diff --git a/content/docs/intro/_index.md b/content/docs/intro/_index.md
index 34f135f..b5d8a2b 100644
--- a/content/docs/intro/_index.md
+++ b/content/docs/intro/_index.md
@@ -13,5 +13,3 @@ seo:
canonical: "" # custom canonical URL (optional)
noindex: false # false (default) or true
---
-
-B;aj b;aj
\ No newline at end of file
diff --git a/content/docs/intro/benchmark.md b/content/docs/intro/benchmark.md
new file mode 100644
index 0000000..cf7c8b9
--- /dev/null
+++ b/content/docs/intro/benchmark.md
@@ -0,0 +1,93 @@
+---
+title: "Benchmark"
+description: ""
+summary: ""
+date: 2023-09-07T16:06:50+02:00
+lastmod: 2023-09-07T16:06:50+02:00
+draft: false
+weight: 800
+toc: true
+seo:
+ title: "" # custom title (optional)
+ description: "" # custom description (recommended)
+ canonical: "" # custom canonical URL (optional)
+ noindex: false # false (default) or true
+---
+
+EHRSHOT contains 15 clinical prediction tasks. All tasks are binary classification.
+
+### Tasks
+
+#### Operational Outcomes
+
+These tasks are related to hospital operations. They are defined as follows:
+
+1. **Long Length of Stay:** Predict whether a patient’s total length of stay during a visit to the hospital will be at least 7 days. The prediction time is at 11:59pm on the day of admission, and visits that last less than one day (i.e. discharge occurs on the same day of admission) are ignored.
+2. **30-day Readmission:** Predict whether a patient will be re-admitted to the hospital within 30 days after being discharged from a visit. The prediction time is at 11:59pm on the day of admission, and admissions where a readmission occurs on the same day as the corresponding discharge are ignored.
+3. **ICU Transfer:** Predict whether a patient will be transferred to the ICU during a visit to the hospital. The prediction time is at 11:59pm on the day of admission, and ICU transfers that occur on the same day as admission are ignored.
+
+#### Anticipating Lab Test Results
+
+These tasks are related to lab value prediction. While we treat these tasks as binary classification tasks in our benchmark (where a label is "negative" if the lab result is normal and "positive" otherwise), we provide multiclass labels (i.e. normal, mild, moderate, severe) for completeness. The prediction time is immediately before the lab result is recorded. They are defined as follows:
+
+1. **Thrombocytopenia:** Predict whether a thrombocytopenia lab comes back as normal (>=150 109/L), mild (>=100 and <150 109/L), moderate (>=50 and <100 109/L), or severe (<50 109/L),. We consider all lab results coded as LOINC/LP393218-5, LOINC/LG32892-8, or LOINC/777-3.
+2. **Hyperkalemia:** Predict whether a hyperkalemia lab comes back as normal (<=5.5 mmol/L), mild (>5.5 and <=6mmol/L), moderate (>6 and <=7 mmol/L), or severe (>7 mmol/L). We consider all lab results coded as LOINC LG7931-1, LOINC/LP386618-5, LOINC/LG109906, LOINC/6298-4, or LOINC/2823-3.
+3. **Hypoglycemia:** Predict whether a hypoglycemia lab comes back as normal (>=3.9 mmol/L), mild (>=3.5 and <3.9 mmol/L), moderate (>=3 and <3.5 mmol/L), or severe (<3 mmol/L). We consider all lab results coded as SNOMED/33747003, LOINC/LP4161453, or LOINC/14749-6.
+4. **Hyponatremia:** Predict whether a hyponatremia lab comes back as normal (>=135 mmol/L), mild (>=130 and <135 mmol/L), moderate (>=125 and <130 mmol/L), or severe (<125 mmol/L). We consider all lab results coded as LOINC/LG11363-5, LOINC/2951-2, or LOINC/2947-0.
+5. **Anemia:** Predict whether an anemia lab comes back as normal (>=120 g/L), mild (>=110 and <120 g/L), moderate (>=70 and <110 g/L), or severe (<70 g/L). We consider all lab results coded as LOINC/LP392452-1.
+
+#### Assignment of New Diagnoses
+
+These tasks are related to predicting the first diagnosis of a disease. The prediction time is at 11:59pm on the day of discharge from an inpatient visit, and we count any diagnosis that occurs within 365 days post-discharge as a positive outcome. We ignore all discharges in which the patient already has an existing diagnosis of a disease. The tasks are defined as follows:
+
+1. **Acute MI:** Predict whether the patient will have her first diagnosis of acute myocardial infarction within the next year. We define hypertension as an occurrence of the code SNOMED/57054005, as well as its children codes in our ontology.
+1. **Hypertension:** Predict whether the patient will have her first diagnosis of essential hypertension within the next year. We define hypertension as an occurrence of the code SNOMED/59621000, as well as its children codes in our ontology.
+2. **Hyperlipidemia:** Predict whether the patient will have her first diagnosis of hyperlipidemia within the next year. We define hyperlipidemia as an occurrence of the code SNOMED/55822004, as well as its children codes in our ontology.
+3. **Pancreatic Cancer:** Predict whether the patient will have her first diagnosis of pancreatic cancer within the next year. We define pancreatic cancer as an occurrence of the code SNOMED/372003004, as well as its children codes in our ontology.
+4. **Celiac:** Predict whether the patient will have her first diagnosis of celiac disease within the next year. We define celiac disease as an occurrence of the code SNOMED/396331005, as well as its children codes in our ontology.
+5. **Lupus:** Predict whether the patient will have her first diagnosis of lupus within the next year. We define lupus as an occurrence of the code SNOMED/55464009, as well as its children codes in our ontology.
+
+#### Anticipating Chest X-ray Findings.
+
+The chest X-ray findings task requires identifying which of 14 possible findings were included in a chest X-ray report.
+
+While we treat this task as a binary classification task in our benchmark (where a label is "negative" if the X-ray finding is "No Finding" and "positive" otherwise), we provide multilabel labels (i.e. "No Finding", "Enlarged Cardiomediastinum", "Cardiomegaly", "Lung Lesion", "Lung Opacity", "Edema", "Consolidation", "Pneumonia", "Atelectasis", "Pneumothorax", "Pleural Effusion", "Pleural Other", "Fracture", "Support Devices") for completeness. The prediction time is 24 hours before the radiology report is recorded. The labels are derived by running the CheXpert NLP labeler on the unstructured text of the corresponding radiology report. We do not release this unstructured text as part of our dataset due to patient privacy concerns.
+
+### Label Counts
+
+This is the total number of patients and labels for each task in the benchmark across all splits. Note that the number of labels is greater than the number of patients because each patient can have multiple labels.
+
+| Task Name | # Total Patients | # Positive Patients | # Negative Patients | Total Labels | # Positive Labels | # Negative Labels | Label Prevalence |
+|:-------------------|-------------:|----------------------:|----------------------:|-----------:|--------------------:|--------------------:|-------------------:|
+| Long LOS | 3855 | 1271 | 2584 | 6995 | 1767 | 5228 | 0.252609 |
+| 30-Day Readmission | 3718 | 474 | 3244 | 7003 | 911 | 6092 | 0.130087 |
+| ICU Admission | 3617 | 266 | 3351 | 6491 | 290 | 6201 | 0.0446772 |
+| Thrombocytopenia | 6063 | 2566 | 3497 | 179618 | 59718 | 119900 | 0.332472 |
+| Hyperkalemia | 5931 | 1289 | 4642 | 200170 | 4769 | 195401 | 0.0238247 |
+| Hypoglycemia | 5974 | 1379 | 4595 | 318164 | 4721 | 313443 | 0.0148383 |
+| Hyponatremia | 5921 | 3692 | 2229 | 212837 | 60708 | 152129 | 0.285232 |
+| Anemia | 6086 | 4271 | 1815 | 184880 | 127496 | 57384 | 0.689615 |
+| Hypertension | 2328 | 386 | 1942 | 3764 | 516 | 3248 | 0.137088 |
+| Hyperlipidemia | 2650 | 410 | 2240 | 4442 | 566 | 3876 | 0.12742 |
+| Pancreatic Cancer | 3864 | 214 | 3650 | 7011 | 264 | 6747 | 0.0376551 |
+| Celiac | 3899 | 69 | 3830 | 7129 | 94 | 7035 | 0.0131856 |
+| Lupus | 3864 | 122 | 3742 | 7038 | 157 | 6881 | 0.0223075 |
+| Acute MI | 3834 | 357 | 3477 | 6837 | 464 | 6373 | 0.067866 |
+| Chest X-Ray | 1045 | 996 | 49 | 26275 | 17203 | 9072 | 0.654729 |
+
+Please note that these numbers are slightly different from the numbers in the paper as the dataset was slightly altered in preparation for public release.
+
+### Access
+
+Please find the benchmark on Redivis, and the code to execute the benchmark on Github here:
+
+* [Dataset + Benchmark](https://redivis.com/datasets/53gc-8rhx41kgt)
+* [Code](https://github.com/som-shahlab/ehrshot-benchmark/)
+
+### Additional Details
+
+For more information, please read [the original EHRSHOT paper](https://arxiv.org/abs/2307.02028).
+
+### Questions?
