-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtext_retrival.py
347 lines (273 loc) · 15.4 KB
/
text_retrival.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
import argparse
import os
import random
import time
import warnings
import yaml
import numpy as np
import torch
import torch.distributed as dist
from cosine_annealing_warmup import CosineAnnealingWarmupRestarts
from sklearn.metrics import auc, roc_curve, accuracy_score,top_k_accuracy_score,recall_score
from torch.cuda.amp import autocast, GradScaler
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.tensorboard import SummaryWriter
from torchsummary import summary
from tqdm import tqdm
import torch.nn as nn
from Data.clip_dataset_retrival import load_dataset_retrival_ddp
from configs.defaults import get_cfg_defaults
from models.build_model import build_model,update_logit_scale
from utils.logger import setup_logger
from utils.loss import compute_cls_loss, compute_seq_loss, compute_info_loss_neg, compute_gumbel_loss
from collections import OrderedDict
from utils.metrics import compute_WDR, pred_dist
from utils.preprocess import frames_preprocess
from utils.utils_distributed import all_gather_concat,all_reduce_mean,all_reduce_sum,all_gather_object
warnings.filterwarnings("ignore")
# torch.autograd.set_detect_anomaly(True)
def setup(local_rank):
torch.cuda.set_device(local_rank)
dist.init_process_group(backend='nccl')
def init_log(cfg=None, eval_cfg=None, args=None, local_rank=0,):
# cfg, eval_cfg = update_cfg_from_args(cfg, eval_cfg, args)
logger_path = os.path.join(eval_cfg.TRAIN.SAVE_PATH, args.tensorboard + '/logs')
logger = setup_logger('Sequence Verification', logger_path, args.log_name, args.local_rank)
if args.eval:
logger.info('-------------Update eval cfg from train config-------------\n')
logger.info('Running eval with config:\n{}\n'.format(eval_cfg))
return logger
def eval_retrival(cfg, eval_cfg, args,):
local_rank = args.local_rank
setup(local_rank)
setup_seed(cfg.TRAIN.SEED + local_rank)
logger = init_log(cfg, eval_cfg, args, local_rank)
model = build_model(cfg=cfg, args=args, model_log=False,).to(local_rank)
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
# Load checkpoint
if args.load_path and os.path.isfile(args.load_path):
map_location = {'cuda:%d' % 0: 'cuda:%d' % local_rank}
checkpoint = torch.load(args.load_path, map_location=map_location)
# new_state_dict = OrderedDict()
# for k, v in checkpoint['model_state_dict'].items():
# name = 'module.' + k
# new_state_dict[name] = v
# model.load_state_dict(new_state_dict, strict=True)
model.load_state_dict(checkpoint['model_state_dict'], strict=True)
logger.info('-> Loaded checkpoint %s' % (args.load_path))
else:
raise IOError('no ckpt has been load')
model = DDP(model, device_ids=[local_rank], output_device=local_rank, find_unused_parameters=True)
test_loader = load_dataset_retrival_ddp(eval_cfg, args, drop_last=False)
start_time = time.time()
# eval
model.eval()
# -------------------------------------------
# test on val set
with torch.no_grad():
labels, preds, pred2_top2, labels1_all, labels2_all = None, None, None, None, None
if dist.get_rank() == 0:
iter_test = tqdm(test_loader)
else:
iter_test = test_loader
for iter, sample in enumerate(iter_test):
if iter == 3 and args.debug:
break
frames1_list = sample['clips1']
frames2_list = sample['clips2']
frames3_list = sample['clips3']
frames4_list = sample['clips4']
frames5_list = sample['clips5']
label = sample['label'].to(local_rank, non_blocking=True)
label_token1 = sample['label_token1'].to(local_rank, non_blocking=True)
embeds1_list = []
embeds2_list = []
embeds3_list = []
embeds4_list = []
embeds5_list = []
for i in range(len(frames1_list)):
frames1 = frames_preprocess(frames1_list[i]).to(local_rank, non_blocking=True)
frames2 = frames_preprocess(frames2_list[i]).to(local_rank, non_blocking=True)
frames3 = frames_preprocess(frames3_list[i]).to(local_rank, non_blocking=True)
frames4 = frames_preprocess(frames4_list[i]).to(local_rank, non_blocking=True)
frames5 = frames_preprocess(frames5_list[i]).to(local_rank, non_blocking=True)
embeds1, text_features = model(frames1, text_token=label_token1, embed=True, retrieval=True)
embeds2 = model(frames2, embed=True)
embeds3 = model(frames3, embed=True)
embeds4 = model(frames4, embed=True)
embeds5 = model(frames5, embed=True)
embeds1_list.append(embeds1.unsqueeze(dim=0))
embeds2_list.append(embeds2.unsqueeze(dim=0))
embeds3_list.append(embeds3.unsqueeze(dim=0))
embeds4_list.append(embeds4.unsqueeze(dim=0))
embeds5_list.append(embeds5.unsqueeze(dim=0))
