diff --git a/notebooks/goes-scripts/goes_downsample.py b/notebooks/goes-scripts/goes_downsample.py deleted file mode 100644 index 41c3ab6..0000000 --- a/notebooks/goes-scripts/goes_downsample.py +++ /dev/null @@ -1,24 +0,0 @@ -from scipy.interpolate import LinearNDInterpolator, NearestNDInterpolator -import numpy as np -from xy_to_latlon import calc_latlon - -def downsample(ds, target_points): - """ - target_points - """ - # attach latitude & longitude coordinates to xr.Datasets - ds = calc_latlon(ds) - - # extract 1d arrays of latitudes and longitudes - lat = ds.lat.to_numpy().flatten() - lon = ds.lon.to_numpy().flatten() - - # turn into 2d array of latitudes and longitudes - points = np.vstack((lon, lat)).T - - # initialise interpolation - nn_interpolation = NearestNDInterpolator(points, ds.Rad) - interpolated_nn = nn_interpolation(target_points) - - # create new xr.Dataset with lowres data - ... \ No newline at end of file diff --git a/notebooks/goes-scripts/goes_l1b_download.py b/notebooks/goes-scripts/goes_l1b_download.py deleted file mode 100644 index 48b8980..0000000 --- a/notebooks/goes-scripts/goes_l1b_download.py +++ /dev/null @@ -1,649 +0,0 @@ -# Builtin modules -import os -import shutil -import subprocess -import warnings -from datetime import datetime, timedelta - -# External modules -from google.cloud import storage -from dateutil.parser import parse as parse_date -import numpy as np -import xarray as xr - -# set path to google cloud credentials -os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = 'ADD GOOGLE CREDENTIALS FILE HERE' - - -if "GOOGLE_APPLICATION_CREDENTIALS" not in os.environ: - raise ImportError( - """ - 'GOOGLE_APPLICATION_CREDENTIALS' is not set, this is required for IO - operations involving Google Cloud Storage! - - To continue, please set the 'GOOGLE_APPLICATION_CREDENTIALS' variable - either: - - 1. In your terminal: - export GOOGLE_APPLICATION_CREDENTIALS='path-to-your-credentials-file.json' - - 2. In python: - import os - os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = 'path-to-your-credentials-file.json' - - Then import io once this is set - """ - ) - -## cannot get project automatically, so it is provided as argument -storage_client = storage.Client(project = 'goes-olr') -goes_16_bucket = storage_client.get_bucket("gcp-public-data-goes-16") - - -def _test_subprocess_command(shell_command): - """ - Test if a shell command can be successfully executed by suprocess - - inputs: - -- shell_command (str): shell command that will be passed to subprocess - - outputs: - -- boolean: True if command executed without errors. False if called process - returned an error - """ - try: - test = subprocess.check_output(shell_command.split(" ")) - except subprocess.CalledProcessError: - return False - else: - return True - - -# Check if we can use ncdump to check if files are correct: -ncdump_exists = _test_subprocess_command("ncdump") - -if not ncdump_exists: - warnings.warn( - """Warning: ncdump shell command not found, resorting to xarray - for file checking""" - ) - - -def _check_file_size_against_blob(filename, blob, rtol=0.1, atol=1): - """ - Check if a file size on disk is within toterance of a GCS blob - - inputs: - -- filename (str): path to file - -- blob (Blob): GCS blob of file to compare - -- rtol (float; default=0.1): Relative tolerance in bytes (see numpy.isclose) - -- atol (float; default=1): Absolute tolerance in bytes (see numpy.isclose) - - outputs: - -- boolean: True if file size is within tolerance of the blob. False if - otherwise - """ - filesize = os.stat(filename).st_size - blobsize = blob.size - return np.isclose(filesize, blobsize, rtol, atol) - - -def _check_ncdump_is_valid(filename): - """ - Checks if a netcdf file can be examined using ncdump - - inputs: - -- filename (str): path to file - - outputs: - -- boolean: True if file can be examined using ncdump. False if otherwise - """ - if ncdump_exists: - if _test_subprocess_command(f"ncdump -h {filename}"): - return True - else: - return False - else: - raise RuntimeError("ncdump cannot be called") - - -def _check_xarray_is_valid(filename): - """ - Checks if a netcdf file can be opened using xarray - - inputs: - -- filename (str): path to file - - outputs: - -- boolean: True if file can be opened using xarray. False if otherwise - """ - try: - with xr.open_dataset(filename) as ds: - pass - except OSError: - return False - else: - return True - - -def _check_netcdf_file_is_valid(filename): - """ - Checks if a netcdf file can be opened. Uses ncdump if available, otherwise - attempts to open the file using xarrays - - inputs: - -- filename (str): path to file - - outputs: - -- boolean: True if file can be opened. False if otherwise - """ - if ncdump_exists: - return _check_ncdump_is_valid(filename) - else: - return _check_xarray_is_valid(filename) - - -def _check_free_space_for_blob( - blob, save_path, relative_min_storage=1.25, absolute_min_storage=2**30 -): - """ - Checks if the avaialbe space on a storage volume is large enough to download - a blob. Min storage required is the largest out of the relative_min_storage - multiplied by the blob size, and the absolute_min_storage. - - inputs: - -- blob (Blob): GCS blob of file to compare - -- save_path (str): direfctory to save file to - -- relative_min_storage (float; default=1.25): Relative tolerance in bytes (see numpy.isclose) - -- absolute_min_storage (float; default=2**30 (1GB)): Absolute tolerance in bytes (see numpy.isclose) - - outputs: - -- boolean: True if free storage is above min threhsold, otherwise False. - """ - min_storage = np.maximum(blob.size * relative_min_storage, absolute_min_storage) - - if shutil.disk_usage(save_path).free > min_storage: - return True - else: - return False - - -def _check_if_file_exists_and_is_valid(filename, blob, remove_corrupt=True): - """ - Checks if a netcdf file exists and can be opened. - - inputs: - -- filename (str): path to file - -- blob (Blob): GCS blob of file to compare - -- remove_corrupt (bool; default is True): If true, if the file exists but - is not valid then delete the file. Otherwise leave in place - - outputs: - -- boolean: True if file can be opened. False if otherwise - """ - if os.path.exists(filename): - if _check_file_size_against_blob(filename, blob): - return True - else: - if remove_corrupt: - os.remove(filename) - - return False - else: - return False - - -def _find_abi_blobs(date, satellite=16, product="Rad", view="C", mode=3, channel=1): - """ - Find ABI file blobs for a single set of input parameters - - inputs: - -- date (datetime): date to find files (hour) - -- satellite (int; default=16): GOES satellite to get data for. 16 or 17 - -- product (str; default='Rad'): ABI data product to download - -- view (str; default='C'): View to get data for - -- mode (int; default=4): Scanning mode to get data for - -- channel (int; default=1): Channel to get data for. Only used for Rad and - CMIP products - - outputs: - -- list of Blobs: list of blobs found using the prefix generated from the - supplied inputs - """ - if satellite == 16: - goes_bucket = goes_16_bucket - elif satellite == 17: - goes_bucket = goes_17_bucket - else: - raise ValueError("Invalid input for satellite keyword") - - doy = (date - datetime(date.year, 1, 1)).days + 1 - - level = "L1b" if product == "Rad" else "L2" - - blob_path = "ABI-%s-%s%.1s/%04d/%03d/%02d/" % ( - level, - product, - view, - date.year, - doy, - date.hour, - ) - - if product == "Rad" or "CMIP": - blob_prefix = "OR_ABI-%s-%s%s-M%1dC%02d_G%2d_s" % ( - level, - product, - view, - mode, - channel, - satellite, - ) - - else: - blob_prefix = "OR_ABI-%s-%s%s-M%1d_G%2d_s" % ( - level, - product, - view, - mode, - satellite, - ) - print(f'path: {blob_path + blob_prefix}\n') - blobs = list(goes_bucket.list_blobs(prefix=blob_path + blob_prefix, delimiter="/")) - - print(f'found blobs {blobs}\n\n') - print(f'returning