We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
RetinaFace使用InsightFace的retianface训练,mxnet环境,主干模型选择resnet-50,得到训练模型后需要转换为caffe模型,在mxnet2caffe时遇到如下错误: .. .. .. 24 | face_rpn_cls_score_stride8_weight -> face_rpn_cls_score_stride8 , initialized. face_rpn_landmark_pred_stride16_bias: (20,)->(20, 256, 1, 1) 25 | face_rpn_landmark_pred_stride16_bias -> face_rpn_landmark_pred_stride16, initialized. ('face_rpn_landmark_pred_stride16_weight', 'face_rpn_landmark_pred_stride16') face_rpn_landmark_pred_stride16_weight: (20, 256, 1, 1)->(20, 256, 1, 1) 26 | face_rpn_landmark_pred_stride16_weight -> face_rpn_landmark_pred_stride16, initialized. face_rpn_landmark_pred_stride32_bias: (20,)->(20, 256, 1, 1) 27 | face_rpn_landmark_pred_stride32_bias -> face_rpn_landmark_pred_stride32, initialized. ('face_rpn_landmark_pred_stride32_weight', 'face_rpn_landmark_pred_stride32') face_rpn_landmark_pred_stride32_weight: (20, 256, 1, 1)->(20, 256, 1, 1) 28 | face_rpn_landmark_pred_stride32_weight -> face_rpn_landmark_pred_stride32, initialized. face_rpn_landmark_pred_stride8_bias: (20,)->(20, 256, 1, 1) 29 | face_rpn_landmark_pred_stride8_bias -> face_rpn_landmark_pred_stride8, initialized. ('face_rpn_landmark_pred_stride8_weight', 'face_rpn_landmark_pred_stride8') face_rpn_landmark_pred_stride8_weight: (20, 256, 1, 1)->(20, 256, 1, 1) 30 | face_rpn_landmark_pred_stride8_weight -> face_rpn_landmark_pred_stride8, initialized. rf_c1_aggr_bias: (256,)->(256, 256, 3, 3) 31 | rf_c1_aggr_bias -> rf_c1_aggr , initialized. ('key in mxnet', 'rf_c1_aggr_bn_beta', True) ('key in caffe', 'rf_c1_aggr_bn_fwd_scale', False) Traceback (most recent call last): File "mxnet2caffe.py", line 108, in print("{}: {}->{}".format(key_i, arg_params[key_i].shape, net.params[key_caffe][0].data.shape)) KeyError: 'rf_c1_aggr_bn_fwd_scale' [root@TServer advanced-mxnet2caffe-master]# ('key in mxnet', 'rf_c1_aggr_bn_beta', True) ('key in caffe', 'rf_c1_aggr_bn_fwd_scale', False) Traceback (most recent call last): File "mxnet2caffe.py", line 108, in print("{}: {}->{}".format(key_i, arg_params[key_i].shape, net.params[key_caffe][0].data.shape)) KeyError: 'rf_c1_aggr_bn_fwd_scale' bash: key in mxnet,: 未找到命令...
麻烦哪位大佬帮看下什么问题,不慎感谢
The text was updated successfully, but these errors were encountered:
No branches or pull requests
RetinaFace使用InsightFace的retianface训练,mxnet环境,主干模型选择resnet-50,得到训练模型后需要转换为caffe模型,在mxnet2caffe时遇到如下错误:
..
..
..
24 | face_rpn_cls_score_stride8_weight -> face_rpn_cls_score_stride8 , initialized.
face_rpn_landmark_pred_stride16_bias: (20,)->(20, 256, 1, 1)
25 | face_rpn_landmark_pred_stride16_bias -> face_rpn_landmark_pred_stride16, initialized.
('face_rpn_landmark_pred_stride16_weight', 'face_rpn_landmark_pred_stride16')
face_rpn_landmark_pred_stride16_weight: (20, 256, 1, 1)->(20, 256, 1, 1)
26 | face_rpn_landmark_pred_stride16_weight -> face_rpn_landmark_pred_stride16, initialized.
face_rpn_landmark_pred_stride32_bias: (20,)->(20, 256, 1, 1)
27 | face_rpn_landmark_pred_stride32_bias -> face_rpn_landmark_pred_stride32, initialized.
('face_rpn_landmark_pred_stride32_weight', 'face_rpn_landmark_pred_stride32')
face_rpn_landmark_pred_stride32_weight: (20, 256, 1, 1)->(20, 256, 1, 1)
28 | face_rpn_landmark_pred_stride32_weight -> face_rpn_landmark_pred_stride32, initialized.
face_rpn_landmark_pred_stride8_bias: (20,)->(20, 256, 1, 1)
29 | face_rpn_landmark_pred_stride8_bias -> face_rpn_landmark_pred_stride8, initialized.
('face_rpn_landmark_pred_stride8_weight', 'face_rpn_landmark_pred_stride8')
face_rpn_landmark_pred_stride8_weight: (20, 256, 1, 1)->(20, 256, 1, 1)
30 | face_rpn_landmark_pred_stride8_weight -> face_rpn_landmark_pred_stride8, initialized.
rf_c1_aggr_bias: (256,)->(256, 256, 3, 3)
31 | rf_c1_aggr_bias -> rf_c1_aggr , initialized.
('key in mxnet', 'rf_c1_aggr_bn_beta', True)
('key in caffe', 'rf_c1_aggr_bn_fwd_scale', False)
Traceback (most recent call last):
File "mxnet2caffe.py", line 108, in
print("{}: {}->{}".format(key_i, arg_params[key_i].shape, net.params[key_caffe][0].data.shape))
KeyError: 'rf_c1_aggr_bn_fwd_scale'
[root@TServer advanced-mxnet2caffe-master]# ('key in mxnet', 'rf_c1_aggr_bn_beta', True)
('key in caffe', 'rf_c1_aggr_bn_fwd_scale', False)
Traceback (most recent call last):
File "mxnet2caffe.py", line 108, in
print("{}: {}->{}".format(key_i, arg_params[key_i].shape, net.params[key_caffe][0].data.shape))
KeyError: 'rf_c1_aggr_bn_fwd_scale'
bash: key in mxnet,: 未找到命令...
麻烦哪位大佬帮看下什么问题,不慎感谢
The text was updated successfully, but these errors were encountered: