diff --git a/docs/.buildinfo b/docs/.buildinfo
index a760069d2..eafc4f405 100644
--- a/docs/.buildinfo
+++ b/docs/.buildinfo
@@ -1,4 +1,4 @@
# Sphinx build info version 1
# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done.
-config: 5cc6500fd7d8a78cea89aef3268de5c5
+config: 463b5d411b812fb296a8f7bff970d1cf
tags: 645f666f9bcd5a90fca523b33c5a78b7
diff --git a/docs/_sources/api/api_docs/classes/BitWidthConfig.rst.txt b/docs/_sources/api/api_docs/classes/BitWidthConfig.rst.txt
new file mode 100644
index 000000000..9b5cff54c
--- /dev/null
+++ b/docs/_sources/api/api_docs/classes/BitWidthConfig.rst.txt
@@ -0,0 +1,14 @@
+:orphan:
+
+.. _ug-BitWidthConfig:
+
+
+BitWidthConfig
+==========================
+
+.. autoclass:: model_compression_toolkit.core.BitWidthConfig
+
+ManualBitWidthSelection
+==========================
+
+.. autoclass:: model_compression_toolkit.core.common.quantization.bit_width_config.ManualBitWidthSelection
diff --git a/docs/_sources/api/api_docs/classes/XQuantConfig.rst.txt b/docs/_sources/api/api_docs/classes/XQuantConfig.rst.txt
new file mode 100644
index 000000000..79d34128a
--- /dev/null
+++ b/docs/_sources/api/api_docs/classes/XQuantConfig.rst.txt
@@ -0,0 +1,14 @@
+:orphan:
+
+.. _ug-XQuantConfig:
+
+================================================
+XQuant Configuration
+================================================
+
+.. autoclass:: model_compression_toolkit.xquant.common.xquant_config.XQuantConfig
+ :members:
+
+
+
+
diff --git a/docs/_sources/api/api_docs/index.rst.txt b/docs/_sources/api/api_docs/index.rst.txt
index b349d3be4..0c4433163 100644
--- a/docs/_sources/api/api_docs/index.rst.txt
+++ b/docs/_sources/api/api_docs/index.rst.txt
@@ -49,6 +49,7 @@ core
- :ref:`QuantizationConfig`: Module to configure the quantization process.
- :ref:`QuantizationErrorMethod`: Select a method for quantization parameters' selection.
- :ref:`MixedPrecisionQuantizationConfig`: Module to configure the quantization process when using mixed-precision PTQ.
+- :ref:`BitWidthConfig`: Module to configure the bit-width manually.
- :ref:`ResourceUtilization`: Module to configure resources to use when searching for a configuration for the optimized model.
- :ref:`MpDistanceWeighting`: Mixed precision distance metric weighting methods.
- :ref:`network_editor`: Module to modify the optimization process for troubleshooting.
@@ -75,6 +76,13 @@ pruning
- :ref:`PruningConfig`: Configuration for the pruning process (experimental).
- :ref:`PruningInfo`: Information about the pruned model such as pruned channel indices, etc. (experimental).
+xquant
+===========
+
+- :ref:`xquant_report_pytorch_experimental`: A function to generate an explainable quantization report for a quantized Pytorch model (experimental).
+- :ref:`xquant_report_keras_experimental`: A function to generate an explainable quantization report for a quantized Keras model (experimental).
+
+- :ref:`XQuantConfig`: Configuration for the XQuant report (experimental).
exporter
=========
diff --git a/docs/_sources/api/api_docs/methods/xquant_report_keras_experimental.rst.txt b/docs/_sources/api/api_docs/methods/xquant_report_keras_experimental.rst.txt
new file mode 100644
index 000000000..af6994d1d
--- /dev/null
+++ b/docs/_sources/api/api_docs/methods/xquant_report_keras_experimental.rst.txt
@@ -0,0 +1,12 @@
+:orphan:
+
+.. _ug-xquant_report_keras_experimental:
+
+
+================================================
+XQuant Report Keras
+================================================
+
+.. autofunction:: model_compression_toolkit.xquant.keras.facade_xquant_report.xquant_report_keras_experimental
+
+
diff --git a/docs/_sources/api/api_docs/methods/xquant_report_pytorch_experimental.rst.txt b/docs/_sources/api/api_docs/methods/xquant_report_pytorch_experimental.rst.txt
new file mode 100644
index 000000000..074db79d9
--- /dev/null
+++ b/docs/_sources/api/api_docs/methods/xquant_report_pytorch_experimental.rst.txt
@@ -0,0 +1,15 @@
+:orphan:
+
+.. _ug-xquant_report_pytorch_experimental:
+
+
+================================================
+XQuant Report Pytorch
+================================================
+
+.. autofunction:: model_compression_toolkit.xquant.pytorch.facade_xquant_report.xquant_report_pytorch_experimental
+
+
+
+
+
diff --git a/docs/api/api_docs/classes/BitWidthConfig.html b/docs/api/api_docs/classes/BitWidthConfig.html
new file mode 100644
index 000000000..ffb941926
--- /dev/null
+++ b/docs/api/api_docs/classes/BitWidthConfig.html
@@ -0,0 +1,140 @@
+
+
+
+
+
+
+
+
+
+ BitWidthConfig — MCT Documentation: ver 2.2.0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+BitWidthConfig
+
+
+class model_compression_toolkit.core. BitWidthConfig ( manual_activation_bit_width_selection_list = None )
+Class to manage manual bit-width configurations.
+
+
+manual_activation_bit_width_selection_list
+A list of ManualBitWidthSelection objects defining manual bit-width configurations.
+
+Type:
+List[ManualBitWidthSelection ]
+
+
+
+
+
+
+
+
+ManualBitWidthSelection
+
+
+class model_compression_toolkit.core.common.quantization.bit_width_config. ManualBitWidthSelection ( filter , bit_width )
+Class to encapsulate the manual bit width selection configuration for a specific filter.
+
+
+filter
+The filter used to select nodes for bit width manipulation.
+
+Type:
+BaseNodeMatcher
+
+
+
+
+
+
+bit_width
+The bit width to be applied to the selected nodes.
+
+Type:
+int
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/docs/api/api_docs/classes/DataGenerationConfig.html b/docs/api/api_docs/classes/DataGenerationConfig.html
index 333a6514f..3f2a64060 100644
--- a/docs/api/api_docs/classes/DataGenerationConfig.html
+++ b/docs/api/api_docs/classes/DataGenerationConfig.html
@@ -7,7 +7,7 @@
- Data Generation Configuration — MCT Documentation: ver 2.1.0
+ Data Generation Configuration — MCT Documentation: ver 2.2.0
@@ -31,7 +31,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
Data Generation Configuration
@@ -45,7 +45,7 @@ Navigation
Data Generation Configuration
-class model_compression_toolkit.data_generation. DataGenerationConfig ( n_iter , optimizer , data_gen_batch_size , initial_lr , output_loss_multiplier , image_granularity = ImageGranularity.AllImages , scheduler_type = None , bn_alignment_loss_type = None , output_loss_type = None , data_init_type = None , layer_weighting_type = None , image_pipeline_type = None , image_normalization_type = None , extra_pixels = 0 , bn_layer_types = [] , last_layer_types = [] , clip_images = True , reflection = True )
+class model_compression_toolkit.data_generation. DataGenerationConfig ( n_iter , optimizer , data_gen_batch_size , initial_lr , output_loss_multiplier , image_granularity = ImageGranularity.AllImages , scheduler_type = None , bn_alignment_loss_type = None , output_loss_type = None , data_init_type = None , layer_weighting_type = None , image_pipeline_type = None , image_normalization_type = None , extra_pixels = 0 , bn_layer_types = [] , last_layer_types = [] , image_clipping = True )
Configuration class for data generation.
Initialize the DataGenerationConfig.
@@ -64,11 +64,10 @@ Navigation
layer_weighting_type (BNLayerWeightingType ) – Type of layer weighting. Defaults to None.
image_pipeline_type (ImagePipelineType ) – Type of image pipeline. Defaults to None.
image_normalization_type (ImageNormalizationType ) – Type of image normalization. Defaults to None.
-extra_pixels (int ) – Extra pixels to add to the input image size. Defaults to 0.
+extra_pixels (Union [ int , Tuple [ int , int ] ] ) – Extra pixels to add to the input image size. Defaults to 0.
bn_layer_types (List ) – List of BatchNorm layer types. Defaults to [].
last_layer_types (List ) – List of layer types. Defaults to [].
-clip_images (bool ) – Flag to enable image clipping. Defaults to True.
-reflection (bool ) – Flag to enable reflection. Defaults to True.
+image_clipping (bool ) – Flag to enable image clipping. Defaults to True.
@@ -112,10 +111,11 @@ OutputLossType
+
exporter
diff --git a/docs/api/api_docs/methods/get_keras_data_generation_config.html b/docs/api/api_docs/methods/get_keras_data_generation_config.html
index 2ab034da0..acacb952d 100644
--- a/docs/api/api_docs/methods/get_keras_data_generation_config.html
+++ b/docs/api/api_docs/methods/get_keras_data_generation_config.html
@@ -7,7 +7,7 @@
- Get DataGenerationConfig for Keras Models — MCT Documentation: ver 2.1.0
+ Get DataGenerationConfig for Keras Models — MCT Documentation: ver 2.2.0
@@ -31,7 +31,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
Get DataGenerationConfig for Keras Models
@@ -45,7 +45,7 @@ Navigation
Get DataGenerationConfig for Keras Models
-model_compression_toolkit.data_generation. get_keras_data_generation_config ( n_iter = DEFAULT_N_ITER , optimizer = Adam , data_gen_batch_size = DEFAULT_DATA_GEN_BS , initial_lr = DEFAULT_KERAS_INITIAL_LR , output_loss_multiplier = DEFAULT_KERAS_OUTPUT_LOSS_MULTIPLIER , scheduler_type = SchedulerType.REDUCE_ON_PLATEAU , bn_alignment_loss_type = BatchNormAlignemntLossType.L2_SQUARE , output_loss_type = OutputLossType.REGULARIZED_MIN_MAX_DIFF , data_init_type = DataInitType.Gaussian , layer_weighting_type = BNLayerWeightingType.AVERAGE , image_granularity = ImageGranularity.BatchWise , image_pipeline_type = ImagePipelineType.RANDOM_CROP_FLIP , image_normalization_type = ImageNormalizationType.KERAS_APPLICATIONS , extra_pixels = 0 , bn_layer_types = [BatchNormalization] , clip_images = True , reflection = True )
+model_compression_toolkit.data_generation. get_keras_data_generation_config ( n_iter = DEFAULT_N_ITER , optimizer = Adam , data_gen_batch_size = DEFAULT_DATA_GEN_BS , initial_lr = DEFAULT_KERAS_INITIAL_LR , output_loss_multiplier = DEFAULT_KERAS_OUTPUT_LOSS_MULTIPLIER , scheduler_type = SchedulerType.REDUCE_ON_PLATEAU , bn_alignment_loss_type = BatchNormAlignemntLossType.L2_SQUARE , output_loss_type = OutputLossType.REGULARIZED_MIN_MAX_DIFF , data_init_type = DataInitType.Gaussian , layer_weighting_type = BNLayerWeightingType.AVERAGE , image_granularity = ImageGranularity.BatchWise , image_pipeline_type = ImagePipelineType.SMOOTHING_AND_AUGMENTATION , image_normalization_type = ImageNormalizationType.KERAS_APPLICATIONS , extra_pixels = DEFAULT_KERAS_EXTRA_PIXELS , bn_layer_types = [BatchNormalization] , image_clipping = False )
Function to create a DataGenerationConfig object with the specified configuration parameters.
Parameters:
@@ -63,10 +63,9 @@ Navigation
image_granularity (ImageGranularity ) – The granularity of the images for optimization.
image_pipeline_type (ImagePipelineType ) – The type of image pipeline to use.
image_normalization_type (ImageNormalizationType ) – The type of image normalization to use.
-extra_pixels (int ) – Extra pixels to add to the input image size. Defaults to 0.
+extra_pixels (Union [ int , Tuple [ int , int ] ] ) – Extra pixels to add to the input image size. Defaults to 0.
bn_layer_types (List ) – List of BatchNorm layer types to be considered for data generation.
-clip_images (bool ) – Whether to clip images during optimization.
-reflection (bool ) – Whether to use reflection during optimization.
+image_clipping (bool ) – Whether to clip images during optimization.
Returns:
@@ -110,7 +109,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
Get DataGenerationConfig for Keras Models
diff --git a/docs/api/api_docs/methods/get_keras_gptq_config.html b/docs/api/api_docs/methods/get_keras_gptq_config.html
index 808f5f654..37cbf9274 100644
--- a/docs/api/api_docs/methods/get_keras_gptq_config.html
+++ b/docs/api/api_docs/methods/get_keras_gptq_config.html
@@ -7,7 +7,7 @@
- Get GradientPTQConfig for Keras Models — MCT Documentation: ver 2.1.0
+ Get GradientPTQConfig for Keras Models — MCT Documentation: ver 2.2.0
@@ -31,7 +31,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
Get GradientPTQConfig for Keras Models
@@ -45,7 +45,7 @@ Navigation
Get GradientPTQConfig for Keras Models
-model_compression_toolkit.gptq. get_keras_gptq_config ( n_epochs , optimizer = tf.keras.optimizers.Adam(learning_rate=LR_DEFAULT) , optimizer_rest = tf.keras.optimizers.Adam(learning_rate=LR_REST_DEFAULT) , loss = GPTQMultipleTensorsLoss() , log_function = None , use_hessian_based_weights = True , regularization_factor = REG_DEFAULT )
+model_compression_toolkit.gptq. get_keras_gptq_config ( n_epochs , optimizer = tf.keras.optimizers.Adam(learning_rate=LR_DEFAULT) , optimizer_rest = tf.keras.optimizers.Adam(learning_rate=LR_REST_DEFAULT) , loss = GPTQMultipleTensorsLoss() , log_function = None , use_hessian_based_weights = True , regularization_factor = REG_DEFAULT , hessian_batch_size = ACT_HESSIAN_DEFAULT_BATCH_SIZE )
Create a GradientPTQConfigV2 instance for Keras models.
Parameters:
@@ -57,6 +57,7 @@ Navigation
log_function (Callable ) – Function to log information about the gptq process.
use_hessian_based_weights (bool ) – Whether to use Hessian-based weights for weighted average loss.
regularization_factor (float ) – A floating point number that defines the regularization factor.
+hessian_batch_size (int ) – Batch size for Hessian computation in Hessian-based weights GPTQ.
Returns:
@@ -114,7 +115,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
Get GradientPTQConfig for Keras Models
diff --git a/docs/api/api_docs/methods/get_pytorch_data_generation_config.html b/docs/api/api_docs/methods/get_pytorch_data_generation_config.html
index 5d438564e..0edeab3fb 100644
--- a/docs/api/api_docs/methods/get_pytorch_data_generation_config.html
+++ b/docs/api/api_docs/methods/get_pytorch_data_generation_config.html
@@ -7,7 +7,7 @@
- Get DataGenerationConfig for Pytorch Models — MCT Documentation: ver 2.1.0
+ Get DataGenerationConfig for Pytorch Models — MCT Documentation: ver 2.2.0
@@ -31,7 +31,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
Get DataGenerationConfig for Pytorch Models
@@ -45,7 +45,7 @@ Navigation
Get DataGenerationConfig for Pytorch Models
-model_compression_toolkit.data_generation. get_pytorch_data_generation_config ( n_iter = DEFAULT_N_ITER , optimizer = RAdam , data_gen_batch_size = DEFAULT_DATA_GEN_BS , initial_lr = DEFAULT_PYTORCH_INITIAL_LR , output_loss_multiplier = DEFAULT_PYTORCH_OUTPUT_LOSS_MULTIPLIER , scheduler_type = SchedulerType.REDUCE_ON_PLATEAU , bn_alignment_loss_type = BatchNormAlignemntLossType.L2_SQUARE , output_loss_type = OutputLossType.REGULARIZED_MIN_MAX_DIFF , data_init_type = DataInitType.Diverse , layer_weighting_type = BNLayerWeightingType.AVERAGE , image_granularity = ImageGranularity.AllImages , image_pipeline_type = ImagePipelineType.RANDOM_CROP , image_normalization_type = ImageNormalizationType.TORCHVISION , extra_pixels = 0 , bn_layer_types = DEFAULT_PYTORCH_BN_LAYER_TYPES , last_layer_types = DEFAULT_PYTORCH_LAST_LAYER_TYPES , clip_images = True , reflection = True )
+model_compression_toolkit.data_generation. get_pytorch_data_generation_config ( n_iter = DEFAULT_N_ITER , optimizer = RAdam , data_gen_batch_size = DEFAULT_DATA_GEN_BS , initial_lr = DEFAULT_PYTORCH_INITIAL_LR , output_loss_multiplier = DEFAULT_PYTORCH_OUTPUT_LOSS_MULTIPLIER , scheduler_type = SchedulerType.REDUCE_ON_PLATEAU_WITH_RESET , bn_alignment_loss_type = BatchNormAlignemntLossType.L2_SQUARE , output_loss_type = OutputLossType.NEGATIVE_MIN_MAX_DIFF , data_init_type = DataInitType.Gaussian , layer_weighting_type = BNLayerWeightingType.AVERAGE , image_granularity = ImageGranularity.AllImages , image_pipeline_type = ImagePipelineType.SMOOTHING_AND_AUGMENTATION , image_normalization_type = ImageNormalizationType.TORCHVISION , extra_pixels = DEFAULT_PYTORCH_EXTRA_PIXELS , bn_layer_types = DEFAULT_PYTORCH_BN_LAYER_TYPES , last_layer_types = DEFAULT_PYTORCH_LAST_LAYER_TYPES , image_clipping = True )
Function to create a DataGenerationConfig object with the specified configuration parameters.
Parameters:
@@ -63,11 +63,10 @@ Navigation
image_granularity (ImageGranularity ) – The granularity of the images for optimization.
image_pipeline_type (ImagePipelineType ) – The type of image pipeline to use.
image_normalization_type (ImageNormalizationType ) – The type of image normalization to use.
-extra_pixels (int ) – Extra pixels to add to the input image size. Defaults to 0.
+extra_pixels (Union [ int , Tuple [ int , int ] ] ) – Extra pixels to add to the input image size. Defaults to 0.
bn_layer_types (List ) – List of BatchNorm layer types to be considered for data generation.
last_layer_types (List ) – List of layer types to be considered for the output loss.
-clip_images (bool ) – Whether to clip images during optimization.
-reflection (bool ) – Whether to use reflection during optimization.
+image_clipping (bool ) – Whether to clip images during optimization.
Returns:
@@ -111,7 +110,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
Get DataGenerationConfig for Pytorch Models
diff --git a/docs/api/api_docs/methods/get_pytroch_gptq_config.html b/docs/api/api_docs/methods/get_pytroch_gptq_config.html
index 18485d70a..72de25f28 100644
--- a/docs/api/api_docs/methods/get_pytroch_gptq_config.html
+++ b/docs/api/api_docs/methods/get_pytroch_gptq_config.html
@@ -7,7 +7,7 @@
- Get GradientPTQConfig for Pytorch Models — MCT Documentation: ver 2.1.0
+ Get GradientPTQConfig for Pytorch Models — MCT Documentation: ver 2.2.0
@@ -31,7 +31,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
Get GradientPTQConfig for Pytorch Models
@@ -45,7 +45,7 @@ Navigation
Get GradientPTQConfig for Pytorch Models
-model_compression_toolkit.gptq. get_pytorch_gptq_config ( n_epochs , optimizer = Adam([torch.Tensor([])], lr=LR_DEFAULT) , optimizer_rest = Adam([torch.Tensor([])], lr=LR_REST_DEFAULT) , loss = multiple_tensors_mse_loss , log_function = None , use_hessian_based_weights = True , regularization_factor = REG_DEFAULT )
+model_compression_toolkit.gptq. get_pytorch_gptq_config ( n_epochs , optimizer = Adam([torch.Tensor([])], lr=LR_DEFAULT) , optimizer_rest = Adam([torch.Tensor([])], lr=LR_REST_DEFAULT) , loss = multiple_tensors_mse_loss , log_function = None , use_hessian_based_weights = True , regularization_factor = REG_DEFAULT , hessian_batch_size = ACT_HESSIAN_DEFAULT_BATCH_SIZE )
Create a GradientPTQConfigV2 instance for Pytorch models.
Parameters:
@@ -57,6 +57,7 @@ Navigation
log_function (Callable ) – Function to log information about the gptq process.
use_hessian_based_weights (bool ) – Whether to use Hessian-based weights for weighted average loss.
regularization_factor (float ) – A floating point number that defines the regularization factor.
+hessian_batch_size (int ) – Batch size for Hessian computation in Hessian-based weights GPTQ.
Returns:
@@ -111,7 +112,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
Get GradientPTQConfig for Pytorch Models
diff --git a/docs/api/api_docs/methods/get_target_platform_capabilities.html b/docs/api/api_docs/methods/get_target_platform_capabilities.html
index de98bbca6..5fe03a901 100644
--- a/docs/api/api_docs/methods/get_target_platform_capabilities.html
+++ b/docs/api/api_docs/methods/get_target_platform_capabilities.html
@@ -7,7 +7,7 @@
- Get TargetPlatformCapabilities — MCT Documentation: ver 2.1.0
+ Get TargetPlatformCapabilities — MCT Documentation: ver 2.2.0
@@ -31,7 +31,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
Get TargetPlatformCapabilities
@@ -104,7 +104,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
Get TargetPlatformCapabilities
diff --git a/docs/api/api_docs/methods/keras_data_generation_experimental.html b/docs/api/api_docs/methods/keras_data_generation_experimental.html
index 200907427..3094a6bc0 100644
--- a/docs/api/api_docs/methods/keras_data_generation_experimental.html
+++ b/docs/api/api_docs/methods/keras_data_generation_experimental.html
@@ -7,7 +7,7 @@
- Keras Data Generation — MCT Documentation: ver 2.1.0
+ Keras Data Generation — MCT Documentation: ver 2.2.0
@@ -31,7 +31,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
Keras Data Generation
@@ -52,7 +52,7 @@ Navigation
model (Model ) – Keras model to generate data for.
n_images (int ) – Number of images to generate.
