum:[7,56],summar:107,summari:[46,50,78,89,107],superfast:[34,100],supervis:[39,66],supplement:13,suppli:[88,96],support:[11,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,33,36,76,85,88,89,100,101,112,113,118],suppos:[92,94,95,96,116],suppres:77,suppress:79,sure:[1,10,13,47,80,83,91,96,97,102,104,105,106,107,108],surround:73,swap:[13,49,53,81,92,95,119],swiss:87,symmetr:[39,49,53,77,85],symmetri:[85,104],symmetric_ind:[53,85],symmetries_ful:85,symmetry_nam:85,sync:[10,90],sync_to_numpy_or_python_typ:69,sysf:[104,105,106,107,108,109],system:[13,24,33,47,50,73,89,101,102,105,106,108,109,116],system_summari:[102,104,105,106,108],t0:105,t:[1,3,10,12,13,21,26,29,32,33,36,45,48,55,74,79,80,81,86,88,89,90,91,92,93,94,95,96,97,98,99,101,102,103,104,105,106,107,109,110,112,113,115,116,117,118],tab10:103,tab:[50,88,91,98,109,119],tabl:[73,92,102,109,116],table_column:73,tabri:[100,101],tackl:1,tag:[46,50,109],tail:104,take:[0,4,6,26,38,42,43,45,49,54,55,56,59,73,77,81,85,86,90,91,92,95,98,102,103,104,105,106,107,108,111,116,117,119],taken:35,talmo:[0,1,31,87,99,100,101],talmolab:[102,103,104,105,106,107,108,109],talmop:101,target:[3,35,38,43,47,67,69,79,81,89,95],target_count:79,target_height:[47,67,109],target_instance_count:[81,89,108,109],target_points_arrai:3,target_rank:69,target_width:[47,67,109],task:[48,57,73,105,106,109],tcp:[36,46,50,109],td_fast:[104,105,107],td_id:105,team:[0,1],technic:[55,62,77,101],techniqu:95,technolog:101,tell:[13,88,92,99,100,117],templat:[1,26,85,96],temporari:[0,116],temporarili:0,tensor:[13,33,37,38,39,40,42,43,44,45,48,53,54,55,56,57,59,61,62,63,64,65,66,67,68,69,71,72,73,74,76,77,78,82,83,89],tensorboard:[46,50,82,89,109],tensorboardconfig:[50,82],tensorboardmatplotlibwrit:46,tensorfloat:[105,106,109],tensorflow:[37,38,39,42,43,44,45,53,54,55,56,57,59,60,61,62,63,64,65,66,67,68,69,71,72,73,74,76,77,78,82,83,89,90,100,102,104,105,106,107,108,109,117],tensorrt:104,tensorspec:[106,109],term:[38,48,71],termin:[49,102,118],teset:82,test:[1,13,33,47,49,50,70,73,82,87,89,104,105,106,107,109],test_ind:[47,109],test_label:[47,82,89,109],test_labels_read:82,text:[21,46,48,51,71,73,85,89,91,96,103,106],textadaptor:30,textual:74,tf2tensorrt:104,tf:[13,33,38,40,42,43,46,47,49,53,54,55,56,59,60,61,62,63,64,65,66,67,68,69,71,72,73,75,76,77,78,83,102,104,106,107,109],tf_enable_onednn_opt:104,tf_linear_sum_assign:[76,83],th:[62,77,89],than:[38,39,45,47,48,49,50,52,54,55,56,59,61,67,68,69,73,76,79,80,81,85,88,89,92,95,96,103,110,115],thei:[0,1,10,12,13,24,25,38,45,47,48,49,50,51,56,66,67,69,73,74,76,78,81,86,90,91,92,94,95,97,102,103,104,105,106,107,108,114],them:[35,48,49,54,55,56,67,76,82,85,90,92,93,94,95,97,99,102,104,105,106,107,109,110,112,113,117],themselv:1,therefor:[42,73],thi:[0,1,3,4,7,8,9,10,12,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28,29,30,32,33,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,59,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,88,89,90,91,92,94,95,96,97,98,100,101,102,103,104,105,106,107,108,109,110,112,113,114,115,116,117,119,120],thicker:115,thin:[92,95,115],thing:[1,74,85,86,89,90,92,96,103,116],think:[90,98,100],third:15,thorax:[3,104,105,106,109],thorax_index:103,thorax_loc:103,those:[10,13,33,47,48,73,85,89,92,94,96,102,104,107,115,117],though:55,thought:69,thread:[11,35,102],threaten:0,three:[10,13,15,76,95,96,102,117],thresh:[6,80,107],threshold:[3,6,59,64,70,71,76,77,79,80,81,89,92,95,107],through:[11,13,49,51,54,55,73,76,89,90,92,95,101,102,104,106,107,112,113,117,120],throughout:92,throughput:[13,33],thrown:26,thu:3,thumb:[88,97],thumbnail:84,thumbnail_s:84,thunder:73,thx_vel_fly0:103,thx_vel_fly1:103,tick:103,tif:24,tigher:49,tight:84,tight_layout:103,tile:[42,43],tile_channel:43,time:[1,10,31,35,36,38,39,48,49,50,51,55,73,81,82,89,90,96,98,100,102,105,106,107,108,115,116],timeout:[36,50,90],times_to_check:36,timeseri:103,timestamp:50,timestep:81,tip:[93,100,119],titl:[10,100,101,103,108],tn:[70,107],to_arrai:10,to_dict:[13,85],to_hdf5:33,to_imgstor:33,to_json:[13,51,85],to_pipelin:[13,33],todo:[1,15,43,50],toget:[17,29],togeth:[13,42,48,55,65,73,80,87,95,96,104],toggl:[92,94,116],told:115,toma:76,too:[40,49,55,80,95,113],took:105,tool:[81,93,95,100,102,115,119],toolkit:[100,102],top:[13,33,38,43,48,67,72,73,74,88,89,91,96,98,101,104,105,109,117],topdown:[47,48,62,73,106,109,117],topdown_confmap:109,topdownconfmapsmodeltrain:82,topdownconfmapspipelin:65,topdowninferencemodel:73,topdownmulticlassfindpeak:73,topdownmulticlassinferencemodel:73,topdownmulticlassmodeltrain:82,topdownmulticlasspipelin:65,topdownmulticlasspredictor:73,topdownpredictor:[73,109],topic:46,topolog:76,toposort_edg:76,torch:[47,63],tort:42,total:[6,7,13,35,49,62,68,73,76,95,104,105,106,109],total_elaps:109,toward:0,tp:[70,107],trace:73,track001:[13,27],track:[7,8,9,10,12,13,27,28,29,36,47,48,59,62,66,67,68,73,75,79,80,84,87,92,93,96,97,100,101,103,104,105,109,113,114,115,116,120],track_idx:[13,27],track_ind:[59,62,66],track_matching_queu:81,track_matching_queue_dict:81,track_nam:[9,12,13,103],track_occup:[9,12,13,29,103,114],track_set_inst:13,track_swap:13,track_window:[81,89,108,109],trackclean:[81,95],tracked_inst:[10,81],tracked_label:108,tracked_lf:108,tracker:[73,81,89,92,95,96,108,109,110,112,119],tracker_max_inst:73,tracker_window:73,tracking_scor:[9,10,12,104,105],tracking_split2:[106,107],tracks_matrix:114,tradit:33,trail:[92,95,103],train:[10,13,24,33,43,46,47,48,49,50,51,55,56,60,65,66,70,73,74,75,83,87,88,92,93,94,97,99,101,103,104,105,107,111,113,115,116,119,120],train_end:46,train_start:46,trainabl:[43,48,75,88,105],trained_model:[105,109],trainer:[46,82,106,109],training_and_inference_on_an_example_dataset:[104,105,106],training_and_inference_using_google_dr:[104,105,106],training_config:[73,89,96,104,106,107,109],training_ind:[47,109],training_inst:10,training_job:[70,73,82,110],training_job_path:[89,109],training_label:[47,82,106,109],training_labels_read:82,training_log:[50,96,107,109],training_pipelin:82,training_profil:[96,109],training_slp_fil:106,training_viz_pipelin:82,trainingcontrollerzmq:46,trainingjobconfig:[51,70,73,82,104,106],transfer:[33,43,106],transform:[3,4,10,48,