first blob {[blobs[0]]}\n\n') - # return blobs - return [blobs[0]] - - -def find_abi_blobs( - dates, satellite=16, product="Rad", view="C", mode=[3, 4, 6], channel=1 -): - """ - Find ABI file blobs for a set of one or multiple input parameters - - inputs: - -- dates (datetime): date or list of dates to find files (hour) - -- satellite (int; default=16): GOES satellite to get data for. 16 or 17 - -- product (str; default='Rad'): ABI data product to download - -- view (str; default='C'): View to get data for - -- mode (int; default=[3,4,6]): Scanning mode to get data for - -- channel (int; default=1): Channel to get data for. Only used for Rad and - CMIP products - - outputs: - -- list of Blobs: list of blobs found using the prefix generated from the - supplied inputs - """ - - input_params = [ - m.ravel().tolist() - for m in np.meshgrid(dates, satellite, product, view, mode, channel) - ] - n_params = len(input_params[0]) - - blobs = sum( - [ - _find_abi_blobs( - input_params[0][i], - satellite=input_params[1][i], - product=input_params[2][i], - view=input_params[3][i], - mode=input_params[4][i], - channel=input_params[5][i], - ) - for i in range(n_params) - ], - [], - ) - - return blobs - - -def _get_download_destination(blob, save_dir, replicate_path=True): - """ - Generate path to download destination for a blob - - inputs: - -- blob (Blob): GCS blob to find download location for - -- save_dir (str): root directory to save files in - -- replicate_path (bool; default=True): If True, replicate the directory - structure within the GCS store. Otherwise, provide a path to the file - directly within the root directory - - outputs: - -- str: save_file name and location for download - """ - blob_path, blob_name = os.path.split(blob.name) - - if replicate_path: - save_path = os.path.join(save_dir, blob_path) - else: - save_path = save_dir - if not os.path.isdir(save_path): - os.makedirs(save_path, exist_ok=True) - save_file = os.path.join(save_path, blob_name) - return save_file - - -def download_blob( - blob, - save_dir, - replicate_path=True, - check_download=False, - n_attempts=1, - clobber=False, - min_storage=2**30, - verbose=False, - remove_corrupt=True, -): - """ - Download a single blob from GCS - - inputs: - -- blob (Blob): GCS blob to find download location for - -- save_dir (str): root directory to save files in - -- replicate_path (bool; default=True): If True, replicate the directory - structure within the GCS store. Otherwise, provide a path to the file - directly within the root directory - -- check_download (bool; default=True) - """ - save_path = _get_download_destination(blob, save_dir, replicate_path=replicate_path) - if clobber or not os.path.exists(save_path): - if clobber and os.path.exists(save_path): - os.remove(save_path) - if verbose: - print(f"Downloading {save_path}", flush=True) - if _check_free_space_for_blob( - blob, - os.path.split(save_path)[0], - relative_min_storage=1.25, - absolute_min_storage=min_storage, - ): - try: - blob.download_to_filename(save_path) - except OSError: - if n_attempts > 1: - download_blob( - blob, - save_dir, - replicate_path=replicate_path, - check_download=check_download, - n_attempts=n_attempts - 1, - clobber=clobber, - ) - else: - raise RuntimeError(f"{save_path}: download failed") - if check_download and not _check_if_file_exists_and_is_valid( - save_path, blob, remove_corrupt=True - ): - if n_attempts > 1: - download_blob( - blob, - save_dir, - replicate_path=replicate_path, - check_download=check_download, - n_attempts=n_attempts - 1, - clobber=clobber, - ) - else: - if remove_corrupt: - if os.path.exists(save_path): - os.remove(save_path) - raise RuntimeError(f"{save_path}: downloaded file not valid") - else: - raise OSError("Not enough storage space available for download") - if os.path.exists(save_path): - return save_path - else: - raise RuntimeError(f"{save_path}: downloaded file not found") - - - -def get_goes_date(filename: str) -> datetime: - """ - Finds the centre point time from an ABI filename - """ - base_string = os.path.split(filename)[-1] - - start_string = base_string.split("_s")[-1] - start_date = parse_date(start_string[:4] + "0101" + start_string[7:13]) + timedelta( - days=int(start_string[4:7]) - 1 - ) - end_string = base_string.split("_e")[-1] - end_date = parse_date(end_string[:4] + "0101" + end_string[7:13]) + timedelta( - days=int(end_string[4:7]) - 1 - ) - - return start_date + (end_date - start_date) / 2 - - -def find_abi_files( - date, - satellite=16, - product="Rad", - view="C", - mode=[3, 4, 6], - channel=1, - save_dir="./", - replicate_path=True, - check_download=False, - n_attempts=1, - download_missing=False, - clobber=False, - min_storage=2**30, - remove_corrupt=True, - verbose=False, -): - """ - Finds ABI files on the local system. Optionally downloads missing files from - GCS - - inputs: - # TODO: - - outputs: - list: list of filenames on local system - """ - blobs = find_abi_blobs( - date, - satellite=satellite, - product=product, - view=view, - mode=mode, - channel=channel, - ) - files = [] - for blob in blobs: - if download_missing: - try: - save_file = download_blob( - blob, - save_dir, - replicate_path=replicate_path, - check_download=check_download, - n_attempts=n_attempts, - clobber=clobber, - min_storage=min_storage, - verbose=verbose, - ) - except OSError as e: - warnings.warn(str(e.args[0])) - download_missing = False - except RuntimeError as e: - warnings.warn(str(e.args[0])) - else: - if os.path.exists(save_file): - files += [save_file] - else: - local_file = _get_download_destination( - blob, save_dir, replicate_path=replicate_path - ) - if _check_if_file_exists_and_is_valid( - local_file, blob, remove_corrupt=remove_corrupt - ): - files += [local_file] - return files - - -def _find_glm_blobs(date, satellite=16): - if satellite == 16: - goes_bucket = goes_16_bucket - elif satellite == 17: - goes_bucket = goes_17_bucket - else: - raise ValueError("Invalid input for satellite keyword") - - doy = (date - datetime(date.year, 1, 1)).days + 1 - - blob_path = "GLM-L2-LCFA/%04d/%03d/%02d/" % (date.year, doy, date.hour) - blob_prefix = "OR_GLM-L2-LCFA_G%2d_s" % satellite - - blobs = list(goes_bucket.list_blobs(prefix=blob_path + blob_prefix, delimiter="/")) - - return blobs - - -def find_glm_blobs(dates, satellite=16): - """ - Find GLM file blobs for a set of one or multiple input parameters - - inputs: - -- dates (datetime): date or list of dates to find files (hour) - -- satellite (int; default=16): GOES satellite to get data for. 16 or 17 - - outputs: - -- list of Blobs: list of blobs found using the prefix generated from the - supplied inputs - """ - - input_params = [m.ravel().tolist() for m in np.meshgrid(dates, satellite)] - n_params = len(input_params[0]) - - blobs = sum( - [ - _find_glm_blobs(input_params[0][i], satellite=input_params[1][i]) - for i in range(n_params) - ], - [], - ) - - return blobs - - -def find_glm_files( - date, - satellite=16, - save_dir="./", - replicate_path=True, - check_download=False, - n_attempts=1, - download_missing=False, - clobber=False, - min_storage=2**30, - remove_corrupt=True, - verbose=False, -): - """ - Finds GLM files on the local system. Optionally downloads missing files from - GCS - - inputs: - # TODO: - - outputs: - list: list of filenames on local system - """ - blobs = find_glm_blobs(date, satellite=satellite) - files = [] - for blob in blobs: - if download_missing: - try: - save_file = download_blob( - blob, - save_dir, - replicate_path=replicate_path, - check_download=check_download, - n_attempts=n_attempts, - clobber=clobber, - min_storage=min_storage, - verbose=verbose, - ) - except OSError as e: - warnings.warn(e.args[0]) - download_missing = False - except RuntimeError: - warnings.warn(e.args[0]) - else: - if os.path.exists(save_file): - files += [save_file] - else: - save_file = _get_download_destination( - blob, save_dir, replicate_path=replicate_path - ) - if _check_if_file_exists_and_is_valid(save_file, blob): - files += [save_file] - return files - - -# def find_nexrad_blobs(date, site): -# storage_client = storage.Client() -# bucket = storage_client.get_bucket("gcp-public-data-nexrad-l2") - -# blob_path = "%04d/%02d/%02d/%s/" % (date.year, date.month, date.day, site) -# blob_prefix = "NWS_NEXRAD_NXL2DPBL_%s_%04d%02d%02d%02d" % ( -# site, -# date.year, -# date.month, -# date.day, -# date.hour, -# ) - -# blobs = list(bucket.list_blobs(prefix=blob_path + blob_prefix, delimiter="/")) - -# return blobs - - -def download_blobs( - blob_list, save_dir="./", replicate_path=True, n_attempts=0, clobber=False -): - for blob in blob_list: - blob_path, blob_name = os.path.split(blob.name) - - if replicate_path: - save_path = os.path.join(save_dir, blob_path) - else: - save_path = save_dir - if not os.path.isdir(save_path): - os.makedirs(save_path, exist_ok=True) - - save_file = os.path.join(save_path, blob_name) - if clobber or not os.path.exists(save_file): - blob.download_to_filename(save_file) - - -# def find_nexrad_files( -# date, site, save_dir="./", replicate_path=True, download_missing=False -# ): -# blobs = find_nexrad_blobs(date, site) -# files = [] -# for blob in blobs: -# blob_path, blob_name = os.path.split(blob.name) - -# if replicate_path: -# save_path = os.path.join(save_dir, blob_path) -# else: -# save_path = save_dir -# if not os.path.isdir(save_path): -# os.makedirs(save_path, exist_ok=True) - -# save_file = os.path.join(save_path, blob_name) -# if os.path.exists(save_file): -# files += [save_file] -# elif download_missing: -# download_blobs([blob], save_dir=save_dir, replicate_path=replicate_path) -# if os.path.exists(save_file): -# files += [save_file] - -# return files \ No newline at end of file diff --git a/notebooks/goes-scripts/xy_to_latlon.py b/notebooks/goes-scripts/xy_to_latlon.py deleted file mode 100644 index 806d155..0000000 --- a/notebooks/goes-scripts/xy_to_latlon.py +++ /dev/null @@ -1,73 +0,0 @@ -import numpy as np - -''' -script adapted from https://lsterzinger.medium.com/add-lat-lon-coordinates-to-goes-16-goes-17-l2-data-and-plot-with-cartopy-27f07879157f -''' - - -def calc_latlon(ds): - ''' - Takes GOES dataset (one image) and computes latitude and - longitude for each pixel using horizontal scan angles x - and vertical scan angles y. - - Input: - ds xarray.Dataset - Output: - ds xarray.Dataset with lat and lon values added for each datapoint - and used as indeces. - ''' - # The math for this function was taken from - # https://makersportal.com/blog/2018/11/25/goes-r-satellite-latitude-and-longitude-grid-projection-algorithm - - x = ds.x - y = ds.y - goes_imager_projection = ds.goes_imager_projection - - x,y = np.meshgrid(x,y) - - r_eq = goes_imager_projection.attrs["semi_major_axis"] # earth radius at equator - r_pol = goes_imager_projection.attrs["semi_minor_axis"] # earth radius at pole - l_0 = goes_imager_projection.attrs["longitude_of_projection_origin"] * (np.pi/180) # lambda0 - h_sat = goes_imager_projection.attrs["perspective_point_height"] # distance satellite to nearest equator surface point - H = r_eq + h_sat # distance satellite to earth centre - - a = np.sin(x)**2 + (np.cos(x)**2 * (np.cos(y)**2 + (r_eq**2 / r_pol**2) * np.sin(y)**2)) - b = -2 * H * np.cos(x) * np.cos(y) - c = H**2 - r_eq**2 - - r_s = (-b - np.sqrt(b**2 - 4*a*c))/(2*a) - - s_x = r_s * np.cos(x) * np.cos(y) - s_y = -r_s * np.sin(x) - s_z = r_s * np.cos(x) * np.sin(y) - - # latitude and longitude - lat = np.arctan((r_eq**2 / r_pol**2) * (s_z / np.sqrt((H-s_x)**2 +s_y**2))) * (180/np.pi) - lon = (l_0 - np.arctan(s_y / (H-s_x))) * (180/np.pi) - - ds = ds.assign_coords({ - "lat":(["y","x"],lat), - "lon":(["y","x"],lon) - }) - ds.lat.attrs["units"] = "degrees_north" - ds.lon.attrs["units"] = "degrees_east" - - return ds - -def get_xy_from_latlon(ds, lats, lons): - lat1, lat2 = lats - lon1, lon2 = lons - - lat = ds.lat.data - lon = ds.lon.data - - x = ds.x.data - y = ds.y.data - - x,y = np.meshgrid(x,y) - - x = x[(lat >= lat1) & (lat <= lat2) & (lon >= lon1) & (lon <= lon2)] - y = y[(lat >= lat1) & (lat <= lat2) & (lon >= lon1) & (lon <= lon2)] - - return ((min(x), max(x)), (min(y), max(y))) diff --git a/rs_tools/_src/geoprocessing/grid.py b/rs_tools/_src/geoprocessing/grid.py index 4ca30ba..70b90d4 100644 --- a/rs_tools/_src/geoprocessing/grid.py +++ b/rs_tools/_src/geoprocessing/grid.py @@ -1,7 +1,7 @@ import numpy as np from typing import Tuple - +# TODO: To be moved to Earth System Datacube Tools def create_latlon_grid(region: Tuple[float, float, float, float], resolution: float): """ diff --git a/rs_tools/_src/geoprocessing/modis/interp.py b/rs_tools/_src/geoprocessing/modis/interp.py index 1fa8ce1..8e1bf9c 100644 --- a/rs_tools/_src/geoprocessing/modis/interp.py +++ b/rs_tools/_src/geoprocessing/modis/interp.py @@ -2,6 +2,7 @@ import numpy as np from scipy.interpolate import griddata +# TODO: Satpy can interpolate grid, so function not necessarily needed def interp_coords_modis(ds: xr.Dataset, desired_size: tuple[int], method: str="cubic") -> np.array: lat = ds.Latitude diff --git a/rs_tools/_src/geoprocessing/modis/rescale.py b/rs_tools/_src/geoprocessing/modis/rescale.py index b9b95b8..93b0952 100644 --- a/rs_tools/_src/geoprocessing/modis/rescale.py +++ b/rs_tools/_src/geoprocessing/modis/rescale.py @@ -2,6 +2,7 @@ import xarray as xr import numpy as np +# TODO: Satpy can rescale data, so function not necessarily needed def convert_integers2radiances( da: xr.DataArray, ) -> xr.DataArray: diff --git a/rs_tools/_src/geoprocessing/reproject.py b/rs_tools/_src/geoprocessing/reproject.py index abd4e1e..82c3ce9 100644 --- a/rs_tools/_src/geoprocessing/reproject.py +++ b/rs_tools/_src/geoprocessing/reproject.py @@ -3,6 +3,7 @@ from pyproj import CRS, Transformer import xarray as xr +# TODO: To be moved to Earth System Datacube Tools def convert_lat_lon_to_x_y(crs: str, lon: list[float], lat: list[float]) -> Tuple[float, float]: transformer = Transformer.from_crs("epsg:4326", crs, always_xy=True) x, y = transformer.transform(lon, lat) diff --git a/rs_tools/_src/modules/__init__.py b/rs_tools/_src/modules/__init__.py deleted file mode 100644 index e69de29..0000000 diff --git a/rs_tools/_src/modules/modis/__init__.py b/rs_tools/_src/modules/modis/__init__.py deleted file mode 100644 index e69de29..0000000 diff --git a/rs_tools/_src/modules/modis/download.py b/rs_tools/_src/modules/modis/download.py deleted file mode 100644 index e69de29..0000000 diff --git a/rs_tools/_src/preprocessing/normalize.py b/rs_tools/_src/preprocessing/normalize.py index 9a46f57..0e618c9 100644 --- a/rs_tools/_src/preprocessing/normalize.py +++ b/rs_tools/_src/preprocessing/normalize.py @@ -7,11 +7,11 @@ def spatial_mean(ds: xr.Dataset, spatial_variables: List[str]) -> xr.Dataset: return ds.mean(spatial_variables) - +# TODO: Check this function def normalize( - files: List[str], + files: List[str], + temporal_variables: List[str], spatial_variables: List[str]=["x","y"], - temporal_variables: List[str], ) -> xr.Dataset: preprocess = partial(spatial_mean, spatial_variables=spatial_variables) diff --git a/rs_tools/_src/utils/crs_ops.py b/rs_tools/_src/utils/crs_ops.py deleted file mode 100644 index bc7f2ab..0000000 --- a/rs_tools/_src/utils/crs_ops.py +++ /dev/null @@ -1,120 +0,0 @@ -#!