forked from fireindark707/Python-Schema-Matching
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
169 lines (153 loc) · 7.07 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import pandas as pd
import numpy as np
import os
import xgboost as xgb
import datetime
from sklearn.metrics import confusion_matrix
from sklearn.metrics import f1_score, precision_score, recall_score
import warnings
warnings.filterwarnings("ignore")
feature_names = ["is_url","is_numeric","is_date","is_string","numeric:mean", "numeric:min", "numeric:max", "numeric:variance","numeric:cv", "numeric:unique/len(data_list)",
"length:mean", "length:min", "length:max", "length:variance","length:cv", "length:unique/len(data_list)",
"whitespace_ratios:mean","punctuation_ratios:mean","special_character_ratios:mean","numeric_ratios:mean",
"whitespace_ratios:cv","punctuation_ratios:cv","special_character_ratios:cv","numeric_ratios:cv",
"colname:bleu_score", "colname:edit_distance","colname:lcs","colname:tsm_cosine", "colname:one_in_one","instance_similarity:cosine",
]
params = {
'max_depth': 4,
'eta': 0.1,
'objective': 'binary:logistic',
'eval_metric': 'logloss',
}
def train(train_features,train_labels,num_round):
dtrain = xgb.DMatrix(train_features, label=train_labels)
bst = xgb.train(params, dtrain, num_round)
# get best_threshold
best_f1 = 0
best_threshold = 0
for threshold in range(100):
threshold = threshold / 100
pred_labels = np.where(bst.predict(dtrain) > threshold, 1, 0)
f1 = f1_score(train_labels, pred_labels,average="binary",pos_label=1)
if f1 > best_f1:
best_f1 = f1
best_threshold = threshold
return bst,best_threshold
def test(bst,best_threshold, test_features, test_labels, type="evaluation"):
dtest = xgb.DMatrix(test_features, label=test_labels)
pred = bst.predict(dtest)
if type == "inference":
pred_labels = np.where(pred > best_threshold, 1, 0)
return pred,pred_labels
# compute precision, recall, and F1 score
pred_labels = np.where(pred > best_threshold, 1, 0)
precision = precision_score(test_labels, pred_labels,average="binary",pos_label=1)
recall = recall_score(test_labels, pred_labels,average="binary",pos_label=1)
f1 = f1_score(test_labels, pred_labels,average="binary",pos_label=1)
c_matrix = confusion_matrix(test_labels, pred_labels)
return precision, recall, f1, c_matrix
def merge_features(path):
files = os.listdir(path)
files.sort()
merged_features = []
for file in files:
if not "features" in file:
continue
features = np.load(path + file)
merged_features.append(features)
return np.concatenate(merged_features)
def get_labels(path):
files = os.listdir(path)
files.sort()
labels = []
for file in files:
if not "labels" in file:
continue
labels.append(np.load(path + file))
return np.concatenate(labels)
def preprocess(path):
train_path = path + "/train/"
test_path = path + "/test/"
train_features = merge_features(train_path)
train_labels = get_labels(train_path)
test_features = merge_features(test_path)
test_labels = get_labels(test_path)
return train_features, train_labels, test_features, test_labels
def get_feature_importances(bst):
importance = bst.get_fscore()
importance = [(im,feature_names[int(im[0].replace("f",""))]) for im in importance.items()]
importance = sorted(importance, key=lambda x: x[0][1], reverse=True)
return importance
def train_loop(num_round=300):
precision_list = []
recall_list = []
f1_list = []
c_matrix_list = []
feature_importance_list = []
for i in range(len(os.listdir("Input"))):
train_features, train_labels, test_features, test_labels = preprocess("Input/" + str(i))
bst, best_threshold = train(train_features, train_labels, num_round)
precision, recall, f1, c_matrix = test(bst,best_threshold, test_features, test_labels)
feature_importance = get_feature_importances(bst)
c_matrix_norm = c_matrix.astype('float') / c_matrix.sum(axis=1)[:, np.newaxis]
precision_list.append(precision)
recall_list.append(recall)
f1_list.append(f1)
c_matrix_list.append(c_matrix_norm)
feature_importance_list.append(feature_importance)
bst.save_model(model_save_pth+f"/{i}.model")
with open(model_save_pth+f"/{i}.threshold",'w') as f:
f.write(str(best_threshold))
# evaluate feature importance
feature_name_importance = {}
for feature_importance in feature_importance_list:
for (im,feature_name) in feature_importance:
if feature_name in feature_name_importance:
feature_name_importance[feature_name] += im[1]
else:
feature_name_importance[feature_name] = im[1]
feature_name_importance = sorted(feature_name_importance.items(), key=lambda x: x[1], reverse=True)
return precision_list, recall_list, f1_list, c_matrix_list, feature_name_importance
def optimize_hyperparameter(eta_candid,max_depth_candid,num_round_candid):
best_f1 = 0
for eta in eta_candid:
for max_depth in max_depth_candid:
for num_round in num_round_candid:
print(eta, max_depth, num_round)
params["eta"] = eta
params["max_depth"] = max_depth
precision_list, recall_list, f1_list, c_matrix_list, feature_name_importance = train_loop(num_round)
print("Average Precision: %.3f" % np.mean(precision_list))
print("Average Recall: %.3f" % np.mean(recall_list))
print("Average F1: %.3f" % np.mean(f1_list))
if np.mean(f1_list) > best_f1:
best_f1 = np.mean(f1_list)
best_params = params
best_precision = np.mean(precision_list)
best_recall = np.mean(recall_list)
best_params["num_round"] = num_round
return best_params, best_precision, best_recall, best_f1
if __name__ == '__main__':
model_save_pth = "model/"+datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S")
if not os.path.exists(model_save_pth):
os.makedirs(model_save_pth)
precision_list, recall_list, f1_list, c_matrix_list, feature_name_importance = train_loop()
# give evaluation results
print("Average Precision: %.3f" % np.mean(precision_list))
print("Average Recall: %.3f" % np.mean(recall_list))
print("Average F1: %.3f" % np.mean(f1_list))
print(f1_list)
print("Average Confusion Matrix: \n", np.mean(c_matrix_list,axis=0))
print("Feature Importance:")
for importance in feature_name_importance:
print(f"{importance[0]}: {importance[1]}")
# tune parameters
if False:
eta_candidate = [0.08,0.05,0.03, 0.01]
max_depth_candidate = [3,4,5,6,7,8,9,10,12,15,20]
num_round_candidate = [100,200,300,400,500,600,700,800,900,1000]
best_params,best_precision, best_recall, best_f1 = optimize_hyperparameter(eta_candidate,max_depth_candidate,num_round_candidate)
print(best_params)
print(best_precision)
print(best_recall)
print(best_f1)