forked from BenediktRiegel/quantum-no-free-lunch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbarren_plateau_cost_function.py
214 lines (174 loc) · 7.37 KB
/
barren_plateau_cost_function.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import pennylane as qml
from pennylane import numpy as np
import matplotlib.pyplot as plt
from torch.autograd import Variable
from data import *
import torch
def cost_func(X_train, unitary, ref_wires, dev, random_gate_sequence, params):
#input params: train data, qnn, unitary to learn, refernce system wires and device
qnn_wires = list(range(0,num_qubits))
cost = torch.zeros(1)
for el in X_train:
@qml.qnode(dev, interface="torch")
def circuit(params):
qml.QubitStateVector(el, wires=qnn_wires+ref_wires) # Amplitude Encoding
#estimate V
# construct random circuit for V
for i in range(num_qubits):
qml.RY(np.pi / 4, wires=i)
for i in range(num_qubits):
random_gate_sequence[i](params[i], wires=i)
for i in range(num_qubits - 1):
qml.CZ(wires=[i, i + 1])
adjoint_unitary_circuit(unitary)(wires=qnn_wires) # Adjoint U
qml.MottonenStatePreparation(el, wires=qnn_wires+ref_wires).inv() # Inverse Amplitude Encoding
return qml.probs(wires=qnn_wires+ref_wires)
cost += circuit(params)[0]
return 1 - (cost / len(X_train))
def get_gradient(unitary, learning_rate, ref_wires,
dev, num_epochs, random_gate_sequence):
# num_qubits = len(qnn.wires) + len(ref_wires)
# num_layers = qnn.num_layers
# set up the optimizer
opt = torch.optim.Adam([params], lr=learning_rate)
# opt = torch.optim.SGD([qnn.params], lr=learning_rate)
# number of steps in the optimization routine
steps = num_epochs
# the final stage of optimization isn't always the best, so we keep track of
# the best parameters along the way
# best_cost = 0
# best_params = np.zeros((num_qubits, num_layers, 3))
# optimization begins
all_losses = []
gradient_storage = []
for n in range(1):
print(f"step {n+1}/{steps}")
opt.zero_grad()
total_loss = 0
for el in X_train:
print('calc cost funktion')
loss = cost_func(el, unitary, ref_wires, dev, random_gate_sequence, params)
print('backprop')
loss.backward()
gradient_storage.append(params.grad)
print('optimise')
opt.step()
return np.mean(gradient)
num_qubits = 4
dev = qml.device("default.qubit", wires=num_qubits)
gate_set = [qml.RX, qml.RY, qml.RZ]
grad_vals = []
num_samples = 200
schmidt_rank = 1
num_points = 64
grads = []
for i in range(num_samples):
gate_sequence = {i: np.random.choice(gate_set) for i in range(num_qubits)}
params = np.random.uniform(0, 2*np.pi, size=num_qubits)
params = Variable(torch.tensor(params), requires_grad=True)
unitary = random_unitary_matrix(num_qubits)
r_qbits = int(np.ceil(np.log2(schmidt_rank)))
ref_wires = list(range(num_qubits,num_qubits+r_qbits))
X_train = np.array(uniform_random_data(schmidt_rank, num_points, num_qubits, r_qbits))
#print(rand_circuit(X_train, unitary, schmidt_rank, params, gate_sequence, num_qubits))
gradient = get_gradient(unitary,0.1, ref_wires,dev, gate_sequence, params)
grad_vals.append(gradient)
print("Variance of the gradients for {} random circuits: {}".format(
num_samples, np.var(grad_vals)
)
)
print("Mean of the gradients for {} random circuits: {}".format(
num_samples, np.mean(grad_vals)
)
)
def adjoint_unitary_circuit(unitary):
from qiskit import QuantumCircuit, Aer, transpile
unitary = np.conj(np.array(unitary)).T
qbits = int(np.log2(len(unitary)))
sv_backend = Aer.get_backend('statevector_simulator')
qc = QuantumCircuit(qbits)
qc.unitary(unitary, range(qbits))
qc_transpiled = transpile(qc, backend=sv_backend, basis_gates=sv_backend.configuration().basis_gates,
optimization_level=3)
return qml.from_qiskit(qc_transpiled)
"""
def rand_circuit(X_train, unitary, schmidt_rank, params, random_gate_sequence=None, num_qubits=None):
cost = 0
qnn_wires = list(range(0,num_qubits))
r_qbits = int(np.ceil(np.log2(schmidt_rank)))
ref_wires = list(range(num_qubits,num_qubits+r_qbits))
for el in X_train:
@qml.qnode(dev)
def circuit():
qml.MottonenStatePreparation(el, wires=qnn_wires + ref_wires) # Amplitude Encoding
#construct random circuit for V
for i in range(num_qubits):
qml.RY(np.pi / 4, wires=i)
for i in range(num_qubits):
random_gate_sequence[i](params[i], wires=i)
for i in range(num_qubits - 1):
qml.CZ(wires=[i, i + 1])
adjoint_unitary_circuit(unitary)(wires=qnn_wires) # Adjoint U
qml.MottonenStatePreparation(el, wires=qnn_wires + ref_wires).inv() # Inverse Amplitude Encoding
#H = np.zeros((2 ** num_qubits, 2 ** num_qubits))
#H[0, 0] = 1
#wirelist = [i for i in range(num_qubits)]
#return qml.expval(qml.Hermitian(H, wirelist))
return qml.probs(wires=qnn_wires + ref_wires) # Return probabilities for differen quantum states
cost += circuit()[0] # Sum up probability of state |0>
return 1 - (cost / len(X_train))
num_qubits = 4
dev = qml.device("default.qubit", wires=num_qubits)
gate_set = [qml.RX, qml.RY, qml.RZ]
grad_vals = []
num_samples = 200
schmidt_rank = 1
num_points = 64
for i in range(num_samples):
gate_sequence = {i: np.random.choice(gate_set) for i in range(num_qubits)}
qcircuit = qml.QNode(rand_circuit, dev)
#grad = qml.grad(qcircuit, argnum=0)
params = np.random.uniform(0, 2*np.pi, size=num_qubits)
unitary = random_unitary_matrix(num_qubits)
r_qbits = int(np.ceil(np.log2(schmidt_rank)))
X_train = np.array(uniform_random_data(schmidt_rank, num_points, num_qubits, r_qbits))
print(rand_circuit(X_train, unitary, schmidt_rank, params, gate_sequence, num_qubits))
#params are: X_train, unitary, schmidt_rank, params, random_gate_sequence=None, num_qubits=None
#gradient = grad(X_train, unitary, schmidt_rank, params, random_gate_sequence=gate_sequence, num_qubits=num_qubits)
#grad_vals.append(gradient[-1])
print("Variance of the gradients for {} random circuits: {}".format(
num_samples, np.var(grad_vals)
)
)
print("Mean of the gradients for {} random circuits: {}".format(
num_samples, np.mean(grad_vals)
)
)
qubits = [2, 3, 4, 5, 6]
variances = []
for num_qubits in qubits:
grad_vals = []
for i in range(num_samples):
dev = qml.device("default.qubit", wires=num_qubits)
qcircuit = qml.QNode(rand_circuit, dev)
grad = qml.grad(qcircuit, argnum=0)
gate_set = [qml.RX, qml.RY, qml.RZ]
random_gate_sequence = {i: np.random.choice(gate_set) for i in range(num_qubits)}
params = np.random.uniform(0, np.pi, size=num_qubits)
gradient = grad(
params, random_gate_sequence=random_gate_sequence, num_qubits=num_qubits
)
grad_vals.append(gradient[-1])
variances.append(np.var(grad_vals))
variances = np.array(variances)
qubits = np.array(qubits)
# Fit the semilog plot to a straight line
p = np.polyfit(qubits, np.log(variances), 1)
# Plot the straight line fit to the semilog
plt.semilogy(qubits, variances, "o")
plt.semilogy(qubits, np.exp(p[0] * qubits + p[1]), "o-.", label="Slope {:3.2f}".format(p[0]))
plt.xlabel(r"N Qubits")
plt.ylabel(r"Variance")
plt.legend()
plt.show()
"""