-output_image_size (Tuple ) – Size of the output images.
+output_image_size (Union [ int , Tuple [ int , int ] ] ) – Size of the output images.
data_generation_config (DataGenerationConfig ) – Configuration for data generation.
@@ -122,7 +122,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
Keras Data Generation
diff --git a/docs/api/api_docs/methods/keras_gradient_post_training_quantization.html b/docs/api/api_docs/methods/keras_gradient_post_training_quantization.html
index 58a8f49bb..62eb33a89 100644
--- a/docs/api/api_docs/methods/keras_gradient_post_training_quantization.html
+++ b/docs/api/api_docs/methods/keras_gradient_post_training_quantization.html
@@ -7,7 +7,7 @@
- Keras Gradient Based Post Training Quantization — MCT Documentation: ver 2.1.0
+ Keras Gradient Based Post Training Quantization — MCT Documentation: ver 2.2.0
@@ -31,7 +31,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
Keras Gradient Based Post Training Quantization
@@ -152,7 +152,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
Keras Gradient Based Post Training Quantization
diff --git a/docs/api/api_docs/methods/keras_kpi_data.html b/docs/api/api_docs/methods/keras_kpi_data.html
index 79b63e7da..e39322e8c 100644
--- a/docs/api/api_docs/methods/keras_kpi_data.html
+++ b/docs/api/api_docs/methods/keras_kpi_data.html
@@ -7,7 +7,7 @@
- Get Resource Utilization information for Keras Models — MCT Documentation: ver 2.1.0
+ Get Resource Utilization information for Keras Models — MCT Documentation: ver 2.2.0
@@ -31,7 +31,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
Get Resource Utilization information for Keras Models
@@ -115,7 +115,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
Get Resource Utilization information for Keras Models
diff --git a/docs/api/api_docs/methods/keras_load_quantizad_model.html b/docs/api/api_docs/methods/keras_load_quantizad_model.html
index 8e23f0b67..db16f181a 100644
--- a/docs/api/api_docs/methods/keras_load_quantizad_model.html
+++ b/docs/api/api_docs/methods/keras_load_quantizad_model.html
@@ -7,7 +7,7 @@
- Load Quantized Keras Model — MCT Documentation: ver 2.1.0
+ Load Quantized Keras Model — MCT Documentation: ver 2.2.0
@@ -31,7 +31,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
Load Quantized Keras Model
@@ -89,7 +89,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
Load Quantized Keras Model
diff --git a/docs/api/api_docs/methods/keras_post_training_quantization.html b/docs/api/api_docs/methods/keras_post_training_quantization.html
index 3bc4d16c1..9cc04bf05 100644
--- a/docs/api/api_docs/methods/keras_post_training_quantization.html
+++ b/docs/api/api_docs/methods/keras_post_training_quantization.html
@@ -7,7 +7,7 @@
- Keras Post Training Quantization — MCT Documentation: ver 2.1.0
+ Keras Post Training Quantization — MCT Documentation: ver 2.2.0
@@ -31,7 +31,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
Keras Post Training Quantization
@@ -144,7 +144,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
Keras Post Training Quantization
diff --git a/docs/api/api_docs/methods/keras_pruning_experimental.html b/docs/api/api_docs/methods/keras_pruning_experimental.html
index 5ca019ea6..0574b4a2e 100644
--- a/docs/api/api_docs/methods/keras_pruning_experimental.html
+++ b/docs/api/api_docs/methods/keras_pruning_experimental.html
@@ -7,7 +7,7 @@
- Keras Structured Pruning — MCT Documentation: ver 2.1.0
+ Keras Structured Pruning — MCT Documentation: ver 2.2.0
@@ -31,7 +31,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
Keras Structured Pruning
@@ -145,7 +145,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
Keras Structured Pruning
diff --git a/docs/api/api_docs/methods/keras_quantization_aware_training_finalize_experimental.html b/docs/api/api_docs/methods/keras_quantization_aware_training_finalize_experimental.html
index 4c78e161e..f19e24b23 100644
--- a/docs/api/api_docs/methods/keras_quantization_aware_training_finalize_experimental.html
+++ b/docs/api/api_docs/methods/keras_quantization_aware_training_finalize_experimental.html
@@ -7,7 +7,7 @@
- Keras Quantization Aware Training Model Finalize — MCT Documentation: ver 2.1.0
+ Keras Quantization Aware Training Model Finalize — MCT Documentation: ver 2.2.0
@@ -31,7 +31,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
Keras Quantization Aware Training Model Finalize
@@ -132,7 +132,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
Keras Quantization Aware Training Model Finalize
diff --git a/docs/api/api_docs/methods/keras_quantization_aware_training_init_experimental.html b/docs/api/api_docs/methods/keras_quantization_aware_training_init_experimental.html
index 138081f36..b5a47c72a 100644
--- a/docs/api/api_docs/methods/keras_quantization_aware_training_init_experimental.html
+++ b/docs/api/api_docs/methods/keras_quantization_aware_training_init_experimental.html
@@ -7,7 +7,7 @@
- Keras Quantization Aware Training Model Init — MCT Documentation: ver 2.1.0
+ Keras Quantization Aware Training Model Init — MCT Documentation: ver 2.2.0
@@ -31,7 +31,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
Keras Quantization Aware Training Model Init
@@ -152,7 +152,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
Keras Quantization Aware Training Model Init
diff --git a/docs/api/api_docs/methods/pytorch_data_generation_experimental.html b/docs/api/api_docs/methods/pytorch_data_generation_experimental.html
index 15b0a822a..14fc9f215 100644
--- a/docs/api/api_docs/methods/pytorch_data_generation_experimental.html
+++ b/docs/api/api_docs/methods/pytorch_data_generation_experimental.html
@@ -7,7 +7,7 @@
- Pytorch Data Generation — MCT Documentation: ver 2.1.0
+ Pytorch Data Generation — MCT Documentation: ver 2.2.0
@@ -31,7 +31,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
Pytorch Data Generation
@@ -52,7 +52,7 @@ Navigation
model (Module ) – PyTorch model to generate data for.
n_images (int ) – Number of images to generate.
-output_image_size (int ) – The hight and width size of the output images.
+output_image_size (Union [ int , Tuple [ int , int ] ] ) – The hight and width size of the output images.
data_generation_config (DataGenerationConfig ) – Configuration for data generation.
@@ -122,7 +122,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
Pytorch Data Generation
diff --git a/docs/api/api_docs/methods/pytorch_gradient_post_training_quantization.html b/docs/api/api_docs/methods/pytorch_gradient_post_training_quantization.html
index d1767497b..3db8f08ed 100644
--- a/docs/api/api_docs/methods/pytorch_gradient_post_training_quantization.html
+++ b/docs/api/api_docs/methods/pytorch_gradient_post_training_quantization.html
@@ -7,7 +7,7 @@
- Pytorch Gradient Based Post Training Quantization — MCT Documentation: ver 2.1.0
+ Pytorch Gradient Based Post Training Quantization — MCT Documentation: ver 2.2.0
@@ -31,7 +31,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
Pytorch Gradient Based Post Training Quantization
@@ -134,7 +134,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
Pytorch Gradient Based Post Training Quantization
diff --git a/docs/api/api_docs/methods/pytorch_kpi_data.html b/docs/api/api_docs/methods/pytorch_kpi_data.html
index 83c3caf20..6913f0e11 100644
--- a/docs/api/api_docs/methods/pytorch_kpi_data.html
+++ b/docs/api/api_docs/methods/pytorch_kpi_data.html
@@ -7,7 +7,7 @@
- Get Resource Utilization information for PyTorch Models — MCT Documentation: ver 2.1.0
+ Get Resource Utilization information for PyTorch Models — MCT Documentation: ver 2.2.0
@@ -31,7 +31,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
Get Resource Utilization information for PyTorch Models
@@ -113,7 +113,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
Get Resource Utilization information for PyTorch Models
diff --git a/docs/api/api_docs/methods/pytorch_post_training_quantization.html b/docs/api/api_docs/methods/pytorch_post_training_quantization.html
index 375535673..d69365f83 100644
--- a/docs/api/api_docs/methods/pytorch_post_training_quantization.html
+++ b/docs/api/api_docs/methods/pytorch_post_training_quantization.html
@@ -7,7 +7,7 @@
- Pytorch Post Training Quantization — MCT Documentation: ver 2.1.0
+ Pytorch Post Training Quantization — MCT Documentation: ver 2.2.0
@@ -31,7 +31,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
Pytorch Post Training Quantization
@@ -123,7 +123,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
Pytorch Post Training Quantization
diff --git a/docs/api/api_docs/methods/pytorch_pruning_experimental.html b/docs/api/api_docs/methods/pytorch_pruning_experimental.html
index aed9398c6..c2eee01ab 100644
--- a/docs/api/api_docs/methods/pytorch_pruning_experimental.html
+++ b/docs/api/api_docs/methods/pytorch_pruning_experimental.html
@@ -7,7 +7,7 @@
- Pytorch Structured Pruning — MCT Documentation: ver 2.1.0
+ Pytorch Structured Pruning — MCT Documentation: ver 2.2.0
@@ -31,7 +31,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
Pytorch Structured Pruning
@@ -146,7 +146,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
Pytorch Structured Pruning
diff --git a/docs/api/api_docs/methods/pytorch_quantization_aware_training_finalize_experimental.html b/docs/api/api_docs/methods/pytorch_quantization_aware_training_finalize_experimental.html
index 9eb722711..7fb23e0f1 100644
--- a/docs/api/api_docs/methods/pytorch_quantization_aware_training_finalize_experimental.html
+++ b/docs/api/api_docs/methods/pytorch_quantization_aware_training_finalize_experimental.html
@@ -7,7 +7,7 @@
- PyTorch Quantization Aware Training Model Finalize — MCT Documentation: ver 2.1.0
+ PyTorch Quantization Aware Training Model Finalize — MCT Documentation: ver 2.2.0
@@ -31,7 +31,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
PyTorch Quantization Aware Training Model Finalize
@@ -115,7 +115,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
PyTorch Quantization Aware Training Model Finalize
diff --git a/docs/api/api_docs/methods/pytorch_quantization_aware_training_init_experimental.html b/docs/api/api_docs/methods/pytorch_quantization_aware_training_init_experimental.html
index 10180bc2b..2263184a6 100644
--- a/docs/api/api_docs/methods/pytorch_quantization_aware_training_init_experimental.html
+++ b/docs/api/api_docs/methods/pytorch_quantization_aware_training_init_experimental.html
@@ -7,7 +7,7 @@
- PyTorch Quantization Aware Training Model Init — MCT Documentation: ver 2.1.0
+ PyTorch Quantization Aware Training Model Init — MCT Documentation: ver 2.2.0
@@ -31,7 +31,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
PyTorch Quantization Aware Training Model Init
@@ -139,7 +139,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
PyTorch Quantization Aware Training Model Init
diff --git a/docs/api/api_docs/methods/set_logger_path.html b/docs/api/api_docs/methods/set_logger_path.html
index 4914d0afc..46bc672ee 100644
--- a/docs/api/api_docs/methods/set_logger_path.html
+++ b/docs/api/api_docs/methods/set_logger_path.html
@@ -7,7 +7,7 @@
- Enable a Logger — MCT Documentation: ver 2.1.0
+ Enable a Logger — MCT Documentation: ver 2.2.0
@@ -31,7 +31,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
Enable a Logger
@@ -86,7 +86,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
Enable a Logger
diff --git a/docs/api/api_docs/methods/xquant_report_keras_experimental.html b/docs/api/api_docs/methods/xquant_report_keras_experimental.html
new file mode 100644
index 000000000..6a019e06a
--- /dev/null
+++ b/docs/api/api_docs/methods/xquant_report_keras_experimental.html
@@ -0,0 +1,110 @@
+
+
+
+
+
+
+
+
+
+ XQuant Report Keras — MCT Documentation: ver 2.2.0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+XQuant Report Keras
+
+
+model_compression_toolkit.xquant.keras.facade_xquant_report. xquant_report_keras_experimental ( float_model , quantized_model , repr_dataset , validation_dataset , xquant_config )
+Generate an explainable quantization report for a quantized Keras model.
+
+Parameters:
+
+float_model (keras.Model ) – The original floating-point Keras model.
+quantized_model (keras.Model ) – The quantized Keras model.
+repr_dataset (Callable ) – The representative dataset used during quantization for similarity metrics computation.
+validation_dataset (Callable ) – The validation dataset used for evaluation for similarity metrics computation.
+xquant_config (XQuantConfig ) – Configuration settings for explainable quantization.
+
+
+Returns:
+A dictionary containing the collected similarity metrics and report data.
+
+Return type:
+Dict[str, Any]
+
+Return type:
+Dict
[str
, Any
]
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/docs/api/api_docs/methods/xquant_report_pytorch_experimental.html b/docs/api/api_docs/methods/xquant_report_pytorch_experimental.html
new file mode 100644
index 000000000..cf0cb52c4
--- /dev/null
+++ b/docs/api/api_docs/methods/xquant_report_pytorch_experimental.html
@@ -0,0 +1,107 @@
+
+
+
+
+
+
+
+
+
+ XQuant Report Pytorch — MCT Documentation: ver 2.2.0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+XQuant Report Pytorch
+
+
+model_compression_toolkit.xquant.pytorch.facade_xquant_report. xquant_report_pytorch_experimental ( float_model , quantized_model , repr_dataset , validation_dataset , xquant_config )
+Generate an explainable quantization report for a quantized Pytorch model.
+
+Parameters:
+
+float_model (torch.nn.Module ) – The original floating-point Pytorch model.
+quantized_model (torch.nn.Module ) – The quantized Pytorch model.
+repr_dataset (Callable ) – The representative dataset used during quantization.
+validation_dataset (Callable ) – The validation dataset used for evaluation.
+xquant_config (XQuantConfig ) – Configuration settings for explainable quantization.
+
+
+Returns:
+A dictionary containing the collected similarity metrics and report data.
+
+Return type:
+Dict[str, Any]
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/docs/api/api_docs/modules/core_config.html b/docs/api/api_docs/modules/core_config.html
index c5d5f80cf..1560526f9 100644
--- a/docs/api/api_docs/modules/core_config.html
+++ b/docs/api/api_docs/modules/core_config.html
@@ -7,7 +7,7 @@
- CoreConfig — MCT Documentation: ver 2.1.0
+ CoreConfig — MCT Documentation: ver 2.2.0
@@ -31,7 +31,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
CoreConfig
@@ -46,7 +46,7 @@ Navigation
Class to configure the optimization process of the model:
-class model_compression_toolkit.core. CoreConfig ( quantization_config = QuantizationConfig() , mixed_precision_config = None , debug_config = DebugConfig() )
+class model_compression_toolkit.core. CoreConfig ( quantization_config = None , mixed_precision_config = None , bit_width_config = None , debug_config = None )
A class to hold the configurations classes of the MCT-core.
Parameters:
@@ -55,6 +55,7 @@ Navigation
mixed_precision_config (MixedPrecisionQuantizationConfig ) – Config for mixed precision quantization.
None (If ) –
used. (a default MixedPrecisionQuantizationConfig is ) –
+bit_width_config (BitWidthConfig ) – Config for manual bit-width selection.
debug_config (DebugConfig ) – Config for debugging and editing the network quantization process.
@@ -90,7 +91,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
CoreConfig
diff --git a/docs/api/api_docs/modules/debug_config.html b/docs/api/api_docs/modules/debug_config.html
index 7eb7dcf98..faf43f328 100644
--- a/docs/api/api_docs/modules/debug_config.html
+++ b/docs/api/api_docs/modules/debug_config.html
@@ -7,7 +7,7 @@
- debug_config Module — MCT Documentation: ver 2.1.0
+ debug_config Module — MCT Documentation: ver 2.2.0
@@ -31,7 +31,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
debug_config Module
@@ -48,7 +48,7 @@ DebugConfig
A class for MCT core debug information.
Parameters:
@@ -56,6 +56,7 @@ DebugConfig] ) – A list of rules and actions to edit the network for quantization.
+ simulate_scheduler (bool ) – Simulate scheduler behaviour to compute operators order and cuts.
@@ -101,7 +102,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
debug_config Module
diff --git a/docs/api/api_docs/modules/exporter.html b/docs/api/api_docs/modules/exporter.html
index 745a849c7..8c98c0976 100644
--- a/docs/api/api_docs/modules/exporter.html
+++ b/docs/api/api_docs/modules/exporter.html
@@ -7,7 +7,7 @@
- exporter Module — MCT Documentation: ver 2.1.0
+ exporter Module — MCT Documentation: ver 2.2.0
@@ -31,7 +31,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
exporter Module
@@ -318,7 +318,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
exporter Module
diff --git a/docs/api/api_docs/modules/layer_filters.html b/docs/api/api_docs/modules/layer_filters.html
index f2e31f98e..659abc0f2 100644
--- a/docs/api/api_docs/modules/layer_filters.html
+++ b/docs/api/api_docs/modules/layer_filters.html
@@ -7,7 +7,7 @@
- Layer Attributes Filters — MCT Documentation: ver 2.1.0
+ Layer Attributes Filters — MCT Documentation: ver 2.2.0
@@ -31,7 +31,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
Layer Attributes Filters
@@ -214,7 +214,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
Layer Attributes Filters
diff --git a/docs/api/api_docs/modules/network_editor.html b/docs/api/api_docs/modules/network_editor.html
index fa694b250..4d12299f3 100644
--- a/docs/api/api_docs/modules/network_editor.html
+++ b/docs/api/api_docs/modules/network_editor.html
@@ -7,7 +7,7 @@
- network_editor Module — MCT Documentation: ver 2.1.0
+ network_editor Module — MCT Documentation: ver 2.2.0
@@ -31,7 +31,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
network_editor Module
@@ -283,7 +283,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
network_editor Module
diff --git a/docs/api/api_docs/modules/qat_config.html b/docs/api/api_docs/modules/qat_config.html
index b2013ad11..787a31493 100644
--- a/docs/api/api_docs/modules/qat_config.html
+++ b/docs/api/api_docs/modules/qat_config.html
@@ -7,7 +7,7 @@
- qat_config Module — MCT Documentation: ver 2.1.0
+ qat_config Module — MCT Documentation: ver 2.2.0
@@ -31,7 +31,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
qat_config Module
@@ -119,7 +119,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
qat_config Module
diff --git a/docs/api/api_docs/modules/target_platform.html b/docs/api/api_docs/modules/target_platform.html
index 7b71d9ed8..4f799584a 100644
--- a/docs/api/api_docs/modules/target_platform.html
+++ b/docs/api/api_docs/modules/target_platform.html
@@ -7,7 +7,7 @@
- target_platform Module — MCT Documentation: ver 2.1.0
+ target_platform Module — MCT Documentation: ver 2.2.0
@@ -31,7 +31,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
target_platform Module
@@ -88,7 +88,7 @@ QuantizationMethod
-class model_compression_toolkit.target_platform. OpQuantizationConfig ( default_weight_attr_config , attr_weights_configs_mapping , activation_quantization_method , activation_n_bits , enable_activation_quantization , quantization_preserving , fixed_scale , fixed_zero_point , simd_size )
+class model_compression_toolkit.target_platform. OpQuantizationConfig ( default_weight_attr_config , attr_weights_configs_mapping , activation_quantization_method , activation_n_bits , supported_input_activation_n_bits , enable_activation_quantization , quantization_preserving , fixed_scale , fixed_zero_point , simd_size , signedness )
OpQuantizationConfig is a class to configure the quantization parameters of an operator.
Parameters:
@@ -97,11 +97,13 @@ OpQuantizationConfig
@@ -336,7 +338,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
target_platform Module
diff --git a/docs/api/api_docs/modules/trainable_infrastructure.html b/docs/api/api_docs/modules/trainable_infrastructure.html
index bde7de478..27074f6e2 100644
--- a/docs/api/api_docs/modules/trainable_infrastructure.html
+++ b/docs/api/api_docs/modules/trainable_infrastructure.html
@@ -7,7 +7,7 @@
- trainable_infrastructure Module — MCT Documentation: ver 2.1.0
+ trainable_infrastructure Module — MCT Documentation: ver 2.2.0
@@ -31,7 +31,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
trainable_infrastructure Module
@@ -204,7 +204,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
trainable_infrastructure Module
diff --git a/docs/api/api_docs/notes/tpc_note.html b/docs/api/api_docs/notes/tpc_note.html
index dcf330b6c..44c10f5d3 100644
--- a/docs/api/api_docs/notes/tpc_note.html
+++ b/docs/api/api_docs/notes/tpc_note.html
@@ -7,7 +7,7 @@
- <no title> — MCT Documentation: ver 2.1.0
+ <no title> — MCT Documentation: ver 2.2.0
@@ -31,7 +31,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
<no title>
@@ -77,7 +77,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
<no title>
diff --git a/docs/genindex.html b/docs/genindex.html
index 4396625fc..4382c5f92 100644
--- a/docs/genindex.html
+++ b/docs/genindex.html
@@ -6,7 +6,7 @@
- Index — MCT Documentation: ver 2.1.0
+ Index — MCT Documentation: ver 2.2.0
@@ -30,7 +30,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
Index
@@ -62,6 +62,7 @@ Index
| R
| S
| T
+ | X
A
@@ -82,10 +83,14 @@ B
BaseKerasTrainableQuantizer (class in model_compression_toolkit.trainable_infrastructure)
BasePytorchTrainableQuantizer (class in model_compression_toolkit.trainable_infrastructure)
+
+ BatchNormAlignemntLossType (class in model_compression_toolkit.data_generation)
- BatchNormAlignemntLossType (class in model_compression_toolkit.data_generation)
+ bit_width (model_compression_toolkit.core.common.quantization.bit_width_config.ManualBitWidthSelection attribute)
+
+ BitWidthConfig (class in model_compression_toolkit.core)
BNLayerWeightingType (class in model_compression_toolkit.data_generation)
@@ -155,10 +160,12 @@ E
F
@@ -253,10 +260,14 @@ L
M
+X
+
+
@@ -426,7 +451,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
Index
diff --git a/docs/guidelines/visualization.html b/docs/guidelines/visualization.html
index 83ba2128f..7d43406fc 100644
--- a/docs/guidelines/visualization.html
+++ b/docs/guidelines/visualization.html
@@ -7,7 +7,7 @@
- Visualization within TensorBoard — MCT Documentation: ver 2.1.0
+ Visualization within TensorBoard — MCT Documentation: ver 2.2.0
@@ -39,7 +39,7 @@ Navigation
previous |
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
Visualization within TensorBoard
@@ -186,7 +186,7 @@ Navigation
previous |
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
Visualization within TensorBoard
diff --git a/docs/index.html b/docs/index.html
index 4bce16c28..0c9e7fd19 100644
--- a/docs/index.html
+++ b/docs/index.html
@@ -7,7 +7,7 @@
- Model Compression Toolkit User Guide — MCT Documentation: ver 2.1.0
+ Model Compression Toolkit User Guide — MCT Documentation: ver 2.2.0
@@ -35,7 +35,7 @@ Navigation
next |
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
Model Compression Toolkit User Guide
@@ -181,7 +181,7 @@ Navigation
next |
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
Model Compression Toolkit User Guide
diff --git a/docs/objects.inv b/docs/objects.inv
index 404a53be2..01caa1317 100644
Binary files a/docs/objects.inv and b/docs/objects.inv differ
diff --git a/docs/search.html b/docs/search.html
index b7d975479..25f88fb35 100644
--- a/docs/search.html
+++ b/docs/search.html
@@ -6,7 +6,7 @@
- Search — MCT Documentation: ver 2.1.0
+ Search — MCT Documentation: ver 2.2.0
@@ -36,7 +36,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
Search
@@ -93,7 +93,7 @@ Navigation
index
- MCT Documentation: ver 2.1.0 »
+ MCT Documentation: ver 2.2.0 »
Search
diff --git a/docs/searchindex.js b/docs/searchindex.js
index 5db871543..6bb933530 100644
--- a/docs/searchindex.js
+++ b/docs/searchindex.js
@@ -1 +1 @@
-Search.setIndex({"docnames": ["api/api_docs/classes/DataGenerationConfig", "api/api_docs/classes/DefaultDict", "api/api_docs/classes/FrameworkInfo", "api/api_docs/classes/GradientPTQConfig", "api/api_docs/classes/MixedPrecisionQuantizationConfig", "api/api_docs/classes/MpDistanceWeighting", "api/api_docs/classes/PruningConfig", "api/api_docs/classes/PruningInfo", "api/api_docs/classes/QuantizationConfig", "api/api_docs/classes/QuantizationErrorMethod", "api/api_docs/classes/ResourceUtilization", "api/api_docs/index", "api/api_docs/methods/get_keras_data_generation_config", "api/api_docs/methods/get_keras_gptq_config", "api/api_docs/methods/get_pytorch_data_generation_config", "api/api_docs/methods/get_pytroch_gptq_config", "api/api_docs/methods/get_target_platform_capabilities", "api/api_docs/methods/keras_data_generation_experimental", "api/api_docs/methods/keras_gradient_post_training_quantization", "api/api_docs/methods/keras_kpi_data", "api/api_docs/methods/keras_load_quantizad_model", "api/api_docs/methods/keras_post_training_quantization", "api/api_docs/methods/keras_pruning_experimental", "api/api_docs/methods/keras_quantization_aware_training_finalize_experimental", "api/api_docs/methods/keras_quantization_aware_training_init_experimental", "api/api_docs/methods/pytorch_data_generation_experimental", "api/api_docs/methods/pytorch_gradient_post_training_quantization", "api/api_docs/methods/pytorch_kpi_data", "api/api_docs/methods/pytorch_post_training_quantization", "api/api_docs/methods/pytorch_pruning_experimental", "api/api_docs/methods/pytorch_quantization_aware_training_finalize_experimental", "api/api_docs/methods/pytorch_quantization_aware_training_init_experimental", "api/api_docs/methods/set_logger_path", "api/api_docs/modules/core_config", "api/api_docs/modules/debug_config", "api/api_docs/modules/exporter", "api/api_docs/modules/layer_filters", "api/api_docs/modules/network_editor", "api/api_docs/modules/qat_config", "api/api_docs/modules/target_platform", "api/api_docs/modules/trainable_infrastructure", "api/api_docs/notes/tpc_note", "guidelines/visualization", "index"], "filenames": ["api/api_docs/classes/DataGenerationConfig.rst", "api/api_docs/classes/DefaultDict.rst", "api/api_docs/classes/FrameworkInfo.rst", "api/api_docs/classes/GradientPTQConfig.rst", "api/api_docs/classes/MixedPrecisionQuantizationConfig.rst", "api/api_docs/classes/MpDistanceWeighting.rst", "api/api_docs/classes/PruningConfig.rst", "api/api_docs/classes/PruningInfo.rst", "api/api_docs/classes/QuantizationConfig.rst", "api/api_docs/classes/QuantizationErrorMethod.rst", "api/api_docs/classes/ResourceUtilization.rst", "api/api_docs/index.rst", "api/api_docs/methods/get_keras_data_generation_config.rst", "api/api_docs/methods/get_keras_gptq_config.rst", "api/api_docs/methods/get_pytorch_data_generation_config.rst", "api/api_docs/methods/get_pytroch_gptq_config.rst", "api/api_docs/methods/get_target_platform_capabilities.rst", "api/api_docs/methods/keras_data_generation_experimental.rst", "api/api_docs/methods/keras_gradient_post_training_quantization.rst", "api/api_docs/methods/keras_kpi_data.rst", "api/api_docs/methods/keras_load_quantizad_model.rst", "api/api_docs/methods/keras_post_training_quantization.rst", "api/api_docs/methods/keras_pruning_experimental.rst", "api/api_docs/methods/keras_quantization_aware_training_finalize_experimental.rst", "api/api_docs/methods/keras_quantization_aware_training_init_experimental.rst", "api/api_docs/methods/pytorch_data_generation_experimental.rst", "api/api_docs/methods/pytorch_gradient_post_training_quantization.rst", "api/api_docs/methods/pytorch_kpi_data.rst", "api/api_docs/methods/pytorch_post_training_quantization.rst", "api/api_docs/methods/pytorch_pruning_experimental.rst", "api/api_docs/methods/pytorch_quantization_aware_training_finalize_experimental.rst", "api/api_docs/methods/pytorch_quantization_aware_training_init_experimental.rst", "api/api_docs/methods/set_logger_path.rst", "api/api_docs/modules/core_config.rst", "api/api_docs/modules/debug_config.rst", "api/api_docs/modules/exporter.rst", "api/api_docs/modules/layer_filters.rst", "api/api_docs/modules/network_editor.rst", "api/api_docs/modules/qat_config.rst", "api/api_docs/modules/target_platform.rst", "api/api_docs/modules/trainable_infrastructure.rst", "api/api_docs/notes/tpc_note.rst", "guidelines/visualization.rst", "index.rst"], "titles": ["Data Generation Configuration", "DefaultDict Class", "FrameworkInfo Class", "GradientPTQConfig Class", "MixedPrecisionQuantizationConfig", "MpDistanceWeighting", "Pruning Configuration", "Pruning Information", "QuantizationConfig", "QuantizationErrorMethod", "ResourceUtilization", "API Docs", "Get DataGenerationConfig for Keras Models", "Get GradientPTQConfig for Keras Models", "Get DataGenerationConfig for Pytorch Models", "Get GradientPTQConfig for Pytorch Models", "Get TargetPlatformCapabilities", "Keras Data Generation", "Keras Gradient Based Post Training Quantization", "Get Resource Utilization information for Keras Models", "Load Quantized Keras Model", "Keras Post Training Quantization", "Keras Structured Pruning", "Keras Quantization Aware Training Model Finalize", "Keras Quantization Aware Training Model Init", "Pytorch Data Generation", "Pytorch Gradient Based Post Training Quantization", "Get Resource Utilization information for PyTorch Models", "Pytorch Post Training Quantization", "Pytorch Structured Pruning", "PyTorch Quantization Aware Training Model Finalize", "PyTorch Quantization Aware Training Model Init", "Enable a Logger", "CoreConfig", "debug_config Module", "exporter Module", "Layer Attributes Filters", "network_editor Module", "qat_config Module", "target_platform Module", "trainable_infrastructure Module", "<no title>", "Visualization within TensorBoard", "Model Compression Toolkit User Guide"], "terms": {"class": [0, 4, 5, 6, 7, 8, 9, 10, 11, 20, 33, 34, 35, 36, 37, 38, 39, 40], "model_compression_toolkit": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 42], "data_gener": [0, 12, 14, 17, 25], "datagenerationconfig": [0, 11, 17, 25], "n_iter": [0, 12, 14, 17, 25], "optim": [0, 2, 3, 8, 10, 11, 12, 13, 14, 15, 16, 18, 19, 21, 24, 26, 27, 28, 31, 33, 39, 40, 41, 43], "data_gen_batch_s": [0, 12, 14, 17, 25], "initial_lr": [0, 12, 14], "output_loss_multipli": [0, 12, 14], "image_granular": [0, 12, 14], "allimag": [0, 14], "scheduler_typ": [0, 12, 14], "none": [0, 1, 3, 4, 13, 15, 16, 18, 20, 21, 24, 26, 28, 31, 33, 35, 37, 38, 39, 40], "bn_alignment_loss_typ": [0, 12, 14], "output_loss_typ": [0, 12, 14], "data_init_typ": [0, 12, 14], "layer_weighting_typ": [0, 12, 14], "image_pipeline_typ": [0, 12, 14], "image_normalization_typ": [0, 12, 14], "extra_pixel": [0, 12, 14], "0": [0, 2, 3, 4, 7, 8, 12, 13, 14, 18, 21, 22, 23, 24, 29, 35, 40], "bn_layer_typ": [0, 12, 14], "last_layer_typ": [0, 14], "clip_imag": [0, 12, 14], "true": [0, 3, 4, 8, 12, 13, 14, 15, 20, 30, 31, 40], "reflect": [0, 12, 14], "initi": [0, 1, 3, 6, 12, 14, 24, 31, 39, 40], "paramet": [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40], "int": [0, 3, 4, 6, 8, 12, 13, 14, 15, 17, 25, 39, 40], "number": [0, 3, 4, 6, 12, 13, 14, 15, 17, 18, 21, 22, 24, 25, 26, 28, 29, 31, 39, 40], "iter": [0, 12, 14, 17, 18, 21, 24, 25, 26, 28, 31], "ani": [0, 1, 2, 3, 35, 36, 39, 40], "The": [0, 2, 3, 5, 6, 7, 8, 10, 12, 13, 14, 15, 17, 18, 21, 22, 23, 24, 25, 26, 28, 29, 31, 35, 37, 39, 40, 42], "us": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43], "batch": [0, 12, 14, 17, 18, 21, 24, 25, 26, 28, 31], "size": [0, 12, 14, 17, 18, 21, 23, 24, 25, 31, 35, 38], "float": [0, 3, 4, 8, 12, 13, 14, 15, 18, 24, 26, 28, 31, 35, 39, 40, 42], "learn": [0, 12, 13, 14, 38], "rate": [0, 12, 13, 14], "multipli": [0, 12, 14], "output": [0, 2, 5, 8, 12, 14, 17, 18, 21, 24, 25, 26, 28, 30, 31, 39, 42, 43], "loss": [0, 3, 12, 13, 14, 15, 18, 22, 26, 28, 29], "granular": [0, 12, 14], "imag": [0, 4, 12, 14, 17, 18, 21, 24, 25, 26, 28, 31, 42], "default": [0, 1, 3, 6, 12, 13, 14, 16, 18, 21, 22, 26, 28, 29, 33, 35, 38, 39, 42], "type": [0, 1, 3, 4, 6, 7, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 25, 27, 29, 35, 37, 39], "schedul": [0, 12, 14], "batchnorm": [0, 12, 14, 17, 18, 21, 24, 26, 28, 31], "align": [0, 12, 14], "layer": [0, 2, 4, 5, 7, 12, 14, 17, 18, 21, 22, 23, 24, 26, 28, 29, 30, 31, 34, 35, 37, 39, 40, 42], "weight": [0, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 15, 18, 19, 22, 24, 26, 27, 28, 29, 30, 31, 35, 37, 38, 39, 40, 42], "pipelin": [0, 12, 14], "normal": [0, 3, 4, 12, 14], "extra": [0, 12, 14], "pixel": [0, 12, 14], "add": [0, 2, 12, 14, 20, 39, 40], "input": [0, 4, 8, 12, 14, 18, 21, 24, 26, 28, 31, 39], "list": [0, 2, 3, 4, 12, 13, 14, 15, 17, 25, 34, 37, 39, 43], "bool": [0, 3, 4, 8, 12, 13, 14, 15, 34, 39, 40], "flag": 0, "enabl": [0, 4, 8, 11, 34, 40, 43], "clip": [0, 12, 14], "valu": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 18, 21, 22, 23, 24, 29, 35, 36, 37, 38, 39], "an": [0, 1, 2, 3, 7, 18, 21, 24, 31, 35, 36, 37, 38, 39, 40, 43], "enum": [0, 2, 3, 4, 5, 6, 9, 38], "choos": [0, 3, 35], "depend": [0, 18, 21, 24, 26, 28, 31], "when": [0, 1, 2, 4, 6, 9, 10, 11, 13, 15, 18, 21, 23, 24, 34, 36, 38, 39, 40, 42], "imagewis": 0, "batchwis": [0, 12], "reduce_on_plateau": [0, 12, 14], "reduceonplateau": 0, "step": [0, 38], "l2_squar": [0, 12, 14], "l2": 0, "squar": [0, 9], "No": 0, "appli": [0, 11, 35, 36, 37, 39], "min_max_diff": 0, "min": [0, 2, 8, 9, 18, 21, 24, 26, 28, 31, 42], "max": [0, 2, 8, 9, 18, 19, 21, 24, 26, 27, 28, 31, 42], "differ": [0, 4, 8, 11, 18, 21, 23, 24, 35, 39, 42], "regularized_min_max_diff": [0, 12, 14], "regular": [0, 3, 13, 15], "gaussian": [0, 12], "divers": [0, 14], "averag": [0, 3, 4, 5, 12, 13, 14, 15], "same": [0, 35, 39], "per": [0, 2, 18, 21, 24, 31, 39, 40, 42], "first_layer_multipli": 0, "first": [0, 18, 21, 24, 26, 28, 31, 35, 42], "all": [0, 2, 3, 5, 8, 37, 40, 42], "other": [0, 13, 15], "grad": 0, "gradient": [0, 11, 28, 43], "base": [0, 3, 4, 9, 11, 13, 15, 17, 22, 25, 28, 29, 39, 40, 43], "manipul": 0, "random_crop": [0, 14], "crop": 0, "random_crop_flip": [0, 12], "flip": 0, "ident": 0, "do": [0, 42], "transform": [0, 18, 21, 24, 26, 28, 31], "torchvis": [0, 14, 26, 27, 28, 29, 30, 31, 35], "keras_appl": [0, 12], "imagenet": 0, "no_norm": 0, "known_dict": 1, "default_valu": 1, "dictionari": [1, 2, 3, 23, 24, 35, 37, 38, 40], "It": [1, 39, 40], "wrap": [1, 2, 8, 20, 24, 31, 36, 39, 40], "given": [1, 10, 18, 19, 21, 24, 26, 27, 28, 31], "return": [1, 3, 4, 7, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 35], "its": [1, 2, 8, 20, 22, 29, 36, 39, 42], "request": 1, "If": [1, 2, 4, 18, 21, 23, 24, 26, 28, 33, 35, 36, 39], "kei": [1, 5, 22, 29, 36], "present": [1, 42], "pass": [1, 2, 8, 13, 15, 18, 21, 22, 23, 24, 26, 28, 29, 30, 31, 37], "gener": [1, 11, 12, 14, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 39, 42, 43], "provid": [1, 4, 17, 22, 25, 29, 35, 39, 40, 42], "empti": 1, "get": [1, 2, 3, 4, 11, 18, 21, 23, 24, 26, 28, 30, 31, 39, 42], "inner": 1, "default_factori": 1, "exist": [1, 37], "wa": [1, 35], "follow": [2, 3, 40, 42], "api": [2, 3, 21, 24, 31], "can": [2, 3, 5, 8, 11, 13, 15, 16, 17, 19, 22, 25, 27, 29, 34, 35, 37, 39, 40, 42, 43], "mct": [2, 8, 11, 13, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 37, 39, 40, 41, 42, 43], "framework": [2, 16, 39, 40], "relat": [2, 7, 11, 39], "inform": [2, 3, 11, 13, 15, 16, 18, 21, 22, 24, 26, 28, 29, 31, 34, 39, 40, 41], "network": [2, 6, 8, 30, 33, 34, 37, 42, 43], "core": [2, 4, 5, 8, 9, 10, 18, 19, 21, 22, 23, 24, 26, 27, 29, 30, 31, 33, 34, 37], "activation_quantizer_map": 2, "kernel_channels_map": 2, "activation_min_max_map": 2, "layer_min_max_map": 2, "kernel_ops_attributes_map": 2, "out_channel_axis_map": 2, "A": [2, 3, 4, 7, 11, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 33, 34, 37, 38, 39, 43], "about": [2, 3, 7, 11, 13, 15, 18, 21, 23, 24, 35, 39, 40], "specif": [2, 22, 29, 37, 42], "librari": [2, 8], "need": [2, 18, 21, 24, 26, 28, 31, 35, 36, 40], "quantiz": [2, 3, 4, 8, 9, 10, 11, 13, 15, 17, 19, 25, 27, 33, 34, 37, 38, 39, 40, 42, 43], "model": [2, 3, 4, 7, 8, 10, 11, 16, 17, 18, 21, 22, 25, 26, 28, 29, 33, 37, 38, 39, 40, 42], "hold": [2, 33, 36, 39], "how": [2, 6, 18, 19, 21, 24, 26, 28, 31, 35, 40, 43], "thei": 2, "should": [2, 3, 6, 8, 10, 13, 15, 18, 19, 21, 22, 23, 24, 26, 28, 29, 31, 35, 39, 42], "multipl": [2, 4, 39], "map": [2, 39], "kernel": [2, 10, 18, 21, 23, 24, 37, 40], "channel": [2, 6, 7, 8, 11, 22, 29, 39, 40, 42], "indic": [2, 7, 22, 29, 39], "etc": [2, 10, 11, 18, 21, 24, 26, 28, 31, 42], "ar": [2, 3, 16, 18, 21, 22, 24, 26, 28, 29, 31, 35, 39, 40, 41, 42], "divid": 2, "three": 2, "group": [2, 6, 22, 29, 39], "kernel_op": 2, "have": [2, 35, 36, 42], "coeffici": [2, 10, 18, 21, 23, 24, 26, 28, 39, 40], "e": [2, 18, 21, 24, 26, 28, 31, 43], "g": [2, 18, 21, 24, 26, 28, 31], "conv2d": [2, 10, 17, 18, 21, 23, 24, 25, 37, 39], "dens": [2, 17], "activation_op": 2, "relu": [2, 8], "no_quantization_op": 2, "reshap": [2, 17], "transpos": 2, "dict": [2, 3, 7, 35, 39, 40], "quantizationmethod": [2, 40], "callabl": [2, 3, 4, 13, 15, 18, 19, 21, 22, 24, 26, 27, 28, 29, 31, 35, 36], "from": [2, 3, 8, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 35, 37, 39, 40, 41, 42, 43], "function": [2, 3, 4, 5, 11, 12, 13, 14, 15, 17, 20, 22, 25, 29, 37, 39, 40], "defaultdict": [2, 11, 39], "tupl": [2, 17, 18, 22, 29, 37], "out": [2, 6], "str": [2, 35, 36, 39], "activ": [2, 8, 10, 18, 19, 21, 24, 26, 27, 28, 31, 35, 37, 38, 39, 40, 42], "oper": [2, 10, 36, 39], "attirbut": 2, "s": [2, 6, 8, 10, 18, 21, 22, 23, 24, 26, 28, 29, 31, 35, 36, 37, 39, 40, 43], "comput": [2, 3, 4, 5, 9, 11, 19, 27, 42], "statist": [2, 18, 21, 24, 26, 28, 31, 42], "exampl": [2, 3, 8, 10, 13, 15, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 37, 39, 40, 43], "kera": [2, 3, 10, 11, 37, 40, 43], "we": [2, 17, 18, 21, 22, 24, 25, 29, 31, 35, 37, 39, 40, 42], "want": 2, "onli": [2, 5, 6, 10, 18, 21, 23, 24, 35], "set": [2, 5, 11, 13, 17, 18, 21, 22, 23, 24, 25, 26, 28, 29, 31, 32, 37, 39, 40, 42], "know": 2, "3": [2, 13, 15, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 35, 40], "2": [2, 8, 13, 17, 25, 39, 40, 43], "respectivli": 2, "import": [2, 6, 7, 8, 11, 13, 15, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 35, 37, 40, 42], "tensorflow": [2, 11, 13, 16, 17, 18, 19, 21, 22, 23, 24, 35, 37, 39, 43], "tf": [2, 13, 17, 20, 23, 24], "Then": [2, 18, 21, 24, 26, 28, 31, 37, 42], "creat": [2, 3, 8, 11, 12, 13, 14, 15, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 35, 36, 37], "object": [2, 6, 10, 12, 13, 14, 15, 16, 18, 19, 20, 21, 23, 24, 26, 27, 28, 31, 35, 37, 39, 40], "rang": [2, 18, 21, 24, 26, 28, 31], "advanc": 2, "save": [2, 24, 32, 35, 40], "collect": [2, 18, 21, 24, 26, 28, 31, 42], "time": [2, 6, 40], "For": [2, 8, 16, 17, 18, 21, 23, 24, 25, 31, 35, 39, 40, 41, 42, 43], "softmax": [2, 8], "1": [2, 3, 4, 7, 15, 17, 18, 19, 21, 22, 23, 25, 26, 27, 28, 29, 30, 35, 43], "select": [2, 6, 8, 9, 11, 35, 38, 39, 40], "format": [2, 11], "index": [2, 11], "axi": [2, 40], "nhwc": 2, "last": [2, 5], "nchw": 2, "instanc": [3, 11, 13, 15, 37, 39, 42], "which": [3, 6, 8, 35, 36, 37, 39, 40], "post": [3, 11, 22, 24, 29, 31, 43], "train": [3, 11, 38, 40, 43], "knowledg": [3, 43], "distil": [3, 43], "teacher": 3, "student": 3, "gptq": [3, 13, 15, 18, 26], "n_epoch": [3, 13, 15, 18], "optimizer_rest": [3, 13, 15], "log_funct": [3, 13, 15], "train_bia": 3, "rounding_typ": 3, "softquant": 3, "use_hessian_based_weight": [3, 13, 15], "optimizer_quantization_paramet": 3, "optimizer_bia": 3, "regularization_factor": [3, 13, 15], "reg_default": [3, 13, 15], "hessian_weights_config": 3, "gptq_quantizer_params_overrid": 3, "configur": [3, 4, 8, 10, 11, 12, 13, 14, 15, 17, 18, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 36, 37, 38, 39, 40, 43], "gradientptq": [3, 11], "repres": [3, 4, 10, 13, 15, 18, 21, 22, 23, 24, 26, 28, 29, 30, 31, 35, 37, 39, 42], "dataset": [3, 13, 15, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 35, 42], "epoch": [3, 13, 15], "bia": [3, 8, 10, 13, 15, 18, 21, 23, 24], "accept": [3, 13, 15], "6": [3, 25], "tensor": [3, 4, 13, 15, 17, 19, 25, 27, 39, 40, 42, 43], "1st": [3, 13, 15], "2nd": [3, 13, 15], "3rd": [3, 13, 15], "4th": [3, 13, 15], "5th": 3, "6th": 3, "mean": [3, 9, 42], "std": 3, "accordingli": [3, 39], "see": [3, 43], "multiple_tensors_mse_loss": [3, 15], "log": [3, 11, 13, 15, 32, 42], "process": [3, 4, 8, 11, 12, 13, 14, 15, 16, 17, 22, 25, 29, 33, 34, 37, 38, 39, 41, 42], "whether": [3, 4, 7, 8, 12, 13, 14, 15, 20, 34, 35, 39, 40], "updat": 3, "dure": [3, 8, 11, 12, 13, 14, 15, 16, 35, 37, 39, 40, 41, 42], "defin": [3, 4, 5, 13, 15, 17, 18, 21, 22, 23, 24, 25, 26, 28, 29, 39, 40], "round": 3, "hessian": [3, 4, 6, 9, 13, 15, 22, 29, 43], "overrid": [3, 38], "rest": 3, "point": [3, 4, 13, 15, 18, 26, 28, 39, 42], "factor": [3, 4, 9, 13, 15], "includ": [3, 7, 10, 18, 21, 24, 26, 28, 31, 38], "necessari": [3, 35, 40], "argument": [3, 5, 39], "run": [3, 13, 15, 35, 42], "score": [3, 4, 6, 7, 8, 9, 22, 29], "instanti": [3, 8, 38], "hessians_num_sampl": 3, "16": [3, 35], "norm_scor": [3, 4], "log_norm": 3, "scale_log_norm": 3, "fals": [3, 4, 8, 34, 39], "metric": [3, 4, 5, 6, 10, 11], "gptqhessianweightsconfig": 3, "sampl": [3, 42], "between": [3, 4, 8, 18, 26, 28, 39, 42], "scale": [3, 4, 8, 39], "final": [3, 4, 11, 17, 25, 37, 42, 43], "vector": [3, 42], "method": [3, 4, 5, 6, 8, 9, 11, 22, 29, 35, 37, 38, 39, 40], "ste": [3, 38], "straight": [3, 38], "through": [3, 17, 22, 25, 38], "estim": [3, 38], "mix": [4, 5, 10, 11, 18, 19, 21, 23, 24, 26, 27, 28, 31, 33, 39, 43], "precis": [4, 5, 10, 11, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31, 33, 39, 43], "compute_distance_fn": 4, "distance_weighting_method": 4, "mpdistanceweight": [4, 11], "avg": [4, 5], "num_of_imag": [4, 18, 21], "32": 4, "configuration_overwrit": 4, "num_interest_points_factor": 4, "use_hessian_based_scor": 4, "refine_mp_solut": 4, "metric_normalization_threshold": 4, "1e10": 4, "distanc": [4, 5, 11], "two": [4, 18, 21, 24, 26, 28, 31, 35, 39, 42], "pre": 4, "each": [4, 6, 7, 18, 21, 22, 24, 26, 28, 29, 31, 37, 39, 40, 42], "among": 4, "sensit": [4, 6, 22, 29], "evalu": 4, "compar": [4, 18, 26, 28, 42], "integ": [4, 35, 39], "overwrit": 4, "predefin": [4, 6], "one": [4, 8, 36, 42], "zero": [4, 39], "percentag": 4, "reduc": [4, 22, 29], "interest": 4, "calcul": [4, 6, 11, 18, 19, 21, 22, 24, 26, 27, 28, 29, 31], "try": 4, "improv": [4, 22, 29], "greedi": [4, 6], "algorithm": 4, "search": [4, 8, 10, 11, 18, 21, 24, 26, 28, 31], "increas": 4, "bit": [4, 10, 18, 21, 23, 24, 31, 35, 37, 39, 40, 43], "width": [4, 18, 21, 24, 25, 31, 39, 43], "threshold": [4, 8, 9, 18, 21, 24, 26, 28, 31, 39, 40], "check": [4, 35, 36, 37], "In": [4, 17, 18, 21, 24, 25, 26, 28, 31, 35, 36], "case": 4, "larger": 4, "than": [4, 36], "thi": [4, 7, 9, 10, 11, 17, 18, 20, 21, 22, 23, 24, 25, 26, 28, 29, 31, 35, 39, 40, 43], "prevent": 4, "numer": 4, "issu": [4, 35], "call": [5, 19, 27, 39, 42], "take": [5, 21, 24, 31, 43], "last_lay": 5, "pruningconfig": [6, 11, 22, 29], "num_score_approxim": [6, 22, 29], "pruning_num_score_approxim": 6, "importance_metr": 6, "lfh": [6, 22, 29], "channels_filtering_strategi": 6, "specifi": [6, 12, 14, 17, 20, 22, 25, 29, 35], "neural": [6, 43], "approxim": [6, 22, 29], "perform": [6, 10, 17, 22, 25, 29], "strategi": [6, 22, 29], "filter": [6, 39], "constant": [6, 37, 40], "label": [6, 22, 29, 39, 43], "free": [6, 17, 22, 25, 29, 43], "approach": 6, "determin": [6, 22, 29], "info": [6, 32], "measur": [6, 10, 42], "least": 6, "up": [6, 17, 25, 39, 42], "allow": [6, 17, 25, 35], "resourc": [6, 10, 11, 18, 21, 22, 23, 24, 29, 30, 31, 42], "util": [6, 10, 11, 18, 21, 22, 23, 24, 29, 30, 31, 40], "limit": [6, 18, 21, 23, 24, 26, 28, 31], "now": [6, 16, 31, 35, 39, 40, 41, 42], "weights_memori": [6, 10, 18, 21, 22, 24, 29, 31], "consid": [6, 12, 14, 22, 29, 39], "pruninginfo": [7, 11, 22, 29], "pruning_mask": 7, "importance_scor": 7, "store": [7, 40], "mask": 7, "act": 7, "contain": [7, 11, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 39, 40], "access": 7, "metadata": [7, 39], "basenod": 7, "np": [7, 10, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 35], "ndarrai": 7, "arrai": 7, "where": [7, 35, 37, 39, 42], "element": [7, 39], "correspond": 7, "neuron": 7, "ha": [7, 35, 36, 37], "been": 7, "kept": [7, 24, 31], "quantifi": [7, 42], "signific": 7, "properti": 7, "activation_error_method": 8, "quantizationerrormethod": [8, 11], "mse": [8, 9, 42], "weights_error_method": 8, "relu_bound_to_power_of_2": 8, "weights_bias_correct": 8, "weights_second_moment_correct": 8, "input_sc": 8, "softmax_shift": 8, "shift_negative_activation_correct": 8, "activation_channel_equ": 8, "z_threshold": 8, "math": 8, "inf": [8, 10], "min_threshold": [8, 40], "l_p_valu": 8, "linear_collaps": 8, "residual_collaps": 8, "shift_negative_ratio": 8, "05": 8, "shift_negative_threshold_recalcul": 8, "shift_negative_params_search": 8, "concat_threshold_upd": 8, "accord": [8, 10, 11, 18, 19, 21, 22, 24, 26, 27, 28, 29, 31, 35, 36, 39], "power": [8, 18, 21, 24, 26, 28, 31, 39], "correct": 8, "second_mo": 8, "shift": 8, "neg": 8, "equal": [8, 36], "z": 8, "outlier": 8, "remov": [8, 22, 29, 30], "minimum": [8, 40], "p": [8, 29], "l_p": 8, "norm": [8, 9, 42], "block_collaps": 8, "collaps": 8, "block": [8, 40, 42], "anoth": 8, "ratio": 8, "minim": [8, 9, 18, 22, 26, 28, 29], "non": [8, 39], "linear": [8, 25], "abov": 8, "occur": 8, "recomput": 8, "after": [8, 11, 18, 20, 21, 24, 31, 43], "One": [8, 42], "mai": [8, 17, 18, 21, 24, 25, 26, 28, 31, 36, 42], "done": [8, 42], "noclip": [8, 9], "qc": 8, "instans": 8, "keras_post_training_quant": [8, 11, 13, 21, 35, 37, 42], "error": 9, "nois": 9, "mae": [9, 42], "absolut": 9, "kl": [9, 42], "diverg": [9, 42], "make": 9, "signal": 9, "distribut": 9, "similar": [9, 34, 43], "possibl": [9, 18, 21, 24, 31, 39, 42], "lp": 9, "hmse": 9, "more": [9, 16, 21, 22, 24, 29, 31, 35, 39, 41, 42], "valuabl": 9, "induc": 9, "prune": [10, 43], "activation_memori": 10, "total_memori": 10, "bop": 10, "memori": [10, 22, 29, 42], "byte": [10, 18, 21, 22, 24, 29, 31, 42], "note": [10, 18, 21, 23, 24], "affect": [10, 18, 21, 23, 24], "while": [10, 18, 21, 23, 24, 31, 39], "sum": [10, 19, 22, 27, 29], "total": [10, 19, 27], "init": [11, 37, 43], "modul": [11, 25, 26, 27, 28, 29], "pytorch_post_training_quant": [11, 15, 28, 35], "pytorch": [11, 16, 39, 40, 43], "pytorch_gradient_post_training_quant": [11, 26], "get_pytorch_gptq_config": [11, 15], "gradientptqconfig": [11, 18, 26], "keras_gradient_post_training_quant": [11, 18], "get_keras_gptq_config": [11, 13, 18], "option": [11, 20, 21, 22, 24, 26, 29, 31, 35, 39], "pytorch_quantization_aware_training_init_experiment": [11, 30, 31], "prepar": [11, 24, 31], "awar": [11, 38, 40, 43], "experiment": [11, 17, 25, 43], "pytorch_quantization_aware_training_finalize_experiment": [11, 30], "without": 11, "quantizewrapp": [11, 24, 30, 31], "keras_quantization_aware_training_init_experiment": [11, 23, 24], "keras_quantization_aware_training_finalize_experiment": [11, 23], "qat_config": [11, 24, 31], "coreconfig": [11, 18, 19, 21, 23, 24, 26, 27, 28, 30, 31], "entir": 11, "quantizationconfig": [11, 33], "mixedprecisionquantizationconfig": [11, 18, 19, 21, 23, 24, 33], "resourceutil": [11, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31], "network_editor": [11, 34], "modifi": [11, 37], "troubleshoot": 11, "pytorch_resource_utilization_data": [11, 27], "data": [11, 12, 14, 19, 22, 27, 29, 35, 39, 42, 43], "desir": [11, 18, 19, 21, 23, 24, 26, 27, 28, 31], "target": [11, 16, 18, 19, 21, 22, 23, 24, 27, 29, 30, 31], "keras_resource_utilization_data": [11, 19], "pytorch_data_generation_experiment": [11, 25], "get_pytorch_data_generation_config": [11, 14, 25], "load": [11, 23, 24, 35, 40], "keras_data_generation_experiment": [11, 17], "get_keras_data_generation_config": [11, 12, 17], "pytorch_pruning_experiment": [11, 29], "structur": [11, 43], "keras_pruning_experiment": [11, 22], "serial": 11, "abstract": [11, 40], "hardwar": [11, 16, 22, 29, 39, 40, 43], "orient": [11, 40], "tool": [11, 40], "logger": [11, 34, 42], "path": [11, 20, 32, 35, 42], "directori": [11, 32], "infer": [11, 16, 23, 30, 39, 40], "get_target_platform_cap": [11, 16, 39], "platform": [11, 16, 18, 21, 22, 23, 24, 27, 29], "targetplatformcap": [11, 18, 19, 21, 22, 24, 26, 27, 28, 29, 31], "page": 11, "document": [11, 21, 24, 31], "auto": 11, "sphinx": 11, "default_n_it": [12, 14], "adam": [12, 13, 15], "default_data_gen_b": [12, 14], "default_keras_initial_lr": 12, "default_keras_output_loss_multipli": 12, "schedulertyp": [12, 14], "batchnormalignemntlosstyp": [12, 14], "outputlosstyp": [12, 14], "datainittyp": [12, 14], "bnlayerweightingtyp": [12, 14], "imagegranular": [12, 14], "imagepipelinetyp": [12, 14], "imagenormalizationtyp": [12, 14], "learning_r": 13, "lr_default": [13, 15], "lr_rest_default": [13, 15], "gptqmultipletensorsloss": 13, "gradientptqconfigv2": [13, 15], "fine": [13, 15, 22, 23, 24, 29, 30, 31], "tune": [13, 15, 22, 23, 24, 29, 30], "optimizerv2": 13, "auxiliri": [13, 15], "variabl": [13, 15], "4": [13, 15, 17, 18, 21, 22, 24, 25, 26, 28, 29, 31], "5": [13, 15, 22, 29], "gptq_conf": [13, 15, 26], "nadam": 13, "order": [13, 15, 18, 21, 24, 31, 35, 36], "radam": 14, "default_pytorch_initial_lr": 14, "default_pytorch_output_loss_multipli": 14, "default_pytorch_bn_layer_typ": 14, "default_pytorch_last_layer_typ": 14, "torch": [15, 25, 35, 43], "lr": 15, "dummi": 15, "param": [15, 34, 37, 40], "fw_name": 16, "target_platform_nam": 16, "target_platform_vers": 16, "name": [16, 35, 37, 39, 42], "support": [16, 35], "both": [16, 18, 21, 26, 28, 30, 40, 42], "them": [16, 39, 42], "imx500": [16, 35, 39], "tflite": [16, 35, 39], "qnnpack": [16, 39], "capabl": [16, 22, 27, 29], "version": [16, 17, 25, 39, 43], "attach": [16, 39], "some": [16, 17, 25, 35, 39, 41, 42], "field": [16, 36, 39, 41], "opquantizationconfig": [16, 41], "ignor": [16, 39, 41], "quantization_preserv": [16, 39, 41], "fixed_scal": [16, 39, 41], "fixed_zero_point": [16, 39, 41], "futur": [16, 17, 25, 39, 41], "n_imag": [17, 25], "output_image_s": [17, 25], "data_generation_config": [17, 25], "ll": [17, 25], "walk": [17, 25], "simpl": [17, 25], "involv": [17, 22, 25, 29], "start": [17, 25, 35, 40, 43], "compress": [17, 22, 25, 26, 29], "toolkit": [17, 25, 26], "sequenti": [17, 25], "flatten": [17, 25], "next": [17, 25, 35, 36], "input_shap": 17, "8": [17, 18, 21, 23, 24, 25, 35, 40], "10": [17, 18, 21, 24, 25, 26, 28, 31], "custom": [17, 20, 24, 25, 35], "simplic": [17, 25], "config": [17, 18, 21, 22, 23, 24, 25, 26, 29, 30, 31, 33, 37, 39, 40], "notic": [17, 22, 25, 29, 35], "chang": [17, 25, 35, 37, 42], "generated_imag": [17, 25], "variou": [17, 25, 42], "purpos": [17, 25, 34], "in_model": [18, 19, 21, 23, 24, 27, 30, 31], "representative_data_gen": [18, 19, 21, 22, 24, 26, 27, 28, 29, 31, 35], "gptq_config": [18, 26, 28], "gptq_representative_data_gen": [18, 26], "target_resource_util": [18, 21, 22, 24, 26, 28, 29, 31], "core_config": [18, 19, 21, 23, 24, 26, 27, 28, 30, 31], "target_platform_cap": [18, 19, 21, 22, 24, 26, 27, 28, 29, 31, 40], "default_keras_tpc": [18, 21, 22, 24], "symmetr": [18, 21, 24, 26, 28, 31, 38, 39, 40], "constraint": [18, 21, 22, 26, 28, 29], "sever": [18, 21, 24, 26, 28, 31, 42], "fold": [18, 21, 24, 26, 28, 31], "preced": [18, 21, 24, 26, 28, 31], "histogram": [18, 21, 24, 26, 28, 31, 42], "being": [18, 21, 24, 26, 28, 31, 39, 40], "ilp": [18, 21, 24, 31], "solver": [18, 21, 24, 31], "find": [18, 21, 24, 31], "maxim": [18, 21, 24, 31], "observ": [18, 26, 28, 39, 42], "calibr": [18, 19, 21, 24, 26, 27, 28, 31], "user": [18, 21, 23, 24, 26, 28, 30, 31], "handl": [18, 21, 24, 26, 28, 31], "applic": [18, 19, 21, 22, 23, 24, 35], "mobilenet": [18, 19], "random": [18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 35], "requir": [18, 21, 24, 26, 28, 31, 40, 42], "num_calibration_batch": [18, 21, 24, 26, 28, 31], "numpi": [18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 35], "def": [18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 35], "repr_datagen": [18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31], "_": [18, 21, 24, 26, 28, 31, 35], "yield": [18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 35], "224": [18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 35], "bitwidth": [18, 21, 23, 24], "candid": [18, 21, 23, 24, 37], "mixed_precision_config": [18, 19, 21, 23, 24, 33], "our": [18, 21, 23, 24, 31, 43], "ru": [18, 21, 23, 24], "count_param": [18, 21, 22, 23, 24], "75": [18, 21, 23, 24], "quantized_model": [18, 21, 23, 24, 30, 31], "quantization_info": [18, 21, 23, 24, 26, 28, 30, 31], "userinform": 18, "keras_default_tpc": 19, "build": [19, 27, 40, 43], "graph": [19, 27, 37, 42], "hw": 19, "ru_data": [19, 27], "keras_load_quantized_model": 20, "filepath": 20, "custom_object": [20, 23, 24], "compil": 20, "trainabl": [20, 23, 40], "file": [20, 23, 24, 32, 35], "addit": [20, 35], "boolean": 20, "saved_model": 20, "loadopt": 20, "savedmodel": 20, "ptq": [21, 28, 35], "mobilenet_v2": [21, 23, 24, 26, 27, 28, 30, 31, 35], "mobilenetv2": [21, 23, 24, 35, 42], "pleas": [21, 24, 31, 35, 43], "look": [21, 24, 31, 39, 43], "pruning_config": [22, 29], "meet": [22, 29], "simd": [22, 29, 39], "tpc": [22, 29, 39], "By": [22, 26, 28, 29, 35, 42], "assess": [22, 29], "togeth": [22, 29], "friendli": [22, 29, 43], "architectur": [22, 29], "analyz": [22, 29], "identifi": [22, 29], "impact": [22, 29], "must": [22, 29, 39], "retrain": [22, 29], "recov": [22, 29], "origin": [22, 42], "achiev": 22, "analysi": [22, 29], "standard": [22, 29, 38], "associ": [22, 29, 39], "resnet50": [22, 29, 35], "here": [22, 29, 35, 39, 43], "aim": [22, 29], "footprint": [22, 29], "50": [22, 29], "assum": [22, 29], "float32": [22, 29, 35], "thu": [22, 29, 42], "dense_nparam": [22, 29], "l": [22, 43], "higher": [22, 29], "also": [22, 29, 43], "extend": [22, 29], "durat": [22, 29], "pruned_model": [22, 29], "pruning_info": [22, 29], "qat": [23, 24, 30, 31, 38], "convert": [23, 30], "replac": 23, "trainablequant": 23, "inferablequant": [23, 30], "load_model": [23, 24], "model_fil": [23, 24], "qatconfig": [24, 31], "built": [24, 31, 40], "fake_qu": [24, 31], "node": [24, 31, 37, 40, 42], "onlin": [24, 31], "wrapper": [24, 30, 31, 40], "ker": 24, "hight": 25, "nn": 25, "batchnorm2d": 25, "default_pytorch_tpc": [26, 28, 29, 31], "quantized_modul": [26, 28], "pytorch_default_tpc": 27, "in_modul": 28, "clibrat": 28, "default_pyotrch_tpc": 29, "resnet50_weight": 29, "imagenet1k_v1": 29, "numel": 29, "state_dict": 29, "pretrain": [30, 31], "keep": [30, 43], "readi": 30, "tun": 31, "set_log_fold": [32, 42], "folder": 32, "level": 32, "verbos": 32, "quantization_config": [33, 40], "debug_config": 33, "debugconfig": 33, "debug": [33, 34], "edit": [33, 34, 37], "analyze_similar": 34, "plot": [34, 42], "figur": [34, 42], "within": [34, 43], "tensorboard": [34, 43], "pinpoint": 34, "problemat": 34, "editrul": 34, "rule": [34, 37], "action": 34, "detail": [35, 39], "refer": 35, "project": [35, 43], "github": [35, 43], "readm": 35, "you": [35, 42, 43], "question": 35, "open": [35, 42, 43], "repositori": 35, "fakely_qu": 35, "int8": 35, "mct_quantiz": 35, "via": [35, 43], "save_model_path": 35, "is_layer_exportable_fn": 35, "is_keras_layer_export": 35, "serialization_format": 35, "quantization_format": 35, "To": [35, 42], "float_model": 35, "demonstr": [35, 39], "quantized_exportable_model": 35, "lambda": 35, "dtype": 35, "avail": [35, 43], "tempfil": 35, "keras_file_path": 35, "mkstemp": 35, "torchscript": 35, "repr_dataset": 35, "is_pytorch_layer_export": 35, "onnx_opset_vers": 35, "default_onnx_opset_vers": 35, "current": 35, "fake": 35, "trace": 35, "mandatori": 35, "quant": 35, "your": 35, "packag": [35, 40, 43], "so": [35, 39], "part": 35, "skip": 35, "plan": 35, "pip": [35, 43], "instal": 35, "q": 35, "onnxruntim": 35, "extens": 35, "let": 35, "There": [35, 42], "onnx_file_path": 35, "model_format_onnx_mctq": 35, "15": 35, "get_ort_session_opt": 35, "session": 35, "creation": 35, "slowli": 35, "suffer": 35, "longer": 35, "latenc": 35, "howev": 35, "ort": 35, "sess": 35, "inferencesess": 35, "cudaexecutionprovid": 35, "cpuexecutionprovid": 35, "_input_data": 35, "astyp": 35, "_model_output_nam": 35, "get_output": 35, "_model_input_nam": 35, "get_input": 35, "predict": 35, "layerfilterparam": 36, "target_platform": [36, 40], "attributefilt": [36, 39], "attr": 36, "op": [36, 39], "match": [36, 37, 39], "regard": 36, "eq": 36, "noteq": 36, "greater": 36, "greatereq": 36, "smaller": 36, "smallereq": 36, "attribut": [37, 39, 40], "9": 37, "er_list": 37, "nodetypefilt": 37, "changecandidatesweightsquantconfigattr": 37, "attr_nam": 37, "weights_n_bit": [37, 39, 40], "new": 37, "node_typ": 37, "nodenamefilt": 37, "node_nam": 37, "nodenamescopefilt": 37, "node_name_scop": 37, "string": 37, "changefinalweightsquantconfigattr": 37, "kwarg": [37, 39], "attr_valu": 37, "changefinalactivationquantconfigattr": 37, "changecandidatesactivationquantconfigattr": 37, "changequantizationparamfunct": 37, "activation_quantization_params_fn": 37, "weights_quantization_params_fn": 37, "changefinalweightsquantizationmethod": 37, "weights_quantization_method": [37, 39, 40], "changecandidatesweightsquantizationmethod": 37, "changecandidatesactivationquantizationmethod": 37, "activation_quantization_method": [37, 39, 40], "changequantizationmethod": 37, "poweroftwo": 38, "uniform": [38, 39, 40], "dqa": 38, "dnn": 38, "attent": 38, "smooth": 38, "introduc": 38, "lsq": 38, "http": [38, 43], "arxiv": [38, 43], "org": 38, "pdf": 38, "1902": 38, "08153": 38, "weight_training_method": 38, "activation_training_method": 38, "weight_quantizer_params_overrid": 38, "activation_quantizer_params_overrid": 38, "backend": 39, "address": 39, "shortli": 39, "diagram": 39, "main": [39, 42], "compon": [39, 40], "power_of_two": 39, "lut_pot_quant": 39, "lookup": 39, "tabl": 39, "lut_sym_quant": 39, "default_weight_attr_config": 39, "attr_weights_configs_map": 39, "activation_n_bit": [39, 40], "enable_activation_quant": [39, 40], "simd_siz": 39, "singl": 39, "instruct": 39, "fetch": 39, "simultan": 39, "float_bitwidth": 39, "weights_per_channel_threshold": [39, 40], "enable_weights_quant": [39, 40], "lut_values_bitwidth": 39, "quantization_config_list": 39, "base_config": 39, "gather": [39, 42], "fallback": 39, "manner": 39, "default_qco": 39, "add_metadata": 39, "default_tp_model": 39, "definit": 39, "pattern": 39, "combin": 39, "qc_option": 39, "uniqu": 39, "operator_groups_list": 39, "treat": 39, "henc": 39, "union": 39, "either": 39, "opset": 39, "concaten": 39, "similarli": 39, "place": 39, "like": 39, "op_sets_to_lay": 39, "op_set_nam": 39, "attr_map": 39, "filterlayerparam": 39, "condit": 39, "satisfi": 39, "keyword": 39, "usag": 39, "tp_model": 39, "infrastructur": 40, "propos": 40, "emul": 40, "holder": 40, "upon": 40, "learnabl": 40, "explain": 40, "basic": 40, "valid": 40, "implement": 40, "get_config": 40, "from_config": 40, "weights_quantization_param": 40, "weights_channels_axi": 40, "weights_quantization_candid": 40, "activation_quantization_param": 40, "activation_quantization_candid": 40, "phase": 42, "displai": 42, "ui": 42, "dir": 42, "writer": 42, "stage": 42, "launch": 42, "logdir": 42, "seen": 42, "under": 42, "tab": 42, "click": 42, "deeper": 42, "view": 42, "tag": 42, "show": 42, "These": 42, "scalar": 42, "were": 42, "wai": [42, 43], "mathemat": 42, "divis": 42, "dot": 42, "product": 42, "euclidean": 42, "along": 42, "pair": 42, "would": 42, "expect": 42, "mani": 42, "few": [42, 43], "As": 42, "20": 42, "insert": 42, "chosen": 42, "second": 42, "sourc": 43, "research": 43, "develop": 43, "engin": 43, "easili": 43, "state": 43, "art": 43, "work": 43, "soni": 43, "semiconductor": 43, "israel": 43, "git": 43, "clone": 43, "com": 43, "model_optim": 43, "python": 43, "setup": 43, "py": 43, "pypi": 43, "latest": 43, "stabl": 43, "releas": 43, "nightli": 43, "unstabl": 43, "visual": 43, "cosin": 43, "comparison": 43, "just": 43, "minut": 43, "visit": 43, "notebook": 43, "doesn": 43, "t": 43, "out1": 43, "out2": 43, "out3": 43, "habi": 43, "h": 43, "v": 43, "peretz": 43, "r": 43, "cohen": 43, "dikstein": 43, "dror": 43, "o": 43, "diamant": 43, "i": 43, "jen": 43, "netzer": 43, "2021": 43, "hptq": 43, "preprint": 43, "gordon": 43, "2023": 43, "eptq": 43, "enhanc": 43}, "objects": {"model_compression_toolkit": [[1, 0, 1, "", "DefaultDict"], [16, 2, 1, "", "get_target_platform_capabilities"], [20, 2, 1, "", "keras_load_quantized_model"], [32, 2, 1, "", "set_log_folder"]], "model_compression_toolkit.DefaultDict": [[1, 1, 1, "", "get"], [1, 1, 1, "", "keys"]], "model_compression_toolkit.core": [[2, 0, 1, "", "ChannelAxis"], [33, 0, 1, "", "CoreConfig"], [34, 0, 1, "", "DebugConfig"], [2, 0, 1, "", "FrameworkInfo"], [4, 0, 1, "", "MixedPrecisionQuantizationConfig"], [5, 0, 1, "", "MpDistanceWeighting"], [8, 0, 1, "", "QuantizationConfig"], [9, 0, 1, "", "QuantizationErrorMethod"], [10, 0, 1, "", "ResourceUtilization"], [19, 2, 1, "", "keras_resource_utilization_data"], [27, 2, 1, "", "pytorch_resource_utilization_data"]], "model_compression_toolkit.core.network_editor": [[37, 0, 1, "", "ChangeCandidatesActivationQuantConfigAttr"], [37, 0, 1, "", "ChangeCandidatesActivationQuantizationMethod"], [37, 0, 1, "", "ChangeCandidatesWeightsQuantConfigAttr"], [37, 0, 1, "", "ChangeCandidatesWeightsQuantizationMethod"], [37, 0, 1, "", "ChangeFinalActivationQuantConfigAttr"], [37, 0, 1, "", "ChangeFinalWeightsQuantConfigAttr"], [37, 0, 1, "", "ChangeFinalWeightsQuantizationMethod"], [37, 0, 1, "", "ChangeQuantizationParamFunction"], [37, 0, 1, "", "EditRule"], [37, 0, 1, "", "NodeNameFilter"], [37, 0, 1, "", "NodeNameScopeFilter"], [37, 0, 1, "", "NodeTypeFilter"]], "model_compression_toolkit.data_generation": [[0, 0, 1, "", "BNLayerWeightingType"], [0, 0, 1, "", "BatchNormAlignemntLossType"], [0, 0, 1, "", "DataGenerationConfig"], [0, 0, 1, "", "DataInitType"], [0, 0, 1, "", "ImageGranularity"], [0, 0, 1, "", "ImageNormalizationType"], [0, 0, 1, "", "ImagePipelineType"], [0, 0, 1, "", "OutputLossType"], [0, 0, 1, "", "SchedulerType"], [12, 2, 1, "", "get_keras_data_generation_config"], [14, 2, 1, "", "get_pytorch_data_generation_config"], [17, 2, 1, "", "keras_data_generation_experimental"], [25, 2, 1, "", "pytorch_data_generation_experimental"]], "model_compression_toolkit.exporter": [[35, 0, 1, "", "KerasExportSerializationFormat"], [35, 0, 1, "", "PytorchExportSerializationFormat"], [35, 0, 1, "", "QuantizationFormat"], [35, 0, 1, "", "keras_export_model"], [35, 0, 1, "", "pytorch_export_model"]], "model_compression_toolkit.gptq": [[3, 0, 1, "", "GPTQHessianScoresConfig"], [3, 0, 1, "", "GradientPTQConfig"], [3, 0, 1, "", "RoundingType"], [13, 2, 1, "", "get_keras_gptq_config"], [15, 2, 1, "", "get_pytorch_gptq_config"], [18, 2, 1, "", "keras_gradient_post_training_quantization"], [26, 2, 1, "", "pytorch_gradient_post_training_quantization"]], "model_compression_toolkit.pruning": [[6, 0, 1, "", "ChannelsFilteringStrategy"], [6, 0, 1, "", "ImportanceMetric"], [6, 0, 1, "", "PruningConfig"], [7, 0, 1, "", "PruningInfo"], [22, 2, 1, "", "keras_pruning_experimental"], [29, 2, 1, "", "pytorch_pruning_experimental"]], "model_compression_toolkit.pruning.PruningConfig": [[6, 3, 1, "", "channels_filtering_strategy"], [6, 3, 1, "", "importance_metric"], [6, 3, 1, "", "num_score_approximations"]], "model_compression_toolkit.pruning.PruningInfo": [[7, 4, 1, "", "importance_scores"], [7, 4, 1, "", "pruning_masks"]], "model_compression_toolkit.ptq": [[21, 2, 1, "", "keras_post_training_quantization"], [28, 2, 1, "", "pytorch_post_training_quantization"]], "model_compression_toolkit.qat": [[38, 0, 1, "", "QATConfig"], [38, 0, 1, "", "TrainingMethod"], [23, 2, 1, "", "keras_quantization_aware_training_finalize_experimental"], [24, 2, 1, "", "keras_quantization_aware_training_init_experimental"], [30, 2, 1, "", "pytorch_quantization_aware_training_finalize_experimental"], [31, 2, 1, "", "pytorch_quantization_aware_training_init_experimental"]], "model_compression_toolkit.target_platform": [[36, 0, 1, "", "AttributeFilter"], [39, 0, 1, "", "AttributeQuantizationConfig"], [36, 0, 1, "", "Eq"], [39, 0, 1, "", "Fusing"], [36, 0, 1, "", "Greater"], [36, 0, 1, "", "GreaterEq"], [39, 0, 1, "", "LayerFilterParams"], [36, 0, 1, "", "NotEq"], [39, 0, 1, "", "OpQuantizationConfig"], [39, 0, 1, "", "OperationsSetToLayers"], [39, 0, 1, "", "OperationsToLayers"], [39, 0, 1, "", "OperatorSetConcat"], [39, 0, 1, "", "OperatorsSet"], [39, 0, 1, "", "QuantizationConfigOptions"], [39, 0, 1, "", "QuantizationMethod"], [36, 0, 1, "", "Smaller"], [36, 0, 1, "", "SmallerEq"], [39, 0, 1, "", "TargetPlatformCapabilities"], [39, 0, 1, "", "TargetPlatformModel"]], "model_compression_toolkit.trainable_infrastructure": [[40, 0, 1, "", "BaseKerasTrainableQuantizer"], [40, 0, 1, "", "BasePytorchTrainableQuantizer"], [40, 0, 1, "", "TrainableQuantizerActivationConfig"], [40, 0, 1, "", "TrainableQuantizerWeightsConfig"]]}, "objtypes": {"0": "py:class", "1": "py:method", "2": "py:function", "3": "py:attribute", "4": "py:property"}, "objnames": {"0": ["py", "class", "Python class"], "1": ["py", "method", "Python method"], "2": ["py", "function", "Python function"], "3": ["py", "attribute", "Python attribute"], "4": ["py", "property", "Python property"]}, "titleterms": {"data": [0, 17, 25], "gener": [0, 17, 25], "configur": [0, 6, 42], "imagegranular": 0, "schedulertyp": 0, "batchnormalignemntlosstyp": 0, "outputlosstyp": 0, "datainittyp": 0, "bnlayerweightingtyp": 0, "imagepipelinetyp": 0, "imagenormalizationtyp": 0, "defaultdict": 1, "class": [1, 2, 3], "frameworkinfo": 2, "channelaxi": 2, "gradientptqconfig": [3, 13, 15], "gptqhessianscoresconfig": 3, "roundingtyp": 3, "mixedprecisionquantizationconfig": 4, "mpdistanceweight": 5, "prune": [6, 7, 11, 22, 29], "importancemetr": 6, "channelsfilteringstrategi": 6, "inform": [7, 19, 27], "quantizationconfig": 8, "quantizationerrormethod": 9, "resourceutil": 10, "api": [11, 43], "doc": 11, "ptq": 11, "gptq": 11, "qat": 11, "core": 11, "data_gener": 11, "export": [11, 35], "trainable_infrastructur": [11, 40], "set_log_fold": 11, "keras_load_quantized_model": 11, "target_platform": [11, 39], "indic": 11, "tabl": 11, "get": [12, 13, 14, 15, 16, 19, 27], "datagenerationconfig": [12, 14], "kera": [12, 13, 17, 18, 19, 20, 21, 22, 23, 24, 35], "model": [12, 13, 14, 15, 19, 20, 23, 24, 27, 30, 31, 35, 43], "pytorch": [14, 15, 25, 26, 27, 28, 29, 30, 31, 35], "targetplatformcap": [16, 39], "gradient": [18, 26], "base": [18, 26], "post": [18, 21, 26, 28], "train": [18, 21, 23, 24, 26, 28, 30, 31], "quantiz": [18, 20, 21, 23, 24, 26, 28, 30, 31, 35], "resourc": [19, 27], "util": [19, 27], "load": 20, "structur": [22, 29], "awar": [23, 24, 30, 31], "final": [23, 30], "init": [24, 31], "enabl": 32, "logger": 32, "coreconfig": 33, "debug_config": 34, "modul": [34, 35, 37, 38, 39, 40], "debugconfig": 34, "quantizationformat": 35, "kerasexportserializationformat": 35, "keras_export_model": 35, "tutori": 35, "serial": 35, "format": 35, "mctq": 35, "pytorchexportserializationformat": 35, "pytorch_export_model": 35, "onnx": 35, "opset": 35, "version": 35, "us": 35, "infer": 35, "layer": 36, "attribut": 36, "filter": [36, 37], "network_editor": 37, "editrul": 37, "action": 37, "qat_config": 38, "trainingmethod": 38, "qatconfig": 38, "quantizationmethod": 39, "opquantizationconfig": 39, "attributequantizationconfig": 39, "quantizationconfigopt": 39, "targetplatformmodel": 39, "operatorsset": 39, "fuse": 39, "operatorsetconcat": 39, "operationstolay": 39, "operationssettolay": 39, "layerfilterparam": 39, "basekerastrainablequant": 40, "basepytorchtrainablequant": 40, "trainablequantizerweightsconfig": 40, "trainablequantizeractivationconfig": 40, "visual": 42, "within": 42, "tensorboard": 42, "cosin": 42, "similar": 42, "comparison": 42, "mix": 42, "precis": 42, "bit": 42, "width": 42, "compress": 43, "toolkit": 43, "user": 43, "guid": 43, "overview": 43, "instal": 43, "support": 43, "featur": 43, "quickstart": 43, "document": 43, "technic": 43, "constraint": 43, "refer": 43}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 6, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx": 56}})
\ No newline at end of file
+Search.setIndex({"docnames": ["api/api_docs/classes/BitWidthConfig", "api/api_docs/classes/DataGenerationConfig", "api/api_docs/classes/DefaultDict", "api/api_docs/classes/FrameworkInfo", "api/api_docs/classes/GradientPTQConfig", "api/api_docs/classes/MixedPrecisionQuantizationConfig", "api/api_docs/classes/MpDistanceWeighting", "api/api_docs/classes/PruningConfig", "api/api_docs/classes/PruningInfo", "api/api_docs/classes/QuantizationConfig", "api/api_docs/classes/QuantizationErrorMethod", "api/api_docs/classes/ResourceUtilization", "api/api_docs/classes/XQuantConfig", "api/api_docs/index", "api/api_docs/methods/get_keras_data_generation_config", "api/api_docs/methods/get_keras_gptq_config", "api/api_docs/methods/get_pytorch_data_generation_config", "api/api_docs/methods/get_pytroch_gptq_config", "api/api_docs/methods/get_target_platform_capabilities", "api/api_docs/methods/keras_data_generation_experimental", "api/api_docs/methods/keras_gradient_post_training_quantization", "api/api_docs/methods/keras_kpi_data", "api/api_docs/methods/keras_load_quantizad_model", "api/api_docs/methods/keras_post_training_quantization", "api/api_docs/methods/keras_pruning_experimental", "api/api_docs/methods/keras_quantization_aware_training_finalize_experimental", "api/api_docs/methods/keras_quantization_aware_training_init_experimental", "api/api_docs/methods/pytorch_data_generation_experimental", "api/api_docs/methods/pytorch_gradient_post_training_quantization", "api/api_docs/methods/pytorch_kpi_data", "api/api_docs/methods/pytorch_post_training_quantization", "api/api_docs/methods/pytorch_pruning_experimental", "api/api_docs/methods/pytorch_quantization_aware_training_finalize_experimental", "api/api_docs/methods/pytorch_quantization_aware_training_init_experimental", "api/api_docs/methods/set_logger_path", "api/api_docs/methods/xquant_report_keras_experimental", "api/api_docs/methods/xquant_report_pytorch_experimental", "api/api_docs/modules/core_config", "api/api_docs/modules/debug_config", "api/api_docs/modules/exporter", "api/api_docs/modules/layer_filters", "api/api_docs/modules/network_editor", "api/api_docs/modules/qat_config", "api/api_docs/modules/target_platform", "api/api_docs/modules/trainable_infrastructure", "api/api_docs/notes/tpc_note", "guidelines/visualization", "index"], "filenames": ["api/api_docs/classes/BitWidthConfig.rst", "api/api_docs/classes/DataGenerationConfig.rst", "api/api_docs/classes/DefaultDict.rst", "api/api_docs/classes/FrameworkInfo.rst", "api/api_docs/classes/GradientPTQConfig.rst", "api/api_docs/classes/MixedPrecisionQuantizationConfig.rst", "api/api_docs/classes/MpDistanceWeighting.rst", "api/api_docs/classes/PruningConfig.rst", "api/api_docs/classes/PruningInfo.rst", "api/api_docs/classes/QuantizationConfig.rst", "api/api_docs/classes/QuantizationErrorMethod.rst", "api/api_docs/classes/ResourceUtilization.rst", "api/api_docs/classes/XQuantConfig.rst", "api/api_docs/index.rst", "api/api_docs/methods/get_keras_data_generation_config.rst", "api/api_docs/methods/get_keras_gptq_config.rst", "api/api_docs/methods/get_pytorch_data_generation_config.rst", "api/api_docs/methods/get_pytroch_gptq_config.rst", "api/api_docs/methods/get_target_platform_capabilities.rst", "api/api_docs/methods/keras_data_generation_experimental.rst", "api/api_docs/methods/keras_gradient_post_training_quantization.rst", "api/api_docs/methods/keras_kpi_data.rst", "api/api_docs/methods/keras_load_quantizad_model.rst", "api/api_docs/methods/keras_post_training_quantization.rst", "api/api_docs/methods/keras_pruning_experimental.rst", "api/api_docs/methods/keras_quantization_aware_training_finalize_experimental.rst", "api/api_docs/methods/keras_quantization_aware_training_init_experimental.rst", "api/api_docs/methods/pytorch_data_generation_experimental.rst", "api/api_docs/methods/pytorch_gradient_post_training_quantization.rst", "api/api_docs/methods/pytorch_kpi_data.rst", "api/api_docs/methods/pytorch_post_training_quantization.rst", "api/api_docs/methods/pytorch_pruning_experimental.rst", "api/api_docs/methods/pytorch_quantization_aware_training_finalize_experimental.rst", "api/api_docs/methods/pytorch_quantization_aware_training_init_experimental.rst", "api/api_docs/methods/set_logger_path.rst", "api/api_docs/methods/xquant_report_keras_experimental.rst", "api/api_docs/methods/xquant_report_pytorch_experimental.rst", "api/api_docs/modules/core_config.rst", "api/api_docs/modules/debug_config.rst", "api/api_docs/modules/exporter.rst", "api/api_docs/modules/layer_filters.rst", "api/api_docs/modules/network_editor.rst", "api/api_docs/modules/qat_config.rst", "api/api_docs/modules/target_platform.rst", "api/api_docs/modules/trainable_infrastructure.rst", "api/api_docs/notes/tpc_note.rst", "guidelines/visualization.rst", "index.rst"], "titles": ["BitWidthConfig", "Data Generation Configuration", "DefaultDict Class", "FrameworkInfo Class", "GradientPTQConfig Class", "MixedPrecisionQuantizationConfig", "MpDistanceWeighting", "Pruning Configuration", "Pruning Information", "QuantizationConfig", "QuantizationErrorMethod", "ResourceUtilization", "XQuant Configuration", "API Docs", "Get DataGenerationConfig for Keras Models", "Get GradientPTQConfig for Keras Models", "Get DataGenerationConfig for Pytorch Models", "Get GradientPTQConfig for Pytorch Models", "Get TargetPlatformCapabilities", "Keras Data Generation", "Keras Gradient Based Post Training Quantization", "Get Resource Utilization information for Keras Models", "Load Quantized Keras Model", "Keras Post Training Quantization", "Keras Structured Pruning", "Keras Quantization Aware Training Model Finalize", "Keras Quantization Aware Training Model Init", "Pytorch Data Generation", "Pytorch Gradient Based Post Training Quantization", "Get Resource Utilization information for PyTorch Models", "Pytorch Post Training Quantization", "Pytorch Structured Pruning", "PyTorch Quantization Aware Training Model Finalize", "PyTorch Quantization Aware Training Model Init", "Enable a Logger", "XQuant Report Keras", "XQuant Report Pytorch", "CoreConfig", "debug_config Module", "exporter Module", "Layer Attributes Filters", "network_editor Module", "qat_config Module", "target_platform Module", "trainable_infrastructure Module", "<no title>", "Visualization within TensorBoard", "Model Compression Toolkit User Guide"], "terms": {"class": [0, 1, 5, 6, 7, 8, 9, 10, 11, 12, 13, 22, 37, 38, 39, 40, 41, 42, 43, 44], "model_compression_toolkit": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46], "core": [0, 3, 5, 6, 9, 10, 11, 20, 21, 23, 24, 25, 26, 28, 29, 31, 32, 33, 37, 38, 41], "manual_activation_bit_width_selection_list": 0, "none": [0, 1, 2, 4, 5, 12, 15, 17, 18, 20, 22, 23, 26, 28, 30, 33, 37, 39, 41, 42, 43, 44], "manag": 0, "manual": [0, 13, 37], "bit": [0, 5, 11, 13, 20, 23, 25, 26, 33, 37, 39, 41, 43, 44, 47], "width": [0, 5, 13, 20, 23, 26, 27, 33, 37, 43, 47], "configur": [0, 4, 5, 9, 11, 13, 14, 15, 16, 17, 19, 20, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 44, 47], "A": [0, 3, 4, 5, 8, 13, 15, 17, 18, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 41, 42, 43, 47], "list": [0, 1, 3, 4, 5, 14, 15, 16, 17, 19, 27, 38, 41, 43, 47], "object": [0, 3, 4, 5, 7, 11, 14, 15, 16, 17, 18, 20, 21, 22, 23, 25, 26, 28, 29, 30, 33, 39, 41, 43, 44], "defin": [0, 4, 5, 6, 15, 17, 19, 20, 23, 24, 25, 26, 27, 28, 30, 31, 43, 44], "type": [0, 1, 2, 4, 5, 7, 8, 14, 15, 16, 17, 18, 19, 20, 21, 24, 25, 27, 29, 31, 35, 36, 39, 41, 43], "common": [0, 12], "quantiz": [0, 3, 4, 5, 9, 10, 11, 12, 13, 15, 17, 19, 21, 27, 29, 35, 36, 37, 38, 41, 42, 43, 44, 46, 47], "bit_width_config": [0, 37], "filter": [0, 1, 7, 43], "bit_width": 0, "encapsul": 0, "select": [0, 3, 7, 9, 10, 13, 37, 39, 42, 43, 44], "specif": [0, 3, 24, 31, 41, 46], "The": [0, 1, 3, 4, 5, 6, 7, 8, 9, 11, 12, 14, 15, 16, 17, 19, 20, 23, 24, 25, 26, 27, 28, 30, 31, 33, 35, 36, 39, 41, 43, 44, 46], "us": [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47], "node": [0, 26, 33, 41, 44, 46], "manipul": [0, 1], "basenodematch": 0, "appli": [0, 1, 13, 39, 40, 41, 43], "int": [0, 1, 4, 5, 7, 9, 14, 15, 16, 17, 19, 27, 43, 44], "data_gener": [1, 14, 16, 19, 27], "datagenerationconfig": [1, 13, 19, 27], "n_iter": [1, 14, 16, 19, 27], "optim": [1, 3, 4, 9, 11, 13, 14, 15, 16, 17, 18, 20, 21, 23, 26, 28, 29, 30, 33, 37, 43, 44, 45, 47], "data_gen_batch_s": [1, 14, 16, 19, 27], "initial_lr": [1, 14, 16], "output_loss_multipli": [1, 14, 16], "image_granular": [1, 14, 16], "allimag": [1, 16], "scheduler_typ": [1, 14, 16], "bn_alignment_loss_typ": [1, 14, 16], "output_loss_typ": [1, 14, 16], "data_init_typ": [1, 14, 16], "layer_weighting_typ": [1, 14, 16], "image_pipeline_typ": [1, 14, 16], "image_normalization_typ": [1, 14, 16], "extra_pixel": [1, 14, 16], "0": [1, 3, 4, 5, 8, 9, 14, 15, 16, 20, 23, 24, 25, 26, 31, 39, 44], "bn_layer_typ": [1, 14, 16], "last_layer_typ": [1, 16], "image_clip": [1, 14, 16], "true": [1, 4, 5, 9, 15, 16, 17, 22, 32, 33, 44], "initi": [1, 2, 4, 7, 12, 14, 16, 26, 33, 43, 44], "paramet": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44], "number": [1, 4, 5, 7, 14, 15, 16, 17, 19, 20, 23, 24, 26, 27, 28, 30, 31, 33, 43, 44], "iter": [1, 14, 16, 19, 20, 23, 26, 27, 28, 30, 33], "ani": [1, 2, 3, 4, 35, 36, 39, 40, 43, 44], "batch": [1, 4, 5, 14, 15, 16, 17, 19, 20, 23, 26, 27, 28, 30, 33], "size": [1, 4, 5, 14, 15, 16, 17, 19, 20, 23, 25, 26, 27, 33, 39, 42], "float": [1, 4, 5, 9, 14, 15, 16, 17, 20, 26, 28, 30, 33, 35, 36, 39, 43, 44, 46], "learn": [1, 14, 15, 16, 42], "rate": [1, 14, 15, 16], "multipli": [1, 14, 16], "output": [1, 3, 6, 9, 14, 16, 19, 20, 23, 26, 27, 28, 30, 32, 33, 43, 46, 47], "loss": [1, 4, 14, 15, 16, 17, 20, 24, 28, 30, 31], "granular": [1, 14, 16], "imag": [1, 5, 14, 16, 19, 20, 23, 26, 27, 28, 30, 33, 46], "default": [1, 2, 4, 7, 14, 15, 16, 18, 20, 23, 24, 28, 30, 31, 37, 39, 42, 43, 46], "schedul": [1, 14, 16, 38], "batchnorm": [1, 14, 16, 19, 20, 23, 26, 28, 30, 33], "align": [1, 14, 16], "layer": [1, 3, 5, 6, 8, 14, 16, 19, 20, 23, 24, 25, 26, 28, 30, 31, 32, 33, 38, 39, 41, 43, 44, 46], "weight": [1, 3, 4, 5, 6, 9, 11, 13, 14, 15, 16, 17, 20, 21, 24, 26, 28, 29, 30, 31, 32, 33, 39, 41, 42, 43, 44, 46], "pipelin": [1, 14, 16], "normal": [1, 4, 5, 14, 16], "union": [1, 14, 16, 19, 27, 43], "tupl": [1, 3, 14, 16, 19, 20, 24, 27, 31, 41, 43], "extra": [1, 14, 16], "pixel": [1, 14, 16], "add": [1, 3, 12, 14, 16, 22, 43, 44], "input": [1, 5, 9, 14, 16, 20, 23, 26, 28, 30, 33, 43], "bool": [1, 4, 5, 9, 14, 15, 16, 17, 38, 43, 44], "flag": 1, "enabl": [1, 5, 9, 13, 38, 44, 47], "clip": [1, 14, 16], "valu": [1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 20, 23, 24, 25, 26, 31, 39, 40, 41, 42, 43], "an": [1, 2, 3, 4, 8, 13, 20, 23, 26, 33, 35, 36, 39, 40, 41, 42, 43, 44, 47], "enum": [1, 3, 4, 5, 6, 7, 10, 42], "choos": [1, 4, 39], "depend": [1, 20, 23, 26, 28, 30, 33], "when": [1, 2, 3, 5, 7, 10, 11, 13, 15, 17, 20, 23, 25, 26, 38, 40, 42, 43, 44, 46], "imagewis": 1, "batchwis": [1, 14], "reduce_on_plateau": [1, 14], "reduceonplateau": 1, "step": [1, 42], "l2_squar": [1, 14, 16], "l2": 1, "squar": [1, 10], "No": 1, "negative_min_max_diff": [1, 16], "mean": [1, 4, 10, 46], "neg": [1, 9], "min": [1, 3, 9, 10, 20, 23, 26, 28, 30, 33, 46], "max": [1, 3, 9, 10, 20, 21, 23, 26, 28, 29, 30, 33, 46], "differ": [1, 5, 9, 13, 20, 23, 25, 26, 39, 43, 46], "inverse_min_max_diff": 1, "1": [1, 3, 4, 5, 8, 17, 19, 20, 21, 23, 24, 25, 27, 28, 29, 30, 31, 32, 39, 47], "regularized_min_max_diff": [1, 14], "regular": [1, 4, 15, 17], "gaussian": [1, 14, 16], "divers": 1, "averag": [1, 4, 5, 6, 14, 15, 16, 17], "same": [1, 39, 43], "per": [1, 3, 20, 23, 26, 33, 43, 44, 46], "first_layer_multipli": 1, "first": [1, 20, 23, 26, 28, 30, 33, 39, 46], "all": [1, 3, 4, 6, 9, 41, 44, 46], "other": [1, 15, 17], "grad": 1, "gradient": [1, 13, 30, 47], "base": [1, 4, 5, 10, 13, 15, 17, 19, 24, 27, 30, 31, 43, 44, 47], "smoothing_and_augment": [1, 14, 16], "smooth": [1, 42], "crop": 1, "flip": 1, "ident": 1, "do": [1, 46], "transform": [1, 20, 23, 26, 28, 30, 33], "torchvis": [1, 16, 28, 29, 30, 31, 32, 33, 39], "keras_appl": [1, 14], "imagenet": 1, "no_norm": 1, "known_dict": 2, "default_valu": 2, "dictionari": [2, 3, 4, 12, 25, 26, 35, 36, 39, 41, 42, 44], "It": [2, 12, 43, 44], "wrap": [2, 3, 9, 22, 26, 33, 40, 43, 44], "given": [2, 11, 20, 21, 23, 26, 28, 29, 30, 33], "return": [2, 4, 5, 8, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 39], "its": [2, 3, 9, 22, 24, 31, 40, 43, 46], "request": 2, "If": [2, 3, 5, 20, 23, 25, 26, 28, 30, 37, 39, 40, 43], "kei": [2, 6, 12, 24, 31, 40], "present": [2, 46], "pass": [2, 3, 9, 15, 17, 20, 23, 24, 25, 26, 28, 30, 31, 32, 33, 41], "gener": [2, 12, 13, 14, 16, 20, 21, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 35, 36, 43, 46, 47], "provid": [2, 5, 19, 24, 27, 31, 39, 43, 44, 46], "empti": 2, "get": [2, 3, 4, 5, 13, 20, 23, 25, 26, 28, 30, 32, 33, 43, 46], "inner": 2, "default_factori": 2, "exist": [2, 41], "wa": [2, 39], "follow": [3, 4, 44, 46], "api": [3, 4, 23, 26, 33], "can": [3, 4, 6, 9, 13, 15, 17, 18, 19, 21, 24, 27, 29, 31, 38, 39, 41, 43, 44, 46, 47], "mct": [3, 9, 13, 15, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 37, 38, 39, 41, 43, 44, 45, 46, 47], "framework": [3, 18, 43, 44], "relat": [3, 8, 13, 43], "inform": [3, 4, 13, 15, 17, 18, 20, 23, 24, 26, 28, 30, 31, 33, 38, 43, 44, 45], "network": [3, 7, 9, 32, 37, 38, 41, 46, 47], "activation_quantizer_map": 3, "kernel_channels_map": 3, "activation_min_max_map": 3, "layer_min_max_map": 3, "kernel_ops_attributes_map": 3, "out_channel_axis_map": 3, "about": [3, 4, 8, 13, 15, 17, 20, 23, 25, 26, 39, 43, 44], "librari": [3, 9], "need": [3, 20, 23, 26, 28, 30, 33, 39, 40, 44], "model": [3, 4, 5, 8, 9, 11, 12, 13, 18, 19, 20, 23, 24, 27, 28, 30, 31, 35, 36, 37, 41, 42, 43, 44, 46], "hold": [3, 37, 40, 43], "how": [3, 7, 20, 21, 23, 26, 28, 30, 33, 39, 44, 47], "thei": 3, "should": [3, 4, 7, 9, 11, 15, 17, 20, 21, 23, 24, 25, 26, 28, 30, 31, 33, 39, 43, 46], "multipl": [3, 5, 43], "map": [3, 43], "kernel": [3, 11, 20, 23, 25, 26, 41, 44], "channel": [3, 7, 8, 9, 13, 24, 31, 43, 44, 46], "indic": [3, 8, 24, 31, 43], "etc": [3, 11, 13, 20, 23, 26, 28, 30, 33, 46], "ar": [3, 4, 12, 18, 20, 23, 24, 26, 28, 30, 31, 33, 39, 43, 44, 45, 46], "divid": 3, "three": 3, "group": [3, 7, 24, 31, 43], "kernel_op": 3, "have": [3, 39, 40, 46], "coeffici": [3, 11, 20, 23, 25, 26, 28, 30, 43, 44], "e": [3, 20, 23, 26, 28, 30, 33, 47], "g": [3, 20, 23, 26, 28, 30, 33], "conv2d": [3, 11, 19, 20, 23, 25, 26, 27, 41, 43], "dens": [3, 19], "activation_op": 3, "relu": [3, 9], "no_quantization_op": 3, "reshap": [3, 19], "transpos": 3, "dict": [3, 4, 8, 12, 35, 36, 39, 43, 44], "quantizationmethod": [3, 44], "callabl": [3, 4, 5, 12, 15, 17, 20, 21, 23, 24, 26, 28, 29, 30, 31, 33, 35, 36, 39, 40], "from": [3, 4, 9, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 39, 41, 43, 44, 45, 46, 47], "function": [3, 4, 5, 6, 13, 14, 15, 16, 17, 19, 22, 24, 27, 31, 41, 43, 44], "defaultdict": [3, 13, 43], "out": [3, 7], "str": [3, 12, 35, 36, 39, 40, 43], "activ": [3, 9, 11, 20, 21, 23, 26, 28, 29, 30, 33, 39, 41, 42, 43, 44, 46], "oper": [3, 11, 38, 40, 43], "attirbut": 3, "s": [3, 7, 9, 11, 20, 23, 24, 25, 26, 28, 30, 31, 33, 39, 40, 41, 43, 44, 47], "comput": [3, 4, 5, 6, 10, 12, 13, 15, 17, 21, 29, 35, 38, 46], "statist": [3, 20, 23, 26, 28, 30, 33, 46], "exampl": [3, 4, 9, 11, 15, 17, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 41, 43, 44, 47], "kera": [3, 4, 11, 13, 41, 44, 47], "we": [3, 19, 20, 23, 24, 26, 27, 31, 33, 39, 41, 43, 44, 46], "want": 3, "onli": [3, 4, 5, 6, 7, 11, 20, 23, 25, 26, 39], "set": [3, 6, 12, 13, 15, 19, 20, 23, 24, 25, 26, 27, 28, 30, 31, 33, 34, 35, 36, 41, 43, 44, 46], "know": 3, "3": [3, 15, 17, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 39, 44], "2": [3, 9, 15, 19, 27, 43, 44, 47], "respectivli": 3, "import": [3, 7, 8, 9, 13, 15, 17, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 39, 41, 44, 46], "tensorflow": [3, 13, 15, 18, 19, 20, 21, 23, 24, 25, 26, 39, 41, 43, 47], "tf": [3, 15, 19, 22, 25, 26], "Then": [3, 20, 23, 26, 28, 30, 33, 41, 46], "creat": [3, 4, 9, 13, 14, 15, 16, 17, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 39, 40, 41], "rang": [3, 20, 23, 26, 28, 30, 33], "advanc": 3, "save": [3, 12, 26, 34, 39, 44], "collect": [3, 20, 23, 26, 28, 30, 33, 35, 36, 46], "time": [3, 7, 44], "For": [3, 9, 18, 19, 20, 23, 25, 26, 27, 33, 39, 43, 44, 45, 46, 47], "softmax": [3, 9], "format": [3, 13], "index": [3, 13], "axi": [3, 44], "nhwc": 3, "last": [3, 6], "nchw": 3, "instanc": [4, 13, 15, 17, 41, 43, 46], "which": [4, 7, 9, 39, 40, 41, 43, 44], "post": [4, 13, 24, 26, 31, 33, 47], "train": [4, 13, 42, 44, 47], "knowledg": [4, 47], "distil": [4, 47], "teacher": 4, "student": 4, "gptq": [4, 15, 17, 20, 28], "n_epoch": [4, 15, 17, 20], "optimizer_rest": [4, 15, 17], "log_funct": [4, 15, 17], "train_bia": 4, "rounding_typ": 4, "softquant": 4, "use_hessian_based_weight": [4, 15, 17], "optimizer_quantization_paramet": 4, "optimizer_bia": 4, "regularization_factor": [4, 15, 17], "reg_default": [4, 15, 17], "hessian_weights_config": 4, "gptq_quantizer_params_overrid": 4, "gradientptq": [4, 13], "repres": [4, 5, 11, 15, 17, 20, 23, 24, 25, 26, 28, 30, 31, 32, 33, 35, 36, 39, 41, 43, 46], "dataset": [4, 15, 17, 20, 21, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 35, 36, 39, 46], "epoch": [4, 15, 17], "bia": [4, 9, 11, 15, 17, 20, 23, 25, 26], "accept": [4, 15, 17, 43], "6": [4, 27], "tensor": [4, 5, 12, 15, 17, 19, 21, 27, 29, 43, 44, 46, 47], "1st": [4, 15, 17], "2nd": [4, 15, 17], "3rd": [4, 15, 17], "4th": [4, 15, 17], "5th": 4, "6th": 4, "std": 4, "accordingli": [4, 43], "see": [4, 47], "multiple_tensors_mse_loss": [4, 17], "log": [4, 12, 13, 15, 17, 34, 46], "process": [4, 5, 9, 13, 14, 15, 16, 17, 18, 19, 24, 27, 31, 37, 38, 41, 42, 43, 45, 46], "whether": [4, 5, 8, 9, 14, 15, 16, 17, 22, 38, 39, 43, 44], "updat": 4, "dure": [4, 9, 13, 14, 15, 16, 17, 18, 35, 36, 39, 41, 43, 44, 45, 46], "round": 4, "hessian": [4, 5, 7, 10, 15, 17, 24, 31, 47], "overrid": [4, 42], "rest": 4, "point": [4, 5, 15, 17, 20, 28, 30, 35, 36, 43, 46], "factor": [4, 5, 10, 15, 17], "includ": [4, 8, 11, 20, 23, 26, 28, 30, 33, 42], "necessari": [4, 39, 44], "argument": [4, 6, 43], "run": [4, 15, 17, 39, 46], "score": [4, 5, 7, 8, 9, 10, 24, 31], "instanti": [4, 9, 42], "hessians_num_sampl": 4, "gptq_hessian_num_sampl": 4, "norm_scor": [4, 5], "log_norm": 4, "scale_log_norm": 4, "fals": [4, 5, 9, 14, 38, 43], "hessian_batch_s": [4, 5, 15, 17], "act_hessian_default_batch_s": [4, 5, 15, 17], "metric": [4, 5, 6, 7, 11, 12, 13, 35, 36], "gptqhessianweightsconfig": 4, "sampl": [4, 46], "between": [4, 5, 9, 12, 20, 28, 30, 43, 46], "scale": [4, 5, 9, 43], "final": [4, 5, 13, 19, 27, 41, 46, 47], "vector": [4, 46], "method": [4, 5, 6, 7, 9, 10, 13, 24, 31, 39, 41, 42, 43, 44], "ste": [4, 42], "straight": [4, 42], "through": [4, 19, 24, 27, 42], "estim": [4, 42], "mix": [5, 6, 11, 13, 20, 21, 23, 25, 26, 28, 29, 30, 33, 37, 43, 47], "precis": [5, 6, 11, 13, 20, 21, 23, 24, 25, 26, 28, 29, 30, 31, 33, 37, 43, 47], "compute_distance_fn": 5, "distance_weighting_method": 5, "mpdistanceweight": [5, 13], "avg": [5, 6], "num_of_imag": [5, 20, 23], "mp_default_num_sampl": 5, "configuration_overwrit": 5, "num_interest_points_factor": 5, "use_hessian_based_scor": 5, "refine_mp_solut": 5, "metric_normalization_threshold": 