53,54,55,56,57,59,60,61,62,63,65,67,68,73],transform_dataset:[53,54,55,56,57,59,60,61,62,63,67,68],transform_point:10,transformation_matrix:10,translat:[49,109],translate_max:[49,109],translate_min:[49,109],transmit:100,transpos:[9,12,38,40,41,44,45,48,92,95,103,114,119],transposed_conv:[38,45,48],transposed_conv_:38,transposed_conv_activ:38,transposed_conv_batch_norm:38,transposed_conv_batch_norm_before_activ:38,transposed_conv_batchnorm:45,transposed_conv_filt:[38,45],transposed_conv_filters_r:45,transposed_conv_kernel_s:[38,45,48],transposed_conv_use_bia:38,treat:33,tree:[97,103,107,109],tri:[90,95,100],tricki:[49,96],trigger:[46,78],troll:0,troubl:[1,117],troubleshoot:93,trt:104,truncat:62,truth:[6,60,70,73,74,84,89,92,107,109,113],tunabl:48,tune:[43,47,49,74,99],tupl:[3,4,6,9,10,11,13,32,33,35,37,38,42,43,45,48,54,56,65,66,67,68,69,70,71,72,73,75,76,77,79,81,83,84,85],tuples_to_suggest:4,turn:[49,88,92,95,104,117],turner:[100,101],tutori:[94,95,100,101,108,113,117],tweak:[99,108],twice:21,twitter:101,two:[3,6,10,13,38,51,54,70,73,76,79,80,83,85,86,88,89,92,94,95,96,102,103,104,109,110,115,117,118,119],type:[1,4,6,9,10,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28,29,30,33,37,38,39,40,41,42,43,44,45,47,48,49,50,51,53,54,55,56,57,59,61,62,63,65,66,67,68,69,70,71,73,74,75,76,79,81,82,85,86,89,91,93,95,96,97,99,100,101,102,104,105,106,107,109,112,113,117,118,119],type_spec:[106,109],typeerror:26,typic:[26,33,38,42,45,47,48,49,51,53,65,67,70,76,78,79,88,92,96,101,106,108,113],tzodikov:101,u:[38,98],uint8:[63,73,104,105],unabl:109,unaccept:[0,1],unaug:88,unavail:78,unbatch:[55,62],uncach:33,uncheck:[50,95],unclear:80,uncorrect:94,under:[13,27,62,80,86,101,102,110,116],underl:13,underli:[10,13,21,33,51,55,73,76,82],underneath:48,understand:[70,92,100],undirect:56,undo:116,unet:[38,42,45,48,106,109,117],unetconfig:[44,48,106],unetpretrainedencod:42,unguiculatu:87,unifi:13,uniform:[49,67],uniform_nois:[49,109],uniform_noise_max_v:[49,109],uniform_noise_min_v:[49,109],uniformli:[49,55],uninstal:[104,105,106,107,108,109,110],union:[6,10,13,23,24,26,29,33,38,61,65,66,70,71,73,76,79,81,82,83,84,85],uniqu:[10,13,27,48,76,81,83,85,86,104],unique_sampl:4,unique_tracks_in_queu:81,uniquifi:86,unit:[48,49,53,54,56,59,71,76],univers:[90,101],unlabel:[13,66,76,89,92,113],unlabeled_suggest:13,unless:[13,26,33,86,92,115],unlik:38,unlimit:90,unmatch:[70,83],unmatched_inst:79,unmodifi:55,unnorm:[54,69,77],unnormalize_bbox:62,unoccupi:9,unpack:110,unrag:55,unrag_exampl:69,unrag_output:73,unrag_tensor:69,unstructur:[10,70,85],until:[36,98,104,109,110,113,117,118],untrack:[13,27,79],untracked_inst:[79,81],unus:10,unused_predict:10,unwelcom:0,unzip:[91,96,107,109,110],uo:108,up:[9,33,36,38,44,45,48,49,50,56,61,66,68,73,79,80,82,86,87,88,89,91,92,93,95,97,101,102,103,104,106,107,108,109,110,115,116,117],up_block:[39,41,42,44,106,109],up_convs_per_block:41,up_interpol:[41,44,48,106,109],updat:[13,33,49,50,53,67,73,74,75,79,82,88,89,92,100,101,102,106,107],update_cach:13,update_config:[67,75,82],update_counts_for_fram:13,update_st:74,upload:[105