+
+For questions and feedback, please open an [Issue on Github](https://github.com/som-shahlab/ehrshot-benchmark/)
\ No newline at end of file
diff --git a/content/docs/intro/dataset.md b/content/docs/intro/dataset.md
index f097c46..a28f9e0 100644
--- a/content/docs/intro/dataset.md
+++ b/content/docs/intro/dataset.md
@@ -20,8 +20,8 @@ EHRSHOT is a collection of 6,739 deidentified longitudinal electronic health rec
EHRSHOT contains:
* 6,739 patients
-* 40,796,769 million clinical events
-* 923,687 visits
+* 41,661,637 million clinical events
+* 921,499 visits
* 15 prediction tasks
Each patient consists of an ordered timeline of clinical events taken from the structured data of their EHR (e.g. diagnoses, procedures, prescriptions, etc.).
diff --git a/content/leaderboard/paper/index.md b/content/leaderboard/paper/index.md
new file mode 100644
index 0000000..c2d9e18
--- /dev/null
+++ b/content/leaderboard/paper/index.md
@@ -0,0 +1,283 @@
+---
+title: "EHRSHOT Leaderboard"
+description: "Benchmarking results of ML models on EHRSHOT"
+summary: ""
+date: 2023-09-07T16:27:22+02:00
+lastmod: 2023-09-07T16:27:22+02:00
+draft: false
+weight: 50
+categories: []
+tags: []
+contributors: []
+pinned: false
+homepage: false
+seo:
+ title: "" # custom title (optional)
+ description: "" # custom description (recommended)
+ canonical: "" # custom canonical URL (optional)
+ noindex: false # false (default) or true
+---
+
+Leaerboard of model performance on the EHRSHOT benchmark using the original dataset from the EHRSHOT paper.
+
+**Dataset:**
+
+* **Stats:**
+ * 6,739 patients
+ * 41,661,637 million clinical events
+ * 921,499 visits
+* **Source:** Stanford Medicine
+
+**Benchmark:**
+* **Metrics:** AUROC, AUPRC
+* **Number of Tasks:** 15
+
+**Models:**
+ * **Logistic Regression:** A logistic regression trained on the count featurization described in [the EHRSHOT paper](https://arxiv.org/abs/2307.02028)
+ * **Random Forest:** A random forest trained on the count featurization described in [the EHRSHOT paper](https://arxiv.org/abs/2307.02028)
+ * **GBM:** A gradient boosted machine trained on the count featurization described in [the EHRSHOT paper](https://arxiv.org/abs/2307.02028)
+ * **CLMBR-t-base:** The foundation model released in [the EHRSHOT paper](https://arxiv.org/abs/2307.02028) with frozen weights and a task-specific logistic regression head. Available for [download here](https://huggingface.co/StanfordShahLab/clmbr-t-base)
+
+-----
+
+## Results
+
+In the tables below, `k` is the number of few-shot examples used to train each model.
+
+### By Task Group
+
+Results averaged across all subtasks in a task group.
+
+#### AUROC
+
+
+
+
Operational Outcomes
+ Model | All | K |
| | 1 | 2 | 4 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
CLMBR | 0.824 | 0.555 | 0.59 | 0.628 | 0.659 | 0.688 | 0.713 | 0.724 | 0.739 | 0.758 | 0.768 | 0.789 |
GBM | 0.774 | 0.513 | 0.52 | 0.535 | 0.59 | 0.575 | 0.588 | 0.625 | 0.656 | 0.678 | 0.693 | 0.736 |
Logistic Regression | 0.719 | 0.525 | 0.541 | 0.591 | 0.611 | 0.613 | 0.631 | 0.645 | 0.656 | 0.667 | 0.68 | 0.702 |
Random Forest | 0.751 | 0.525 | 0.511 | 0.558 | 0.581 | 0.59 | 0.61 | 0.628 | 0.658 | 0.672 | 0.689 | 0.745 |
+
+Anticipating Lab Test Results
+ Model | All | K |
| | 1 | 2 | 4 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
CLMBR | 0.832 | 0.546 | 0.583 | 0.612 | 0.639 | 0.645 | 0.663 | 0.673 | 0.692 | 0.711 | 0.723 | 0.753 |
GBM | 0.728 | 0.504 | 0.511 | 0.517 | 0.552 | 0.553 | 0.554 | 0.577 | 0.592 | 0.61 | 0.617 | 0.64 |
Logistic Regression | 0.669 | 0.504 | 0.526 | 0.546 | 0.561 | 0.56 | 0.569 | 0.567 | 0.582 | 0.589 | 0.595 | 0.606 |
Random Forest | 0.701 | 0.499 | 0.514 | 0.542 | 0.564 | 0.566 | 0.575 | 0.584 | 0.591 | 0.609 | 0.615 | 0.637 |
+
+Assignment of New Diagnoses
+ Model | All | K |
| | 1 | 2 | 4 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
CLMBR | 0.707 | 0.534 | 0.554 | 0.593 | 0.616 | 0.624 | 0.64 | 0.649 | 0.656 | 0.666 | 0.676 | 0.693 |
GBM | 0.719 | 0.487 | 0.521 | 0.537 | 0.571 | 0.588 | 0.586 | 0.622 | 0.618 | 0.652 | 0.691 | 0.723 |
Logistic Regression | 0.749 | 0.543 | 0.556 | 0.566 | 0.599 | 0.604 | 0.631 | 0.644 | 0.66 | 0.685 | 0.703 | 0.722 |
Random Forest | 0.684 | 0.503 | 0.54 | 0.549 | 0.569 | 0.585 | 0.595 | 0.627 | 0.638 | 0.665 | 0.674 | 0.673 |
+
+Chest X-ray Findings
+ Model | All | K |
| | 1 | 2 | 4 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
CLMBR | 0.713 | 0.525 | 0.55 | 0.571 | 0.596 | 0.614 | 0.622 | 0.633 | 0.641 | 0.657 | 0.665 | 0.679 |
GBM | 0.656 | 0.508 | 0.509 | 0.504 | 0.542 | 0.556 | 0.553 | 0.573 | 0.591 | 0.602 | 0.61 | 0.632 |
Logistic Regression | 0.646 | 0.522 | 0.533 | 0.536 | 0.542 | 0.557 | 0.565 | 0.581 | 0.588 | 0.6 | 0.606 | 0.618 |
Random Forest | 0.631 | 0.506 | 0.514 | 0.524 | 0.547 | 0.554 | 0.562 | 0.571 | 0.586 | 0.602 | 0.613 | 0.637 |
+
+
+#### AUPRC
+
+
+
+
+Operational Outcomes
+ Model | All | K |
| | 1 | 2 | 4 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
CLMBR | 0.437 | 0.17 | 0.192 | 0.223 | 0.231 | 0.251 | 0.272 | 0.29 | 0.303 | 0.329 | 0.339 | 0.359 |
GBM | 0.359 | 0.14 | 0.144 | 0.149 | 0.183 | 0.175 | 0.182 | 0.2 | 0.215 | 0.23 | 0.251 | 0.28 |
Logistic Regression | 0.246 | 0.148 | 0.155 | 0.176 | 0.184 | 0.185 | 0.189 | 0.196 | 0.2 | 0.211 | 0.212 | 0.23 |
Random Forest | 0.303 | 0.15 | 0.146 | 0.161 | 0.176 | 0.184 | 0.205 | 0.206 | 0.222 | 0.234 | 0.246 | 0.294 |
+
+Anticipating Lab Test Results
+ Model | All | K |
| | 1 | 2 | 4 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
CLMBR | 0.516 | 0.297 | 0.318 | 0.338 | 0.353 | 0.355 | 0.366 | 0.375 | 0.39 | 0.401 | 0.413 | 0.434 |
GBM | 0.435 | 0.271 | 0.273 | 0.28 | 0.307 | 0.311 | 0.314 | 0.321 | 0.327 | 0.344 | 0.352 | 0.369 |
Logistic Regression | 0.383 | 0.273 | 0.289 | 0.3 | 0.311 | 0.314 | 0.318 | 0.311 | 0.313 | 0.32 | 0.324 | 0.332 |
Random Forest | 0.415 | 0.273 | 0.278 | 0.294 | 0.312 | 0.31 | 0.318 | 0.321 | 0.328 | 0.346 | 0.353 | 0.366 |
+
+Assignment of New Diagnoses
+ Model | All | K |
| | 1 | 2 | 4 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
CLMBR | 0.16 | 0.076 | 0.086 | 0.097 | 0.1 | 0.104 | 0.114 | 0.118 | 0.125 | 0.121 | 0.128 | 0.138 |
GBM | 0.212 | 0.061 | 0.063 | 0.071 | 0.086 | 0.087 | 0.086 | 0.098 | 0.11 | 0.128 | 0.141 | 0.156 |
Logistic Regression | 0.179 | 0.075 | 0.079 | 0.083 | 0.082 | 0.086 | 0.092 | 0.099 | 0.103 | 0.113 | 0.121 | 0.131 |
Random Forest | 0.186 | 0.067 | 0.074 | 0.076 | 0.084 | 0.084 | 0.092 | 0.102 | 0.106 | 0.119 | 0.131 | 0.137 |
+
+Chest X-ray Findings
+ Model | All | K |
| | 1 | 2 | 4 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
CLMBR | 0.209 | 0.116 | 0.124 | 0.131 | 0.14 | 0.149 | 0.154 | 0.158 | 0.162 | 0.173 | 0.178 | 0.179 |
GBM | 0.172 | 0.103 | 0.103 | 0.105 | 0.112 | 0.12 | 0.118 | 0.125 | 0.13 | 0.138 | 0.142 | 0.151 |
Logistic Regression | 0.158 | 0.106 | 0.108 | 0.112 | 0.113 | 0.117 | 0.118 | 0.121 | 0.124 | 0.13 | 0.133 | 0.14 |
Random Forest | 0.158 | 0.104 | 0.105 | 0.108 | 0.114 | 0.117 | 0.118 | 0.121 | 0.129 | 0.134 | 0.142 | 0.15 |
+
+
+
+-----
+
+### Individual
+
+Results for each individual task. Mean scores across 5 replicates are shown with standard deviations.
