-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualizer.py
78 lines (60 loc) · 2.11 KB
/
visualizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import pickle
import numpy as np
from PIL import Image
import os
from StringIO import StringIO
import math
import pylab
import chainer
from chainer import computational_graph
from chainer import cuda
from chainer import optimizers
from chainer import serializers
from chainer import Variable
from chainer.utils import type_check
from chainer import function
import chainer.functions as F
import chainer.links as L
import numpy
nz = 100
model_file = 'generator_model.h5'
out_file = 'output.png'
class Generator(chainer.Chain):
def __init__(self):
super(Generator, self).__init__(
l0z = L.Linear(nz, 6*6*512, wscale=0.02*math.sqrt(nz)),
dc1 = L.Deconvolution2D(512, 256, 4, stride=2, pad=1, wscale=0.02*math.sqrt(4*4*512)),
dc2 = L.Deconvolution2D(256, 128, 4, stride=2, pad=1, wscale=0.02*math.sqrt(4*4*256)),
dc3 = L.Deconvolution2D(128, 64, 4, stride=2, pad=1, wscale=0.02*math.sqrt(4*4*128)),
dc4 = L.Deconvolution2D(64, 3, 4, stride=2, pad=1, wscale=0.02*math.sqrt(4*4*64)),
bn0l = L.BatchNormalization(6*6*512),
bn0 = L.BatchNormalization(512),
bn1 = L.BatchNormalization(256),
bn2 = L.BatchNormalization(128),
bn3 = L.BatchNormalization(64),
)
def __call__(self, z, test=False):
h = F.reshape(F.relu(self.bn0l(self.l0z(z), test=test)), (z.data.shape[0], 512, 6, 6))
h = F.relu(self.bn1(self.dc1(h), test=test))
h = F.relu(self.bn2(self.dc2(h), test=test))
h = F.relu(self.bn3(self.dc3(h), test=test))
x = (self.dc4(h))
return x
def clip_img(x):
return np.float32(-1 if x<-1 else (1 if x>1 else x))
xp = numpy
gen = Generator()
serializers.load_hdf5(model_file, gen)
pylab.rcParams['figure.figsize'] = (22.0,22.0)
pylab.clf()
vissize = 100
z = (xp.random.uniform(-1, 1, (100, 100)).astype(np.float32))
z = Variable(z)
x = gen(z, test=True)
x = x.data
for i_ in range(100):
tmp = ((np.vectorize(clip_img)(x[i_,:,:,:])+1)/2).transpose(1,2,0)
pylab.subplot(10,10,i_+1)
pylab.imshow(tmp)
pylab.axis('off')
pylab.savefig(out_file)