,106,108],upon:[39,102],upper:15,upsampl:[38,39,40,41,42,43,44,48,67],upsampling2d:38,upsampling_stack:43,upsampling_strid:[38,39,45],upsamplingblock:39,upsamplingconfig:[45,48],upsamplingstack:[43,45],upshot:80,uri:86,us:[0,1,3,4,6,8,9,10,12,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28,29,30,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,59,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,101,102,103,104,105,106,107,108,109,111,113,115,116,117,118,119,120],usabl:[86,117],usable_cpu_count:86,usag:[1,20,26,34,49,62,73,89,101],use_bia:[38,43],use_cach:13,use_cocoev:70,use_cpu_onli:[78,104],use_first_gpu:78,use_gpu:78,use_gui:13,use_last_gpu:78,use_missing_gui:16,user:[1,10,13,25,32,47,50,51,62,66,86,89,92,100,102,109,113],user_inst:[10,13,66],user_instances_onli:[13,66],user_label:13,user_labeled_fram:13,user_labeled_frame_ind:13,user_labeled_onli:13,user_labels_onli:70,userbas:100,usr:86,usual:[3,26,33,80,88,92,94,95,96,106],util:[5,12,32,37,54,56,59,63,64,68,70,72,73,76,78,84,95,102,104],uva:[87,100,101],v005:89,v11:[100,102],v1:109,v2:[43,105],v8:[100,102],v:100,val:[13,58,70,89,106,107,109],val_:46,val_abdomen:[106,109],val_batches_per_epoch:[49,109],val_ey:[106,109],val_eyel:[106,109],val_forelegl4:[106,109],val_forelegr4:[106,109],val_head:[106,109],val_hindlegl4:[106,109],val_hindlegr4:[106,109],val_label:[89,109],val_loss:[106,109],val_midlegl4:[106,109],val_midlegr4:[106,109],val_thorax:[106,109],val_wingl:[106,109],val_wingr:[106,109],valid:[10,13,33,39,42,43,46,47,48,49,50,52,63,68,73,80,82,86,87,89,92,95,98,106,107,109,110,117],validate_pipelin:65,validation_fract:[47,68,106,109],validation_ind:[47,109],validation_label:[47,82,109],validation_labels_read:82,validation_pipelin:82,validation_viz_pipelin:82,valu:[4,7,9,10,13,14,33,34,39,43,47,48,49,50,54,55,59,62,63,64,67,68,69,70,71,72,73,74,75,76,77,79,80,81,83,85,86,89,92,102,104,105,106,107,108,109],valueerror:[13,43,50,61,62,65,67,68,78,85,86],vari:[49,88,105],variabl:[55,67,69,73,74,85,102,104],variant:[38,40,43,48,65],variat:92,varieti:[42,96,104,105,115],variou:[7,12,13,33,89,92],ve:[13,81,91,92,93,94,95,96,97,98,103,107,110,112,115,118],vector:[3,4,48,54,56,59,64,65,69,72,73,76,77,83],veloc:[81,92,95],vendor:[104,107],venv:102,verbos:[73,89,109],veri:[22,30,49,74,92,95,100,101],verifi:[10,102,113],version:[0,1,13,48,51,65,69,86,89,94,96,100,101,102,104,105,106,107,108,109,110,112],vertic:[10,53],vgg16:[42,48],vgg19:[42,48],vi:[70,107],via:[0,1,11,13,38,45,48,55,73,76,77,89,92,95,101,102,103,105,106,109,110,112,118],vid:58,video:[4,7,9,10,11,12,13,15,17,18,24,25,27,28,29,31,34,35,47,66,68,70,73,87,88,89,90,92,94,95,96,97,98,100,104,105,108,109,111,112,113,115,116,120],video_fn:[13,27],video_idx:[4,13,27,35],video_ind:[9,58,66],video_index:89,video_list:70,video_path:[9,19,70,89,109],video_search:[13,23,24,33],video_search_path:82,videocaptur:33,videomarkerthread:35,videoread:[33,66],videos_as_dict:4,videowriteropencv:34,videowriterskvideo:34,view:[10,50,85,88,89,95,98,109],viewpoint:0,virgin:87,virtual:[26,90],visibl:[10,13,48,66,70,74,79,87,