-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTrain_ACL.py
322 lines (257 loc) · 15.3 KB
/
Train_ACL.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
import torch
import os
import sys
import time
import datetime
import yaml
import shutil
import argparse
from tqdm import tqdm
from util import get_prompt_template, fix_seed, seed_worker
from VGGSS.VGGSS_Dataset import VGGSSDataset, ExtendVGGSSDataset
from Flickr.Flickr_Dataset import FlickrDataset, ExtendFlickrDataset
from AVSBench.AVSBench_Dataset import AVSBenchDataset
from torch.cuda.amp import autocast, GradScaler
from torch.utils.tensorboard import SummaryWriter
from importlib import import_module
from Eval import eval_vggss_agg, eval_avsbench_agg, eval_flickr_agg, eval_exvggss_agg, eval_exflickr_agg
from contextlib import nullcontext
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel
from torch.utils.data.distributed import DistributedSampler
def main(model_name, exp_name, train_config_name, data_path_dict, save_path):
"""
Main function for training an image compression model.
Args:
model_name (str): The name of the compression model, corresponding to the model config file in './config/model'.
exp_name (str): The postfix for saving the experiment.
train_config_name (str): The name of the training configuration, corresponding to the files in './config/train'.
data_path_dict (dict): The directory for dataset.
save_path (str): The directory where training results will be saved.
Returns:
None
"""
USE_CUDA = torch.cuda.is_available()
# Check the number of GPUs for training
num_gpus = len(os.environ.get('CUDA_VISIBLE_DEVICES', '').split(','))
use_ddp = True if num_gpus > 1 else False
rank = 0 if not use_ddp else None
if use_ddp:
dist.init_process_group("nccl", timeout=datetime.timedelta(seconds=9000))
rank = dist.get_rank()
torch.cuda.set_device(rank)
world_size = dist.get_world_size()
print(f'World size: {world_size}') if rank == 0 else None
device = torch.cuda.current_device() if USE_CUDA else torch.device('cpu')
print(f'Device: {device} is used\n')
model_exp_name = f'{model_name}_{exp_name}' if exp_name != "" else model_name
''' Set logging dir '''
tensorboard_path = os.path.join(save_path, 'Train_record', model_exp_name, "tensorboard")
''' Get train configure '''
train_conf_file = f'./config/train/{train_config_name}.yaml'
with open(train_conf_file) as f:
config = yaml.load(f, Loader=yaml.FullLoader)
args = argparse.Namespace(**config['common'])
args.optim = config['optim_conf'][config['optimizer']]
if rank == 0:
print(vars(args))
''' Fix random seed'''
fix_seed(args.seed)
''' Tensorboard '''
writer = SummaryWriter(tensorboard_path)
print(f"\nSave dir: {os.path.join(save_path, 'Train_record', model_exp_name)}\n") if rank == 0 else None
''' Get model '''
model_conf_file = f'./config/model/{model_name}.yaml'
model = getattr(import_module('modules.models'), config['model'])(model_conf_file, device)
if rank == 0:
print(f"Model '{model.__class__.__name__}' with configure file '{model_name}' is loaded")
print(f"Loaded model details: {vars(model.args.model)}\n")
training_consumed_sec = 0
''' Get dataloader '''
if args.train_data == 'vggss':
# Get Train Dataloader (VGGSS)
train_dataset = VGGSSDataset(data_path_dict['vggss'], 'vggss_144k', is_train=True,
input_resolution=args.input_resolution)
elif args.train_data == 'vggss_heard':
# Get Train Dataloader (VGGSS heard setup)
train_dataset = VGGSSDataset(data_path_dict['vggss'], 'vggss_heard', is_train=True,
input_resolution=args.input_resolution)
else:
# Get Train Dataloader (Flickr)
train_dataset = FlickrDataset(data_path_dict['flickr'], 'flickr_144k', is_train=True,
input_resolution=args.input_resolution)
''' Create DistributedSampler '''
sampler = DistributedSampler(train_dataset, num_replicas=world_size, rank=rank, shuffle=True) if use_ddp else None
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size, sampler=sampler,
num_workers=args.num_workers, pin_memory=False, drop_last=True,
worker_init_fn=seed_worker)
# Get Test Dataloader (VGGSS)
vggss_dataset = VGGSSDataset(data_path_dict['vggss'], 'vggss_test', is_train=False,
input_resolution=args.input_resolution)
