-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmain.py
183 lines (163 loc) · 8.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
from scipy.ndimage.filters import gaussian_filter1d, gaussian_filter, maximum_filter
from scipy.ndimage.interpolation import map_coordinates
from scipy.spatial.distance import cdist
import sys, math, skimage.io as io, matplotlib.pyplot as plt, numpy as np
sys.path.append('/usr/local/lib/python2.7/site-packages')
import cv, cv2
# Converts color image to gray
def rgb2gray(im):
return 0.299 * im[...,2] + 0.587 * im[..., 1] + 0.114 * im[..., 0]
# ANMS algorithm; Suppressor of points, evenly distributes what points to pick
def anms(coords, top=400):
l, x, y = [], 0, 0
while x < len(coords):
minpoint = 99999999
xi, yi = coords[x][0], coords[x][1]
while y < len(coords):
xj, yj = coords[y][0], coords[y][1]
if (xi != xj and yi != yj) and coords[x][2] < 0.9 * coords[y][2]:
dist = distance(xi, yi, xj, yj)
if dist < minpoint:
minpoint = dist
y += 1
l.append([xi, yi, minpoint])
x += 1
y = 0
l.sort(key=lambda x: x[2])
l = l[0:top]
print l
return l
def distance(x1, y1, x2, y2):
return math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
# Gets descriptors of an image
def extract(img, harris, radius=8):
# Change number here to change the scale. 4 is the optimal amount
y, x = 4 * np.mgrid[-radius:radius+1, -radius:radius+1]
desc = np.zeros((2 * radius + 1, 2 * radius + 1, harris.shape[0]), dtype=float)
for i in range(harris.shape[0]):
patch = map_coordinates(img,[harris[i,1] + y, harris[i,0] + x], prefilter=False)
desc[..., i] = (patch - patch.mean()) / patch.std()
return desc
# Gets matches of two descriptors
def matching(d1, d2):
h, w, n = d1.shape[0:3]
ds = cdist((d1.reshape((w**2, n))).T, (d2.reshape((w**2, n))).T)
bt = np.argsort(ds, 1)[:, 0]
ratio = ds[np.r_[0:n], bt] / ds[np.r_[0:n], np.argsort(ds, 1)[:, 1]].mean()
return np.hstack([np.argwhere(ratio < 0.5), bt[np.argwhere(ratio < 0.5)]]).astype(int)
# RANSAC algorithm to get best matching pair
def ransac(data, tolerance=0.5, max1=100, confidence=0.95):
count, bm, bc, bi = 0, None, 0, None
while count < max1:
tempd, temps = np.matrix(np.copy(data)), np.copy(data)
np.random.shuffle(temps) # Gets a random set of points based on RANSAC
temps = np.matrix(temps)[0:4]
homography = getHomography(temps[:,0:2], temps[:,2:])
error = np.sqrt((np.array(np.array(homogeneous((homography * homogeneous(tempd[:,0:2].transpose())))[0:2,:]) - tempd[:,2:].transpose()) ** 2).sum(0))
if (error < tolerance).sum() > bc:
bm, bc, bi = homography, (error < tolerance).sum(), np.argwhere(error < tolerance)
p = float(bc) / data.shape[0]
max1 = math.log(1-confidence)/math.log(1-(p**4))
count += 1
return bm, bi
# Converts 3 x N set of points to homogenous coordinates
def homogeneous(fir):
if fir.shape[0] == 3:
out = np.zeros_like(fir)
for i in range(3):
out[i, :] = fir[i, :] / fir[2, :]
elif fir.shape[0] == 2: out = np.vstack((fir, np.ones((1, fir.shape[1]), dtype=fir.dtype)))
return out
# Harris edge detection
def harris(im, count=512, edge=16):
xdir = gaussian_filter1d(gaussian_filter1d(im.astype(np.float32), 1.0, 0, 0), 1.0, 1, 1)
ydir = gaussian_filter1d(gaussian_filter1d(im.astype(np.float32), 1.0, 1, 0), 1.0, 0, 1)
h = (gaussian_filter(xdir ** 2, 1.5, 0) * gaussian_filter(ydir ** 2, 1.5, 0) - gaussian_filter(xdir * ydir, 1.5, 0)**2) / (gaussian_filter(xdir**2, 1.5, 0) + gaussian_filter(ydir**2, 1.5, 0) + 1e-8)
h[:edge, :], h[-edge:, :], h[:, :edge], h[:, -edge:] = 0, 0, 0, 0
h = h * (h == maximum_filter(h, (8, 8)))
dirs = np.argsort(h.flatten())[::-1][:count]
return np.vstack((dirs % im.shape[0:2][1], dirs / im.shape[0:2][1], h.flatten()[dirs])).transpose()