92,94,97,104,107,116],vision:100,vision_:77,visual:[46,49,50,62,65,73,82,84,89,92,95,97,98,105,106,107,109,115,117],visualization_callback:82,visualize_predict:46,visualpredictor:73,viz:[10,46,50,96,106,109],viz_fn:82,vmax:103,vmin:103,voc:[70,107],vocab_s:4,volum:[100,101],vs:[53,65,70,107],w:[35,84,100,101,102,104,105,107,108,113],wa:[10,13,15,18,32,33,38,39,46,50,51,54,62,63,66,73,78,80,83,85,89,92,94,95,100,101,104,105,106,107,109,110],wai:[13,39,42,65,74,76,78,90,92,95,96,97,98,102,105,107,114,115],wait:[50,81],walk:[90,112,120],wang:[87,100,101],want:[3,10,11,12,13,26,32,33,35,36,45,70,79,81,85,88,91,92,93,94,95,96,97,100,103,105,106,107,108,110,111,112,114,115,116,117,119],warn:[13,33,50,73,104],warrant:1,warranti:42,wasn:[80,107],watch:101,we:[0,3,6,7,10,11,12,13,15,18,21,24,26,29,31,32,33,35,36,79,80,81,85,86,87,89,92,94,95,98,99,100,101,102,103,104,105,106,107,108,109,110,112,115,116,117],weak_filename_match:86,websit:100,webster:87,wedg:[35,89,92,95],wei:76,weigh:[48,59,70,79],weight:[42,43,48,49,50,56,71,73,76,77,79,85,89,96,104,106,107],weird:99,welcom:[0,109,110],well:[3,13,33,39,44,45,49,50,51,54,56,59,65,70,73,74,90,92,95,98,99,102,103,104,106,107,110,112,115],were:[10,13,33,47,55,59,63,68,73,78,79,81,87,89,92,95,102,103,104,108,110,111,113,115],weren:79,wget:[102,103,104,107,108,109],what:[0,35,46,80,84,88,91,95,96,99,102,103,104,105,107,109,110,119],whatev:[33,94,96],wheel:[92,116],when:[0,1,10,11,13,24,28,33,35,38,43,45,47,48,49,50,53,54,55,56,61,62,63,66,69,70,73,74,76,78,79,81,85,88,89,90,92,93,94,95,96,97,98,99,100,102,103,104,106,108,109,110,112,115,116,117,118,119],whenev:80,where:[3,10,13,27,33,39,43,45,49,50,51,53,54,56,57,59,61,62,64,67,70,73,74,76,77,79,80,83,85,86,88,89,91,92,95,96,98,102,106,113,115,116],wherev:91,whether:[4,10,13,14,15,16,17,18,19,21,22,23,24,25,27,28,29,30,31,32,33,35,42,43,45,48,50,54,59,70,73,79,81,82,84,85,86,89,92,95,96,100,118],which:[0,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28,29,30,32,33,35,38,39,40,45,46,48,49,50,53,54,55,58,59,61,62,64,66,67,70,71,73,74,76,77,79,80,81,82,84,85,86,87,88,89,90,91,92,94,95,96,97,98,100,102,103,104,105,107,110,112,115,116,117,119],whichev:[49,94],white:[35,87,89],who:[0,42],whole:[76,88,92,105,110],whom:42,whose:[10,40,66,85],why:92,wide:[42,70,98,107],widget:89,width:[10,15,33,34,35,38,39,43,44,45,47,48,49,53,54,56,62,63,66,67,69,72,73,75,76,77,84,89,96],width_:33,wiki:0,win:103,window:[13,81,89,92,94,95,96,98,101,102,103,104,105,106,108,117,118,119],window_s:81,wingl:[103,104,105,106,109],wingr:[103,104,105,106,109],wise:[45,48,55,59,76,79],wish:[88,95],with_centroid:107,with_imag:[13,104],with_offset:54,with_track_onli:[13,66,82],with_user_labels_onli:13,withheld:92,within:[0,9,10,13,27,28,33,38,39,45,47,48,50,55,62,66,68,70,72,73,76,78,85,86,90,92,96,102,104,108,112],without:[0,9,10,13,14,15,16,17,18,19,22,23,24,25,27,28,29,30,33,36,41,42,49,50,55,63,68,70,75,76,78,79,85,89,94,96,101,102,103,106,108,112],won:[45,48,80,81,88,92,95,98],work:[1,3,12,13,26,28,32,33,42,50,55,73,74,78,86,87,88,89,90,95,96,98,99,100,101,103,110,112,113,114,116,117],worker:87,workflow:[93,101,105,106,112,113,116,120],workshop:101,worri:[74,90,95],worst:[74,88],worth:88,would:[1,26,55,62,67,68,73,77,79,80,88,92,94,100,102,104,106,107,108,110,116],wouldn:95,wrap:[8,15,18,65,73,76,78,105],wrapper:[4,13,33,34,55,67,70,75,76,79,85,86],write:[1,9,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,33,34,35,46,50,73,86],write_csv_fil:9,write_log:[50,109],write_occupancy_fil:9,writer:[34,35],written:[9,14,15,16,17,18,19,22,23,24,25,27,28,29,30,35,50,110],wrong:[33,95],wt_gold:[106,107],www:[38,73,79,104,106,107,108],x1:[10,53,62,77,83],x2:[10,53,62,77,83],x86_64:[102,104,105,106,107,108,109],x:[3,10,13,15,38,39,43,45,49,53,54,56,62,64,69,73,76,77,83,87,92,102,104,105,106,109],x_hat:77,x_in:[38,39,40,42,43,44,71],x_main:42,x_middl:39,x_out:[39,43],x_scale:66,x_up:39,xcode:102,xferd:[105,106],xiao:95,xla:104,xlabel:[103,105,107],xlim:103,xq:103,xtick:103,xv:[54,56,64,69,77],xy:77,xy_max:61,xy_mid:61,xy_min:61,y1:[10,53,62,77,83],y2:[10,53,62,77,83],y:[3,10,13,15,49,53,54,56,62,64,69,73,76,77,92,100,101,102,104,105,106,107,108,109,110],y_gt:74,y_hat:77,y_pr:74,y_pred:74,y_scale:66,y_true:74,yakubovskii:42,yaml:[12,18,86,92],yan:[87,100,101],yang:77,yaser:76,ye:[85,97,100],year:[100,101],yellow:[92,115,119],yet:[3,36,81,86,98,102,115,116,118],yield:[4,11,13,55,58,62,73],ylabel:[103,105,107],ylim:103,yml:102,you:[3,8,12,13,14,24,26,33,35,36,50,70,74,80,81,85,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120],your:[1,24,26,70,88,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,113,115,116,117,118,119,120],yourself:113,ytick:103,yuv420p:100,yv:[54,56,64,69,77],z:[87,100,101],zero:[9,10,33,54,59,64,67,71,89,95,103,104,105,106,107,108,109],zeromq:[50,82],zeros_lik:103,zhe:76,zip:[12,24,50,82,91,96,104,105,107,109,110],zip_output:[50,109],zmq:[36,50,89,109],zmq_config:82,zmqconfig:[50,82],zoom:[88,92,98,116],zprofil:102,zsh:102},titles:["Contributor Covenant Code of Conduct","Contributing to SLEAP","Developer API","sleap.info.align","sleap.info.feature_suggestions","sleap.info.labels","sleap.info.metrics","sleap.info.summary","sleap.info.trackcleaner","sleap.info.write_tracking_h5","sleap.instance","sleap.io.asyncvideo","sleap.io.convert","sleap.io.dataset","sleap.io.format.adaptor","sleap.io.format.alphatracker","sleap.io.format.coco","sleap.io.format.csv","sleap.io.format.deeplabcut","sleap.io.format.deepposekit","sleap.io.format.dispatch","sleap.io.format.filehandle","sleap.io.format.genericjson","sleap.io.format.hdf5","sleap.io.format.labels_json","sleap.io.format.leap_matlab","sleap.io.format.main","sleap.io.format.ndx_pose","sleap.io.format.nix","sleap.io.format.sleap_analysis","sleap.io.format.text","sleap.io.legacy","sleap.io.pathutils","sleap.io.video","sleap.io.videowriter","sleap.io.visuals","sleap.message","sleap.nn.architectures.common","sleap.nn.architectures.encoder_decoder","sleap.nn.architectures.hourglass","sleap.nn.architectures.hrnet","sleap.nn.architectures.leap","sleap.nn.architectures.pretrained_encoders","sleap.nn.architectures.resnet","sleap.nn.architectures.unet","sleap.nn.architectures.upsampling","sleap.nn.callbacks","sleap.nn.config.data","sleap.nn.config.model","sleap.nn.config.optimization","sleap.nn.config.outputs","sleap.nn.config.training_job","sleap.nn.config.utils","sleap.nn.data.augmentation","sleap.nn.data.confidence_maps","sleap.nn.data.dataset_ops","sleap.nn.data.edge_maps","sleap.nn.data.general","sleap.nn.data.grouping","sleap.nn.data.identity","sleap.nn.data.inference","sleap.nn.data.instance_centroids","sleap.nn.data.instance_cropping","sleap.nn.data.normalization","sleap.nn.data.offset_regression","sleap.nn.data.pipelines","sleap.nn.data.providers","sleap.nn.data.resizing","sleap.nn.data.training","sleap.nn.data.utils","sleap.nn.evals","sleap.nn.heads","sleap.nn.identity","sleap.nn.inference","sleap.nn.losses","sleap.nn.model","sleap.nn.paf_grouping","sleap.nn.peak_finding","sleap.nn.system","sleap.nn.tracker.components","sleap.nn.tracker.kalman","sleap.nn.tracking","sleap.nn.training","sleap.nn.utils","sleap.nn.viz","sleap.skeleton","sleap.util","Datasets","Configuring models","Command line interfaces","Run training and inference on Colab","Creating a custom training profile","GUI","Guides","Importing predictions for labeling","Tracking and proofreading","Running SLEAP remotely","Skeleton design","Training with GUI","Troubleshooting workflows","Help","Social LEAP Estimates Animal Poses (SLEAP)","Installation","Analysis examples","Data structures","Interactive and realtime inference","Interactive and resumable training","Model evaluation","Post-inference tracking","Training and inference on an example dataset","Training and inference on your own data using Google Drive","<no title>","Notebooks","Overview","Export Data For Analysis","Prediction-assisted labeling","Initial Labeling","Training and Inference","Creating a project","Tracking instances across frames","Tutorial"],titleterms:{"0":103,"1":[103,104,105,106,108],"2":[104,105,106,108],"3":[105,106,108],"4":[105,106,108],"5":106,"do":100,"export":[89,110,114],"import":[94,102,110],For:114,Of:1,The:95,about:90,across:[103,119],adaptor:14,advanc:[103,112],align:3,alphatrack:15,alreadi:100,an:[109,112],analysi:[103,112,114],anim:101,anoth:100,api:2,appear:100,applic:92,ar:102,architectur:[37,38,39,40,41,42,43,44,45],assist:115,asyncvideo:11,attribut:0,augment:53,basic:112,bee:87,better:93,between:103,bug:100,callback:46,can:100,clean:95,cluster:103,coco:16,code:[0,1],colab:[90,109,110],color:[95,103],command:89,common:37,compon:79,comput:100,conda:102,conduct:[0,1],confidence_map:54,config:[47,48,49,50,51,52],configur:88,contact:101,content:[1,102],continu:106,contribut:1,contributor:[0,101],convert:[12,89],correct:100,covari:103,coven:0,creat:[91,110,118],csv:17,cuda:100,custom:91,data:[47,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,90,95,100,103,104,105,106,108,109,110,112,114],dataset:[13,87,89,109,112],dataset_op:55,debug:89,deeplabcut:18,deepposekit:19,design:97,develop:2,diagnost:89,discuss:1,dispatch:20,document:101,doe:100,down:110,download:109,drive:[110,112],dynam:103,edge_map:56,encoder