5, "1e10": 5, "distanc": [5, 6, 13], "two": [5, 12, 20, 23, 26, 28, 30, 33, 39, 43, 46], "pre": 5, "each": [5, 7, 8, 20, 23, 24, 26, 28, 30, 31, 33, 41, 43, 44, 46], "among": 5, "sensit": [5, 7, 24, 31], "evalu": [5, 35, 36], "compar": [5, 20, 28, 30, 46], "integ": [5, 39, 43], "overwrit": 5, "predefin": [5, 7], "one": [5, 9, 40, 46], "zero": [5, 43], "percentag": 5, "reduc": [5, 24, 31], "interest": 5, "calcul": [5, 7, 13, 20, 21, 23, 24, 26, 28, 29, 30, 31, 33], "try": 5, "improv": [5, 24, 31], "greedi": [5, 7], "algorithm": 5, "search": [5, 9, 11, 13, 20, 23, 26, 28, 30, 33], "increas": 5, "threshold": [5, 9, 10, 20, 23, 26, 28, 30, 33, 43, 44], "check": [5, 39, 40, 41], "In": [5, 19, 20, 23, 26, 27, 28, 30, 33, 39, 40], "case": 5, "larger": 5, "than": [5, 40], "thi": [5, 8, 10, 11, 13, 19, 20, 22, 23, 24, 25, 26, 27, 28, 30, 31, 33, 39, 43, 44, 47], "prevent": 5, "numer": 5, "issu": [5, 39], "call": [6, 21, 29, 43, 46], "take": [6, 23, 26, 33, 47], "last_lay": 6, "pruningconfig": [7, 13, 24, 31], "num_score_approxim": [7, 24, 31], "pruning_num_score_approxim": 7, "importance_metr": 7, "lfh": [7, 24, 31], "channels_filtering_strategi": 7, "specifi": [7, 14, 16, 19, 22, 24, 27, 31, 39], "neural": [7, 47], "approxim": [7, 24, 31], "perform": [7, 11, 19, 24, 27, 31], "strategi": [7, 24, 31], "constant": [7, 41, 44], "label": [7, 24, 31, 43, 47], "free": [7, 19, 24, 27, 31, 47], "approach": 7, "determin": [7, 24, 31], "info": [7, 34], "measur": [7, 11, 12, 46], "least": 7, "up": [7, 19, 27, 43, 46], "allow": [7, 12, 19, 27, 39], "resourc": [7, 11, 13, 20, 23, 24, 25, 26, 31, 32, 33, 46], "util": [7, 11, 13, 20, 23, 24, 25, 26, 31, 32, 33, 44], "limit": [7, 20, 23, 25, 26, 28, 30, 33], "now": [7, 18, 33, 39, 43, 44, 45, 46], "weights_memori": [7, 11, 20, 23, 24, 26, 31, 33], "consid": [7, 14, 16, 24, 31, 43], "pruninginfo": [8, 13, 24, 31], "pruning_mask": 8, "importance_scor": 8, "store": [8, 44], "mask": 8, "act": 8, "contain": [8, 13, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 43, 44], "access": 8, "metadata": [8, 43], "basenod": 8, "np": [8, 11, 20, 21, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 39], "ndarrai": 8, "arrai": 8, "where": [8, 12, 39, 41, 43, 46], "element": [8, 43], "correspond": 8, "neuron": 8, "ha": [8, 39, 40, 41], "been": 8, "kept": [8, 26, 33], "quantifi": [8, 46], "signific": 8, "properti": 8, "activation_error_method": 9, "quantizationerrormethod": [9, 13], "mse": [9, 10, 46], "weights_error_method": 9, "relu_bound_to_power_of_2": 9, "weights_bias_correct": 9, "weights_second_moment_correct": 9, "input_sc": 9, "softmax_shift": 9, "shift_negative_activation_correct": 9, "activation_channel_equ": 9, "z_threshold": 9, "math": 9, "inf": [9, 11], "min_threshold": [9, 44], "l_p_valu": 9, "linear_collaps": 9, "residual_collaps": 9, "shift_negative_ratio": 9, "05": 9, "shift_negative_threshold_recalcul": 9, "shift_negative_params_search": 9, "concat_threshold_upd": 9, "accord": [9, 11, 13, 20, 21, 23, 24, 26, 28, 29, 30, 31, 33, 39, 40, 43], "power": [9, 20, 23, 26, 28, 30, 33, 43], "correct": 9, "second_mo": 9, "shift": 9, "equal": [9, 40], "z": 9, "outlier": 9, "remov": [9, 24, 31, 32], "minimum": [9, 44], "p": [9, 31], "l_p": 9, "norm": [9, 10, 46], "block_collaps": 9, "collaps": 9, "block": [9, 44, 46], "anoth": 9, "ratio": 9, "minim": [9, 10, 20, 24, 28, 30, 31], "non": [9, 43], "linear": [9, 27], "abov": 9, "occur": 9, "recomput": 9, "after": [9, 13, 20, 22, 23, 26, 33, 47], "One": [9, 46], "mai": [9, 19, 20, 23, 26, 27, 28, 30, 33, 40, 46], "done": [9, 46], "noclip": [9, 10], "qc": 9, "instans": 9, "keras_post_training_quant": [9, 13, 15, 23, 39, 41, 46], "error": 10, "nois": 10, "mae": [10, 46], "absolut": 10, "kl": [10, 46], "diverg": [10, 46], "make": 10, "signal": 10, "distribut": 10, "similar": [10, 12, 35, 36, 38, 47], "possibl": [10, 20, 23, 26, 33, 43, 46], "lp": 10, "hmse": 10, "more": [10, 18, 23, 24, 26, 31, 33, 39, 43, 45, 46], "valuabl": 10, "induc": 10, "prune": [11, 47], "activation_memori": 11, "total_memori": 11, "bop": 11, "memori": [11, 24, 31, 46], "byte": [11, 20, 23, 24, 26, 31, 33, 46], "note": [11, 20, 23, 25, 26], "affect": [11, 20, 23, 25, 26], "while": [11, 20, 23, 25, 26, 33, 43], "sum": [11, 21, 24, 29, 31], "total": [11, 21, 29], "xquant_config": [12, 35, 36], "xquantconfig": [12, 13, 35, 36], "report_dir": 12, "custom_similarity_metr": 12, "report": [12, 13], "dir": [12, 46], "explain": [12, 13, 35, 36, 44], "directori": [12, 13, 34], "custom": [12, 19, 22, 26, 27, 39], "name": [12, 18, 39, 41, 43, 46], "implement": [12, 44], "init": [13, 41, 47], "modul": [13, 27, 28, 29, 30, 31, 36], "pytorch_post_training_quant": [13, 17, 30, 39], "pytorch": [13, 18, 43, 44, 47], "pytorch_gradient_post_training_quant": [13, 28], "get_pytorch_gptq_config": [13, 17], "gradientptqconfig": [13, 20, 28], "keras_gradient_post_training_quant": [13, 20], "get_keras_gptq_config": [13, 15, 20], "option": [13, 22, 23, 24, 26, 28, 31, 33, 39, 43], "pytorch_quantization_aware_training_init_experiment": [13, 32, 33], "prepar": [13, 26, 33], "awar": [13, 42, 44, 47], "experiment": [13, 19, 27, 47], "pytorch_quantization_aware_training_finalize_experiment": [13, 32], "without": 13, "quantizewrapp": [13, 26, 32, 33], "keras_quantization_aware_training_init_experiment": [13, 25, 26], "keras_quantization_aware_training_finalize_experiment": [13, 25], "qat_config": [13, 26, 33], "coreconfig": [13, 20, 21, 23, 25, 26, 28, 29, 30, 32, 33], "entir": 13, "quantizationconfig": [13, 37], "mixedprecisionquantizationconfig": [13, 20, 21, 23, 25, 26, 37], "bitwidthconfig": [13, 37], "resourceutil": [13, 20, 21, 23, 24, 25, 26, 28, 29, 30, 31, 33], "network_editor": [13, 38], "modifi": [13, 41], "troubleshoot": 13, "pytorch_resource_utilization_data": [13, 29], "data": [13, 14, 16, 21, 24, 29, 31, 35, 36, 39, 43, 46, 47], "desir": [13, 20, 21, 23, 25, 26, 28, 29, 30, 33], "target": [13, 18, 20, 21, 23, 24, 25, 26, 29, 31, 32, 33], "keras_resource_utilization_data": [13, 21], "pytorch_data_generation_experiment": [13, 27], "get_pytorch_data_generation_config": [13, 16, 27], "load": [13, 25, 26, 39, 44], "keras_data_generation_experiment": [13, 19], "get_keras_data_generation_config": [13, 14, 19], "pytorch_pruning_experiment": [13, 31], "structur": [13, 47], "keras_pruning_experiment": [13, 24], "xquant_report_pytorch_experiment": [13, 36], "xquant_report_keras_experiment": [13, 35], "serial": 13, "abstract": [13, 44], "hardwar": [13, 18, 24, 31, 43, 44, 47], "orient": [13, 44], "tool": [13, 44], "logger": [13, 38, 46], "path": [13, 22, 34, 39, 46], "infer": [13, 18, 25, 32, 43, 44], "get_target_platform_cap": [13, 18, 43], "platform": [13, 18, 20, 23, 24, 25, 26, 29, 31], "targetplatformcap": [13, 20, 21, 23, 24, 26, 28, 29, 30, 31, 33], "page": 13, "document": [13, 23, 26, 33], "auto": 13, "sphinx": 13, "default_n_it": [14, 16], "adam": [14, 15, 17], "default_data_gen_b": [14, 16], "default_keras_initial_lr": 14, "default_keras_output_loss_multipli": 14, "schedulertyp": [14, 16], "batchnormalignemntlosstyp": [14, 16], "outputlosstyp": [14, 16], "datainittyp": [14, 16], "bnlayerweightingtyp": [14, 16], "imagegranular": [14, 16], "imagepipelinetyp": [14, 16], "imagenormalizationtyp": [14, 16], "default_keras_extra_pixel": 14, "learning_r": 15, "lr_default": [15, 17], "lr_rest_default": [15, 17], "gptqmultipletensorsloss": 15, "gradientptqconfigv2": [15, 17], "fine": [15, 17, 24, 25, 26, 31, 32, 33], "tune": [15, 17, 24, 25, 26, 31, 32], "optimizerv2": 15, "auxiliri": [15, 17], "variabl": [15, 17], "4": [15, 17, 19, 20, 23, 24, 26, 27, 28, 30, 31, 33], "5": [15, 17, 24, 31], "gptq_conf": [15, 17, 28], "nadam": 15, "order": [15, 17, 20, 23, 26, 33, 38, 39, 40], "radam": 16, "default_pytorch_initial_lr": 16, "default_pytorch_output_loss_multipli": 16, "reduce_on_plateau_with_reset": 16, "default_pytorch_extra_pixel": 16, "default_pytorch_bn_layer_typ": 16, "default_pytorch_last_layer_typ": 16, "torch": [17, 27, 36, 39, 47], "lr": 17, "dummi": 17, "param": [17, 38, 41, 44], "fw_name": 18, "target_platform_nam": 18, "target_platform_vers": 18, "support": [18, 39], "both": [18, 20, 23, 28, 30, 32, 44, 46], "them": [18, 43, 46], "imx500": [18, 39, 43], "tflite": [18, 39, 43], "qnnpack": [18, 43], "capabl": [18, 24, 29, 31], "version": [18, 19, 27, 43, 47], "attach": [18, 43], "some": [18, 19, 27, 39, 43, 45, 46], "field": [18, 40, 43, 45], "opquantizationconfig": [18, 45], "ignor": [18, 43, 45], "quantization_preserv": [18, 43, 45], "fixed_scal": [18, 43, 45], "fixed_zero_point": [18, 43, 45], "futur": [18, 19, 27, 43, 45], "n_imag": [19, 27], "output_image_s": [19, 27], "data_generation_config": [19, 27], "ll": [19, 27], "walk": [19, 27], "simpl": [19, 27], "involv": [19, 24, 27, 31], "start": [19, 27, 39, 44, 47], "compress": [19, 24, 27, 28, 31], "toolkit": [19, 27, 28], "sequenti": [19, 27], "flatten": [19, 27], "next": [19, 27, 39, 40], "input_shap": 19, "8": [19, 20, 23, 25, 26, 27, 39, 44], "10": [19, 20, 23, 26, 27, 28, 30, 33], "simplic": [19, 27], "config": [19, 20, 23, 24, 25, 26, 27, 28, 31, 32, 33, 37, 41, 43, 44], "notic": [19, 24, 27, 31, 39], "chang": [19, 27, 39, 41, 46], "generated_imag": [19, 27], "variou": [19, 27, 46], "purpos": [19, 27, 38], "in_model": [20, 21, 23, 25, 26, 29, 32, 33], "representative_data_gen": [20, 21, 23, 24, 26, 28, 29, 30, 31, 33, 39], "gptq_config": [20, 28, 30], "gptq_representative_data_gen": [20, 28], "target_resource_util": [20, 23, 24, 26, 28, 30, 31, 33], "core_config": [20, 21, 23, 25, 26, 28, 29, 30, 32, 33], "target_platform_cap": [20, 21, 23, 24, 26, 28, 29, 30, 31, 33, 44], "default_keras_tpc": [20, 23, 24, 26], "symmetr": [20, 23, 26, 28, 30, 33, 42, 43, 44], "constraint": [20, 23, 24, 28, 30, 31], "sever": [20, 23, 26, 28, 30, 33, 46], "fold": [20, 23, 26, 28, 30, 33], "preced": [20, 23, 26, 28, 30, 33], "histogram": [20, 23, 26, 28, 30, 33, 46], "being": [20, 23, 26, 28, 30, 33, 43, 44], "ilp": [20, 23, 26, 33], "solver": [20, 23, 26, 33], "find": [20, 23, 26, 33], "maxim": [20, 23, 26, 33], "observ": [20, 28, 30, 43, 46], "calibr": [20, 21, 23, 26, 28, 29, 30, 33], "user": [20, 23, 25, 26, 28, 30, 32, 33], "handl": [20, 23, 26, 28, 30, 33], "applic": [20, 21, 23, 24, 25, 26, 39], "mobilenet": [20, 21], "random": [20, 21, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 39], "requir": [20, 23, 26, 28, 30, 33, 44, 46], "num_calibration_batch": [20, 23, 26, 28, 30, 33], "numpi": [20, 21, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 39], "def": [20, 21, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 39], "repr_datagen": [20, 21, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33], "_": [20, 23, 26, 28, 30, 33, 39], "yield": [20, 21, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 39], "224": [20, 21, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 39], "bitwidth": [20, 23, 25, 26], "candid": [20, 23, 25, 26, 41], "mixed_precision_config": [20, 21, 23, 25, 26, 37], "our": [20, 23, 25, 26, 33, 47], "ru": [20, 23, 25, 26], "count_param": [20, 23, 24, 25, 26], "75": [20, 23, 25, 26], "quantized_model": [20, 23, 25, 26, 32, 33, 35, 36], "quantization_info": [20, 23, 25, 26, 28, 30, 32, 33], "userinform": 20, "keras_default_tpc": 21, "build": [21, 29, 44, 47], "graph": [21, 29, 41, 46], "hw": 21, "ru_data": [21, 29], "keras_load_quantized_model": 22, "filepath": 22, "custom_object": [22, 25, 26], "compil": 22, "trainabl": [22, 25, 44], "file": [22, 25, 26, 34, 39], "addit": [22, 39], "boolean": 22, "saved_model": 22, "loadopt": 22, "savedmodel": 22, "ptq": [23, 30, 39], "mobilenet_v2": [23, 25, 26, 28, 29, 30, 32, 33, 39], "mobilenetv2": [23, 25, 26, 39, 46], "pleas": [23, 26, 33, 39, 47], "look": [23, 26, 33, 43, 47], "pruning_config": [24, 31], "meet": [24, 31], "simd": [24, 31, 43], "tpc": [24, 31, 43], "By": [24, 28, 30, 31, 39, 46], "assess": [24, 31], "togeth": [24, 31], "friendli": [24, 31, 47], "architectur": [24, 31], "analyz": [24, 31], "identifi": [24, 31], "impact": [24, 31], "must": [24, 31, 43], "retrain": [24, 31], "recov": [24, 31], "origin": [24, 35, 36, 46], "achiev": 24, "analysi": [24, 31], "standard": [24, 31, 42], "associ": [24, 31, 43], "resnet50": [24, 31, 39], "here": [24, 31, 39, 43, 47], "aim": [24, 31], "footprint": [24, 31], "50": [24, 31], "assum": [24, 31], "float32": [24, 31, 39], "thu": [24, 31, 46], "dense_nparam": [24, 31], "l": [24, 47], "higher": [24, 31], "also": [24, 31, 47], "extend": [24, 31], "durat": [24, 31], "pruned_model": [24, 31], "pruning_info": [24, 31], "qat": [25, 26, 32, 33, 42], "convert": [25, 32], "replac": 25, "trainablequant": 25, "inferablequant": [25, 32], "load_model": [25, 26], "model_fil": [25, 26], "qatconfig": [26, 33], "built": [26, 33, 44], "fake_qu": [26, 33], "onlin": [26, 33], "wrapper": [26, 32, 33, 44], "ker": 26, "hight": 27, "nn": [27, 36], "batchnorm2d": 27, "default_pytorch_tpc": [28, 30, 31, 33], "quantized_modul": [28, 30], "pytorch_default_tpc": 29, "in_modul": 30, "clibrat": 30, "default_pyotrch_tpc": 31, "resnet50_weight": 31, "imagenet1k_v1": 31, "numel": 31, "state_dict": 31, "pretrain": [32, 33], "keep": [32, 47], "readi": 32, "tun": 33, "set_log_fold": [34, 46], "folder": 34, "level": 34, "verbos": 34, "facade_xquant_report": [35, 36], "float_model": [35, 36, 39], "repr_dataset": [35, 36, 39], "validation_dataset": [35, 36], "valid": [35, 36, 44], "quantization_config": [37, 44], "debug_config": 37, "debugconfig": 37, "debug": [37, 38], "edit": [37, 38, 41], "analyze_similar": 38, "simulate_schedul": 38, "plot": [38, 46], "figur": [38, 46], "within": [38, 47], "tensorboard": [38, 47], "pinpoint": 38, "problemat": 38, "editrul": 38, "rule": [38, 41], "action": 38, "simul": 38, "behaviour": 38, "cut": 38, "detail": [39, 43], "refer": 39, "project": [39, 47], "github": [39, 47], "readm": 39, "you": [39, 46, 47], "question": 39, "open": [39, 46, 47], "repositori": 39, "fakely_qu": 39, "int8": 39, "mct_quantiz": 39, "via": [39, 47], "save_model_path": 39, "is_layer_exportable_fn": 39, "is_keras_layer_export": 39, "serialization_format": 39, "quantization_format": 39, "To": [39, 46], "demonstr": [39, 43], "quantized_exportable_model": 39, "lambda": 39, "dtype": 39, "avail": [39, 47], "tempfil": 39, "keras_file_path": 39, "mkstemp": 39, "torchscript": 39, "is_pytorch_layer_export": 39, "onnx_opset_vers": 39, "default_onnx_opset_vers": 39, "current": 39, "fake": 39, "trace": 39, "mandatori": 39, "quant": 39, "your": 39, "packag": [39, 44, 47], "so": [39, 43], "part": 39, "skip": 39, "plan": 39, "pip": [39, 47], "instal": 39, "q": 39, "onnxruntim": 39, "extens": 39, "let": 39, "There": [39, 46], "onnx_file_path": 39, "model_format_onnx_mctq": 39, "15": 39, "16": 39, "get_ort_session_opt": 39, "session": 39, "creation": 39, "slowli": 39, "suffer": 39, "longer": 39, "latenc": 39, "howev": 39, "ort": 39, "sess": 39, "inferencesess": 39, "cudaexecutionprovid": 39, "cpuexecutionprovid": 39, "_input_data": 39, "astyp": 39, "_model_output_nam": 39, "get_output": 39, "_model_input_nam": 39, "get_input": 39, "predict": 39, "layerfilterparam": 40, "target_platform": [40, 44], "attributefilt": [40, 43], "attr": 40, "op": [40, 43], "match": [40, 41, 43], "regard": 40, "eq": 40, "noteq": 40, "greater": 40, "greatereq": 40, "smaller": 40, "smallereq": 40, "attribut": [41, 43, 44], "9": 41, "er_list": 41, "nodetypefilt": 41, "changecandidatesweightsquantconfigattr": 41, "attr_nam": 41, "weights_n_bit": [41, 43, 44], "new": 41, "node_typ": 41, "nodenamefilt": 41, "node_nam": 41, "nodenamescopefilt": 41, "node_name_scop": 41, "string": 41, "changefinalweightsquantconfigattr": 41, "kwarg": [41, 43], "attr_valu": 41, "changefinalactivationquantconfigattr": 41, "changecandidatesactivationquantconfigattr": 41, "changequantizationparamfunct": 41, "activation_quantization_params_fn": 41, "weights_quantization_params_fn": 41, "changefinalweightsquantizationmethod": 41, "weights_quantization_method": [41, 43, 44], "changecandidatesweightsquantizationmethod": 41, "changecandidatesactivationquantizationmethod": 41, "activation_quantization_method": [41, 43, 44], "changequantizationmethod": 41, "poweroftwo": 42, "uniform": [42, 43, 44], "dqa": 42, "dnn": 42, "attent": 42, "introduc": 42, "lsq": 42, "http": [42, 47], "arxiv": [42, 47], "org": 42, "pdf": 42, "1902": 42, "08153": 42, "weight_training_method": 42, "activation_training_method": 42, "weight_quantizer_params_overrid": 42, "activation_quantizer_params_overrid": 42, "backend": 43, "address": 43, "shortli": 43, "diagram": 43, "main": [43, 46], "compon": [43, 44], "power_of_two": 43, "lut_pot_quant": 43, "lookup": 43, "tabl": 43, "lut_sym_quant": 43, "default_weight_attr_config": 43, "attr_weights_configs_map": 43, "activation_n_bit": [43, 44], "supported_input_activation_n_bit": 43, "enable_activation_quant": [43, 44], "simd_siz": 43, "signed": 43, "singl": 43, "instruct": 43, "fetch": 43, "simultan": 43, "float_bitwidth": 43, "weights_per_channel_threshold": [43, 44], "enable_weights_quant": [43, 44], "lut_values_bitwidth": 