-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathinference.py
136 lines (90 loc) · 3.84 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import torch
from PIL import Image
import numpy as np
import os
import json
import gdown
import time
import cv2
from segRetino.segretino.unet import UNET
__PREFIX__ = os.path.dirname(os.path.realpath(__file__))
#print(os.path.dirname(os.path.realpath(__file__)))
class SegRetino(object):
def __init__(self, img_path, size = (512, 512)):
self.img_path = img_path
self.size = size
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
def inference(self, set_weight_dir = 'unet.pth', path = 'output.png', blend = True, blend_path = 'blend.png'):
set_weight_dir = __PREFIX__ + "/weights/" + set_weight_dir
''' saving generated images in a directory '''
def save_image(path):
if os.path.exists(path):
print("Found directory for saving generated images")
return 1
else:
print("Directory for saving images not found, making a directory named 'result_img'")
os.mkdir(path)
return 1
''' dimension expansion and concatenation '''
def mask_parse(mask):
mask = np.expand_dims(mask, axis=-1) ## (512, 512, 1)
mask = np.concatenate([mask, mask, mask], axis=-1) ## (512, 512, 3)
return mask
''' checking if weights are present '''
def check_weights(set_weight_dir):
if os.path.exists(set_weight_dir):
print("Found weights")
return 1
else:
print("Downloading weights")
download_weights()
''' downloading weights if not present '''
def download_weights():
with open(__PREFIX__+"/config/weights_download.json") as fp:
json_file = json.load(fp)
if not os.path.exists(__PREFIX__+"/weights/"):
os.mkdir(__PREFIX__+"/weights/")
url = 'https://drive.google.com/uc?id={}'.format(json_file['unet.pth'])
gdown.download(url, __PREFIX__+"/weights/unet.pth", quiet=False)
set_weight_dir = "unet.pth"
print("Download finished")
check_weights(set_weight_dir)
model = UNET()
model = model.to(self.device)
model.load_state_dict(torch.load(set_weight_dir, map_location=self.device))
image = cv2.imread(self.img_path, cv2.IMREAD_COLOR) # (512, 512, 3)
image = cv2.resize(image, self.size)
x = np.transpose(image, (2, 0, 1)) # (3, 512, 512)
x = x/255.0
x = np.expand_dims(x, axis=0) # (1, 3, 512, 512)
x = x.astype(np.float32)
x = torch.from_numpy(x)
x = x.to(self.device)
time_taken = []
with torch.no_grad():
""" Prediction and Calculating FPS """
start_time = time.time()
pred_y = model(x)
pred_y = torch.sigmoid(pred_y)
total_time = time.time() - start_time
time_taken.append(total_time)
pred_y = pred_y[0].cpu().numpy() ## (1, 512, 512)
pred_y = np.squeeze(pred_y, axis=0) ## (512, 512)
pred_y = pred_y > 0.5
pred_y = np.array(pred_y, dtype=np.uint8)
""" Saving masks """
#ori_mask = mask_parse(mask)
pred_y = mask_parse(pred_y)
line = np.ones((self.size[1], 10, 3)) * 128
cat_images = np.concatenate(
[line, pred_y * 255], axis=1
)
image = cv2.resize(image, self.size)
cv2.imwrite(path, cat_images)
if blend:
cat_images = cv2.imread(path)
cat_images = cv2.resize(cat_images, self.size)
blend = cv2.addWeighted(image, 0.8, cat_images, 0.5, 0)
cv2.imwrite(blend_path, blend)
fps = 1/np.mean(time_taken)
print("FPS: ", fps)