Skip to content

Files

Latest commit

4eff713 · Nov 9, 2021

History

History
94 lines (71 loc) · 5.44 KB

README_ZInD.md

File metadata and controls

94 lines (71 loc) · 5.44 KB

Results on Zillow Indoor dataset

References:

Dataset preparation

  • Visit ZInD to get the datas.
    • Also download the official split zind_partition.json.
  • Run below to extract the rgb and layout to support HorizonNet training and evaluation.
    python misc/zind_prepare_dataset.py --partition {PATH_TO}/zind_partition.json --indir {PATH_TO_DATA_ROOT} --outdir data/zind_horizonnet/
    Add -h to see more option. The default setting extract only layout_visible, is_primary, is_inside, is_ceiling_flat.

Training

python train.py --train_root_dir data/zind_horizonnet/train/ --valid_root_dir data/zind_horizonnet/val/ --id resnet50_rnn__zind --epochs 50

See python train.py -h or README.md#training for more detail.

Download the trained model: resnet50_rnn__zind.pth.

  • Trained on Zillow Indoor 20077 images with default data extraction setup.
  • Trained for 50 epoch.

Restuls

Testing

python inference.py --pth ckpt/resnet50_rnn__zind.pth --img_glob "data/zind_horizonnet/test/img/*" --output_dir ./output/zind/resnet50_rnn_post/ --visualize
python inference.py --pth ckpt/resnet50_rnn__zind.pth --img_glob "data/zind_horizonnet/test/img/*" --output_dir ./output/zind/resnet50_rnn_nopost/ --visualize --force_raw
  • --output_dir: A directory you want to dump the extracted layout.
  • --visualize: Visualize raw output from HorizonNet.
  • --force_raw: Disable post-processing, export raw output as 1024*2 vertices polygon instead.

Quantitative evaluation

python eval_general.py --dt_glob "./output/zind/resnet50_rnn_post/*" --gt_glob "data/zind_horizonnet/test/label_cor/*"
python eval_general.py --dt_glob "./output/zind/resnet50_rnn_nopost/*" --gt_glob "data/zind_horizonnet/test/label_cor/*"

📋 Below is the quantitative result on Zillow Indoor testing set.

2D IoU

all 4 6 8 10+ odd
w post 68.48 79.31 75.20 70.80 56.70 58.25
w/o post 89.80 94.13 93.56 91.31 84.36 85.59

3D IoU

all 4 6 8 10+ odd
w post 67.52 78.23 74.28 69.96 55.85 57.32
w/o post 88.47 92.83 92.32 90.06 83.03 84.15

Conclusion

We find that current post-processing fails on Zillow Indoor dataset. A new algorithm to rectify model's raw output (i.e., polygon w/ 1024*2 vertices) to Manhattan layout is required.

Qualitative results

We visualize model raw output on Zillow Indoor testset. We also compare with the results from a HorizonNet trained only on Structured3D dataset.

Different layout definition

Whether to reconstruct the boundary out of current camera position is application dependent.

Trained only on Structured3D Trained on Zillow Indoor

Domain gap?

Probably solvable by domain adaptation in future work.

Trained only on Structured3D Trained on Zillow Indoor