_decod:38,enforc:0,estim:101,eval:70,evalu:[107,112],exampl:[89,103,109,112],featur:101,feature_suggest:4,file:[89,92],filehandl:21,fill:103,find:103,first:116,fix:115,flies13:87,fly32:87,fly:103,format:[14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,100],found:100,frame:[110,116,119],from:[90,102],gener:[57,93],genericjson:22,gerbil:87,get:[93,100,101,102],go:92,googl:[110,112],gpu:[100,102],group:58,gui:[89,92,98,102],guid:[1,93],have:100,hdf5:23,head:71,help:[92,100,102],hourglass:39,how:100,hrnet:40,hyperparamet:88,i:100,ident:[59,72],imag:100,improv:100,infer:[60,73,89,90,96,104,105,108,109,110,112,117],info:[3,4,5,6,7,8,9],initi:116,inspect:[89,108],instal:[100,101,102,108,109,110],instanc:[10,110,119],instance_centroid:61,instance_crop:62,interact:[105,106,112],interfac:89,io:[11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35],issu:1,job:[106,110],just:100,kalman:80,kei:92,label:[5,89,92,94,115,116],labels_json:24,leap:[41,101],leap_matlab:25,learn:101,legaci:31,licens:101,line:89,load:103,loss:74,m1:102,mac:102,magnitud:103,main:26,mambaforg:102,matlab:114,menu:92,messag:36,method:[95,102],metric:6,mice_hc:87,mice_of:87,miss:103,model:[48,75,88,107,109,110,112],more:[95,100,103,116],mount:110,mous:92,move:90,movement:103,my:100,navig:92,ndx_pose:27,need:100,nix:28,nn:[37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84],normal:63,note:[10,13,46,50,53,54,56,59,61,62,63,65,66,70,72,73,76,77,78,81,83,110],notebook:112,offset_regress:64,open:118,optim:49,option:117,orient:95,our:0,out:100,output:[50,100],overview:113,own:[110,112],packag:[102,110],paf_group:76,palett:95,particular:100,pathutil:32,peak_find:77,perform:105,pip:102,pipelin:65,pledg:0,pose:[100,101],post:[108,112],pre:102,predict:[92,94,100,110,115],pretrained_encod:42,problem:100,process:110,profil:[91,110],project:118,proofread:[95,119],provid:66,pull:1,python:114,quick:101,realtim:[105,112],refer:101,rel:100,remot:[93,96],render:89,request:1,resiz:67,resnet:43,respons:0,result:[93,100],resum:[106,112],review:115,run:[90,93,96,110],sampl:109,save:[108,116],scope:0,script:95,seekbar:92,select:[92,116],set:100,setup:[104,105,106,108],shift:100,skeleton:[85,97,118],sleap:[1,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,89,96,100,101,104,105,106,108,109,110,112,118],sleap_analysi:29,social:101,some:101,someon:100,sourc:102,speed:103,standard:0,start:[117,118],strang:100,structur:[104,112],style:1,suggest:[92,110],summari:7,support:102,system:[78,100],t:100,tabl:1,talk:100,test:[102,108],text:30,thank:1,thing:102,thorax:103,tip:97,top:110,track:[81,89,95,108,110,112,119],trackclean:8,tracker:[79,80],train:[68,82,89,90,91,95,96,98,106,109,110,112,117],training_job:51,troubleshoot:99,tutori:120,type:88,unet:44,uninstal:102,up:100,upgrad:102,upload:110,upsampl:45,us:[100,110,112],usag:[100,112],util:[52,69,83,86],valu:103,ve:100,veloc:103,video:[33,103,110,118],videowrit:34,view:92,visual:[35,103],viz:84,what:100,where:100,without:100,work:102,workflow:99,write_tracking_h5:9,x:103,y:103,you:1,your:[110,112]}}) \ No newline at end of file