-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathplot_utils.py
executable file
·140 lines (129 loc) · 5.8 KB
/
plot_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
#!/usr/bin/env python3
import math
class MSMCresult:
"""
Simple class to read a MSMC result file. Constructor takes filename of MSMC result file
"""
def __init__(self, filename):
f = open(filename, "r")
self.times_left = []
self.times_right = []
self.lambdas = []
next(f) # skip header
for line in f:
fields = line.strip().split()
nr_lambdas = len(fields) - 3
if len(self.lambdas) == 0:
self.lambdas = [[] for i in range(nr_lambdas)]
time_left = float(fields[1])
time_right = float(fields[2])
self.times_left.append(time_left)
self.times_right.append(time_right)
for i in range(nr_lambdas):
l = float(fields[3 + i])
self.lambdas[i].append(l)
self.T = len(self.times_left)
# self.times_left[0] = self.times_left[1] / 4.0
# self.times_right[-1] = self.times_right[-2] * 4.0
def getInterval(self, t):
for i, (tl, tr) in enumerate(zip(self.times_left, self.times_right)):
if tl <= t and tr > t:
return i
else:
raise ValueError("Should not happen!")
def getLambdaAt(self, t, lambda_index=0):
i = self.getInterval(t)
return self.lambdas[lambda_index][i]
def popSizeStepPlot(filename, mu=1.25e-8, gen=30.0):
"""
to be used with a step-plot function, e.g. matplotlib.pyplot.steps.
returns (x, y), where x contains the left point of each step-segment in years, and y contains the effective population size. Note that there are two ways to make a step-plot. You should make sure that your step-plot routine moves right and then up/down instead of the other way around.
If plotted on a logarithmic x-axis, you should adjust x[0] = x[1] / 4.0, otherwise the leftmost segment will start at 0 and won't be plotted on a log-axis.
Options:
mu: Mutation rate per generation per basepair (default=1.25e-8)
gen: generation time in years (default=30)
"""
M = MSMCresult(filename)
x = [t * gen / mu for t in M.times_left]
y = [(1.0 / l) / (2.0 * mu) for l in M.lambdas[0]]
return (x, y)
def coalRatePlot(filename, mu=1.25e-8, gen=30.0):
M = MSMCresult(filename)
x = [t * gen / mu for t in M.times_left]
y = [l for l in M.lambdas[0]]
return (x, y)
def crossCoalPlot(filename, mu=1.25e-8, gen=30.0):
"""
returns (x, y) where x is the time in years and y is the relative cross coalescence rate.
Check also the doc-string in popSizeStepPlot for Options and hints on how to plot.
"""
M = MSMCresult(filename)
x = [t * gen / mu for t in M.times_left]
y = [2.0 * M.lambdas[1][i] / (M.lambdas[0][i] + M.lambdas[2][i]) for i in range(M.T)]
return (x, y)
def crossCoalPlotCombined(filename1, filename2, filename12, mu=1.25e-8, gen=30.0):
"""
returns (x, y) where x is the time in years and y is the relative cross coalescence rate.
This function should be used with msmc2, where the three files correspond to the three different
cases within-population1, within-population2 and across populations.
Check also the doc-string in popSizeStepPlot for Options and hints on how to plot.
"""
M1 = MSMCresult(filename1)
M2 = MSMCresult(filename2)
M12 = MSMCresult(filename12)
I1 = M1.getInterp()
I2 = M2.getInterp()
x = []
y = []
resolution = 10
for i in range(M12.T - 1):
tLeft = M12.times_left[i]
tRight = M12.times_right[i]
avgWithinRate = 0.0
for j in range(resolution):
t = tLeft + j / float(resolution) * (tRight - tLeft)
lambda1 = I1(t)
lambda2 = I2(t)
avgWithinRate += 0.5 * (lambda1 + lambda2) / float(resolution)
x.append(tLeft * gen / mu)
y.append(M12.lambdas[0][i] / avgWithinRate)
return (x, y)
def tmrcaDistribution(filename, resolution=10, lambda_index=0, mu=1.25e-8, gen=30, cdf=False):
"""
returns (x, y) where x is the time in years, and y is the probability density for the tMRCA distribution.
Options:
resolution: sets the number of time points in each time-segment, default=10.
lambda_index: sets which of the lambda-columns in the msmc result file should be used, default=0, i.e. lambda_00
Check popSizeStepPlot for Options mu and gen.
"""
fprob = get_tmrca_cumprob if cdf else get_tmrca_prob
M = MSMCresult(filename)
x = []
y = []
for i in range(M.T - 1):
tLeft = M.times_left[i]
tRight = M.times_right[i]
for j in range(resolution):
t = tLeft + j / float(resolution) * (tRight - tLeft)
p = fprob(t, i, M.times_left, M.lambdas[lambda_index])
x.append(t * gen / mu)
y.append(p)
return (x, y)
def get_tmrca_prob(t, left_index, time_boundaries, lambda_vals):
"""
Helper function to compute the tMRCA probability density at time t
"""
deltas = [time_boundaries[i + 1] - time_boundaries[i] for i in range(len(time_boundaries) - 1)]
tleft = time_boundaries[left_index]
lambda_ = lambda_vals[left_index]
integ = sum(delta * lambda_prime for delta, lambda_prime in zip(deltas[:left_index], lambda_vals[:left_index])) + (t - tleft) * lambda_
return lambda_ * math.exp(-integ)
def get_tmrca_cumprob(t, left_index, time_boundaries, lambda_vals):
"""
Helper function to compute the tMRCA cumulative probability function at time t
"""
deltas = [time_boundaries[i + 1] - time_boundaries[i] for i in range(len(time_boundaries) - 1)]
tleft = time_boundaries[left_index]
lambda_ = lambda_vals[left_index]
integ = sum(delta * lambda_prime for delta, lambda_prime in zip(deltas[:left_index], lambda_vals[:left_index])) + (t - tleft) * lambda_
return 1.0 - math.exp(-integ)