-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmnist_cnn.py
71 lines (56 loc) · 2.49 KB
/
mnist_cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import keras
import time
from keras.callbacks import EarlyStopping
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Conv2D, MaxPooling2D, Flatten, K
from keras.optimizers import RMSprop
batch_size = 128
num_classes = 10
epochs = 20
img_rows, img_cols = 28, 28
(x_train, y_train), (x_test, y_test) = mnist.load_data()
print("x_train original shape: " + str(x_train.shape))
print("x_test original shape: " + str(x_test.shape))
print("y_train original shape: " + str(y_train.shape))
print("y_test original shape: " + str(y_test.shape))
if K.image_data_format() == 'channels_first':
x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
input_shape = (1, img_rows, img_cols)
else:
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
print("x_train modified shape: " + str(x_train.shape))
print("x_test modified shape: " + str(x_test.shape))
print("input_shape: " + str(input_shape))
x_train = x_train / 255.
x_test = x_test / 255.
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
print("y_train modified shape: " + str(y_train.shape))
print("y_test modified shape: " + str(y_test.shape))
model = Sequential()
model.add(Conv2D(64, (3,3), activation='relu', input_shape=input_shape))
model.add(Conv2D(32, (3,3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(50, activation='relu', input_dim=784))
model.add(Dropout(0.25))
model.add(Dense(25, activation='relu'))
model.add(Dropout(0.33))
model.add(Dense(num_classes, activation='softmax'))
print("Model Summary: " + "\n" + str(model.summary()))
print("Model Config: " + "\n" + str(model.get_config()))
model.compile(optimizer=RMSprop(lr=0.001), loss='categorical_crossentropy', metrics=['accuracy'])
early_stopping = EarlyStopping(monitor='val_loss', patience=2)
start = time.time()
model.fit(x_train, y_train, validation_data=(x_test[:5000], y_test[:5000]), callbacks=[early_stopping], epochs=epochs,
batch_size=batch_size, verbose=2)
end = time.time()
print("Model took %0.2f seconds to train"%(end - start))
y_pred = model.predict(x_test[5000:10000], batch_size=batch_size)
score = model.evaluate(x_test[5000:10000], y_test[5000:10000], verbose=1)
print(score)