forked from Bisonai/mobilenetv3-tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
100 lines (77 loc) · 2.95 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
# Copyright 2019 Bisonai Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Implementation of paper Searching for MobileNetV3, https://arxiv.org/abs/1905.02244
Evaluation script
"""
from argparse import ArgumentParser
import tensorflow as tf
from mobilenetv3_factory import build_mobilenetv3
from datasets import build_dataset
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
tf.keras.backend.set_session(sess)
_available_datasets = [
"mnist",
"cifar10",
]
_available_optimizers = {
"rmsprop": tf.train.RMSPropOptimizer,
"adam": tf.train.AdamOptimizer,
"sgd": tf.train.GradientDescentOptimizer,
}
def main(args):
if args.dataset not in _available_datasets:
raise NotImplementedError
dataset = build_dataset(
name=args.dataset,
shape=[args.height, args.width],
)
model = build_mobilenetv3(
args.model_type,
input_shape=(args.height, args.width, dataset["channels"]),
num_classes=dataset["num_classes"],
width_multiplier=args.width_multiplier,
)
if args.optimizer not in _available_optimizers:
raise NotImplementedError
model.load_weights(args.model_path)
model.compile(
optimizer=_available_optimizers.get(args.optimizer)(args.lr),
loss="categorical_crossentropy",
metrics=["accuracy"],
)
model.evaluate(
dataset["test"].make_one_shot_iterator(),
steps=(dataset["num_test"]//args.valid_batch_size)+1,
)
if __name__ == "__main__":
parser = ArgumentParser()
# Model
parser.add_argument("--width_multiplier", type=float, default=1.0)
parser.add_argument("--model_type", type=str, default="small", choices=["small", "large"])
# Input
parser.add_argument("--height", type=int, default=128)
parser.add_argument("--width", type=int, default=128)
parser.add_argument("--dataset", type=str, default="mnist", choices=_available_datasets)
# Optimizer
parser.add_argument("--lr", type=float, default=0.01)
parser.add_argument("--optimizer", type=str, default="rmsprop", choices=_available_optimizers.keys())
# Training & validation
parser.add_argument("--valid_batch_size", type=int, default=256)
# Others
parser.add_argument("--model_path", type=str, required=True)
args = parser.parse_args()
main(args)