+
+#### AUROC
+
+
+
+##### Operational Outcomes
+
+ICU Admission
+ Model | All | K |
| | 1 | 2 | 4 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
CLMBR | 0.848 ± 0.0 | 0.597 ± 0.109 | 0.598 ± 0.069 | 0.601 ± 0.082 | 0.701 ± 0.072 | 0.742 ± 0.039 | 0.763 ± 0.041 | 0.763 ± 0.04 | 0.786 ± 0.041 | 0.792 ± 0.015 | 0.796 ± 0.014 | 0.827 ± 0.007 |
GBM | 0.799 ± 0.0 | 0.534 ± 0.051 | 0.523 ± 0.072 | 0.545 ± 0.057 | 0.586 ± 0.047 | 0.565 ± 0.031 | 0.585 ± 0.058 | 0.626 ± 0.061 | 0.676 ± 0.052 | 0.706 ± 0.033 | 0.709 ± 0.056 | 0.774 ± 0.015 |
Logistic Regression | 0.701 ± 0.0 | 0.543 ± 0.053 | 0.555 ± 0.07 | 0.577 ± 0.067 | 0.603 ± 0.054 | 0.638 ± 0.048 | 0.649 ± 0.063 | 0.667 ± 0.054 | 0.685 ± 0.04 | 0.667 ± 0.042 | 0.682 ± 0.025 | 0.697 ± 0.016 |
Random Forest | 0.721 ± 0.0 | 0.524 ± 0.035 | 0.521 ± 0.043 | 0.565 ± 0.056 | 0.577 ± 0.064 | 0.573 ± 0.088 | 0.563 ± 0.071 | 0.628 ± 0.079 | 0.677 ± 0.073 | 0.676 ± 0.059 | 0.674 ± 0.072 | 0.764 ± 0.02 |
+
+Long LOS
+ Model | All | K |
| | 1 | 2 | 4 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
CLMBR | 0.814 ± 0.0 | 0.537 ± 0.077 | 0.56 ± 0.062 | 0.563 ± 0.043 | 0.571 ± 0.039 | 0.607 ± 0.027 | 0.618 ± 0.043 | 0.632 ± 0.037 | 0.655 ± 0.025 | 0.694 ± 0.027 | 0.716 ± 0.014 | 0.751 ± 0.013 |
GBM | 0.783 ± 0.0 | 0.506 ± 0.043 | 0.498 ± 0.046 | 0.516 ± 0.054 | 0.562 ± 0.032 | 0.56 ± 0.041 | 0.557 ± 0.016 | 0.568 ± 0.041 | 0.603 ± 0.016 | 0.633 ± 0.051 | 0.664 ± 0.04 | 0.692 ± 0.029 |
Logistic Regression | 0.704 ± 0.0 | 0.474 ± 0.041 | 0.507 ± 0.035 | 0.538 ± 0.042 | 0.557 ± 0.037 | 0.56 ± 0.02 | 0.579 ± 0.016 | 0.591 ± 0.034 | 0.597 ± 0.019 | 0.637 ± 0.006 | 0.645 ± 0.022 | 0.677 ± 0.008 |
Random Forest | 0.758 ± 0.0 | 0.492 ± 0.033 | 0.49 ± 0.067 | 0.537 ± 0.076 | 0.547 ± 0.042 | 0.574 ± 0.027 | 0.594 ± 0.029 | 0.574 ± 0.051 | 0.615 ± 0.025 | 0.633 ± 0.042 | 0.681 ± 0.022 | 0.72 ± 0.016 |
+
+30-day Readmission
+ Model | All | K |
| | 1 | 2 | 4 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
CLMBR | 0.81 ± 0.0 | 0.532 ± 0.09 | 0.611 ± 0.099 | 0.719 ± 0.028 | 0.704 ± 0.027 | 0.715 ± 0.083 | 0.757 ± 0.012 | 0.777 ± 0.013 | 0.777 ± 0.018 | 0.789 ± 0.004 | 0.791 ± 0.004 | 0.791 ± 0.003 |
GBM | 0.741 ± 0.0 | 0.498 ± 0.022 | 0.54 ± 0.052 | 0.544 ± 0.05 | 0.621 ± 0.056 | 0.599 ± 0.068 | 0.621 ± 0.041 | 0.68 ± 0.023 | 0.688 ± 0.033 | 0.696 ± 0.018 | 0.706 ± 0.026 | 0.742 ± 0.013 |
Logistic Regression | 0.751 ± 0.0 | 0.557 ± 0.113 | 0.561 ± 0.108 | 0.657 ± 0.029 | 0.672 ± 0.04 | 0.641 ± 0.032 | 0.666 ± 0.047 | 0.676 ± 0.043 | 0.685 ± 0.032 | 0.697 ± 0.013 | 0.713 ± 0.013 | 0.732 ± 0.013 |
Random Forest | 0.775 ± 0.0 | 0.559 ± 0.06 | 0.524 ± 0.083 | 0.573 ± 0.09 | 0.617 ± 0.045 | 0.622 ± 0.057 | 0.672 ± 0.027 | 0.683 ± 0.036 | 0.682 ± 0.026 | 0.706 ± 0.024 | 0.713 ± 0.027 | 0.75 ± 0.011 |
+
+##### Anticipating Lab Test Results
+
+Anemia
+ Model | All | K |
| | 1 | 2 | 4 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
CLMBR | 0.962 ± 0.0 | 0.645 ± 0.091 | 0.711 ± 0.098 | 0.763 ± 0.104 | 0.838 ± 0.029 | 0.853 ± 0.036 | 0.877 ± 0.028 | 0.895 ± 0.017 | 0.905 ± 0.013 | 0.914 ± 0.013 | 0.925 ± 0.005 | 0.94 ± 0.003 |
GBM | 0.814 ± 0.0 | 0.486 ± 0.028 | 0.524 ± 0.051 | 0.552 ± 0.01 | 0.613 ± 0.041 | 0.629 ± 0.036 | 0.625 ± 0.075 | 0.644 ± 0.046 | 0.666 ± 0.027 | 0.703 ± 0.016 | 0.709 ± 0.006 | 0.731 ± 0.006 |
Logistic Regression | 0.739 ± 0.0 | 0.48 ± 0.134 | 0.515 ± 0.112 | 0.588 ± 0.026 | 0.619 ± 0.016 | 0.619 ± 0.036 | 0.633 ± 0.025 | 0.628 ± 0.02 | 0.638 ± 0.034 | 0.643 ± 0.023 | 0.652 ± 0.014 | 0.667 ± 0.013 |
Random Forest | 0.799 ± 0.0 | 0.493 ± 0.084 | 0.503 ± 0.112 | 0.612 ± 0.01 | 0.637 ± 0.019 | 0.651 ± 0.039 | 0.661 ± 0.032 | 0.657 ± 0.017 | 0.674 ± 0.029 | 0.69 ± 0.021 | 0.707 ± 0.008 | 0.737 ± 0.015 |
+
+Hyponatremia
+ Model | All | K |
| | 1 | 2 | 4 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
CLMBR | 0.76 ± 0.0 | 0.517 ± 0.03 | 0.528 ± 0.036 | 0.547 ± 0.033 | 0.552 ± 0.028 | 0.555 ± 0.03 | 0.554 ± 0.033 | 0.568 ± 0.032 | 0.585 ± 0.026 | 0.59 ± 0.033 | 0.603 ± 0.033 | 0.639 ± 0.018 |
GBM | 0.659 ± 0.0 | 0.5 ± 0.0 | 0.497 ± 0.006 | 0.515 ± 0.01 | 0.513 ± 0.023 | 0.522 ± 0.024 | 0.515 ± 0.025 | 0.522 ± 0.012 | 0.531 ± 0.025 | 0.533 ± 0.025 | 0.528 ± 0.031 | 0.561 ± 0.027 |
Logistic Regression | 0.612 ± 0.0 | 0.502 ± 0.012 | 0.501 ± 0.028 | 0.509 ± 0.021 | 0.511 ± 0.019 | 0.528 ± 0.014 | 0.525 ± 0.015 | 0.514 ± 0.018 | 0.527 ± 0.024 | 0.51 ± 0.023 | 0.513 ± 0.021 | 0.521 ± 0.037 |
Random Forest | 0.631 ± 0.0 | 0.516 ± 0.011 | 0.501 ± 0.015 | 0.515 ± 0.016 | 0.513 ± 0.018 | 0.527 ± 0.022 | 0.522 ± 0.019 | 0.524 ± 0.017 | 0.526 ± 0.027 | 0.535 ± 0.028 | 0.53 ± 0.033 | 0.551 ± 0.025 |
+
+Thrombocytopenia
+ Model | All | K |
| | 1 | 2 | 4 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
CLMBR | 0.852 ± 0.0 | 0.53 ± 0.096 | 0.59 ± 0.061 | 0.628 ± 0.039 | 0.647 ± 0.039 | 0.651 ± 0.036 | 0.672 ± 0.027 | 0.682 ± 0.025 | 0.706 ± 0.029 | 0.737 ± 0.027 | 0.757 ± 0.022 | 0.777 ± 0.012 |
GBM | 0.815 ± 0.0 | 0.511 ± 0.011 | 0.502 ± 0.028 | 0.513 ± 0.033 | 0.598 ± 0.03 | 0.59 ± 0.036 | 0.613 ± 0.06 | 0.62 ± 0.037 | 0.642 ± 0.029 | 0.675 ± 0.016 | 0.706 ± 0.013 | 0.724 ± 0.008 |
Logistic Regression | 0.753 ± 0.0 | 0.53 ± 0.066 | 0.585 ± 0.065 | 0.6 ± 0.029 | 0.631 ± 0.024 | 0.635 ± 0.02 | 0.641 ± 0.034 | 0.61 ± 0.042 | 0.617 ± 0.025 | 0.657 ± 0.023 | 0.661 ± 0.019 | 0.683 ± 0.006 |