# Gets the homography on an image. Based on 4 point coordinate system.
def getHomography(p1, p2):
A = np.matrix(np.zeros((p1.shape[0]*2, 8), dtype=float), dtype=float)
# Filling out A based on equation online
for i in range(0, A.shape[0]):
if i % 2 == 0:
A[i,0], A[i,1], A[i,2], A[i,6], A[i,7] = p1[i/2,0], p1[i/2,1], 1, -p2[i/2,0] * p1[i/2,0], -p2[i/2,0] * p1[i/2,1]
else:
A[i,3], A[i,4], A[i,5], A[i,6], A[i,7] = p1[i/2,0], p1[i/2,1], 1, -p2[i/2,1] * p1[i/2,0], -p2[i/2,1] * p1[i/2,1]
# Creating b based on equation
b = p2.flatten().reshape(p2.flatten().shape[1], 1).astype(float)
# Calculating homography A * x = b
x = np.linalg.solve(A,b) if p1.shape[0] == 4 else np.linalg.lstsq(A,b)[0]
return np.vstack((x, np.matrix(1))).reshape((3,3))
# Gets the corners of an image
def corners(homography, files):
c, mid = [], None
for i in range(len(files)):
h, w = nparr(cv.LoadImage(files[i])).shape[0:2]
c.append(homogeneous(np.dot(homography[i], homogeneous(np.array([[0, w, w, 0], [0, 0, h, h]], dtype=float)))).astype(int))
if i == len(files)/2:
mid = c[-1]
wl, wl2, hl, hl2 = [], [], [], []
for i in range(len(c)):
wl, wl2, hl, hl2 = wl + [np.min(c[i][0,:])], wl2 + [np.max(c[i][0,:])], hl + [np.min(c[i][1,:])], hl2 + [np.max(c[i][1,:])]
return np.array([(min(wl), min(hl)), (max(wl2), max(hl2))]), mid
# Transforms image based on homography
def transformImage(im, t, o="same"):
yy, xx = np.mgrid[o[0,1]:o[1,1], o[0,0]:o[1,0]]
h, w = o[1,1] - o[0,1], o[1,0] - o[0,0]
i = homogeneous(np.dot(np.linalg.inv(t), homogeneous(np.vstack((xx.flatten(), yy.flatten())))))
xi, yi = i[0,:].reshape((h, w)), i[1,:].reshape((h, w))
if im.ndim == 3:
output = np.zeros((h, w, im.shape[2]), dtype=im.dtype)
for d in range(im.shape[2]):
output[..., d] = map_coordinates(im[..., d], [yi, xi])
else:
output = map_coordinates(im, [yi, xi])
return output
# Converts a cv2 image to a numpy array
def nparr(im):
a = np.fromstring(im.tostring(), dtype='uint8', count=im.width*im.height*im.nChannels)
a.shape = (im.height, im.width, im.nChannels)
return a
# Displays the feature points created
def displayPoints(im, arr):
plt.imshow(im)
for elem in arr:
plt.scatter(elem[0], elem[1])
plt.draw()
plt.show()
# Main Code
# Getting homography of image files. Supports two for now.
print "Creating the panorama!"
hh, images, midh, wl = [np.matrix(np.identity(3))], [sys.argv[1], sys.argv[2]], [], []
for i in range(len(images) - 1):
image1b, image2b = rgb2gray(io.imread(images[i])), rgb2gray(io.imread(images[i+1]))
points1, points2 = harris(image1b, count=500), harris(image2b, count=500)
# displayPoints(io.imread(images[i]), points1)
# modified = anms(points1, top=150)
# displayPoints(io.imread(images[i]), modified)
matches = matching(extract(image1b, points1), extract(image2b, points2))
h = ransac(np.matrix(np.hstack((points1[matches[:,0],0:2], points2[matches[:,1],0:2]))),0.5)
hh.append(np.linalg.inv(h[0]))
# Getting the mid homography from the images provided
hh[1] = hh[0] * hh[1]
for i in range(len(hh)):
midh.append(np.linalg.inv(hh[len(images)/2]) * hh[i])
# Warping the images provided to the middle image
for i in range(len(images)):
im = nparr(cv.LoadImage(images[i]))
yy, xx = np.mgrid[0:im.shape[0], 0:im.shape[1]]
im = np.dstack((im, np.exp(-((yy - im.shape[0]/2) ** 2 + (xx - im.shape[1]/2) ** 2) / (2.0 * 100.0 ** 2)))) # 100.0 is sigma, make higher to blend seams more.
wl.append(transformImage(im, np.array(midh[i]), corners(midh, images)[0]))
# Combining all of the images
t, b = np.zeros(wl[0].shape, dtype=float), np.zeros(wl[0].shape, dtype=float)
b[:,:,3] = 1.0
for i in range(len(wl)):
t[:,:,0], t[:,:,1], t[:,:,2], t[:,:,3] = t[:,:,0] + wl[i][:,:,3] * wl[i][:,:,0], t[:,:,1] + wl[i][:,:,3] * wl[i][:,:,1], t[:,:,2] + wl[i][:,:,3] * wl[i][:,:,2], t[:,:,3] + wl[i][:,:,3]
b[:,:,0], b[:,:,1], b[:,:,2] = b[:,:,0] + wl[i][:,:,3], b[:,:,1] + wl[i][:,:,3], b[:,:,2] + wl[i][:,:,3]
b[b == 0] = 1
# We are done! Saving!
cv2.imwrite("image_processed.jpg", t / b)
print "Finished making the panorama, check your source folder!"