vggss_dataloader = torch.utils.data.DataLoader(vggss_dataset, batch_size=1, shuffle=False, num_workers=1,
pin_memory=False, drop_last=False)
if args.train_data == 'vggss_heard':
# Get Test Dataloader (VGGSS)
heard_dataset = VGGSSDataset(data_path_dict['vggss'], 'vggss_heard_test', is_train=False,
input_resolution=args.input_resolution)
heard_dataloader = torch.utils.data.DataLoader(heard_dataset, batch_size=1, shuffle=False, num_workers=1,
pin_memory=False, drop_last=False)
# Get Test Dataloader (VGGSS)
unheard_dataset = VGGSSDataset(data_path_dict['vggss'], 'vggss_unheard_test', is_train=False,
input_resolution=args.input_resolution)
unheard_dataloader = torch.utils.data.DataLoader(unheard_dataset, batch_size=1, shuffle=False, num_workers=1,
pin_memory=False, drop_last=False)
# Get Test Dataloader (Flickr)
flickr_dataset = FlickrDataset(data_path_dict['flickr'], 'flickr_test', is_train=False,
input_resolution=args.input_resolution)
flickr_dataloader = torch.utils.data.DataLoader(flickr_dataset, batch_size=1, shuffle=False, num_workers=1,
pin_memory=False, drop_last=False)
# Get Test Dataloader (Extended VGGSS)
exvggss_dataset = ExtendVGGSSDataset(data_path_dict['vggss'], input_resolution=352)
exvggss_dataloader = torch.utils.data.DataLoader(exvggss_dataset, batch_size=1, shuffle=False, num_workers=1,
pin_memory=False, drop_last=False)
# Get Test Dataloader (Extended Flickr)
exflickr_dataset = ExtendFlickrDataset(data_path_dict['flickr'], input_resolution=352)
exflickr_dataloader = torch.utils.data.DataLoader(exflickr_dataset, batch_size=1, shuffle=False, num_workers=1,
pin_memory=False, drop_last=False)
# Get Test Dataloader (AVS)
avss4_dataset = AVSBenchDataset(data_path_dict['avs'], 'avs1_s4_test', is_train=False,
input_resolution=args.input_resolution)
avss4_dataloader = torch.utils.data.DataLoader(avss4_dataset, batch_size=5, shuffle=False, num_workers=1,
pin_memory=False, drop_last=False)
avsms3_dataset = AVSBenchDataset(data_path_dict['avs'], 'avs1_ms3_test', is_train=False,
input_resolution=args.input_resolution)
avsms3_dataloader = torch.utils.data.DataLoader(avsms3_dataset, batch_size=5, shuffle=False, num_workers=1,
pin_memory=False, drop_last=False)
''' Optimizer '''
module_path, module_name = args.optim.pop('module_path'), args.optim.pop('module_name')
optimizer = getattr(import_module(module_path), module_name)(model.parameters(), **args.optim)
''' Scheduler '''
scheduler = None
if config['scheduler']:
print(f"Scheduler: {config['scheduler']}")
args.sched = config['sched_conf'][config['scheduler']]
module_path, module_name = args.sched.pop('module_path'), args.sched.pop('module_name')
scheduler = getattr(import_module(module_path), module_name)(optimizer,
T_max=args.epoch * len(train_dataloader),
eta_min=args.sched['eta_ratio'] * args.optim['lr'])
''' Autocast '''
if config['amp']:
if rank == 0:
print('Using AMP')
autocast_fn = autocast
scaler = GradScaler()
else:
autocast_fn, scaler = nullcontext, None
''' Make distributed data parallel module '''
model = DistributedDataParallel(model, device_ids=[device], output_device=device) if use_ddp else model
module = model.module if isinstance(model, DistributedDataParallel) else model
best_pth_dict = {'epoch': 0, 'best_AUC': 0.0}
''' Train Loop '''
for epoch in range(args.epoch):
module.train(True)
total_loss_per_epopch = 0.0
loss_add_count = 0.0
loss_dict = {}
loss_per_epoch_dict = {loss_name: 0.0 for loss_name in args.loss}
if rank == 0:
train_start_time_per_epoch = time.time()
pbar = tqdm(train_dataloader, desc=f"Train Epoch {epoch}...", disable=(rank != 0))
sampler.set_epoch(epoch) if use_ddp else None
for step, data in enumerate(pbar):
images, audios, labels = data['images'], data['audios'], data['labels']
images = images.half()
prompt_template, text_pos_at_prompt, prompt_length = get_prompt_template()
with autocast_fn():
# Train step
placeholder_tokens = module.get_placeholder_token(prompt_template.replace('{}', ''))
placeholder_tokens = placeholder_tokens.repeat((train_dataloader.batch_size, 1))
audio_driven_embedding = module.encode_audio(audios.to(module.device), placeholder_tokens,
text_pos_at_prompt, prompt_length).half()
