-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathforaging_model.py
236 lines (204 loc) · 9.7 KB
/
foraging_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
# -*- coding: utf-8 -*-
"""
Central Place Foraging in Squirrels under Predation Risk
Model of foraging under predation. Can be run non-interactively or passed to
server.py function for interactive visualization.
@author: Joshua Woller, University of Tuebingen
"""
# Mesa imports
from mesa import Model
from mesa.space import MultiGrid
from mesa.time import BaseScheduler
from mesa.time import RandomActivation
from mesa.datacollection import DataCollector
import gaussian_random_fields as gr
# Model agents
from foraging_agents import Food, Animal, Squirrel, SafeSpot, CountDummy, DangerZone
# Math stuff
import numpy as np
import random
# For visualization of non-interactive model run
import seaborn as sns
from matplotlib import pyplot as plt
# Create Model
class ForagingModel(Model):
description = (
"A model simulating central place foraging under the risk of predation\
in squirrels."
)
def __init__(self,
height:int = 20,
width:int = 20,
torus:bool = False,
n_food:int = 15,
n_squirrel:int = 1,
n_safespots:int = 5,
max_risk:int = 3,
verbose:bool = True,
squirrel_metabolism = 0.1,
squirrel_risk_aversion = 1):
super().__init__()
self.height, self.width = [height, width] #enforce square shape later!
self.food_supply = n_food
self.n_safespots = n_safespots
self.eaten = list()
self.stored = list()
self.verbose = True
# Activation Schedule of Agents
self.schedule = RandomActivation(self)
#======================================================================
# Init grids for agent placement, risk estimation and pathfinding
#======================================================================
# Agent Grid
self.grid = MultiGrid(self.height, self.width, torus)
# Grid for pathfinding algorithm of agents
self.pathgrid = np.ones((self.height, self.width))
self.heatmap = np.zeros((self.height, self.width))
# Spatial Distribution of Risk using Gaussian Random Field
# alpha parameter is the smoothness of the gaussian, recommend 4 to 6
self.danger = gr.gaussian_random_field(alpha = 6, size = self.height, seed = 500)
# Make positive everywhere
self.danger += np.abs(self.danger.min())
# Normalise, then scale to maximal risk.
self.danger = self.danger/self.danger.max()*max_risk
#======================================================================
# Initialise all agents
#======================================================================
for index in np.ndindex(self.height, self.width):
risk = self.danger[index]
danger_dummy = DangerZone(self.next_id(), model = self,
pos = index,
risk = risk)
self.grid.place_agent(danger_dummy, index)
self.grid.empties.add(index)
#self.schedule.add(danger_dummy)
# Initialise Safe Spots, i.e. storage sites for food
for idx in range(self.n_safespots):
if idx == 0:
pos = (int(self.height/2), int(self.width/2))
else:
pos = self.grid.find_empty()
spot = SafeSpot(self.next_id(), model = self,
pos = pos)
self.grid.place_agent(spot, pos)
self.schedule.add(spot)
# Initialise Food Agents
for pos in range(self.food_supply):
pos = self.grid.find_empty()
size = random.choice([1,2,3])
nutr_value = random.choice([2,4,8])
risk = self.danger[pos[0], pos[1]]
food = Food(self.next_id(), model = self,
pos = pos, size = size, nutrition = nutr_value,
risk = risk)
self.grid.place_agent(food, pos)
self.schedule.add(food)
# Initialise Squirrel Agent
start_loc = (int(self.height/2)+1, int(self.width/2)+1)
self.squirrel = Squirrel(self.next_id(), model = self, fov = 4,
pos = start_loc, home = start_loc,
metabolism = squirrel_metabolism,
risk_aversion = squirrel_risk_aversion)
self.grid.place_agent(self.squirrel, self.squirrel.home)
self.schedule.add(self.squirrel)
"""
for index in np.ndindex(self.height, self.width):
