-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathConstraints.hpp
445 lines (385 loc) · 10 KB
/
Constraints.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
#ifndef _MOURISL_CLASSES_CONSTRAINTS_HEADER
#define _MOURISL_CLASSES_CONSTRAINTS_HEADER
#include <vector>
#include <map>
#include <algorithm>
#include <string>
#include <string.h>
#include "BitTable.hpp"
#include "alignments.hpp"
#include "SubexonGraph.hpp"
struct _constraint
{
BitTable vector ; // subexon vector
double weight ;
double normAbund ;
double abundance ;
int support ;
int uniqSupport ;
int maxReadLen ; // the longest read length support this constraint.
int info ; // other usages.
int first, last ; // indicate the first and last index of the subexons.
} ;
struct _matePairConstraint
{
int i, j ;
int support ;
int uniqSupport ;
double abundance ;
double normAbund ;
int effectiveCount ;
int type ;
} ;
struct _readIdHeap
{
char *readId ;
int pos ;
int matePos ;
int idx ;
} ;
//----------------------------------------------------------------------------------
// We assume the access to the data structure is sorted by matePos.
// So we can "pre-cache" the ids with the same matePos.
class MateReadIds
{
private:
std::vector< struct _readIdHeap > heap ;
void HeapifyUp( int tag )
{
while ( tag > 1 )
{
if ( heap[tag / 2].matePos < heap[tag].matePos )
return ;
struct _readIdHeap tmp ;
tmp = heap[tag / 2] ;
heap[tag / 2] = heap[tag] ;
heap[tag] = tmp ;
tag /= 2 ;
}
}
void HeapifyDown( int tag )
{
int size = heap.size() ;
while ( 2 * tag < size )
{
int choose = 2 * tag ;
if ( 2 * tag + 1 < size &&
heap[ 2 * tag + 1].matePos < heap[2 * tag ].matePos )
{
choose = 2 * tag + 1 ;
}
if ( heap[tag].matePos < heap[choose].matePos )
return ;
struct _readIdHeap tmp ;
tmp = heap[choose] ;
heap[choose] = heap[tag] ;
heap[tag] = tmp ;
tag = choose ;
}
}
struct _readIdHeap Pop()
{
struct _readIdHeap ret ;
int size = heap.size() ;
if ( size < 2 )
{
ret.readId = NULL ;
return ret ;
}
ret = heap[1] ;
heap[1] = heap[ heap.size() - 1] ;
heap.pop_back() ;
HeapifyDown( 1 ) ;
return ret ;
}
int cachedMatePos ;
std::map<std::string, int> cachedIdx ;
bool hasMateReadIdSuffix ; // ignore the last ".{1,2}" or "/{1,2}" .
public:
MateReadIds()
{
// Push a dummy element so the vector becomes 1-based.
struct _readIdHeap nh ;
nh.readId = NULL ;
nh.pos = nh.idx = nh.matePos = -1 ;
heap.push_back( nh ) ;
cachedMatePos = -1 ;
hasMateReadIdSuffix = false ;
}
~MateReadIds()
{
int size = heap.size() ;
std::map<std::string, int>().swap( cachedIdx ) ;
for ( int i = 0 ; i < size ; ++i )
if ( heap[i].readId != NULL )
free( heap[i].readId ) ;
}
void Clear()
{
std::map<std::string, int>().swap( cachedIdx ) ;
int size = heap.size() ;
for ( int i = 0 ; i < size ; ++i )
if ( heap[i].readId != NULL )
free( heap[i].readId ) ;
std::vector<struct _readIdHeap>().swap( heap ) ;
struct _readIdHeap nh ;
nh.readId = NULL ;
nh.pos = nh.idx = nh.matePos = -1 ;
heap.push_back( nh ) ;
cachedMatePos = -1 ;
}
void Insert( char *id, int pos, int idx, int matePos )
{
struct _readIdHeap nh ;
nh.readId = strdup( id ) ;
nh.pos = pos ;
nh.idx = idx ;
nh.matePos = matePos ;
heap.push_back( nh ) ;
HeapifyUp( heap.size() - 1 ) ;
}
// If the id does not exist, return -1.
