-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathBreast Cancer ANN.py
152 lines (129 loc) · 4.4 KB
/
Breast Cancer ANN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
plt.style.use('ggplot')
plt.figure(figsize=(5,5))
import warnings
warnings.filterwarnings('ignore')
import keras
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout
from sklearn.model_selection import train_test_split
from datetime import datetime as dt
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
from sklearn.metrics import f1_score
from sklearn.metrics import accuracy_score
# importing required modules
from zipfile import ZipFile
# specifying the zip file name
file_name = "Brest Cancer Dataset.zip"
# opening the zip file in READ mode
with ZipFile(file_name, 'r') as zip:
# printing all the contents of the zip file
zip.printdir()
# extracting all the files
print('Extracting all the files now...')
zip.extractall()
print('Done!')
zip.close()
df = pd.read_csv('Brest Cancer Dataset.csv')
df.shape
df.describe()
# 1
concavity_mean = 1
for i in df['concavity_mean']:
if i == 0:
concavity_mean += 1
print(concavity_mean)
# 2
concave_points_mean = 1
for i in df['concave points_mean']:
if i == 0:
concave_points_mean += 1
print(concave_points_mean)
# 3
symmetry_mean = 1
for i in df['symmetry_mean']:
if i == 0:
symmetry_mean += 1
print(symmetry_mean)
#only 14 zeros out of 569 data points is considerable
#Encoding Male and Female to 1 and 0
df['diagnosis'] = df['diagnosis'].map({'M': 0, 'B': 1})
df['diagnosis'].head(5)
X = df.iloc[:, :-1].values
Y = df.iloc[:, 30].values
print("X: {}".format(X.shape))
print("Y: {}".format(Y.shape))
from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X,Y,test_size = 0.175,random_state = 0)
print("X_train: {}".format(X_train.shape))
print("X_test: {}".format(X_test.shape))
print("Y_train: {}".format(Y_train.shape))
print("Y_test: {}".format(Y_test.shape))
#Building Our Model
# Initialising the ANN
classifier = Sequential()
#Input and 1st Hidden Layer
classifier.add(Dense(units = 20,
activation = 'relu',
kernel_initializer = 'uniform',
input_dim = 30))
classifier.add(Dropout(p = 0.1))
#2nd Hidden Layer
classifier.add(Dense(units = 20,
activation = 'relu',
kernel_initializer = 'uniform'))
classifier.add(Dropout(p = 0.1))
#3rd Hidden Layer
classifier.add(Dense(units = 20,
activation = 'relu',
kernel_initializer = 'uniform'))
classifier.add(Dropout(p = 0.2))
#Output Layer
classifier.add(Dense(units = 1,
activation = 'sigmoid',
kernel_initializer = 'uniform'))
classifier.compile(optimizer = 'adam',
loss = 'binary_crossentropy',
metrics = ['accuracy'])
classifier.summary()
#training our ANN Model
history = classifier.fit(X_train,
Y_train,
batch_size = 16,
epochs = 500,
validation_split=0.15)
# Part 3 - Making predictions and evaluating the model
# Predicting the Test set results
ann_pred = classifier.predict(X_test)
ann_pred = (ann_pred > 0.5)
#Model Evaluation
ann = accuracy_score(Y_test, ann_pred)
print('Accuracy Score: ' + str(ann))
print('Precision Score: ' + str(precision_score(Y_test, ann_pred)))
print('Recall Score: ' + str(recall_score(Y_test, ann_pred)))
print('F1 Score: ' + str(f1_score(Y_test, ann_pred)))
print('Classification Report: \n' + str(classification_report(Y_test, ann_pred)))
# Plot training & validation accuracy values
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('Model accuracy')
plt.ylabel('Accuracy')
plt.xlabel('Epoch')
plt.legend(['Train', 'Test'], loc='upper left')
plt.show()
# Plot training & validation loss values
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('Model loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(['Train', 'Test'], loc='upper left')
plt.show()
classifier.save("ANN_rest_Cancer.h5")