Random Forest | 0.811 ± 0.0 | 0.512 ± 0.028 | 0.54 ± 0.054 | 0.562 ± 0.042 | 0.629 ± 0.027 | 0.598 ± 0.041 | 0.624 ± 0.034 | 0.641 ± 0.018 | 0.651 ± 0.014 | 0.696 ± 0.011 | 0.705 ± 0.011 | 0.719 ± 0.01 |
+
+Hyperkalemia
+ Model | All | K |
| | 1 | 2 | 4 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
CLMBR | 0.792 ± 0.0 | 0.534 ± 0.06 | 0.559 ± 0.055 | 0.579 ± 0.044 | 0.616 ± 0.041 | 0.621 ± 0.011 | 0.634 ± 0.019 | 0.631 ± 0.028 | 0.659 ± 0.039 | 0.681 ± 0.038 | 0.693 ± 0.037 | 0.718 ± 0.021 |
GBM | 0.727 ± 0.0 | 0.504 ± 0.021 | 0.507 ± 0.027 | 0.497 ± 0.038 | 0.533 ± 0.03 | 0.516 ± 0.042 | 0.524 ± 0.039 | 0.574 ± 0.035 | 0.588 ± 0.035 | 0.6 ± 0.029 | 0.598 ± 0.033 | 0.629 ± 0.039 |
Logistic Regression | 0.658 ± 0.0 | 0.501 ± 0.027 | 0.504 ± 0.028 | 0.508 ± 0.045 | 0.531 ± 0.039 | 0.513 ± 0.044 | 0.517 ± 0.037 | 0.541 ± 0.04 | 0.577 ± 0.026 | 0.591 ± 0.034 | 0.602 ± 0.016 | 0.605 ± 0.018 |
Random Forest | 0.66 ± 0.0 | 0.47 ± 0.05 | 0.529 ± 0.026 | 0.508 ± 0.048 | 0.546 ± 0.032 | 0.559 ± 0.033 | 0.563 ± 0.042 | 0.567 ± 0.018 | 0.573 ± 0.029 | 0.582 ± 0.035 | 0.602 ± 0.026 | 0.63 ± 0.017 |
+
+Hypoglycemia
+ Model | All | K |
| | 1 | 2 | 4 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
CLMBR | 0.794 ± 0.0 | 0.506 ± 0.023 | 0.527 ± 0.037 | 0.542 ± 0.05 | 0.541 ± 0.046 | 0.548 ± 0.049 | 0.578 ± 0.031 | 0.589 ± 0.029 | 0.604 ± 0.023 | 0.636 ± 0.026 | 0.637 ± 0.025 | 0.693 ± 0.02 |
GBM | 0.627 ± 0.0 | 0.52 ± 0.034 | 0.523 ± 0.031 | 0.508 ± 0.028 | 0.504 ± 0.028 | 0.509 ± 0.017 | 0.494 ± 0.029 | 0.526 ± 0.023 | 0.533 ± 0.032 | 0.541 ± 0.028 | 0.543 ± 0.022 | 0.557 ± 0.024 |
Logistic Regression | 0.582 ± 0.0 | 0.507 ± 0.017 | 0.524 ± 0.018 | 0.524 ± 0.033 | 0.515 ± 0.048 | 0.505 ± 0.049 | 0.528 ± 0.043 | 0.542 ± 0.03 | 0.549 ± 0.038 | 0.544 ± 0.03 | 0.545 ± 0.025 | 0.556 ± 0.007 |
Random Forest | 0.606 ± 0.0 | 0.503 ± 0.02 | 0.496 ± 0.016 | 0.51 ± 0.033 | 0.497 ± 0.031 | 0.497 ± 0.026 | 0.505 ± 0.04 | 0.533 ± 0.024 | 0.529 ± 0.035 | 0.541 ± 0.031 | 0.533 ± 0.025 | 0.547 ± 0.018 |
+
+##### Assignment of New Diagnoses
+
+Acute MI
+ Model | All | K |
| | 1 | 2 | 4 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
CLMBR | 0.729 ± 0.0 | 0.551 ± 0.056 | 0.54 ± 0.109 | 0.62 ± 0.045 | 0.574 ± 0.066 | 0.566 ± 0.099 | 0.59 ± 0.106 | 0.653 ± 0.035 | 0.688 ± 0.028 | 0.672 ± 0.027 | 0.692 ± 0.023 | 0.708 ± 0.008 |
GBM | 0.725 ± 0.0 | 0.471 ± 0.068 | 0.528 ± 0.063 | 0.566 ± 0.064 | 0.563 ± 0.068 | 0.557 ± 0.093 | 0.611 ± 0.06 | 0.632 ± 0.07 | 0.647 ± 0.044 | 0.678 ± 0.027 | 0.709 ± 0.019 | 0.722 ± 0.015 |
Logistic Regression | 0.678 ± 0.0 | 0.542 ± 0.081 | 0.556 ± 0.091 | 0.586 ± 0.075 | 0.575 ± 0.046 | 0.565 ± 0.059 | 0.579 ± 0.055 | 0.622 ± 0.025 | 0.624 ± 0.015 | 0.637 ± 0.027 | 0.641 ± 0.034 | 0.655 ± 0.018 |
Random Forest | 0.741 ± 0.0 | 0.542 ± 0.083 | 0.537 ± 0.07 | 0.592 ± 0.044 | 0.603 ± 0.04 | 0.569 ± 0.09 | 0.616 ± 0.036 | 0.644 ± 0.04 | 0.673 ± 0.039 | 0.683 ± 0.027 | 0.707 ± 0.026 | 0.72 ± 0.029 |
+
+Lupus
+ Model | All | K |
| | 1 | 2 | 4 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
CLMBR | 0.747 ± 0.0 | 0.526 ± 0.058 | 0.493 ± 0.04 | 0.529 ± 0.057 | 0.608 ± 0.095 | 0.62 ± 0.057 | 0.656 ± 0.058 | 0.646 ± 0.031 | 0.651 ± 0.04 | 0.671 ± 0.075 | 0.677 ± 0.093 | 0.7 ± 0.068 |
GBM | 0.703 ± 0.0 | 0.478 ± 0.088 | 0.555 ± 0.043 | 0.555 ± 0.077 | 0.615 ± 0.089 | 0.595 ± 0.041 | 0.588 ± 0.066 | 0.634 ± 0.052 | 0.599 ± 0.047 | 0.642 ± 0.074 | 0.723 ± 0.026 | 0.755 ± 0.022 |
Logistic Regression | 0.793 ± 0.0 | 0.535 ± 0.095 | 0.556 ± 0.04 | 0.553 ± 0.046 | 0.605 ± 0.071 | 0.611 ± 0.073 | 0.652 ± 0.085 | 0.617 ± 0.11 | 0.657 ± 0.035 | 0.684 ± 0.028 | 0.712 ± 0.02 | 0.715 ± 0.037 |
Random Forest | 0.587 ± 0.0 | 0.487 ± 0.048 | 0.565 ± 0.07 | 0.512 ± 0.095 | 0.553 ± 0.124 | 0.571 ± 0.061 | 0.607 ± 0.047 | 0.642 ± 0.087 | 0.642 ± 0.054 | 0.656 ± 0.019 | 0.672 ± 0.015 | 0.639 ± 0.02 |
+
+Hyperlipidemia
+ Model | All | K |
| | 1 | 2 | 4 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
CLMBR | 0.675 ± 0.0 | 0.503 ± 0.036 | 0.519 ± 0.058 | 0.555 ± 0.032 | 0.597 ± 0.039 | 0.592 ± 0.028 | 0.597 ± 0.026 | 0.619 ± 0.013 | 0.618 ± 0.021 | 0.604 ± 0.044 | 0.638 ± 0.011 | 0.654 ± 0.011 |
GBM | 0.699 ± 0.0 | 0.474 ± 0.032 | 0.498 ± 0.017 | 0.533 ± 0.034 | 0.564 ± 0.032 | 0.569 ± 0.033 | 0.55 ± 0.061 | 0.565 ± 0.034 | 0.605 ± 0.028 | 0.611 ± 0.033 | 0.647 ± 0.019 | 0.667 ± 0.032 |
Logistic Regression | 0.72 ± 0.0 | 0.511 ± 0.06 | 0.532 ± 0.06 | 0.545 ± 0.045 | 0.578 ± 0.055 | 0.588 ± 0.039 | 0.603 ± 0.031 | 0.616 ± 0.045 | 0.651 ± 0.018 | 0.65 ± 0.028 | 0.658 ± 0.042 | 0.698 ± 0.017 |
Random Forest | 0.625 ± 0.0 | 0.5 ± 0.05 | 0.517 ± 0.061 | 0.533 ± 0.071 | 0.575 ± 0.035 | 0.556 ± 0.032 | 0.559 ± 0.023 | 0.585 ± 0.035 | 0.598 ± 0.028 | 0.611 ± 0.017 | 0.613 ± 0.025 | 0.657 ± 0.015 |
+
+Hypertension
+ Model | All | K |
| | 1 | 2 | 4 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
CLMBR | 0.718 ± 0.0 | 0.554 ± 0.061 | 0.632 ± 0.03 | 0.631 ± 0.051 | 0.646 ± 0.022 | 0.645 ± 0.023 | 0.668 ± 0.018 | 0.659 ± 0.032 | 0.663 ± 0.03 | 0.679 ± 0.021 | 0.682 ± 0.011 | 0.7 ± 0.011 |
GBM | 0.637 ± 0.0 | 0.486 ± 0.067 | 0.509 ± 0.033 | 0.532 ± 0.073 | 0.538 ± 0.046 | 0.547 ± 0.047 | 0.558 ± 0.014 | 0.58 ± 0.037 | 0.566 ± 0.03 | 0.624 ± 0.027 | 0.642 ± 0.028 | 0.644 ± 0.014 |
