-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwritesd.py
297 lines (279 loc) · 8.81 KB
/
writesd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
"""python scidata JSON-LD writer"""
from scidatalib.scidata import SciData
from datetime import datetime
def createsd(data):
"""function to create a scidata JSON-LD from incoming dictionary"""
# variables
daynum = data[0]
actdate = data[1]
weight = data[2]
vo2 = data[3]
itemp = data[4]
btemp = data[5]
resthr = data[6]
miles = data[7]
tm = datetime.strptime(data[8], '%H:%M:%S')
time = (60*tm.hour) + tm.minute + round(tm.second/60, 2)
cal = data[10]
url = data[11]
uid = 'dataset' + str(daynum)
tm = datetime.strptime(actdate, '%m/%d/%y')
dstr1 = tm.strftime('%m%d%y')
dstr2 = tm.strftime('%B %d, %Y')
dstr3 = tm.strftime('%m/%d/%Y')
base = 'https://github.com/stuchalk/fair-health-data/data/sjc' + dstr1 + '/'
nss = {
"w3i": "https://w3id.org/skgo/modsci#",
"qudt": "http://qudt.org/vocab/unit/",
"loinc": "https://loinc.org/",
"ss": "http://semanticscience.org/resource/",
"obo": "http://purl.obolibrary.org/obo/",
"dc": "http://purl.org/dc/terms/",
"xsd": "http://www.w3.org/2001/XMLSchema#",
"afp": "http://purl.allotrope.org/ontologies/process#"
}
cx1 = "https://stuchalk.github.io/scidata/contexts/scidata_activity.jsonld"
cx2 = "https://stuchalk.github.io/scidata/contexts/scidata_subject.jsonld"
# initialize
sd = SciData('scidata:fair:sjc' + dstr1)
sd.context([cx1, cx2])
sd.namespaces(nss)
sd.base(base)
# file metadata
sd.docid(uid)
sd.version('1')
# graph metadata
sd.graph_uid(base)
sjc = {'name': 'Stuart J. Chalk',
'email': '[email protected]',
'orcid': '0000-0002-0703-7776'}
sd.author([sjc])
sd.title('Health data for Stuart J. Chalk from ' + dstr2)
sd.description('Record of body temperature, weight, resting heart rate, '
'VO2 max and physical activity on ' + dstr3)
sd.publisher('Stuart J. Chalk')
sd.permalink(base + '.jsonld')
sd.keywords(['body temperature', 'body weight', 'resting heartrate',
'VO2 max', 'exercise'])
ids = "loinc:18688-2"
sd.ids(ids)
# scidata
sd.discipline('w3i:Health')
# methodology
sd.evaluation('experimental')
mmnts = [{
'@id': 'measurement',
'scope': ['resource/1/', 'procedure/1/'],
'technique': 'thermometry',
'techniqueref': 'obo:OMIT_0028052'
},
{
"@id": "measurement",
"scope": "resource/2/",
"technique": "weighing",
"techniqueref": "afp:AFP_0000503"
},
{
"@id": "measurement",
"scope": ["resource/3/", "activity/1/"],
"technique": "optical heart rate monitoring",
},
{
"@id": "measurement",
"scope": ["resource/3/", "activity/1/"],
"technique": "geolocation mapping"
},
{
"@id": "measurement",
"scope": ["resource/3/", "activity/1/"],
"technique": "timing",
"techniqueref": "ss:SIO_000391"
}
]
rsrcs = [{
"@id": "resource",
"type": "digital infrared thermometer",
"name": "iProven DMT-489",
"vendor": "iProven"
},
{
"@id": "resource",
"type": "digital scale",
"name": "Body Cardio",
"vendor": "Withings"
},
{
"@id": "resource",
"name": "Forerunner 245",
"type": "digital running watch",
"vendor": "Garmin",
"software": "Version 5.50",
"accessory": "Garmin Running Dynamics Pod"
}
]
procs = [{
"@id": "procedure",
"description": "Measurement of body temperature was made "
"by turning on the infrared thermomemter, "
"verifying there were no errors, and taking a "
"measurement as follows. First, the 'head' "
"button was depressed and held down while moving "
"the device across the forehead from left to right "
"at a distance of ~1 cm away. The 'head' button "
"was then released. The reading on the display "
"was recorded in the Notes app on an iPhone."
}]
acts = [{
"@id": "activity",
"@type": "obo:NCIT_C43431",
"exercise": "road running",
"exerciseref": "obo:NCIT_C94737",
"url": url
}]
sd.aspects(mmnts + rsrcs + procs + acts)
# system
spmn = {
"@id": "subject",
"species": "homo sapien",
"speciesref": "obo:NCBITaxon_9606",
"gender": "male",
"ethnicity": "caucasian",
"nationality": "english"
}
cond = {
"@id": "condition",
"quantity": "temperature",
"property": "room temperature",
"propertyref": "loinc:60832-3",
"value": {
"@id": "numericvalue",
"number": itemp,
"unit": "qudt:DEG_F"
}
}
sd.facets([spmn, cond])
# dataset
sd.scope('specimen/1/')
pt1 = {
"@id": "datapoint",
"source": "measurement/1/",
"property": "body temperature",
"propertyref": "loinc:18688-2",
"conditions": "condition/1/",
"value": {
"@id": "numericvalue",
"number": btemp,
"unit": "qudt:DEG_F"
}
}
pt2 = {
"@id": "datapoint",
"source": "measurement/2/",
"property": "body weight",
"propertyref": "loinc:18690-8",
"textstring": {
"@id": "numericvalue",
"number": weight,
"unit": "qudt:LB"
}
}
pt3 = {
"@id": "datapoint",
"source": "measurement/3/",
"property": "resting heart rate",
"propertyref": "loinc:40443-4",
"number": {
"@id": "numericvalue",
"value": resthr,
"unit": "qudt:BEAT-PER-MIN"
}
}
pt4 = {
"@id": "datapoint",
"source": ["measurement/2/", "measurement/3/", "measurement/4/"],
"property": "VO2 max",
"propertyref": "loinc:94122-9",
"activity": "activity/1/",
"textstring": {
"@id": "numericvalue",
"value": vo2,
"unit": "qudt:MilliL-PER-KiloGM-MIN"
}
}
pt5 = {
"@id": "datapoint",
"source": ["measurement/3/", "measurement/4/"],
"property": "calories burned",
"propertyref": "loinc:93825-8",
"value": {
"@id": "numericvalue",
"number": cal,
"unit": "qudt:KiloCAL"
}
}
pt6 = {
"@id": "datapoint",
"source": "measurement/4/",
"property": "running distance",
"propertyref": "loinc:93817-5",
"value": {
"@id": "numericvalue",
"number": miles,
"unit": "qudt:MI_US"
}
}
pt7 = {
"@id": "datapoint",
"source": "measurement/5/",
"property": "exercise duration",
"propertyref": "loinc:55411-3",
"value": {
"@id": "numericvalue",
"number": time,
"unit": "qudt:MIN"
}
}
grp = {
"@id": "datagroup",
"description": "running metrics",
"source": ["resource/3/", "event/1/"],
"datapoints": [pt4, pt5, pt6, pt7]
}
sd.datagroup([grp])
sd.datapoint([pt1, pt2, pt3])
# source
sd.sources([{'citation': 'Chalk Health Study 2021',
'url': 'https://github.com/stuchalk/fair-health-data'}])
# rights
sd.rights('Stuart J. Chalk',
'https://creativecommons.org/licenses/by-nc-nd/4.0/')
# generate the JSON-LD file
output = sd.output
del sd
return output
# fields = ['Day', 'Date', 'Weight', 'VO2 Max', 'Indoor Temp', 'Body Temp',
# 'Resting HR', 'Miles', 'Time', 'Pace', 'Calories', 'GarminURL',
# 'Comment']
#
# example = [1, '1/1/21', 184.1, 48, 70, 97.1, 44, 3.26, '0:26:31', '8:07', 390,
# 'https://connect.garmin.com/modern/activity/6035525608']
#
# out = createsd(example)
# print(json.dumps(out, indent=4))
# Import your CSV data file
# flist = []
# filename = 'healthdata.csv'
# with open(filename, 'r') as dataset:
# for line in csv.reader(dataset):
# flist.append(line)
#
# for i, day in enumerate(flist):
# if i == 0:
# continue
# print(day)
# jsonld = createsd(day)
# t = datetime.strptime(day[1], '%m/%d/%y')
# date = t.strftime('%m%d%y')
# f = open("data/sjc" + date + ".jsonld", "w")
# f.write(json.dumps(jsonld))
# f.close()