risk = self.danger[index[0], index[1]]
self.empties.add(index)
danger_dummy = DangerZone(self.next_id(), model = self,
pos = (index[0], index[1]),
risk = risk)
self.grid.place_agent(danger_dummy, (index[0], index[1]))
#self.schedule.add(danger_dummy)
"""
#======================================================================
# Set datacollection and start running the model
#======================================================================
model_reporters = {
"Food": lambda m: self.count_food(),
"Eaten": lambda m: len(self.eaten),
"Stored": lambda m: len(self.stored),
}
self.datacollector = DataCollector(
model_reporters=model_reporters)
self.datacollector.collect(self)
self.running = True
def count_food(self):
""" Helper method to count food. """
count = 0
for agent in self.schedule.agents:
if isinstance(agent, Food):
count += 1
return count
def step(self):
""" A step in the model """
self.schedule.step()
self.heatmap[self.squirrel.pos] += 1
if not(self.grid.exists_empty_cells()):
self.running = False
self.datacollector.collect(self)
if self.count_food() == 0 and len(self.squirrel.storage) == 0:
self.running = False
def run_model(self, n_steps:int = 150):
""" Run the model for n_steps steps. """
for step in range(n_steps):
self.step()
def main(n_steps = 400, risk = 1, n_food = 50):
foraging_model = ForagingModel(n_food = n_food, n_safespots = 1,
squirrel_risk_aversion = risk, verbose = False)
foraging_model.run_model(n_steps = n_steps)
"""
fig, axes = plt.subplots(2,2, figsize = (8,8))
distance_bins = list(range(1,11))
risk_bins = list(range(1,6))
sns.histplot(x = [agent.distance for agent in foraging_model.stored],
ax = axes[0,0], bins = distance_bins )
axes[0,0].set_title("Distance of Stored Food")
sns.histplot(x = [agent.distance for agent in foraging_model.eaten],
ax = axes[0,1], bins = distance_bins)
axes[0,1].set_title("Distance of Eaten Food")
sns.histplot(x = [agent.risk for agent in foraging_model.stored],
ax = axes[1,0], bins = risk_bins)
axes[1,0].set_title("Risk of Stored Food")
sns.histplot(x = [agent.risk for agent in foraging_model.eaten],
ax = axes[1,1], bins = risk_bins)
axes[1,1].set_title("Risk of Eaten Food")
fig.tight_layout()"""
return foraging_model
if __name__ == '__main__':
risks = [0.2, 0.4, 0.6, 0.8, 1, 1.5, 2, 3, 4]
#fig, axes = plt.subplots(3,2, sharex = True, sharey = True, figsize = (8,4))
#axes = axes.flatten()
for idx, risk in enumerate(risks):
print(risk)
m = np.zeros([20,20, len(risks)])
for _ in range(3):
model = main(n_steps = 500, risk = risk, n_food = 80)
model.heatmap[10,10] = 0
model.heatmap[int(model.height/2), int(model.width/2)] = 0
#axes2[1].imshow(model.heatmap, cmap = "gray_r")
#axes2[0].imshow(model.danger, cmap = "gray_r")
m[:,:,idx] += model.heatmap
#f = model.heatmap/np.max(model.heatmap)
#axes2[2].imshow(f, cmap = "gray_r")
#plot_data = (model.danger*f)#.flatten()
#plot_data = plot_data[plot_data != 0]
#model.danger[plot_data > 0]
#np.where(plot_data > 0, 1, 0)
#axes2[2].imshow(model.danger * np.where(plot_data > 0, 1, 0), cmap = "gray_r")
fig, axes = plt.subplots(1,2, sharex = True, sharey = True, figsize = (8,4))
axes[0].imshow(m[:,:,idx], cmap = "cividis")
axes[0].set(title = "Heatmap of agent position", yticks =[], xticks = [])
axes[1].imshow(model.danger, cmap = "cividis")
axes[1].set(title = "Risk Distribution", yticks =[], xticks = [])
cbar = fig.colorbar(plt.cm.ScalarMappable(norm=None, cmap="cividis"),
ax = axes[0], label="Location visited", orientation="vertical",
ticks = [0,1])
cbar.ax.set_yticklabels(["never", "often"])
cbar2 = fig.colorbar(plt.cm.ScalarMappable(norm=None, cmap="cividis"),
ax = axes[1], label="Risk", orientation="vertical",
ticks = [0,1])
cbar2.ax.set_yticklabels(["low", "high"])
fig.suptitle(f"Risk Aversion: {risk}")
fig.tight_layout()
plt.show()