43, "quantization_config_list": 43, "base_config": 43, "gather": [43, 46], "fallback": 43, "manner": 43, "default_qco": 43, "add_metadata": 43, "default_tp_model": 43, "definit": 43, "pattern": 43, "combin": 43, "qc_option": 43, "uniqu": 43, "operator_groups_list": 43, "treat": 43, "henc": 43, "either": 43, "opset": 43, "concaten": 43, "similarli": 43, "place": 43, "like": 43, "op_sets_to_lay": 43, "op_set_nam": 43, "attr_map": 43, "filterlayerparam": 43, "condit": 43, "satisfi": 43, "keyword": 43, "usag": 43, "tp_model": 43, "infrastructur": 44, "propos": 44, "emul": 44, "holder": 44, "upon": 44, "learnabl": 44, "basic": 44, "get_config": 44, "from_config": 44, "weights_quantization_param": 44, "weights_channels_axi": 44, "weights_quantization_candid": 44, "activation_quantization_param": 44, "activation_quantization_candid": 44, "phase": 46, "displai": 46, "ui": 46, "writer": 46, "stage": 46, "launch": 46, "logdir": 46, "seen": 46, "under": 46, "tab": 46, "click": 46, "deeper": 46, "view": 46, "tag": 46, "show": 46, "These": 46, "scalar": 46, "were": 46, "wai": [46, 47], "mathemat": 46, "divis": 46, "dot": 46, "product": 46, "euclidean": 46, "along": 46, "pair": 46, "would": 46, "expect": 46, "mani": 46, "few": [46, 47], "As": 46, "20": 46, "insert": 46, "chosen": 46, "second": 46, "sourc": 47, "research": 47, "develop": 47, "engin": 47, "easili": 47, "state": 47, "art": 47, "work": 47, "soni": 47, "semiconductor": 47, "israel": 47, "git": 47, "clone": 47, "com": 47, "model_optim": 47, "python": 47, "setup": 47, "py": 47, "pypi": 47, "latest": 47, "stabl": 47, "releas": 47, "nightli": 47, "unstabl": 47, "visual": 47, "cosin": 47, "comparison": 47, "just": 47, "minut": 47, "visit": 47, "notebook": 47, "doesn": 47, "t": 47, "out1": 47, "out2": 47, "out3": 47, "habi": 47, "h": 47, "v": 47, "peretz": 47, "r": 47, "cohen": 47, "dikstein": 47, "dror": 47, "o": 47, "diamant": 47, "i": 47, "jen": 47, "netzer": 47, "2021": 47, "hptq": 47, "preprint": 47, "gordon": 47, "2023": 47, "eptq": 47, "enhanc": 47}, "objects": {"model_compression_toolkit": [[2, 0, 1, "", "DefaultDict"], [18, 3, 1, "", "get_target_platform_capabilities"], [22, 3, 1, "", "keras_load_quantized_model"], [34, 3, 1, "", "set_log_folder"]], "model_compression_toolkit.DefaultDict": [[2, 1, 1, "", "get"], [2, 1, 1, "", "keys"]], "model_compression_toolkit.core": [[0, 0, 1, "", "BitWidthConfig"], [3, 0, 1, "", "ChannelAxis"], [37, 0, 1, "", "CoreConfig"], [38, 0, 1, "", "DebugConfig"], [3, 0, 1, "", "FrameworkInfo"], [5, 0, 1, "", "MixedPrecisionQuantizationConfig"], [6, 0, 1, "", "MpDistanceWeighting"], [9, 0, 1, "", "QuantizationConfig"], [10, 0, 1, "", "QuantizationErrorMethod"], [11, 0, 1, "", "ResourceUtilization"], [21, 3, 1, "", "keras_resource_utilization_data"], [29, 3, 1, "", "pytorch_resource_utilization_data"]], "model_compression_toolkit.core.BitWidthConfig": [[0, 2, 1, "", "manual_activation_bit_width_selection_list"]], "model_compression_toolkit.core.common.quantization.bit_width_config": [[0, 0, 1, "", "ManualBitWidthSelection"]], "model_compression_toolkit.core.common.quantization.bit_width_config.ManualBitWidthSelection": [[0, 2, 1, "", "bit_width"], [0, 2, 1, "", "filter"]], "model_compression_toolkit.core.network_editor": [[41, 0, 1, "", "ChangeCandidatesActivationQuantConfigAttr"], [41, 0, 1, "", "ChangeCandidatesActivationQuantizationMethod"], [41, 0, 1, "", "ChangeCandidatesWeightsQuantConfigAttr"], [41, 0, 1, "", "ChangeCandidatesWeightsQuantizationMethod"], [41, 0, 1, "", "ChangeFinalActivationQuantConfigAttr"], [41, 0, 1, "", "ChangeFinalWeightsQuantConfigAttr"], [41, 0, 1, "", "ChangeFinalWeightsQuantizationMethod"], [41, 0, 1, "", "ChangeQuantizationParamFunction"], [41, 0, 1, "", "EditRule"], [41, 0, 1, "", "NodeNameFilter"], [41, 0, 1, "", "NodeNameScopeFilter"], [41, 0, 1, "", "NodeTypeFilter"]], "model_compression_toolkit.data_generation": [[1, 0, 1, "", "BNLayerWeightingType"], [1, 0, 1, "", "BatchNormAlignemntLossType"], [1, 0, 1, "", "DataGenerationConfig"], [1, 0, 1, "", "DataInitType"], [1, 0, 1, "", "ImageGranularity"], [1, 0, 1, "", "ImageNormalizationType"], [1, 0, 1, "", "ImagePipelineType"], [1, 0, 1, "", "OutputLossType"], [1, 0, 1, "", "SchedulerType"], [14, 3, 1, "", "get_keras_data_generation_config"], [16, 3, 1, "", "get_pytorch_data_generation_config"], [19, 3, 1, "", "keras_data_generation_experimental"], [27, 3, 1, "", "pytorch_data_generation_experimental"]], "model_compression_toolkit.exporter": [[39, 0, 1, "", "KerasExportSerializationFormat"], [39, 0, 1, "", "PytorchExportSerializationFormat"], [39, 0, 1, "", "QuantizationFormat"], [39, 0, 1, "", "keras_export_model"], [39, 0, 1, "", "pytorch_export_model"]], "model_compression_toolkit.gptq": [[4, 0, 1, "", "GPTQHessianScoresConfig"], [4, 0, 1, "", "GradientPTQConfig"], [4, 0, 1, "", "RoundingType"], [15, 3, 1, "", "get_keras_gptq_config"], [17, 3, 1, "", "get_pytorch_gptq_config"], [20, 3, 1, "", "keras_gradient_post_training_quantization"], [28, 3, 1, "", "pytorch_gradient_post_training_quantization"]], "model_compression_toolkit.pruning": [[7, 0, 1, "", "ChannelsFilteringStrategy"], [7, 0, 1, "", "ImportanceMetric"], [7, 0, 1, "", "PruningConfig"], [8, 0, 1, "", "PruningInfo"], [24, 3, 1, "", "keras_pruning_experimental"], [31, 3, 1, "", "pytorch_pruning_experimental"]], "model_compression_toolkit.pruning.PruningConfig": [[7, 2, 1, "", "channels_filtering_strategy"], [7, 2, 1, "", "importance_metric"], [7, 2, 1, "", "num_score_approximations"]], "model_compression_toolkit.pruning.PruningInfo": [[8, 4, 1, "", "importance_scores"], [8, 4, 1, "", "pruning_masks"]], "model_compression_toolkit.ptq": [[23, 3, 1, "", "keras_post_training_quantization"], [30, 3, 1, "", "pytorch_post_training_quantization"]], "model_compression_toolkit.qat": [[42, 0, 1, "", "QATConfig"], [42, 0, 1, "", "TrainingMethod"], [25, 3, 1, "", "keras_quantization_aware_training_finalize_experimental"], [26, 3, 1, "", "keras_quantization_aware_training_init_experimental"], [32, 3, 1, "", "pytorch_quantization_aware_training_finalize_experimental"], [33, 3, 1, "", "pytorch_quantization_aware_training_init_experimental"]], "model_compression_toolkit.target_platform": [[40, 0, 1, "", "AttributeFilter"], [43, 0, 1, "", "AttributeQuantizationConfig"], [40, 0, 1, "", "Eq"], [43, 0, 1, "", "Fusing"], [40, 0, 1, "", "Greater"], [40, 0, 1, "", "GreaterEq"], [43, 0, 1, "", "LayerFilterParams"], [40, 0, 1, "", "NotEq"], [43, 0, 1, "", "OpQuantizationConfig"], [43, 0, 1, "", "OperationsSetToLayers"], [43, 0, 1, "", "OperationsToLayers"], [43, 0, 1, "", "OperatorSetConcat"], [43, 0, 1, "", "OperatorsSet"], [43, 0, 1, "", "QuantizationConfigOptions"], [43, 0, 1, "", "QuantizationMethod"], [40, 0, 1, "", "Smaller"], [40, 0, 1, "", "SmallerEq"], [43, 0, 1, "", "TargetPlatformCapabilities"], [43, 0, 1, "", "TargetPlatformModel"]], "model_compression_toolkit.trainable_infrastructure": [[44, 0, 1, "", "BaseKerasTrainableQuantizer"], [44, 0, 1, "", "BasePytorchTrainableQuantizer"], [44, 0, 1, "", "TrainableQuantizerActivationConfig"], [44, 0, 1, "", "TrainableQuantizerWeightsConfig"]], "model_compression_toolkit.xquant.common.xquant_config": [[12, 0, 1, "", "XQuantConfig"]], "model_compression_toolkit.xquant.keras.facade_xquant_report": [[35, 3, 1, "", "xquant_report_keras_experimental"]], "model_compression_toolkit.xquant.pytorch.facade_xquant_report": [[36, 3, 1, "", "xquant_report_pytorch_experimental"]]}, "objtypes": {"0": "py:class", "1": "py:method", "2": "py:attribute", "3": "py:function", "4": "py:property"}, "objnames": {"0": ["py", "class", "Python class"], "1": ["py", "method", "Python method"], "2": ["py", "attribute", "Python attribute"], "3": ["py", "function", "Python function"], "4": ["py", "property", "Python property"]}, "titleterms": {"bitwidthconfig": 0, "manualbitwidthselect": 0, "data": [1, 19, 27], "gener": [1, 19, 27], "configur": [1, 7, 12, 46], "imagegranular": 1, "schedulertyp": 1, "batchnormalignemntlosstyp": 1, "outputlosstyp": 1, "datainittyp": 1, "bnlayerweightingtyp": 1, "imagepipelinetyp": 1, "imagenormalizationtyp": 1, "defaultdict": 2, "class": [2, 3, 4], "frameworkinfo": 3, "channelaxi": 3, "gradientptqconfig": [4, 15, 17], "gptqhessianscoresconfig": 4, "roundingtyp": 4, "mixedprecisionquantizationconfig": 5, "mpdistanceweight": 6, "prune": [7, 8, 13, 24, 31], "importancemetr": 7, "channelsfilteringstrategi": 7, "inform": [8, 21, 29], "quantizationconfig": 9, "quantizationerrormethod": 10, "resourceutil": 11, "xquant": [12, 13, 35, 36], "api": [13, 47], "doc": 13, "ptq": 13, "gptq": 13, "qat": 13, "core": 13, "data_gener": 13, "export": [13, 39], "trainable_infrastructur": [13, 44], "set_log_fold": 13, "keras_load_quantized_model": 13, "target_platform": [13, 43], "indic": 13, "tabl": 13, "get": [14, 15, 16, 17, 18, 21, 29], "datagenerationconfig": [14, 16], "kera": [14, 15, 19, 20, 21, 22, 23, 24, 25, 26, 35, 39], "model": [14, 15, 16, 17, 21, 22, 25, 26, 29, 32, 33, 39, 47], "pytorch": [16, 17, 27, 28, 29, 30, 31, 32, 33, 36, 39], "targetplatformcap": [18, 43], "gradient": [20, 28], "base": [20, 28], "post": [20, 23, 28, 30], "train": [20, 23, 25, 26, 28, 30, 32, 33], "quantiz": [20, 22, 23, 25, 26, 28, 30, 32, 33, 39], "resourc": [21, 29], "util": [21, 29], "load": 22, "structur": [24, 31], "awar": [25, 26, 32, 33], "final": [25, 32], "init": [26, 33], "enabl": 34, "logger": 34, "report": [35, 36], "coreconfig": 37, "debug_config": 38, "modul": [38, 39, 41, 42, 43, 44], "debugconfig": 38, "quantizationformat": 39, "kerasexportserializationformat": 39, "keras_export_model": 39, "tutori": 39, "serial": 39, "format": 39, "mctq": 39, "pytorchexportserializationformat": 39, "pytorch_export_model": 39, "onnx": 39, "opset": 39, "version": 39, "us": 39, "infer": 39, "layer": 40, "attribut": 40, "filter": [40, 41], "network_editor": 41, "editrul": 41, "action": 41, "qat_config": 42, "trainingmethod": 42, "qatconfig": 42, "quantizationmethod": 43, "opquantizationconfig": 43, "attributequantizationconfig": 43, "quantizationconfigopt": 43, "targetplatformmodel": 43, "operatorsset": 43, "fuse": 43, "operatorsetconcat": 43, "operationstolay": 43, "operationssettolay": 43, "layerfilterparam": 43, "basekerastrainablequant": 44, "basepytorchtrainablequant": 44, "trainablequantizerweightsconfig": 44, "trainablequantizeractivationconfig": 44, "visual": 46, "within": 46, "tensorboard": 46, "cosin": 46, "similar": 46, "comparison": 46, "mix": 46, "precis": 46, "bit": 46, "width": 46, "compress": 47, "toolkit": 47, "user": 47, "guid": 47, "overview": 47, "instal": 47, "support": 47, "featur": 47, "quickstart": 47, "document": 47, "technic": 47, "constraint": 47, "refer": 47}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 6, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx": 56}})
\ No newline at end of file
diff --git a/docs/static/bizstyle.js b/docs/static/bizstyle.js
index 344a98362..f41af42bc 100644
--- a/docs/static/bizstyle.js
+++ b/docs/static/bizstyle.js
@@ -23,7 +23,7 @@ const initialiseBizStyle = () => {
}
window.addEventListener("resize",
- () => (document.querySelector("li.nav-item-0 a").innerText = (window.innerWidth <= 776) ? "Top" : "MCT Documentation: ver 2.1.0")
+ () => (document.querySelector("li.nav-item-0 a").innerText = (window.innerWidth <= 776) ? "Top" : "MCT Documentation: ver 2.2.0")
)
if (document.readyState !== "loading") initialiseBizStyle()
diff --git a/docs/static/documentation_options.js b/docs/static/documentation_options.js
index 437af4a26..15876331c 100644
--- a/docs/static/documentation_options.js
+++ b/docs/static/documentation_options.js
@@ -1,6 +1,6 @@
var DOCUMENTATION_OPTIONS = {
URL_ROOT: document.getElementById("documentation_options").getAttribute('data-url_root'),
- VERSION: '2.1.0',
+ VERSION: '2.2.0',
LANGUAGE: 'en',
COLLAPSE_INDEX: false,
BUILDER: 'html',
diff --git a/docsrc/source/api/api_docs/classes/BitWidthConfig.rst b/docsrc/source/api/api_docs/classes/BitWidthConfig.rst
new file mode 100644
index 000000000..9b5cff54c
--- /dev/null
+++ b/docsrc/source/api/api_docs/classes/BitWidthConfig.rst
@@ -0,0 +1,14 @@
+:orphan:
+
+.. _ug-BitWidthConfig:
+
+
+BitWidthConfig
+==========================
+
+.. autoclass:: model_compression_toolkit.core.BitWidthConfig
+
+ManualBitWidthSelection
+==========================
+
+.. autoclass:: model_compression_toolkit.core.common.quantization.bit_width_config.ManualBitWidthSelection
diff --git a/docsrc/source/api/api_docs/classes/XQuantConfig.rst b/docsrc/source/api/api_docs/classes/XQuantConfig.rst
new file mode 100644
index 000000000..79d34128a
--- /dev/null
+++ b/docsrc/source/api/api_docs/classes/XQuantConfig.rst
@@ -0,0 +1,14 @@
+:orphan:
+
+.. _ug-XQuantConfig:
+
+================================================
+XQuant Configuration
+================================================
+
+.. autoclass:: model_compression_toolkit.xquant.common.xquant_config.XQuantConfig
+ :members:
+
+
+
+
diff --git a/docsrc/source/api/api_docs/index.rst b/docsrc/source/api/api_docs/index.rst
index b349d3be4..0c4433163 100644
--- a/docsrc/source/api/api_docs/index.rst
+++ b/docsrc/source/api/api_docs/index.rst
@@ -49,6 +49,7 @@ core
- :ref:`QuantizationConfig`: Module to configure the quantization process.
- :ref:`QuantizationErrorMethod`: Select a method for quantization parameters' selection.
- :ref:`MixedPrecisionQuantizationConfig`: Module to configure the quantization process when using mixed-precision PTQ.
+- :ref:`BitWidthConfig`: Module to configure the bit-width manually.
- :ref:`ResourceUtilization`: Module to configure resources to use when searching for a configuration for the optimized model.
- :ref:`MpDistanceWeighting`: Mixed precision distance metric weighting methods.
- :ref:`network_editor`: Module to modify the optimization process for troubleshooting.
@@ -75,6 +76,13 @@ pruning
- :ref:`PruningConfig`: Configuration for the pruning process (experimental).
- :ref:`PruningInfo`: Information about the pruned model such as pruned channel indices, etc. (experimental).
+xquant
+===========
+
+- :ref:`xquant_report_pytorch_experimental`: A function to generate an explainable quantization report for a quantized Pytorch model (experimental).
+- :ref:`xquant_report_keras_experimental`: A function to generate an explainable quantization report for a quantized Keras model (experimental).
+
+- :ref:`XQuantConfig`: Configuration for the XQuant report (experimental).
exporter
=========
diff --git a/docsrc/source/api/api_docs/methods/xquant_report_keras_experimental.rst b/docsrc/source/api/api_docs/methods/xquant_report_keras_experimental.rst
new file mode 100644
index 000000000..af6994d1d
--- /dev/null
+++ b/docsrc/source/api/api_docs/methods/xquant_report_keras_experimental.rst
@@ -0,0 +1,12 @@
+:orphan:
+
+.. _ug-xquant_report_keras_experimental:
+
+
+================================================
+XQuant Report Keras
+================================================
+
+.. autofunction:: model_compression_toolkit.xquant.keras.facade_xquant_report.xquant_report_keras_experimental
+
+
diff --git a/docsrc/source/api/api_docs/methods/xquant_report_pytorch_experimental.rst b/docsrc/source/api/api_docs/methods/xquant_report_pytorch_experimental.rst
new file mode 100644
index 000000000..074db79d9
--- /dev/null
+++ b/docsrc/source/api/api_docs/methods/xquant_report_pytorch_experimental.rst
@@ -0,0 +1,15 @@
+:orphan:
+
+.. _ug-xquant_report_pytorch_experimental:
+
+
+================================================
+XQuant Report Pytorch
+================================================
+
+.. autofunction:: model_compression_toolkit.xquant.pytorch.facade_xquant_report.xquant_report_pytorch_experimental
+
+
+
+
+
diff --git a/model_compression_toolkit/__init__.py b/model_compression_toolkit/__init__.py
index 8505d556a..4d45628ef 100644
--- a/model_compression_toolkit/__init__.py
+++ b/model_compression_toolkit/__init__.py
@@ -27,4 +27,4 @@
from model_compression_toolkit import pruning
from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
-__version__ = "2.1.0"
+__version__ = "2.2.0"
diff --git a/model_compression_toolkit/xquant/common/xquant_config.py b/model_compression_toolkit/xquant/common/xquant_config.py
index 94c35b498..624822812 100644
--- a/model_compression_toolkit/xquant/common/xquant_config.py
+++ b/model_compression_toolkit/xquant/common/xquant_config.py
@@ -31,9 +31,7 @@ def __init__(self,
Args:
report_dir (str): Directory where the reports will be saved.
- custom_similarity_metrics (Dict[str, Callable]): Custom similarity metrics to be computed between tensors
- of the two models. The dictionary keys are similarity metric names and the values are callables that implement the
- similarity metric computation.
+ custom_similarity_metrics (Dict[str, Callable]): Custom similarity metrics to be computed between tensors of the two models. The dictionary keys are similarity metric names and the values are callables that implement the similarity metric computation.
"""
self.report_dir = report_dir
self.custom_similarity_metrics = custom_similarity_metrics