int Query( char *id, int matePos )
{
int size ;
size = heap.size() ;
if ( matePos > cachedMatePos )
{
std::map<std::string, int>().swap( cachedIdx ) ;
while ( size >= 2 && heap[1].matePos < matePos )
{
struct _readIdHeap r = Pop() ;
if ( r.readId )
{
free( r.readId ) ;
}
--size ;
}
while ( size >= 2 && heap[1].matePos == matePos )
{
struct _readIdHeap r = Pop() ;
cachedIdx[ std::string( r.readId ) ] = r.idx ;
if ( r.readId )
free( r.readId ) ;
--size ;
}
cachedMatePos = matePos ;
}
std::string s( id ) ;
if ( hasMateReadIdSuffix )
{
int len = s.length() ;
if ( len >= 2 && ( s[len - 1] == '1' || s[len - 1] == '2' )
&& ( s[len - 2] == '.' || s[len - 2] == '/' ) )
{
s[len - 1] = '2' - s[len - 1] + '1' ;
}
}
if ( cachedIdx.find( s ) != cachedIdx.end() )
{
return cachedIdx[s] ;
}
return -1 ;
}
void UpdateIdx( std::vector<int> &newIdx )
{
int size = heap.size() ;
int i ;
for ( i = 1 ; i < size ; ++i )
{
heap[i].idx = newIdx[ heap[i].idx ] ;
}
for ( std::map<std::string, int>::iterator it = cachedIdx.begin() ; it != cachedIdx.end() ; ++it )
it->second = newIdx[ it->second ] ;
}
void SetHasMateReadIdSuffix( bool in )
{
hasMateReadIdSuffix = true ;
}
} ;
//--------------------------------------------------------------------------
class Constraints
{
private:
int prevStart, prevEnd ;
bool usePrimaryAsUnique ;
MateReadIds mateReadIds ;
Alignments *pAlignments ;
//@return: whether this alignment is compatible with the subexons or not.
bool ConvertAlignmentToBitTable( struct _pair *segments, int segCnt, struct _subexon *subexons, int seCnt, int seStart, struct _constraint &ct ) ;
// Sort to increasing order. Since the first subexon occupies the least important digit.
static bool CompSortConstraints( const struct _constraint &a, const struct _constraint &b )
{
//int k
if ( a.first < b.first )
return true ;
else if ( a.first > b.first )
return false ;
int diffPos = a.vector.GetFirstDifference( b.vector ) ;
if ( diffPos == -1 ) // case of equal.
return false ;
if ( a.vector.Test( diffPos ))
return false ;
else
return true ;
}
static bool CompSortMatePairs( const struct _matePairConstraint &a, const struct _matePairConstraint &b )
{
if ( a.i < b.i )
return true ;
else if ( a.i > b.i )
return false ;
else
{
if ( a.j < b.j )
return true ;
else
return false ;
}
}
void CoalesceSameConstraints() ;
void ComputeNormAbund( struct _subexon *subexons ) ;
public:
std::vector<struct _constraint> constraints ;
std::vector<struct _matePairConstraint> matePairs ;
Constraints()
{
usePrimaryAsUnique = false ;
}
Constraints( Alignments *a ): pAlignments( a )
{
}
~Constraints()
{
int i ;
int size = constraints.size() ;
for ( i = 0 ; i < size ; ++i )
constraints[i].vector.Release() ;
constraints.clear() ;
std::vector<struct _constraint>().swap( constraints ) ;
matePairs.clear() ;
std::vector<struct _matePairConstraint>().swap( matePairs ) ;
}
void Clear()
{
//TODO: do I need to release the memory from BitTable?
