forked from UKPLab/sentence-transformers
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBoW.py
executable file
·78 lines (62 loc) · 2.87 KB
/
BoW.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import torch
from torch import Tensor
from torch import nn
from typing import Union, Tuple, List, Iterable, Dict
import os
import json
import logging
import numpy as np
from .tokenizer import WhitespaceTokenizer
class BoW(nn.Module):
"""Implements a Bag-of-Words (BoW) model to derive sentence embeddings.
A weighting can be added to allow the generation of tf-idf vectors. The output vector has the size of the vocab.
"""
def __init__(self, vocab: List[str], word_weights: Dict[str, float] = {}, unknown_word_weight: float = 1, cumulative_term_frequency: bool = True):
super(BoW, self).__init__()
vocab = list(set(vocab)) #Ensure vocab is unique
self.config_keys = ['vocab', 'word_weights', 'unknown_word_weight', 'cumulative_term_frequency']
self.vocab = vocab
self.word_weights = word_weights
self.unknown_word_weight = unknown_word_weight
self.cumulative_term_frequency = cumulative_term_frequency
#Maps wordIdx -> word weight
self.weights = []
num_unknown_words = 0
for word in vocab:
weight = unknown_word_weight
if word in word_weights:
weight = word_weights[word]
elif word.lower() in word_weights:
weight = word_weights[word.lower()]
else:
num_unknown_words += 1
self.weights.append(weight)
logging.info("{} out of {} words without a weighting value. Set weight to {}".format(num_unknown_words, len(vocab), unknown_word_weight))
self.tokenizer = WhitespaceTokenizer(vocab, stop_words=set(), do_lower_case=False)
self.sentence_embedding_dimension = len(vocab)
def forward(self, features: Dict[str, Tensor]):
#Nothing to do, everything is done in get_sentence_features
return features
def tokenize(self, text: str) -> List[str]:
return self.tokenizer.tokenize(text)
def get_sentence_embedding_dimension(self):
return self.sentence_embedding_dimension
def get_sentence_features(self, tokens: List[str], pad_seq_length: int):
#return {'input_ids': tokens}
vector = np.zeros(self.get_sentence_embedding_dimension(), dtype=np.float32)
for token in tokens:
if self.cumulative_term_frequency:
vector[token] += self.weights[token]
else:
vector[token] = self.weights[token]
return {'sentence_embedding': vector}
def get_config_dict(self):
return {key: self.__dict__[key] for key in self.config_keys}
def save(self, output_path):
with open(os.path.join(output_path, 'config.json'), 'w') as fOut:
json.dump(self.get_config_dict(), fOut, indent=2)
@staticmethod
def load(input_path):
with open(os.path.join(input_path, 'config.json')) as fIn:
config = json.load(fIn)
return BoW(**config)