-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathrun_doorpuzzle-1.py
96 lines (78 loc) · 3.4 KB
/
run_doorpuzzle-1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import sys
import numpy as np
from PWLPlan import plan, Node
from vis import vis
def test():
x0 = [4.5, 2.]
wall_half_width = 0.1
A = np.array([[-1, 0], [1, 0], [0, -1], [0, 1]])
_walls = []
_walls.append(np.array([0, 0, 0, 8], dtype = np.float64))
_walls.append(np.array([8, 8, 0, 8], dtype = np.float64))
_walls.append(np.array([0, 8, 0, 0], dtype = np.float64))
_walls.append(np.array([0, 8, 8, 8], dtype = np.float64))
_walls.append(np.array([0, 7, 6, 6], dtype = np.float64))
_walls.append(np.array([2, 2, 1, 4], dtype = np.float64))
_walls.append(np.array([2, 4, 4, 4], dtype = np.float64))
_walls.append(np.array([4, 4, 4, 6], dtype = np.float64))
_walls.append(np.array([6, 6, 0, 5], dtype = np.float64))
walls = []
for wall in _walls:
if wall[0] == wall[1]:
wall[0] -= wall_half_width
wall[1] += wall_half_width
elif wall[2] == wall[3]:
wall[2] -= wall_half_width
wall[3] += wall_half_width
else:
raise ValueError('wrong shape for axis-aligned wall')
wall *= np.array([-1,1,-1,1])
walls.append((A, wall))
_doors = []
_doors.append(np.array([2, 2, 0, 1], dtype = np.float64))
_doors.append(np.array([6, 6, 5, 6], dtype = np.float64))
_doors.append(np.array([6, 8, 2, 2], dtype = np.float64))
_doors.append(np.array([0, 2, 4, 4], dtype = np.float64))
_doors.append(np.array([7, 8, 6, 6], dtype = np.float64))
doors = []
for door in _doors:
if door[0]==door[1]:
door[0] -= wall_half_width
door[1] += wall_half_width
elif door[2]==door[3]:
door[2] -= wall_half_width
door[3] += wall_half_width
else:
raise ValueError('wrong shape for axis-aligned door')
door *= np.array([-1,1,-1,1])
doors.append((A, door))
_keys = []
_keys.append(np.array([5, 1], dtype = np.float64))
_keys.append(np.array([3, 3], dtype = np.float64))
_keys.append(np.array([1, 1], dtype = np.float64))
_keys.append(np.array([7, 1], dtype = np.float64))
_keys.append(np.array([3, 5], dtype = np.float64))
keys = []
key_half_width = 0.55
for key in _keys:
key = np.array([-(key[0] - key_half_width), (key[0] + key_half_width), -(key[1] - key_half_width), (key[1] + key_half_width)])
keys.append((A, key))
b = np.array([-0.5, 1.5, -6.5, 7.5], dtype = np.float64)
goal = (A, b)
tmax = 30.
vmax = 3.
avoid_walls = Node('and', deps=[Node('negmu', info={'A':A, 'b':b}) for A, b in walls])
always_avoid_walls = Node('A', deps=[avoid_walls, ], info={'int':[0,tmax]})
avoid_doors = [Node('negmu', info={'A':A, 'b':b}) for A, b in doors]
pick_keys = [Node('mu', info={'A':A, 'b':b}) for A, b in keys]
untils = [Node('U', deps=[avoid_door, pick_key], info={'int':[0,tmax]}) for avoid_door, pick_key in zip(avoid_doors, pick_keys)]
reach_goal = Node('mu', info={'A':goal[0], 'b':goal[1]})
finally_reach_goal = Node('F', deps=[reach_goal,], info={'int':[0,tmax]})
spec = Node('and', deps = untils + [always_avoid_walls, finally_reach_goal])
x0s = [x0,]
specs = [spec,]
PWL = plan(x0s, specs, bloat=0.18, MIPGap = 0.99, num_segs=26, tmax=tmax, vmax=vmax)
plots = [[[goal,], 'b'], [keys, 'g'], [doors, 'r'], [walls, 'k']]
return x0s, plots, PWL
if __name__ == '__main__':
results = vis(test)