Logistic Regression | 0.689 ± 0.0 | 0.54 ± 0.028 | 0.575 ± 0.052 | 0.58 ± 0.069 | 0.571 ± 0.026 | 0.586 ± 0.053 | 0.612 ± 0.055 | 0.623 ± 0.035 | 0.603 ± 0.041 | 0.634 ± 0.027 | 0.647 ± 0.03 | 0.666 ± 0.041 |
Random Forest | 0.627 ± 0.0 | 0.512 ± 0.022 | 0.504 ± 0.028 | 0.536 ± 0.016 | 0.549 ± 0.05 | 0.572 ± 0.059 | 0.572 ± 0.056 | 0.586 ± 0.061 | 0.578 ± 0.026 | 0.609 ± 0.043 | 0.63 ± 0.033 | 0.627 ± 0.028 |
+
+Celiac
+ Model | All | K |
| | 1 | 2 | 4 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
CLMBR | 0.557 ± 0.0 | 0.455 ± 0.104 | 0.512 ± 0.155 | 0.573 ± 0.055 | 0.597 ± 0.109 | 0.617 ± 0.084 | 0.617 ± 0.065 | 0.613 ± 0.026 | 0.584 ± 0.072 | 0.613 ± 0.062 | 0.596 ± 0.1 | 0.6 ± 0.016 |
GBM | 0.723 ± 0.0 | 0.482 ± 0.137 | 0.491 ± 0.08 | 0.465 ± 0.072 | 0.478 ± 0.114 | 0.55 ± 0.131 | 0.539 ± 0.095 | 0.596 ± 0.102 | 0.539 ± 0.087 | 0.563 ± 0.116 | 0.609 ± 0.09 | 0.69 ± 0.057 |
Logistic Regression | 0.758 ± 0.0 | 0.519 ± 0.165 | 0.495 ± 0.199 | 0.481 ± 0.22 | 0.587 ± 0.149 | 0.571 ± 0.168 | 0.612 ± 0.134 | 0.668 ± 0.063 | 0.712 ± 0.054 | 0.754 ± 0.017 | 0.772 ± 0.031 | 0.78 ± 0.082 |
Random Forest | 0.639 ± 0.0 | 0.456 ± 0.124 | 0.518 ± 0.097 | 0.502 ± 0.125 | 0.508 ± 0.101 | 0.536 ± 0.122 | 0.498 ± 0.137 | 0.57 ± 0.088 | 0.574 ± 0.047 | 0.649 ± 0.072 | 0.605 ± 0.093 | 0.579 ± 0.105 |
+
+Pancreatic Cancer
+ Model | All | K |
| | 1 | 2 | 4 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
CLMBR | 0.813 ± 0.0 | 0.613 ± 0.044 | 0.628 ± 0.063 | 0.65 ± 0.054 | 0.677 ± 0.042 | 0.701 ± 0.076 | 0.715 ± 0.046 | 0.703 ± 0.028 | 0.729 ± 0.016 | 0.76 ± 0.035 | 0.772 ± 0.029 | 0.798 ± 0.015 |
GBM | 0.824 ± 0.0 | 0.528 ± 0.054 | 0.544 ± 0.043 | 0.567 ± 0.127 | 0.668 ± 0.065 | 0.711 ± 0.074 | 0.666 ± 0.071 | 0.725 ± 0.038 | 0.752 ± 0.056 | 0.796 ± 0.021 | 0.816 ± 0.034 | 0.86 ± 0.023 |
Logistic Regression | 0.856 ± 0.0 | 0.611 ± 0.031 | 0.623 ± 0.03 | 0.651 ± 0.079 | 0.675 ± 0.056 | 0.705 ± 0.046 | 0.726 ± 0.073 | 0.719 ± 0.064 | 0.715 ± 0.051 | 0.752 ± 0.053 | 0.787 ± 0.055 | 0.817 ± 0.034 |
Random Forest | 0.885 ± 0.0 | 0.522 ± 0.032 | 0.596 ± 0.046 | 0.621 ± 0.035 | 0.627 ± 0.103 | 0.708 ± 0.065 | 0.719 ± 0.072 | 0.733 ± 0.054 | 0.764 ± 0.041 | 0.784 ± 0.022 | 0.814 ± 0.041 | 0.815 ± 0.013 |
+
+
+##### Chest X-ray Findings
+Lung Opacity
+ Model | All | K |
| | 1 | 2 | 4 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
CLMBR | 0.709 ± 0.0 | 0.581 ± 0.061 | 0.579 ± 0.096 | 0.607 ± 0.043 | 0.628 ± 0.033 | 0.632 ± 0.035 | 0.646 ± 0.031 | 0.641 ± 0.043 | 0.645 ± 0.034 | 0.658 ± 0.02 | 0.663 ± 0.017 | 0.667 ± 0.01 |
GBM | 0.675 ± 0.0 | 0.515 ± 0.003 | 0.505 ± 0.01 | 0.512 ± 0.024 | 0.546 ± 0.031 | 0.564 ± 0.037 | 0.569 ± 0.032 | 0.557 ± 0.024 | 0.584 ± 0.032 | 0.586 ± 0.031 | 0.606 ± 0.011 | 0.596 ± 0.015 |
Logistic Regression | 0.637 ± 0.0 | 0.533 ± 0.037 | 0.533 ± 0.043 | 0.571 ± 0.018 | 0.547 ± 0.017 | 0.543 ± 0.031 | 0.557 ± 0.008 | 0.565 ± 0.046 | 0.565 ± 0.031 | 0.586 ± 0.036 | 0.581 ± 0.023 | 0.59 ± 0.017 |
Random Forest | 0.652 ± 0.0 | 0.531 ± 0.041 | 0.528 ± 0.034 | 0.556 ± 0.035 | 0.561 ± 0.037 | 0.554 ± 0.048 | 0.551 ± 0.035 | 0.562 ± 0.029 | 0.572 ± 0.046 | 0.579 ± 0.041 | 0.592 ± 0.032 | 0.615 ± 0.036 |
+
+Pleural Effusion
+ Model | All | K |
| | 1 | 2 | 4 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
CLMBR | 0.754 ± 0.0 | 0.549 ± 0.056 | 0.571 ± 0.082 | 0.577 ± 0.106 | 0.626 ± 0.081 | 0.664 ± 0.04 | 0.68 ± 0.022 | 0.67 ± 0.047 | 0.684 ± 0.044 | 0.715 ± 0.004 | 0.719 ± 0.011 | 0.717 ± 0.013 |
GBM | 0.673 ± 0.0 | 0.499 ± 0.012 | 0.504 ± 0.042 | 0.512 ± 0.053 | 0.496 ± 0.038 | 0.539 ± 0.04 | 0.536 ± 0.047 | 0.521 ± 0.037 | 0.566 ± 0.042 | 0.616 ± 0.044 | 0.618 ± 0.026 | 0.637 ± 0.032 |
Logistic Regression | 0.676 ± 0.0 | 0.482 ± 0.031 | 0.49 ± 0.038 | 0.502 ± 0.07 | 0.537 ± 0.056 | 0.547 ± 0.047 | 0.559 ± 0.041 | 0.547 ± 0.019 | 0.57 ± 0.023 | 0.596 ± 0.024 | 0.617 ± 0.033 | 0.634 ± 0.018 |
Random Forest | 0.678 ± 0.0 | 0.504 ± 0.006 | 0.48 ± 0.063 | 0.498 ± 0.061 | 0.55 ± 0.032 | 0.557 ± 0.052 | 0.556 ± 0.039 | 0.545 ± 0.044 | 0.58 ± 0.043 | 0.617 ± 0.042 | 0.642 ± 0.02 | 0.648 ± 0.015 |
+
+Consolidation
+ Model | All | K |
| | 1 | 2 | 4 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
CLMBR | 0.68 ± 0.0 | 0.497 ± 0.028 | 0.528 ± 0.056 | 0.523 ± 0.04 | 0.561 ± 0.017 | 0.554 ± 0.015 | 0.552 ± 0.035 | 0.577 ± 0.044 | 0.587 ± 0.02 | 0.606 ± 0.018 | 0.617 ± 0.02 | 0.646 ± 0.008 |
GBM | 0.604 ± 0.0 | 0.511 ± 0.033 | 0.513 ± 0.025 | 0.508 ± 0.034 | 0.534 ± 0.057 | 0.521 ± 0.042 | 0.514 ± 0.068 | 0.557 ± 0.049 | 0.566 ± 0.024 | 0.594 ± 0.055 | 0.591 ± 0.043 | 0.601 ± 0.045 |
Logistic Regression | 0.615 ± 0.0 | 0.505 ± 0.057 | 0.537 ± 0.066 | 0.535 ± 0.076 | 0.551 ± 0.044 | 0.541 ± 0.047 | 0.553 ± 0.045 | 0.588 ± 0.048 | 0.563 ± 0.06 | 0.567 ± 0.046 | 0.589 ± 0.033 | 0.604 ± 0.025 |
Random Forest | 0.617 ± 0.0 | 0.487 ± 0.058 | 0.535 ± 0.088 | 0.55 ± 0.053 | 0.528 ± 0.036 | 0.55 ± 0.042 | 0.532 ± 0.058 | 0.562 ± 0.035 | 0.571 ± 0.034 | 0.579 ± 0.035 | 0.606 ± 0.031 | 0.617 ± 0.014 |
+
+Pleural Other
+ Model | All | K |
| | 1 | 2 | 4 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
CLMBR | 0.714 ± 0.0 | 0.497 ± 0.041 | 0.524 ± 0.055 | 0.555 ± 0.038 | 0.592 ± 0.053 | 0.597 ± 0.074 | 0.606 ± 0.069 | 0.609 ± 0.077 | 0.598 ± 0.092 | 0.601 ± 0.06 | 0.612 ± 0.05 | 0.65 ± 0.022 |