embeds1_avg = (torch.cat(embeds1_list, dim=0)).mean(dim=0).unsqueeze(dim=1)
embeds2_avg = (torch.cat(embeds2_list, dim=0)).mean(dim=0).unsqueeze(dim=1)
embeds3_avg = (torch.cat(embeds3_list, dim=0)).mean(dim=0).unsqueeze(dim=1)
embeds4_avg = (torch.cat(embeds4_list, dim=0)).mean(dim=0).unsqueeze(dim=1)
embeds5_avg = (torch.cat(embeds5_list, dim=0)).mean(dim=0).unsqueeze(dim=1)
image_features = torch.cat([embeds1_avg, embeds2_avg, embeds3_avg, embeds4_avg,embeds5_avg], dim=1)
text_features = text_features.unsqueeze(dim=1)
image_features = image_features / (image_features.norm(dim=-1, keepdim=True) + 1e-8)
text_features = text_features / (text_features.norm(dim=-1, keepdim=True) + 1e-8)
pre_text = text_features @ image_features.permute(0, 2, 1).squeeze(dim=-1)
pred_top2 = pre_text.squeeze()
pred = torch.argmax(pre_text, dim=-1).squeeze()
# pred = pred_dist(args.dist, embeds1_avg, embeds2_avg)
torch.cuda.synchronize()
# gather from other gpu
pred = all_gather_concat(pred)
pred_top2 = all_gather_concat(pred_top2)
label = all_gather_concat(label)
# add all data to list
if iter == 0:
preds = pred
preds_top2 = pred_top2
labels = label
else:
preds = torch.cat([preds, pred])
preds_top2 = torch.cat([preds_top2, pred_top2])
labels = torch.cat([labels, label])
# if dist.get_rank()==0:
# print('preds:',preds)
# print('preds:',preds.shape)
# print('labels:',labels)
# print('labels:',labels.shape)
labels = labels.cpu().detach().numpy()
preds = preds.cpu().detach().numpy()
preds_top2 = preds_top2.cpu().detach().numpy()
fpr, tpr, thresholds = roc_curve(labels, preds, pos_label=0)
auc_value = auc(fpr, tpr)
recall = recall_score(labels, preds, average='micro')
acc = accuracy_score(labels, preds)
acc2 = top_k_accuracy_score(labels, preds_top2, k=2)
acc3 = top_k_accuracy_score(labels, preds_top2, k=3)
logger.info('RECALL:{:.4}, AUC: {:.6f}, ACC: {:.4f},ACC2: {:.4},ACC3: {:.4}'
.format(recall,auc_value, acc, acc2, acc3))
# write tensorboard
dist.barrier()
end_time = time.time()
duration = end_time - start_time
hour = duration // 3600
minute = (duration % 3600) // 60
sec = duration % 60
logger.info('Testing cost %dh%dm%ds' % (hour, minute, sec))
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--backbone', required=True, default='resnet', help='choose one backbone (s3dg or resnet)')
parser.add_argument('--batch_size', type=int, default=4, help='batch size of per gpu, default is 4')
parser.add_argument('--warmup_step', type=int, default=0, help='set the warmup step size, default is 0')
parser.add_argument('--lr', type=int, default=0.0005, help='learning rate, default is 1e-4')
parser.add_argument('--num_sample', type=int, default=1600, help='pairs num sampled from pair txt, default is 1600')
parser.add_argument('--num_clip', type=int, default=16, help='frames num sampled from one video, default is 16')
parser.add_argument('--num_workers', type=int, default=10, help='num_worker, default is 10')
parser.add_argument('--save_epochs', type=int, default=100, help='save epochs frequency, default is 100')
parser.add_argument('--max_epoch', type=int, default=300, help='the max epochs, default is 300')
parser.add_argument('--seq_loss', type=int, default=1.0, help='the W of seq loss, default: 1')
parser.add_argument('--info_loss', type=int, default=1.0, help='the W of seq loss, default: 1')
parser.add_argument('--dist', type=str, default='NormL2', help='the distance of inference final scores ')
parser.add_argument('--freeze_backbone', action='store_true')
parser.add_argument('--unfreeze_backbone', dest='freeze_backbone', action='store_false')
parser.set_defaults(freeze_backbone=True)
parser.add_argument('--freeze_BN', action='store_true')
parser.add_argument('--unfreeze_BN', dest='freeze_BN', action='store_false')
parser.set_defaults(freeze_BN=False)
parser.add_argument('--random_sample', action='store_true')
parser.add_argument('--uniform_sample', dest='random_sample', action='store_false')
parser.set_defaults(random_sample=True)
parser.add_argument('--pre_load', action='store_true')
parser.add_argument('--unpre_load', dest='pre_load', action='store_false')
parser.set_defaults(pre_load=False)
parser.add_argument('--pair', action='store_true')
parser.add_argument('--unpair', dest='pair', action='store_false')
parser.set_defaults(pair=True)
parser.add_argument('--data_aug', action='store_true')
parser.add_argument('--undata_aug', dest='data_aug', action='store_false')
parser.set_defaults(data_aug=False)
parser.add_argument('--multi_TE', action='store_true')
parser.add_argument('--single_TE', dest='multi_TE', action='store_false')
parser.set_defaults(multi_TE=False)
# --------------------------------------------------------------
# gumble softmax
parser.add_argument('--use_gumbel', action='store_true')
parser.add_argument('--unuse_gumbel', dest='use_gumbel', action='store_false')
parser.set_defaults(use_gumbel=False)
parser.add_argument('--gt_type', type=str, default='sort', help='the type of gumbel loss gt type')
# --------------------------------------------------------------
parser.add_argument('--warmup_LR', action='store_true')
parser.add_argument('--unwarmup_LR', dest='warmup_LR', action='store_false')
parser.set_defaults(warmup_LR=False)
# sim matrix
parser.add_argument('--use_sim', action='store_true')
parser.add_argument('--unuse_sim', dest='use_sim', action='store_false')
parser.set_defaults(use_sim=False)
parser.add_argument('--sim_dist', default='l2', help='choose one sim distance (l2 or attn)')
parser.add_argument('--concat_sim', action='store_true')
parser.add_argument('--unconcat_sim', dest='concat_sim', action='store_false')
parser.set_defaults(concat_sim=False)
parser.add_argument('--add_sim', action='store_true')
parser.add_argument('--unadd_sim', dest='add_sim', action='store_false')
parser.set_defaults(add_sim=False)
parser.add_argument('--sim_pos', default='first', help='set the pos of sim matrix')
# --------------------------------------------------------------
# language loss
parser.add_argument('--use_text', action='store_true')
parser.add_argument('--unuse_text', dest='use_text', action='store_false')
parser.set_defaults(use_text=False)
parser.add_argument('--use_neg_text', action='store_true')
parser.add_argument('--unuse_neg_text', dest='use_neg_text', action='store_false')
parser.set_defaults(use_neg_text=False)
parser.add_argument('--info_mask', action='store_true')
parser.add_argument('--uninfo_mask', dest='info_mask', action='store_false')
parser.set_defaults(info_mask=True)
parser.add_argument('--info_ddp', action='store_true')
parser.add_argument('--uninfo_ddp', dest='info_ddp', action='store_false')
parser.set_defaults(info_ddp=False)
# --------------------------------------------------------------
parser.add_argument('--eval', action='store_true')
parser.add_argument('--uneval', dest='eval', action='store_false')
parser.set_defaults(eval=True)
parser.add_argument('--debug', action='store_true')
parser.add_argument('--undebug', dest='debug', action='store_false')
parser.set_defaults(debug=False)
parser.add_argument('--use_ddp', action='store_true')
parser.add_argument('--unuse_ddp', dest='use_ddp', action='store_false')
parser.set_defaults(use_ddp=True)
parser.add_argument("--local_rank", default=-1, type=int)
parser.add_argument('--use_amp', action='store_true')
parser.add_argument('--unuse_amp', dest='use_amp', action='store_false')
parser.set_defaults(use_amp=True)
parser.add_argument('--cfg_from_args', action='store_true')
parser.add_argument('--uncfg_from_args', dest='cfg_from_args', action='store_false')
parser.set_defaults(cfg_from_args=False)
parser.add_argument('--config', default='configs/train_config.yml', help='config file path')
parser.add_argument('--eval_config', default='configs/eval_retrival_config.yml', help='config file path')
parser.add_argument('--save_path', default=None, help='path to save models and log')
parser.add_argument('--load_path', default=None, help='path to load the model')
parser.add_argument('--log_name', default='train_log', help='log name')
parser.add_argument('--tensorboard', required=False, default='default', help='tensorboard log name cannot be blank')
args = parser.parse_args()
return args
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
return cfg, eval_cfg
if __name__ == "__main__":
ckpt_path = '/public/home/dongsx/svip/csv_logs/1109010_clip_csv_sample0.8k_lr5e-4_5e-6_bs8_ns16_wo_seq_wo_pair_info_gumbel_sort_wo_mask/1109010_clip_csv_sample0.8k_lr5e-4_5e-6_bs8_ns16_wo_seq_wo_pair_info_gumbel_sort_wo_mask/save_models/best_model.tar'
cmd = r'CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 text_retrival.py --config configs/train_config.yml --unfreeze_backbone --backbone clip --unpair --use_text --use_gumbel --gt_type sort --uninfo_mask'
args = parse_args()
args.load_path = ckpt_path
cfg = get_cfg_defaults()
if args.config:
cfg.merge_from_file(args.config)
if args.eval:
eval_cfg = get_cfg_defaults()
if args.eval_config:
eval_cfg.merge_from_file(args.eval_config)
else:
raise IOError('need value')
use_cuda = cfg.TRAIN.USE_CUDA and torch.cuda.is_available()
eval_retrival(cfg, eval_cfg, args,)