/usr/bin/env python3 -# -*- coding: utf-8 -*- -""" -Created on Tue Oct 20 23:49:15 2020 - -@author: ghiggi -""" -import numpy as np -import cartopy.crs as ccrs - -def get_bbox_polygon(bbox): - from shapely.geometry.polygon import Polygon - p = Polygon(((bbox[0],bbox[1]), # bottom left - (bbox[0],bbox[3]), # top left - (bbox[2],bbox[3]), # top rght - (bbox[2],bbox[1]), # bottom right - (bbox[0],bbox[1]))) # bottom left - return p - -def get_bbox_coords(bbox, output_type='xy'): - """Return corner coordinates of bounding box. - # bbox : (xmin, ymin, xmax, ymax) - - # output_type = 'shapely', 'array', 'xy', 'tuple' - # shapely: shapely polygon - # array : numpy array with xy columns - # xy : x, y numpy arrays - # tuple: list of (x,y) - - # Return (bottom_left, top_left, top_right bottom_right) - """ - if (output_type not in ['xy','tuple','array']): - raise ValueError("Valid output_type: 'xy','tuple','array'") - x = np.array([bbox[0], bbox[0], bbox[2], bbox[2]]) - y = np.array([bbox[1], bbox[3], bbox[3], bbox[1]]) - if (output_type=='xy'): - return x, y - if (output_type=='tuple'): - return list(zip(x,y)) - if (output_type=='array'): - return np.vstack((x,y)).transpose() - - -def get_bbox(x,y): - xmin = np.min(x) - xmax = np.max(x) - ymin = np.min(y) - ymax = np.max(y) - return [xmin, ymin, xmax, ymax] - -def get_projected_bbox(bbox, crs_ref, crs_proj, lonlat=False): - # Check if xmin > xmax (crossing the antimeridian) - # - This only occurs for geographic coordinates / projections - # TODO : Infer if lonlat from CRS - flag_crossing = False - if (bbox[0] > bbox[2]): - flag_crossing = True - #------------------------------------------------------------. - x, y = get_bbox_coords(bbox, output_type="xy") - xy_prj = crs_proj.transform_points(src_crs=crs_ref, x=x, y=y)[:,0:2] - bbox_proj = get_bbox(xy_prj[:,0], xy_prj[:,1]) # this simply look at min and max - #------------------------------------------------------------. - # Deal with crossing antimeridian - if (flag_crossing is True) and (lonlat is True): - xmax = bbox_proj[0] - xmin = bbox_proj[2] - bbox_proj[0] = xmin - bbox_proj[2] = xmax - #------------------------------------------------------------. - return bbox_proj - - -def adapt_bbox_for_resolution(bbox, resolution, lonlat=False): - """ Adapt bbox to allow specified resolution. """ - # Check resolution input - if (not isinstance(resolution, (float, int, tuple))): - raise TypeError("Provide resolution as single integer/float or as tuple.") - if (isinstance(resolution, (float, int))): - resolution = (resolution,resolution) - else: - if len(resolution) != 2: - raise ValueError("Please provide resolution in (x,y) tuple format.") - # Retrieve distance in x and y direction - dx = bbox[2] - bbox[0] - dy = bbox[3] - bbox[1] - # Check dx and dy are larger than resolution - if (dx < resolution[0]): - raise ValueError("The specified resolution is larger than the bbox in x direction") - if (dy < resolution[1]): - raise ValueError("The specified resolution is larger than the bbox in y direction") - #-------------------------------------------------------------------------. - # Retrieve corrections - x_corr = (np.ceil(dx/resolution[0])*resolution[0] - dx)/2 - y_corr = (np.ceil(dy/resolution[1])*resolution[1] - dy)/2 - xmin = bbox[0]-x_corr - ymin = bbox[1]-y_corr - xmax = bbox[2]+x_corr - ymax = bbox[3]+y_corr - #-------------------------------------------------------------------------. - # Check y is outside [-90, 90] in lat ... - if (lonlat is True): - if (ymin < -90): - thr = -90-ymin - ymin = -90 - ymax = ymax + thr - if (ymax > 90): - thr = ymax -90 - ymax = 90 - ymin = ymin - thr - if (ymin > -90): - print("Impossible to adapt the bbox by extending it.") - ymin = -90 - #-------------------------------------------------------------------------. - # Ensure that xmin and xmax stay inside [-180, 180] boundary - if (xmin > 180): xmin = xmin - 360 - if (xmax > 180): xmax = xmax - 360 - if (xmin < 180): xmin = xmin + 360 - if (xmax < 180): xmax = xmax + 360 - #-------------------------------------------------------------------------. - return [xmin,ymin, xmax, ymax] diff --git a/rs_tools/_src/utils/math.py b/rs_tools/_src/utils/math.py index c774567..e16a002 100644 --- a/rs_tools/_src/utils/math.py +++ b/rs_tools/_src/utils/math.py @@ -1,5 +1,6 @@ from math import floor, ceil +# TODO: Eman to refactor code def bounds_and_points_to_step(xmin: float, xmax: float, Nx: float) -> float: """Calculates the dx from the minmax Eq: