-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetect.py
157 lines (122 loc) · 4.83 KB
/
detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
#pytorch
import torch
from torchvision import transforms
#other lib
import sys
import numpy as np
import os
import cv2
import time
sys.path.insert(0, "yolov5_face")
from models.experimental import attempt_load
from utils.datasets import letterbox
from utils.general import check_img_size, non_max_suppression_face, scale_coords
# Check device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Get model detect
## Case 1:
#model = attempt_load("yolov5_face/yolov5s-face.pt", map_location=device)
## Case 2:
model = attempt_load("yolov5_face/yolov5n-0.5.pt", map_location=device)
# Resize image
def resize_image(img0, img_size):
h0, w0 = img0.shape[:2] # orig hw
r = img_size / max(h0, w0) # resize image to img_size
if r != 1: # always resize down, only resize up if training with augmentation
interp = cv2.INTER_AREA if r < 1 else cv2.INTER_LINEAR
img0 = cv2.resize(img0, (int(w0 * r), int(h0 * r)), interpolation=interp)
imgsz = check_img_size(img_size, s=model.stride.max()) # check img_size
img = letterbox(img0, new_shape=imgsz)[0]
# Convert
img = img[:, :, ::-1].transpose(2, 0, 1).copy() # BGR to RGB, to 3x416x416
img = torch.from_numpy(img).to(device)
img = img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
return img
def scale_coords_landmarks(img1_shape, coords, img0_shape, ratio_pad=None):
# Rescale coords (xyxy) from img1_shape to img0_shape
if ratio_pad is None: # calculate from img0_shape
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
else:
gain = ratio_pad[0][0]
pad = ratio_pad[1]
coords[:, [0, 2, 4, 6, 8]] -= pad[0] # x padding
coords[:, [1, 3, 5, 7, 9]] -= pad[1] # y padding
coords[:, :10] /= gain
#clip_coords(coords, img0_shape)
coords[:, 0].clamp_(0, img0_shape[1]) # x1
coords[:, 1].clamp_(0, img0_shape[0]) # y1
coords[:, 2].clamp_(0, img0_shape[1]) # x2
coords[:, 3].clamp_(0, img0_shape[0]) # y2
coords[:, 4].clamp_(0, img0_shape[1]) # x3
coords[:, 5].clamp_(0, img0_shape[0]) # y3
coords[:, 6].clamp_(0, img0_shape[1]) # x4
coords[:, 7].clamp_(0, img0_shape[0]) # y4
coords[:, 8].clamp_(0, img0_shape[1]) # x5
coords[:, 9].clamp_(0, img0_shape[0]) # y5
return coords
def get_face(input_image):
# Parameters
size_convert = 128
conf_thres = 0.4
iou_thres = 0.5
# Resize image
img = resize_image(input_image.copy(), size_convert)
# Via yolov5-face
with torch.no_grad():
pred = model(img[None, :])[0]
# Apply NMS
det = non_max_suppression_face(pred, conf_thres, iou_thres)[0]
bboxs = np.int32(scale_coords(img.shape[1:], det[:, :4], input_image.shape).round().cpu().numpy())
landmarks = np.int32(scale_coords_landmarks(img.shape[1:], det[:, 5:15], input_image.shape).round().cpu().numpy())
return bboxs, landmarks
def main():
# Open camera
cap = cv2.VideoCapture(0)
start = time.time_ns()
frame_count = 0
fps = -1
# Save video
frame_width = int(cap.get(3))
frame_height = int(cap.get(4))
size = (frame_width, frame_height)
# Read until video is completed
while(True):
# Capture frame-by-frame
_, frame = cap.read()
# Get faces
bboxs, landmarks = get_face(frame)
h,w,c = frame.shape
tl = 1 or round(0.002 * (h + w) / 2) + 1 # line/font thickness
clors = [(255,0,0),(0,255,0),(0,0,255),(255,255,0),(0,255,255)]
# Get boxs
for i in range(len(bboxs)):
# Get location face
x1, y1, x2, y2 = bboxs[i]
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 146, 230), 2)
# Landmarks
for x in range(5):
point_x = int(landmarks[i][2 * x])
point_y = int(landmarks[i][2 * x + 1])
cv2.circle(frame, (point_x, point_y), tl+1, clors[x], -1)
# Count fps
frame_count += 1
if frame_count >= 30:
end = time.time_ns()
fps = 1e9 * frame_count / (end - start)
frame_count = 0
start = time.time_ns()
if fps > 0:
fps_label = "FPS: %.2f" % fps
cv2.putText(frame, fps_label, (10, 25), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
#Show result
cv2.imshow("Face Detection", frame)
# Press Q on keyboard to exit
if cv2.waitKey(25) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
cv2.waitKey(0)
if __name__=="__main__":
main()