GBM | 0.731 ± 0.0 | 0.488 ± 0.071 | 0.511 ± 0.111 | 0.526 ± 0.122 | 0.653 ± 0.023 | 0.614 ± 0.076 | 0.602 ± 0.057 | 0.657 ± 0.024 | 0.662 ± 0.074 | 0.645 ± 0.055 | 0.675 ± 0.048 | 0.701 ± 0.037 |
Logistic Regression | 0.735 ± 0.0 | 0.578 ± 0.16 | 0.625 ± 0.076 | 0.578 ± 0.089 | 0.544 ± 0.097 | 0.61 ± 0.084 | 0.682 ± 0.04 | 0.685 ± 0.038 | 0.672 ± 0.067 | 0.661 ± 0.06 | 0.683 ± 0.045 | 0.72 ± 0.028 |
Random Forest | 0.617 ± 0.0 | 0.516 ± 0.134 | 0.511 ± 0.122 | 0.559 ± 0.167 | 0.637 ± 0.049 | 0.636 ± 0.073 | 0.661 ± 0.066 | 0.709 ± 0.031 | 0.686 ± 0.082 | 0.693 ± 0.017 | 0.699 ± 0.045 | 0.734 ± 0.029 |
+
+Pneumothorax
+ Model | All | K |
| | 1 | 2 | 4 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
CLMBR | 0.823 ± 0.0 | 0.528 ± 0.073 | 0.65 ± 0.047 | 0.641 ± 0.063 | 0.661 ± 0.108 | 0.703 ± 0.098 | 0.717 ± 0.046 | 0.738 ± 0.029 | 0.762 ± 0.012 | 0.777 ± 0.015 | 0.783 ± 0.019 | 0.786 ± 0.019 |
GBM | 0.593 ± 0.0 | 0.596 ± 0.079 | 0.544 ± 0.056 | 0.44 ± 0.062 | 0.501 ± 0.108 | 0.605 ± 0.046 | 0.591 ± 0.075 | 0.592 ± 0.101 | 0.643 ± 0.062 | 0.632 ± 0.061 | 0.635 ± 0.03 | 0.662 ± 0.055 |
Logistic Regression | 0.633 ± 0.0 | 0.532 ± 0.091 | 0.494 ± 0.066 | 0.544 ± 0.11 | 0.52 ± 0.105 | 0.58 ± 0.119 | 0.503 ± 0.033 | 0.541 ± 0.075 | 0.576 ± 0.1 | 0.594 ± 0.103 | 0.62 ± 0.111 | 0.561 ± 0.087 |
Random Forest | 0.646 ± 0.0 | 0.482 ± 0.047 | 0.54 ± 0.06 | 0.502 ± 0.078 | 0.497 ± 0.129 | 0.568 ± 0.038 | 0.546 ± 0.078 | 0.56 ± 0.095 | 0.607 ± 0.056 | 0.584 ± 0.062 | 0.603 ± 0.062 | 0.626 ± 0.04 |
+
+Edema
+ Model | All | K |
| | 1 | 2 | 4 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
CLMBR | 0.722 ± 0.0 | 0.476 ± 0.113 | 0.495 ± 0.077 | 0.561 ± 0.078 | 0.596 ± 0.071 | 0.639 ± 0.08 | 0.653 ± 0.049 | 0.671 ± 0.029 | 0.678 ± 0.019 | 0.684 ± 0.024 | 0.692 ± 0.005 | 0.702 ± 0.012 |
GBM | 0.671 ± 0.0 | 0.504 ± 0.027 | 0.498 ± 0.024 | 0.482 ± 0.048 | 0.541 ± 0.06 | 0.536 ± 0.053 | 0.568 ± 0.039 | 0.587 ± 0.047 | 0.594 ± 0.032 | 0.613 ± 0.016 | 0.615 ± 0.021 | 0.629 ± 0.019 |
Logistic Regression | 0.631 ± 0.0 | 0.508 ± 0.021 | 0.537 ± 0.038 | 0.55 ± 0.039 | 0.536 ± 0.038 | 0.538 ± 0.024 | 0.565 ± 0.032 | 0.581 ± 0.023 | 0.585 ± 0.027 | 0.623 ± 0.021 | 0.627 ± 0.029 | 0.646 ± 0.015 |
Random Forest | 0.6 ± 0.0 | 0.489 ± 0.025 | 0.52 ± 0.045 | 0.528 ± 0.029 | 0.518 ± 0.031 | 0.537 ± 0.036 | 0.575 ± 0.047 | 0.554 ± 0.043 | 0.566 ± 0.03 | 0.616 ± 0.022 | 0.636 ± 0.033 | 0.636 ± 0.029 |
+
+Enlarged Cardiomediastinum
+ Model | All | K |
| | 1 | 2 | 4 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
CLMBR | 0.64 ± 0.0 | 0.486 ± 0.049 | 0.513 ± 0.055 | 0.516 ± 0.06 | 0.553 ± 0.043 | 0.564 ± 0.034 | 0.561 ± 0.018 | 0.578 ± 0.037 | 0.583 ± 0.032 | 0.599 ± 0.01 | 0.606 ± 0.017 | 0.622 ± 0.018 |
GBM | 0.656 ± 0.0 | 0.494 ± 0.058 | 0.53 ± 0.049 | 0.506 ± 0.086 | 0.56 ± 0.068 | 0.541 ± 0.049 | 0.552 ± 0.078 | 0.589 ± 0.045 | 0.611 ± 0.023 | 0.606 ± 0.028 | 0.606 ± 0.031 | 0.648 ± 0.038 |
Logistic Regression | 0.691 ± 0.0 | 0.46 ± 0.105 | 0.535 ± 0.072 | 0.532 ± 0.107 | 0.553 ± 0.057 | 0.588 ± 0.059 | 0.587 ± 0.042 | 0.626 ± 0.044 | 0.625 ± 0.053 | 0.657 ± 0.017 | 0.646 ± 0.027 | 0.674 ± 0.008 |
Random Forest | 0.568 ± 0.0 | 0.507 ± 0.109 | 0.475 ± 0.082 | 0.512 ± 0.085 | 0.561 ± 0.109 | 0.574 ± 0.065 | 0.583 ± 0.049 | 0.605 ± 0.021 | 0.581 ± 0.058 | 0.607 ± 0.052 | 0.634 ± 0.048 | 0.639 ± 0.038 |
+
+Cardiomegaly
+ Model | All | K |
| | 1 | 2 | 4 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
CLMBR | 0.822 ± 0.0 | 0.578 ± 0.079 | 0.575 ± 0.085 | 0.628 ± 0.084 | 0.643 ± 0.098 | 0.65 ± 0.069 | 0.668 ± 0.062 | 0.721 ± 0.037 | 0.735 ± 0.031 | 0.754 ± 0.025 | 0.773 ± 0.018 | 0.78 ± 0.019 |
GBM | 0.79 ± 0.0 | 0.476 ± 0.043 | 0.498 ± 0.064 | 0.519 ± 0.046 | 0.611 ± 0.065 | 0.604 ± 0.06 | 0.605 ± 0.08 | 0.622 ± 0.036 | 0.691 ± 0.046 | 0.706 ± 0.045 | 0.721 ± 0.041 | 0.761 ± 0.016 |
Logistic Regression | 0.748 ± 0.0 | 0.565 ± 0.098 | 0.554 ± 0.063 | 0.572 ± 0.079 | 0.582 ± 0.13 | 0.586 ± 0.079 | 0.627 ± 0.089 | 0.686 ± 0.064 | 0.688 ± 0.052 | 0.704 ± 0.081 | 0.713 ± 0.083 | 0.714 ± 0.037 |
Random Forest | 0.784 ± 0.0 | 0.546 ± 0.075 | 0.528 ± 0.03 | 0.523 ± 0.043 | 0.591 ± 0.093 | 0.59 ± 0.068 | 0.612 ± 0.053 | 0.644 ± 0.083 | 0.695 ± 0.063 | 0.708 ± 0.051 | 0.73 ± 0.044 | 0.752 ± 0.026 |
+
+Support Devices
+ Model | All | K |
| | 1 | 2 | 4 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
CLMBR | 0.752 ± 0.0 | 0.59 ± 0.039 | 0.595 ± 0.091 | 0.604 ± 0.102 | 0.644 ± 0.03 | 0.662 ± 0.03 | 0.668 ± 0.016 | 0.666 ± 0.04 | 0.67 ± 0.029 | 0.687 ± 0.015 | 0.698 ± 0.012 | 0.707 ± 0.015 |
GBM | 0.682 ± 0.0 | 0.501 ± 0.013 | 0.503 ± 0.027 | 0.503 ± 0.047 | 0.514 ± 0.044 | 0.56 ± 0.061 | 0.551 ± 0.051 | 0.577 ± 0.041 | 0.558 ± 0.047 | 0.596 ± 0.037 | 0.621 ± 0.022 | 0.628 ± 0.028 |
Logistic Regression | 0.65 ± 0.0 | 0.493 ± 0.02 | 0.512 ± 0.036 | 0.522 ± 0.05 | 0.517 ± 0.06 | 0.545 ± 0.044 | 0.542 ± 0.052 | 0.536 ± 0.055 | 0.527 ± 0.031 | 0.556 ± 0.036 | 0.564 ± 0.029 | 0.596 ± 0.019 |
Random Forest | 0.673 ± 0.0 | 0.502 ± 0.014 | 0.504 ± 0.035 | 0.508 ± 0.05 | 0.531 ± 0.064 | 0.558 ± 0.085 | 0.574 ± 0.059 | 0.538 ± 0.074 | 0.576 ± 0.021 | 0.607 ± 0.023 | 0.613 ± 0.025 | 0.645 ± 0.021 |
+
+Fracture
+ Model | All | K |
| | 1 | 2 | 4 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
CLMBR | 0.734 ± 0.0 | 0.509 ± 0.068 | 0.52 ± 0.058 | 0.52 ± 0.068 | 0.588 ± 0.096 | 0.626 ± 0.046 | 0.633 ± 0.06 | 0.665 ± 0.018 | 0.678 ± 0.043 | 0.667 ± 0.045 | 0.682 ± 0.017 | 0.707 ± 0.017 |
