-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathplot.py
124 lines (107 loc) · 5.06 KB
/
plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
from np2pth import get_system_wrapper, get_controller_wrapper
import importlib
from utils import EulerIntegrate
import time
import os
import sys
sys.path.append('systems')
sys.path.append('configs')
sys.path.append('models')
import argparse
SMALL_SIZE = 8
MEDIUM_SIZE = 10
BIGGER_SIZE = 13
HUGE_SIZE = 25
plt.rc('font', size=BIGGER_SIZE) # controls default text sizes
plt.rc('axes', titlesize=HUGE_SIZE) # fontsize of the axes title
plt.rc('axes', labelsize=HUGE_SIZE) # fontsize of the x and y labels
plt.rc('xtick', labelsize=15) # fontsize of the tick labels
plt.rc('ytick', labelsize=15) # fontsize of the tick labels
plt.rc('legend', fontsize=20) # legend fontsize
plt.rc('figure', titlesize=BIGGER_SIZE) # fontsize of the figure title
plt.rc('axes', axisbelow=True)
left = 0.14 # the left side of the subplots of the figure
right = 0.98 # the right side of the subplots of the figure
bottom = 0.17 # the bottom of the subplots of the figure
top = 0.925 # the top of the subplots of the figure
parser = argparse.ArgumentParser(description="")
parser.add_argument('--task', type=str,
default='CAR')
parser.add_argument('--pretrained', type=str)
parser.add_argument('--plot_type', type=str, default='2D')
parser.add_argument('--plot_dims', nargs='+', type=int, default=[0,1])
parser.add_argument('--nTraj', type=int, default=10)
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--sigma', type=float, default=0.)
args = parser.parse_args()
np.random.seed(args.seed)
system = importlib.import_module('system_'+args.task)
f, B, _, num_dim_x, num_dim_control = get_system_wrapper(system)
controller = get_controller_wrapper(args.pretrained)
if __name__ == '__main__':
config = importlib.import_module('config_'+args.task)
t = config.t
time_bound = config.time_bound
time_step = config.time_step
XE_INIT_MIN = config.XE_INIT_MIN
XE_INIT_MAX = config.XE_INIT_MAX
x_0, xstar_0, ustar = config.system_reset(np.random.rand())
ustar = [u.reshape(-1,1) for u in ustar]
xstar_0 = xstar_0.reshape(-1,1)
xstar, _ = EulerIntegrate(None, f, B, None, ustar, xstar_0, time_bound, time_step, with_tracking=False)
fig = plt.figure(figsize=(8.0, 5.0))
if args.plot_type=='3D':
ax = fig.gca(projection='3d')
else:
ax = fig.gca()
if args.plot_type == 'time':
cmap = plt.get_cmap('plasma')
colors = [cmap(i) for i in np.linspace(0, 1, len(args.plot_dims))]
x_closed = []
controls = []
errors = []
xinits = []
for _ in range(args.nTraj):
xe_0 = XE_INIT_MIN + np.random.rand(len(XE_INIT_MIN)) * (XE_INIT_MAX - XE_INIT_MIN)
xinit = xstar_0 + xe_0.reshape(-1,1)
xinits.append(xinit)
x, u = EulerIntegrate(controller, f, B, xstar,ustar,xinit,time_bound,time_step,with_tracking=True,sigma=args.sigma)
x_closed.append(x)
controls.append(u)
for n_traj in range(args.nTraj):
initial_dist = np.sqrt(((x_closed[n_traj][0] - xstar[0])**2).sum())
errors.append([np.sqrt(((x-xs)**2).sum()) / initial_dist for x, xs in zip(x_closed[n_traj][:-1], xstar)])
if args.plot_type=='2D':
plt.plot([x[args.plot_dims[0],0] for x in x_closed[n_traj]], [x[args.plot_dims[1],0] for x in x_closed[n_traj]], 'g', label='closed-loop traj' if n_traj==0 else None)
elif args.plot_type=='3D':
plt.plot([x[args.plot_dims[0],0] for x in x_closed[n_traj]], [x[args.plot_dims[1],0] for x in x_closed[n_traj]], [x[args.plot_dims[2],0] for x in x_closed[n_traj]], 'g', label='closed-loop traj' if n_traj==0 else None)
elif args.plot_type=='time':
for i, plot_dim in enumerate(args.plot_dims):
plt.plot(t, [x[plot_dim,0] for x in x_closed[n_traj]][:-1], color=colors[i])
elif args.plot_type=='error':
plt.plot(t, [np.sqrt(((x-xs)**2).sum()) for x, xs in zip(x_closed[n_traj][:-1], xstar)], 'g')
if args.plot_type=='2D':
plt.plot([x[args.plot_dims[0],0] for x in xstar], [x[args.plot_dims[1],0] for x in xstar], 'k', label='Reference')
plt.plot(xstar_0[args.plot_dims[0]], xstar_0[args.plot_dims[1]], 'ro', markersize=3.)
plt.xlabel("x")
plt.ylabel("y")
elif args.plot_type=='3D':
plt.plot([x[args.plot_dims[0],0] for x in xstar], [x[args.plot_dims[1],0] for x in xstar], [x[args.plot_dims[2],0] for x in xstar], 'k', label='Reference')
plt.plot(xstar_0[args.plot_dims[0]], xstar_0[args.plot_dims[1]], xstar_0[args.plot_dims[2]], 'ro', markersize=3.)
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
elif args.plot_type=='time':
for plot_dim in args.plot_dims:
plt.plot(t, [x[plot_dim,0] for x in xstar][:-1], 'k')
plt.xlabel("t")
plt.ylabel("x")
elif args.plot_type=='error':
plt.xlabel("t")
plt.ylabel("error")
plt.subplots_adjust(left=left, bottom=bottom, right=right, top=top)
plt.legend(frameon=True)
plt.show()