out_dict = module(images.to(module.device), audio_driven_embedding, 352)
loss_args = {'pred_emb': audio_driven_embedding, **out_dict}
for j, loss_name in enumerate(args.loss):
loss_dict[loss_name] = getattr(import_module('loss_utils'), loss_name)(**loss_args) * args.loss_w[j]
loss_per_epoch_dict[loss_name] += loss_dict[loss_name]
loss = torch.sum(torch.stack(list(loss_dict.values())))
if rank == 0:
if torch.isnan(loss) or torch.isinf(loss):
# skip if loss is nan
print('************Training stopped due to inf/nan loss.************')
sys.exit(-1)
extra_loss = 0
loss += extra_loss
total_loss_per_epopch += loss.item()
loss_add_count += 1.0
optimizer.zero_grad()
if scaler is None:
loss.backward()
optimizer.step()
else:
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
if scheduler is not None:
scheduler.step()
avr_loss = total_loss_per_epopch / loss_add_count
if rank == 0:
pbar.set_description(f"Training Epoch {epoch}, Loss = {round(avr_loss, 5)}")
dist.barrier()
if rank == 0:
loss_per_epoch_dict = dict(
(loss_name, loss / loss_add_count) for loss_name, loss in loss_per_epoch_dict.items())
training_consumed_sec += (time.time() - train_start_time_per_epoch)
writer.add_scalars('train/overall', {'loss': total_loss_per_epopch / loss_add_count}, epoch)
writer.add_scalars('train/loss', loss_per_epoch_dict, epoch)
for i, param in enumerate(optimizer.param_groups):
writer.add_scalars('train/lr', {f'param{i}': optimizer.param_groups[i]['lr']}, epoch)
''' Evaluate '''
module.train(False)
with torch.no_grad():
viz_dir_template = os.path.join(save_path, 'Visual_results', '{}', model_exp_name, f'epoch{epoch}')
if args.train_data == 'vggss_heard':
result_dict = eval_vggss_agg(module, heard_dataloader, viz_dir_template.format('vggss_heard'),
epoch, tensorboard_path=tensorboard_path)
eval_vggss_agg(module, unheard_dataloader, viz_dir_template.format('vggss_unheard'), epoch,
tensorboard_path=tensorboard_path)
else:
result_dict = eval_vggss_agg(module, vggss_dataloader, viz_dir_template.format('vggss'), epoch,
tensorboard_path=tensorboard_path)
eval_flickr_agg(module, flickr_dataloader, viz_dir_template.format('flickr'), epoch,
tensorboard_path=tensorboard_path)
eval_avsbench_agg(module, avss4_dataloader, viz_dir_template.format('s4'), epoch,
tensorboard_path=tensorboard_path)
eval_avsbench_agg(module, avsms3_dataloader, viz_dir_template.format('ms3'), epoch,
tensorboard_path=tensorboard_path)
eval_exvggss_agg(module, exvggss_dataloader, viz_dir_template.format('exvggss'), epoch,
tensorboard_path=tensorboard_path)
eval_exflickr_agg(module, exflickr_dataloader, viz_dir_template.format('exflickr'), epoch,
tensorboard_path=tensorboard_path)
save_dir = os.path.join(save_path, 'Train_record', model_exp_name, f'Param_{str(epoch)}.pth')
module.save(save_dir)
module.train(True)
if best_pth_dict['best_AUC'] < result_dict['best_AUC']:
best_pth_dict = result_dict
shutil.copyfile(save_dir, os.path.join(save_path, 'Train_record', model_exp_name, f'Param_best.pth'))
writer.close()
if rank == 0:
result_list = str(datetime.timedelta(seconds=training_consumed_sec)).split(".")
print("Training time :", result_list[0])
print(f"Best epoch: {best_pth_dict['epoch']}")
dist.destroy_process_group() if use_ddp else None
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--local-rank", type=int, default=0)
parser.add_argument('--model_name', type=str, default='', help='Use model config file name')
parser.add_argument('--train_config', type=str, default='', help='Use train config file name')
parser.add_argument('--exp_name', type=str, default='', help='postfix for save experiment')
parser.add_argument('--save_path', type=str, default='', help='Save path for model and results')
parser.add_argument('--vggss_path', type=str, default='', help='VGGSS dataset directory')
parser.add_argument('--flickr_path', type=str, default='', help='Flickr dataset directory')
parser.add_argument('--avs_path', type=str, default='', help='AVSBench dataset directory')
args = parser.parse_args()
data_path = {'vggss': args.vggss_data_path,
'flickr': args.flickr_data_path,
'avs': args.avs_data_path}
# Run example
main(args.model_name, args.exp_name, args.train_config, data_path, args.save_path)