GBM | 0.71 ± 0.0 | 0.528 ± 0.035 | 0.505 ± 0.054 | 0.537 ± 0.036 | 0.563 ± 0.047 | 0.587 ± 0.062 | 0.54 ± 0.055 | 0.613 ± 0.066 | 0.628 ± 0.088 | 0.612 ± 0.063 | 0.622 ± 0.051 | 0.677 ± 0.04 |
Logistic Regression | 0.67 ± 0.0 | 0.602 ± 0.044 | 0.552 ± 0.11 | 0.52 ± 0.09 | 0.588 ± 0.118 | 0.554 ± 0.057 | 0.616 ± 0.059 | 0.641 ± 0.026 | 0.653 ± 0.029 | 0.648 ± 0.049 | 0.648 ± 0.028 | 0.661 ± 0.038 |
Random Forest | 0.607 ± 0.0 | 0.526 ± 0.057 | 0.547 ± 0.064 | 0.579 ± 0.082 | 0.586 ± 0.047 | 0.531 ± 0.076 | 0.57 ± 0.064 | 0.54 ± 0.068 | 0.609 ± 0.083 | 0.626 ± 0.064 | 0.613 ± 0.074 | 0.669 ± 0.05 |
+
+Pneumonia
+ Model | All | K |
| | 1 | 2 | 4 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
CLMBR | 0.609 ± 0.0 | 0.492 ± 0.029 | 0.503 ± 0.036 | 0.513 ± 0.043 | 0.506 ± 0.044 | 0.532 ± 0.047 | 0.526 ± 0.044 | 0.534 ± 0.041 | 0.538 ± 0.054 | 0.54 ± 0.035 | 0.541 ± 0.046 | 0.572 ± 0.025 |
GBM | 0.58 ± 0.0 | 0.506 ± 0.02 | 0.495 ± 0.026 | 0.489 ± 0.033 | 0.52 ± 0.027 | 0.55 ± 0.015 | 0.536 ± 0.036 | 0.508 ± 0.017 | 0.51 ± 0.041 | 0.54 ± 0.027 | 0.534 ± 0.018 | 0.544 ± 0.024 |
Logistic Regression | 0.553 ± 0.0 | 0.547 ± 0.033 | 0.538 ± 0.034 | 0.533 ± 0.045 | 0.539 ± 0.028 | 0.556 ± 0.009 | 0.519 ± 0.026 | 0.505 ± 0.031 | 0.534 ± 0.045 | 0.542 ± 0.026 | 0.506 ± 0.027 | 0.53 ± 0.041 |
Random Forest | 0.567 ± 0.0 | 0.485 ± 0.042 | 0.51 ± 0.048 | 0.526 ± 0.044 | 0.551 ± 0.008 | 0.536 ± 0.046 | 0.522 ± 0.025 | 0.562 ± 0.017 | 0.527 ± 0.019 | 0.545 ± 0.016 | 0.544 ± 0.016 | 0.559 ± 0.017 |
+
+Lung Lesion
+ Model | All | K |
| | 1 | 2 | 4 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
CLMBR | 0.761 ± 0.0 | 0.606 ± 0.057 | 0.611 ± 0.076 | 0.673 ± 0.038 | 0.657 ± 0.018 | 0.672 ± 0.029 | 0.676 ± 0.022 | 0.685 ± 0.013 | 0.699 ± 0.005 | 0.716 ± 0.017 | 0.721 ± 0.015 | 0.733 ± 0.016 |
GBM | 0.709 ± 0.0 | 0.495 ± 0.06 | 0.511 ± 0.026 | 0.513 ± 0.027 | 0.531 ± 0.041 | 0.537 ± 0.024 | 0.549 ± 0.039 | 0.57 ± 0.021 | 0.594 ± 0.039 | 0.619 ± 0.029 | 0.634 ± 0.03 | 0.663 ± 0.015 |
Logistic Regression | 0.696 ± 0.0 | 0.544 ± 0.069 | 0.535 ± 0.061 | 0.554 ± 0.064 | 0.557 ± 0.052 | 0.58 ± 0.031 | 0.594 ± 0.024 | 0.601 ± 0.03 | 0.599 ± 0.034 | 0.61 ± 0.031 | 0.644 ± 0.023 | 0.648 ± 0.046 |
Random Forest | 0.737 ± 0.0 | 0.507 ± 0.045 | 0.522 ± 0.035 | 0.518 ± 0.042 | 0.531 ± 0.046 | 0.529 ± 0.041 | 0.55 ± 0.022 | 0.579 ± 0.028 | 0.593 ± 0.03 | 0.594 ± 0.02 | 0.62 ± 0.029 | 0.661 ± 0.032 |
+
+Atelectasis
+ Model | All | K |
| | 1 | 2 | 4 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
CLMBR | 0.655 ± 0.0 | 0.466 ± 0.11 | 0.502 ± 0.091 | 0.542 ± 0.089 | 0.552 ± 0.105 | 0.569 ± 0.073 | 0.586 ± 0.057 | 0.566 ± 0.046 | 0.581 ± 0.059 | 0.63 ± 0.019 | 0.638 ± 0.019 | 0.65 ± 0.009 |
GBM | 0.515 ± 0.0 | 0.49 ± 0.026 | 0.508 ± 0.039 | 0.5 ± 0.041 | 0.504 ± 0.046 | 0.51 ± 0.036 | 0.515 ± 0.03 | 0.545 ± 0.018 | 0.538 ± 0.034 | 0.53 ± 0.039 | 0.515 ± 0.026 | 0.561 ± 0.022 |
Logistic Regression | 0.538 ± 0.0 | 0.488 ± 0.053 | 0.513 ± 0.036 | 0.484 ± 0.049 | 0.512 ± 0.044 | 0.502 ± 0.051 | 0.496 ± 0.034 | 0.508 ± 0.021 | 0.527 ± 0.021 | 0.518 ± 0.039 | 0.507 ± 0.043 | 0.525 ± 0.018 |
Random Forest | 0.502 ± 0.0 | 0.515 ± 0.039 | 0.499 ± 0.041 | 0.474 ± 0.032 | 0.505 ± 0.048 | 0.515 ± 0.021 | 0.531 ± 0.051 | 0.517 ± 0.03 | 0.51 ± 0.038 | 0.54 ± 0.027 | 0.518 ± 0.052 | 0.556 ± 0.015 |
+
+No Finding
+ Model | All | K |
| | 1 | 2 | 4 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
CLMBR | 0.606 ± 0.0 | 0.494 ± 0.028 | 0.529 ± 0.037 | 0.533 ± 0.014 | 0.54 ± 0.022 | 0.54 ± 0.009 | 0.536 ± 0.011 | 0.547 ± 0.016 | 0.543 ± 0.014 | 0.564 ± 0.027 | 0.559 ± 0.019 | 0.57 ± 0.015 |
GBM | 0.594 ± 0.0 | 0.504 ± 0.018 | 0.5 ± 0.02 | 0.51 ± 0.01 | 0.515 ± 0.021 | 0.508 ± 0.015 | 0.515 ± 0.024 | 0.525 ± 0.024 | 0.533 ± 0.01 | 0.534 ± 0.021 | 0.543 ± 0.016 | 0.537 ± 0.009 |
Logistic Regression | 0.578 ± 0.0 | 0.477 ± 0.029 | 0.509 ± 0.036 | 0.502 ± 0.016 | 0.507 ± 0.016 | 0.524 ± 0.017 | 0.514 ± 0.019 | 0.528 ± 0.027 | 0.542 ± 0.035 | 0.543 ± 0.02 | 0.539 ± 0.016 | 0.551 ± 0.016 |
Random Forest | 0.583 ± 0.0 | 0.491 ± 0.024 | 0.497 ± 0.023 | 0.5 ± 0.027 | 0.519 ± 0.028 | 0.521 ± 0.015 | 0.505 ± 0.015 | 0.522 ± 0.016 | 0.529 ± 0.021 | 0.529 ± 0.023 | 0.537 ± 0.014 | 0.561 ± 0.02 |
+
+#### AUPRC
+
+
+
+##### Operational Outcomes
+
+Long LOS
+ Model | All | K |
| | 1 | 2 | 4 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
CLMBR | 0.576 ± 0.0 | 0.282 ± 0.051 | 0.3 ± 0.044 | 0.309 ± 0.045 | 0.315 ± 0.032 | 0.335 ± 0.026 | 0.337 ± 0.03 | 0.358 ± 0.033 | 0.364 ± 0.015 | 0.41 ± 0.044 | 0.439 ± 0.035 | 0.473 ± 0.036 |
GBM | 0.532 ± 0.0 | 0.255 ± 0.017 | 0.253 ± 0.018 | 0.265 ± 0.032 | 0.295 ± 0.03 | 0.292 ± 0.025 | 0.296 ± 0.027 | 0.305 ± 0.03 | 0.323 ± 0.012 | 0.349 ± 0.041 | 0.38 ± 0.036 | 0.4 ± 0.033 |
Logistic Regression | 0.384 ± 0.0 | 0.237 ± 0.022 | 0.251 ± 0.016 | 0.283 ± 0.032 | 0.283 ± 0.02 | 0.283 ± 0.012 | 0.294 ± 0.012 | 0.308 ± 0.027 | 0.311 ± 0.013 | 0.346 ± 0.017 | 0.34 ± 0.014 | 0.365 ± 0.015 |
Random Forest | 0.483 ± 0.0 | 0.249 ± 0.014 | 0.25 ± 0.035 | 0.279 ± 0.058 | 0.284 ± 0.027 | 0.312 ± 0.024 | 0.324 ± 0.029 | 0.311 ± 0.04 | 0.334 ± 0.025 | 0.347 ± 0.038 | 0.383 ± 0.037 | 0.424 ± 0.022 |
+
+ICU Admission
+ Model | All | K |
