-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbase.yaml
153 lines (139 loc) · 3.05 KB
/
base.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
model:
ckpt_path: null
encoder_cfg:
model_name: "resnet18"
backend: "timm"
in_chans: 3
d_model: 1024
nhead: 8
num_encoder_layers: 1
num_decoder_layers: 1
dropout: 0.1
activation: "relu"
return_intermediate_dec: False
norm: False
num_layers_attn_head: 2
dropout_attn_head: 0.1
embedding_meta:
pos:
mode: "fixed" # supports fixed, learned, rope
normalize: true
temp:
mode: "fixed" # supports fixed, learned, rope
embedding_agg_method: "stack" # supports stack, average, concatenate
return_embedding: False
decoder_self_attn: False
loss:
neg_unmatched: false
epsilon: 1e-4
asso_weight: 1.0
#currently assumes adam. TODO adapt logic for other optimizers like sgd
optimizer:
name: "Adam"
lr: 0.001
betas: [0.9, 0.999]
eps: 1e-8
weight_decay: 0.01
#currently assumes reduce lr on plateau
scheduler:
name: "ReduceLROnPlateau"
mode: "min"
factor: 0.5
patience: 10
threshold: 1e-4
threshold_mode: "rel"
tracker:
window_size: 8
use_vis_feats: true
overlap_thresh: 0.01
mult_thresh: true
decay_time: null
iou: null
max_center_dist: null
runner:
metrics:
train: ['num_switches']
val: ['num_switches']
test: ['num_switches']
persistent_tracking:
train: false
val: true
test: true
dataset:
train_dataset:
slp_files: ["../../tests/data/sleap/two_flies.slp"]
video_files: ["../../tests/data/sleap/two_flies.mp4"]
padding: 5
crop_size: 128
chunk: true
clip_length: 32
mode: "train"
val_dataset:
slp_files: ["../../tests/data/sleap/two_flies.slp"]
video_files: ["../../tests/data/sleap/two_flies.mp4"]
padding: 5
crop_size: 128
chunk: True
clip_length: 32
mode: "val"
test_dataset:
slp_files: ["../../tests/data/sleap/two_flies.slp"]
video_files: ["../../tests/data/sleap/two_flies.mp4"]
padding: 5
crop_size: 128
chunk: True
clip_length: 32
mode: "test"
dataloader:
train_dataloader:
shuffle: true
num_workers: 0
val_dataloader:
shuffle: false
num_workers: 0
test_dataloader:
shuffle: false
num_workers: 0
logging:
logger_type: null
name: "example_train"
entity: null
job_type: "train"
notes: "Example train job"
dir: "./logs"
group: "example"
save_dir: './logs'
project: "GTR"
log_model: null
early_stopping:
monitor: "val_loss"
min_delta: 0.1
patience: 10
mode: "min"
check_finite: true
stopping_threshold: 1e-8
divergence_threshold: 30
checkpointing:
monitor: ["val_loss","val_num_switches"]
verbose: true
save_last: true
dirpath: null
auto_insert_metric_name: true
every_n_epochs: 1
trainer:
# only use this for local apple silicon runs; change for cluster runs
# accelerator: "mps"
# devices: 1
check_val_every_n_epoch: 1
enable_checkpointing: true
gradient_clip_val: null
limit_train_batches: 1.0
limit_test_batches: 1.0
limit_val_batches: 1.0
log_every_n_steps: 1
max_epochs: 1
min_epochs: 1
view_batch:
enable: False
num_frames: 0
no_train: False