constraints.clear() ;
}
void SetAlignments( Alignments *a )
{
pAlignments = a ;
}
void SetUsePrimaryAsUnique( bool in )
{
usePrimaryAsUnique = in ;
}
void Assign( Constraints &c )
{
int i ;
int size = constraints.size() ;
if ( size > 0 )
{
for ( i = 0 ; i < size ; ++i )
constraints[i].vector.Release() ;
constraints.clear() ;
std::vector<struct _constraint>().swap( constraints ) ;
}
matePairs.clear() ;
std::vector<struct _matePairConstraint>().swap( matePairs ) ;
//constraints.resize( c.constraints.size() ) ;
constraints = c.constraints ;
size = c.constraints.size() ;
for ( i = 0 ; i < size ; ++i )
{
/*struct _constraint nc ;
nc.weight = c.constraints[i].weight ;
nc.normAbund = c.constraints[i].normAbund ;
nc.abundance = c.constraints[i].abundance ;
nc.support = c.constraints[i].support ;
nc.uniqSupport = c.constraints[i].uniqSupport ;
nc.maxReadLen = c.constraints[i].maxReadLen ;
nc.info = c.constraints[i].info ;
nc.first = c.constraints[i].first ;
nc.last = c.constraints[i].last ;
nc.vector.Duplicate( c.constraints[i].vector ) ;
constraints[i] = ( nc ) ; */
constraints[i].vector.Nullify() ; // so that it won't affect the BitTable in "c"
constraints[i].vector.Duplicate( c.constraints[i].vector ) ;
}
matePairs = c.matePairs ;
pAlignments = c.pAlignments ;
}
void DownsampleConstraintsFrom( Constraints &c, int stride = 10 )
{
int i ;
int size = constraints.size(), k ;
if ( size > 0 )
{
for ( i = 0 ; i < size ; ++i )
constraints[i].vector.Release() ;
constraints.clear() ;
std::vector<struct _constraint>().swap( constraints ) ;
}
matePairs.clear() ;
std::vector<struct _matePairConstraint>().swap( matePairs ) ;
//constraints.resize( c.constraints.size() ) ;
//constraints = c.constraints ;
k = 0 ;
size = c.constraints.size() ;
for ( i = 0 ; i < size ; i += stride, ++k )
{
constraints.push_back( c.constraints[i] ) ;
constraints[k].vector.Nullify() ; // so that it won't affect the BitTable in "c"
constraints[k].vector.Duplicate( c.constraints[i].vector ) ;
/*std::vector<int> seIdx ;
constraints[k].vector.GetOnesIndices( seIdx ) ;
int j, l = seIdx.size() ;
for ( j = 2 ; j < l ; ++j )
{
constraints[k].vector.Unset( seIdx[j] ) ;
}
constraints[k].last = seIdx[1] ;*/
}
// mate pairs is not used. if we down-sampling
pAlignments = c.pAlignments ;
}
void TruncateConstraintsCoverFrom( Constraints &c, int seCnt, int maxConstraintSize )
{
int i ;
int size = constraints.size() ;
if ( size > 0 )
{
for ( i = 0 ; i < size ; ++i )
constraints[i].vector.Release() ;
constraints.clear() ;
std::vector<struct _constraint>().swap( constraints ) ;
}
matePairs.clear() ;
std::vector<struct _matePairConstraint>().swap( matePairs ) ;
//constraints.resize( c.constraints.size() ) ;
//constraints = c.constraints ;
size = c.constraints.size() ;
for ( i = 0 ; i < size ; ++i )
{
constraints.push_back( c.constraints[i] ) ;
constraints[i].vector.Nullify() ; // so that it won't affect the BitTable in "c"
constraints[i].vector.Init( seCnt ) ;
std::vector<int> seIdx ;
c.constraints[i].vector.GetOnesIndices( seIdx ) ;
int j, l = seIdx.size() ;
for ( j = 0 ; j < maxConstraintSize && j < l ; ++j )
{
constraints[i].vector.Set( seIdx[j] ) ;
}
constraints[i].last = seIdx[j - 1] ;
}
// mate pairs is not used. if we down-sampling
pAlignments = c.pAlignments ;
}
void SetHasMateReadIdSuffix( bool in )
{
mateReadIds.SetHasMateReadIdSuffix( in ) ;
}
int BuildConstraints( struct _subexon *subexons, int seCnt, int start, int end ) ;
} ;
#endif