-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathmain.py
283 lines (239 loc) · 10.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import torch
from torch.autograd import grad
import torch.nn.functional as F
import importlib
import numpy as np
import time
from tqdm import tqdm
import os
import sys
sys.path.append('systems')
sys.path.append('configs')
sys.path.append('models')
import argparse
np.random.seed(1024)
parser = argparse.ArgumentParser(description="")
parser.add_argument('--task', type=str,
default='CAR', help='Name of the model.')
parser.add_argument('--no_cuda', dest='use_cuda', action='store_false', help='Disable cuda.')
parser.set_defaults(use_cuda=True)
parser.add_argument('--bs', type=int, default=1024, help='Batch size.')
parser.add_argument('--num_train', type=int, default=131072, help='Number of samples for training.') # 4096 * 32
parser.add_argument('--num_test', type=int, default=32768, help='Number of samples for testing.') # 1024 * 32
parser.add_argument('--lr', dest='learning_rate', type=float, default=0.001, help='Base learning rate.')
parser.add_argument('--epochs', type=int, default=15, help='Number of training epochs.')
parser.add_argument('--lr_step', type=int, default=5, help='')
parser.add_argument('--lambda', type=float, dest='_lambda', default=0.5, help='Convergence rate: lambda')
parser.add_argument('--w_ub', type=float, default=10, help='Upper bound of the eigenvalue of the dual metric.')
parser.add_argument('--w_lb', type=float, default=0.1, help='Lower bound of the eigenvalue of the dual metric.')
parser.add_argument('--log', type=str, help='Path to a directory for storing the log.')
args = parser.parse_args()
os.system('cp *.py '+args.log)
os.system('cp -r models/ '+args.log)
os.system('cp -r configs/ '+args.log)
os.system('cp -r systems/ '+args.log)
epsilon = args._lambda * 0.1
config = importlib.import_module('config_'+args.task)
X_MIN = config.X_MIN
X_MAX = config.X_MAX
U_MIN = config.UREF_MIN
U_MAX = config.UREF_MAX
XE_MIN = config.XE_MIN
XE_MAX = config.XE_MAX
system = importlib.import_module('system_'+args.task)
f_func = system.f_func
B_func = system.B_func
num_dim_x = system.num_dim_x
num_dim_control = system.num_dim_control
if hasattr(system, 'Bbot_func'):
Bbot_func = system.Bbot_func
model = importlib.import_module('model_'+args.task)
get_model = model.get_model
model_W, model_Wbot, model_u_w1, model_u_w2, W_func, u_func = get_model(num_dim_x, num_dim_control, w_lb=args.w_lb, use_cuda=args.use_cuda)
# constructing datasets
def sample_xef():
return (X_MAX-X_MIN) * np.random.rand(num_dim_x, 1) + X_MIN
def sample_x(xref):
xe = (XE_MAX-XE_MIN) * np.random.rand(num_dim_x, 1) + XE_MIN
x = xref + xe
x[x>X_MAX] = X_MAX[x>X_MAX]
x[x<X_MIN] = X_MIN[x<X_MIN]
return x
def sample_uref():
return (U_MAX-U_MIN) * np.random.rand(num_dim_control, 1) + U_MIN
def sample_full():
xref = sample_xef()
uref = sample_uref()
x = sample_x(xref)
return (x, xref, uref)
X_tr = [sample_full() for _ in range(args.num_train)]
X_te = [sample_full() for _ in range(args.num_test)]
if 'Bbot_func' not in locals():
def Bbot_func(x): # columns of Bbot forms a basis of the null space of B^T
bs = x.shape[0]
Bbot = torch.cat((torch.eye(num_dim_x-num_dim_control, num_dim_x-num_dim_control),
torch.zeros(num_dim_control, num_dim_x-num_dim_control)), dim=0)
if args.use_cuda:
Bbot = Bbot.cuda()
Bbot.unsqueeze(0)
return Bbot.repeat(bs, 1, 1)
def Jacobian_Matrix(M, x):
# NOTE that this function assume that data are independent of each other
# along the batch dimension.
# M: B x m x m
# x: B x n x 1
# ret: B x m x m x n
bs = x.shape[0]
m = M.size(-1)
n = x.size(1)
J = torch.zeros(bs, m, m, n).type(x.type())
for i in range(m):
for j in range(m):
J[:, i, j, :] = grad(M[:, i, j].sum(), x, create_graph=True)[0].squeeze(-1)
return J
def Jacobian(f, x):
# NOTE that this function assume that data are independent of each other
f = f + 0. * x.sum() # to avoid the case that f is independent of x
# f: B x m x 1
# x: B x n x 1
# ret: B x m x n
bs = x.shape[0]
m = f.size(1)
n = x.size(1)
J = torch.zeros(bs, m, n).type(x.type())
for i in range(m):
J[:, i, :] = grad(f[:, i, 0].sum(), x, create_graph=True)[0].squeeze(-1)
return J
def weighted_gradients(W, v, x, detach=False):
# v, x: bs x n x 1
# DWDx: bs x n x n x n
assert v.size() == x.size()
bs = x.shape[0]
if detach:
return (Jacobian_Matrix(W, x).detach() * v.view(bs, 1, 1, -1)).sum(dim=3)
else:
return (Jacobian_Matrix(W, x) * v.view(bs, 1, 1, -1)).sum(dim=3)
K = 1024
def loss_pos_matrix_random_sampling(A):
# A: bs x d x d
# z: K x d
z = torch.randn(K, A.size(-1)).cuda()
z = z / z.norm(dim=1, keepdim=True)
zTAz = (z.matmul(A) * z.view(1,K,-1)).sum(dim=2).view(-1)
negative_index = zTAz.detach().cpu().numpy() < 0
if negative_index.sum()>0:
negative_zTAz = zTAz[negative_index]
return -1.0 * (negative_zTAz.mean())
else:
return torch.tensor(0.).type(z.type()).requires_grad_()
def loss_pos_matrix_eigen_values(A):
# A: bs x d x d
eigv = torch.symeig(A, eigenvectors=True)[0].view(-1)
negative_index = eigv.detach().cpu().numpy() < 0
negative_eigv = eigv[negative_index]
return negative_eigv.norm()
def forward(x, xref, uref, _lambda, verbose=False, acc=False, detach=False):
# x: bs x n x 1
bs = x.shape[0]
W = W_func(x)
M = torch.inverse(W)
f = f_func(x)
B = B_func(x)
DfDx = Jacobian(f, x)
DBDx = torch.zeros(bs, num_dim_x, num_dim_x, num_dim_control).type(x.type())
for i in range(num_dim_control):
DBDx[:,:,:,i] = Jacobian(B[:,:,i].unsqueeze(-1), x)
_Bbot = Bbot_func(x)
u = u_func(x, x - xref, uref) # u: bs x m x 1 # TODO: x - xref
K = Jacobian(u, x)
A = DfDx + sum([u[:, i, 0].unsqueeze(-1).unsqueeze(-1) * DBDx[:, :, :, i] for i in range(num_dim_control)])
dot_x = f + B.matmul(u)
dot_M = weighted_gradients(M, dot_x, x, detach=detach) # DMDt
dot_W = weighted_gradients(W, dot_x, x, detach=detach) # DWDt
if detach:
Contraction = dot_M + (A + B.matmul(K)).transpose(1,2).matmul(M.detach()) + M.detach().matmul(A + B.matmul(K)) + 2 * _lambda * M.detach()
else:
Contraction = dot_M + (A + B.matmul(K)).transpose(1,2).matmul(M) + M.matmul(A + B.matmul(K)) + 2 * _lambda * M
# C1
C1_inner = - weighted_gradients(W, f, x) + DfDx.matmul(W) + W.matmul(DfDx.transpose(1,2)) + 2 * _lambda * W
C1_LHS_1 = _Bbot.transpose(1,2).matmul(C1_inner).matmul(_Bbot) # this has to be a negative definite matrix
# C2
C2_inners = []
C2s = []
for j in range(num_dim_control):
C2_inner = weighted_gradients(W, B[:,:,j].unsqueeze(-1), x) - (DBDx[:,:,:,j].matmul(W) + W.matmul(DBDx[:,:,:,j].transpose(1,2)))
C2 = _Bbot.transpose(1,2).matmul(C2_inner).matmul(_Bbot)
C2_inners.append(C2_inner)
C2s.append(C2)
loss = 0
loss += loss_pos_matrix_random_sampling(-Contraction - epsilon * torch.eye(Contraction.shape[-1]).unsqueeze(0).type(x.type()))
loss += loss_pos_matrix_random_sampling(-C1_LHS_1 - epsilon * torch.eye(C1_LHS_1.shape[-1]).unsqueeze(0).type(x.type()))
loss += loss_pos_matrix_random_sampling(args.w_ub * torch.eye(W.shape[-1]).unsqueeze(0).type(x.type()) - W)
loss += 1. * sum([1.*(C2**2).reshape(bs,-1).sum(dim=1).mean() for C2 in C2s])
if verbose:
print(torch.symeig(Contraction)[0].min(dim=1)[0].mean(), torch.symeig(Contraction)[0].max(dim=1)[0].mean(), torch.symeig(Contraction)[0].mean())
if acc:
return loss, ((torch.symeig(Contraction)[0]>=0).sum(dim=1)==0).cpu().detach().numpy(), ((torch.symeig(C1_LHS_1)[0]>=0).sum(dim=1)==0).cpu().detach().numpy(), sum([1.*(C2**2).reshape(bs,-1).sum(dim=1).mean() for C2 in C2s]).item()
else:
return loss, None, None, None
optimizer = torch.optim.Adam(list(model_W.parameters()) + list(model_Wbot.parameters()) + list(model_u_w1.parameters()) + list(model_u_w2.parameters()), lr=args.learning_rate)
def trainval(X, bs=args.bs, train=True, _lambda=args._lambda, acc=False, detach=False): # trainval a set of x
# torch.autograd.set_detect_anomaly(True)
if train:
indices = np.random.permutation(len(X))
else:
indices = np.array(list(range(len(X))))
total_loss = 0
total_p1 = 0
total_p2 = 0
total_l3 = 0
if train:
_iter = tqdm(range(len(X) // bs))
else:
_iter = range(len(X) // bs)
for b in _iter:
start = time.time()
x = []; xref = []; uref = [];
for id in indices[b*bs:(b+1)*bs]:
if args.use_cuda:
x.append(torch.from_numpy(X[id][0]).float().cuda())
xref.append(torch.from_numpy(X[id][1]).float().cuda())
uref.append(torch.from_numpy(X[id][2]).float().cuda())
else:
x.append(torch.from_numpy(X[id][0]).float())
xref.append(torch.from_numpy(X[id][1]).float())
uref.append(torch.from_numpy(X[id][2]).float())
x, xref, uref = (torch.stack(d).detach() for d in (x, xref, uref))
x = x.requires_grad_()
start = time.time()
loss, p1, p2, l3 = forward(x, xref, uref, _lambda=_lambda, verbose=False if not train else False, acc=acc, detach=detach)
start = time.time()
if train:
optimizer.zero_grad()
loss.backward()
optimizer.step()
# print('backwad(): %.3f s'%(time.time() - start))
total_loss += loss.item() * x.shape[0]
if acc:
total_p1 += p1.sum()
total_p2 += p2.sum()
total_l3 += l3 * x.shape[0]
return total_loss / len(X), total_p1 / len(X), total_p2 / len(X), total_l3/ len(X)
best_acc = 0
def adjust_learning_rate(optimizer, epoch):
"""Sets the learning rate to the initial LR decayed by every args.lr_step epochs"""
lr = args.learning_rate * (0.1 ** (epoch // args.lr_step))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
for epoch in range(args.epochs):
adjust_learning_rate(optimizer, epoch)
loss, _, _, _ = trainval(X_tr, train=True, _lambda=args._lambda, acc=False, detach=True if epoch < args.lr_step else False)
print("Training loss: ", loss)
loss, p1, p2, l3 = trainval(X_te, train=False, _lambda=0., acc=True, detach=False)
print("Epoch %d: Testing loss/p1/p2/l3: "%epoch, loss, p1, p2, l3)
if p1+p2 >= best_acc:
best_acc = p1 + p2
filename = args.log+'/model_best.pth.tar'
filename_controller = args.log+'/controller_best.pth.tar'
torch.save({'args':args, 'precs':(loss, p1, p2), 'model_W': model_W.state_dict(), 'model_Wbot': model_Wbot.state_dict(), 'model_u_w1': model_u_w1.state_dict(), 'model_u_w2': model_u_w2.state_dict()}, filename)
torch.save(u_func, filename_controller)