| | 1 | 2 | 4 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
CLMBR | 0.324 ± 0.0 | 0.093 ± 0.042 | 0.095 ± 0.036 | 0.108 ± 0.044 | 0.142 ± 0.068 | 0.152 ± 0.022 | 0.181 ± 0.039 | 0.195 ± 0.059 | 0.215 ± 0.055 | 0.211 ± 0.042 | 0.209 ± 0.057 | 0.256 ± 0.024 |
GBM | 0.218 ± 0.0 | 0.046 ± 0.004 | 0.046 ± 0.007 | 0.049 ± 0.009 | 0.064 ± 0.019 | 0.065 ± 0.019 | 0.073 ± 0.015 | 0.079 ± 0.014 | 0.109 ± 0.027 | 0.113 ± 0.041 | 0.129 ± 0.045 | 0.165 ± 0.028 |
Logistic Regression | 0.094 ± 0.0 | 0.056 ± 0.015 | 0.053 ± 0.015 | 0.054 ± 0.014 | 0.067 ± 0.026 | 0.076 ± 0.023 | 0.079 ± 0.032 | 0.089 ± 0.026 | 0.093 ± 0.025 | 0.081 ± 0.017 | 0.078 ± 0.009 | 0.097 ± 0.009 |
Random Forest | 0.089 ± 0.0 | 0.055 ± 0.021 | 0.048 ± 0.007 | 0.056 ± 0.016 | 0.069 ± 0.023 | 0.07 ± 0.035 | 0.086 ± 0.026 | 0.095 ± 0.035 | 0.127 ± 0.048 | 0.115 ± 0.034 | 0.116 ± 0.046 | 0.19 ± 0.02 |
+
+30-day Readmission
+ Model | All | K |
| | 1 | 2 | 4 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
CLMBR | 0.412 ± 0.0 | 0.135 ± 0.049 | 0.182 ± 0.067 | 0.253 ± 0.051 | 0.237 ± 0.059 | 0.267 ± 0.09 | 0.297 ± 0.04 | 0.317 ± 0.028 | 0.329 ± 0.023 | 0.364 ± 0.021 | 0.368 ± 0.028 | 0.35 ± 0.021 |
GBM | 0.327 ± 0.0 | 0.119 ± 0.005 | 0.133 ± 0.018 | 0.134 ± 0.016 | 0.189 ± 0.035 | 0.169 ± 0.036 | 0.177 ± 0.015 | 0.215 ± 0.02 | 0.212 ± 0.039 | 0.228 ± 0.017 | 0.245 ± 0.019 | 0.276 ± 0.034 |
Logistic Regression | 0.258 ± 0.0 | 0.15 ± 0.047 | 0.162 ± 0.044 | 0.19 ± 0.033 | 0.201 ± 0.048 | 0.196 ± 0.042 | 0.194 ± 0.043 | 0.191 ± 0.029 | 0.195 ± 0.02 | 0.207 ± 0.021 | 0.217 ± 0.019 | 0.229 ± 0.023 |
Random Forest | 0.335 ± 0.0 | 0.145 ± 0.021 | 0.142 ± 0.031 | 0.147 ± 0.034 | 0.175 ± 0.026 | 0.169 ± 0.031 | 0.205 ± 0.026 | 0.213 ± 0.024 | 0.206 ± 0.029 | 0.24 ± 0.015 | 0.24 ± 0.023 | 0.267 ± 0.01 |
+
+##### Anticipating Lab Test Results
+
+Anemia
+ Model | All | K |
| | 1 | 2 | 4 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
CLMBR | 0.982 ± 0.0 | 0.777 ± 0.066 | 0.826 ± 0.078 | 0.862 ± 0.077 | 0.918 ± 0.017 | 0.925 ± 0.024 | 0.938 ± 0.016 | 0.948 ± 0.009 | 0.954 ± 0.007 | 0.959 ± 0.007 | 0.964 ± 0.003 | 0.972 ± 0.001 |
GBM | 0.899 ± 0.0 | 0.682 ± 0.012 | 0.699 ± 0.024 | 0.716 ± 0.005 | 0.757 ± 0.022 | 0.765 ± 0.022 | 0.771 ± 0.039 | 0.784 ± 0.027 | 0.797 ± 0.016 | 0.823 ± 0.018 | 0.826 ± 0.007 | 0.846 ± 0.007 |
Logistic Regression | 0.838 ± 0.0 | 0.678 ± 0.074 | 0.698 ± 0.065 | 0.743 ± 0.016 | 0.756 ± 0.009 | 0.761 ± 0.02 | 0.769 ± 0.017 | 0.767 ± 0.014 | 0.77 ± 0.022 | 0.774 ± 0.011 | 0.78 ± 0.012 | 0.793 ± 0.014 |
Random Forest | 0.891 ± 0.0 | 0.686 ± 0.043 | 0.688 ± 0.06 | 0.749 ± 0.007 | 0.768 ± 0.015 | 0.775 ± 0.028 | 0.786 ± 0.024 | 0.786 ± 0.013 | 0.797 ± 0.019 | 0.807 ± 0.021 | 0.825 ± 0.007 | 0.847 ± 0.007 |
+
+Hyperkalemia
+ Model | All | K |
| | 1 | 2 | 4 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
CLMBR | 0.153 ± 0.0 | 0.029 ± 0.006 | 0.033 ± 0.008 | 0.034 ± 0.006 | 0.041 ± 0.006 | 0.045 ± 0.01 | 0.049 ± 0.014 | 0.049 ± 0.012 | 0.059 ± 0.011 | 0.068 ± 0.018 | 0.075 ± 0.019 | 0.083 ± 0.011 |
GBM | 0.082 ± 0.0 | 0.025 ± 0.001 | 0.025 ± 0.001 | 0.026 ± 0.005 | 0.029 ± 0.004 | 0.026 ± 0.004 | 0.026 ± 0.003 | 0.038 ± 0.013 | 0.037 ± 0.007 | 0.04 ± 0.009 | 0.039 ± 0.006 | 0.052 ± 0.014 |
Logistic Regression | 0.055 ± 0.0 | 0.028 ± 0.004 | 0.029 ± 0.002 | 0.029 ± 0.005 | 0.03 ± 0.005 | 0.031 ± 0.007 | 0.029 ± 0.006 | 0.031 ± 0.005 | 0.035 ± 0.003 | 0.036 ± 0.004 | 0.037 ± 0.002 | 0.036 ± 0.004 |
Random Forest | 0.052 ± 0.0 | 0.025 ± 0.006 | 0.028 ± 0.004 | 0.027 ± 0.005 | 0.03 ± 0.003 | 0.032 ± 0.006 | 0.032 ± 0.007 | 0.03 ± 0.001 | 0.034 ± 0.006 | 0.037 ± 0.008 | 0.043 ± 0.008 | 0.048 ± 0.007 |
+
+Hypoglycemia
+ Model | All | K |
| | 1 | 2 | 4 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
CLMBR | 0.086 ± 0.0 | 0.014 ± 0.001 | 0.015 ± 0.002 | 0.016 ± 0.004 | 0.016 ± 0.004 | 0.017 ± 0.004 | 0.018 ± 0.003 | 0.02 ± 0.004 | 0.022 ± 0.004 | 0.025 ± 0.003 | 0.026 ± 0.003 | 0.037 ± 0.006 |
GBM | 0.021 ± 0.0 | 0.014 ± 0.001 | 0.014 ± 0.001 | 0.014 ± 0.001 | 0.014 ± 0.001 | 0.014 ± 0.001 | 0.014 ± 0.001 | 0.015 ± 0.001 | 0.016 ± 0.003 | 0.016 ± 0.001 | 0.016 ± 0.002 | 0.017 ± 0.001 |
Logistic Regression | 0.02 ± 0.0 | 0.016 ± 0.002 | 0.016 ± 0.001 | 0.016 ± 0.003 | 0.015 ± 0.003 | 0.015 ± 0.003 | 0.016 ± 0.003 | 0.017 ± 0.002 | 0.016 ± 0.002 | 0.016 ± 0.002 | 0.016 ± 0.002 | 0.018 ± 0.001 |
Random Forest | 0.02 ± 0.0 | 0.015 ± 0.002 | 0.014 ± 0.001 | 0.014 ± 0.001 | 0.014 ± 0.002 | 0.014 ± 0.002 | 0.014 ± 0.002 | 0.016 ± 0.001 | 0.016 ± 0.002 | 0.016 ± 0.002 | 0.016 ± 0.001 | 0.016 ± 0.001 |
+
+Hyponatremia
+ Model | All | K |
| | 1 | 2 | 4 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
CLMBR | 0.575 ± 0.0 | 0.296 ± 0.018 | 0.307 ± 0.026 | 0.32 ± 0.021 | 0.318 ± 0.016 | 0.319 ± 0.02 | 0.322 ± 0.023 | 0.333 ± 0.027 | 0.35 ± 0.025 | 0.354 ± 0.027 | 0.367 ± 0.026 | 0.408 ± 0.029 |
GBM | 0.438 ± 0.0 | 0.287 ± 0.0 | 0.287 ± 0.002 | 0.296 ± 0.006 | 0.297 ± 0.01 | 0.304 ± 0.021 | 0.3 ± 0.013 | 0.302 ± 0.007 | 0.311 ± 0.011 | 0.312 ± 0.016 | 0.309 ± 0.019 | 0.339 ± 0.027 |
Logistic Regression | 0.374 ± 0.0 | 0.29 ± 0.009 | 0.288 ± 0.02 | 0.292 ± 0.012 | 0.294 ± 0.014 | 0.3 ± 0.01 | 0.3 ± 0.01 | 0.299 ± 0.015 | 0.304 ± 0.018 | 0.293 ± 0.016 | 0.295 ± 0.015 | 0.302 ± 0.026 |
Random Forest | 0.392 ± 0.0 | 0.295 ± 0.005 | 0.288 ± 0.009 | 0.297 ± 0.014 | 0.293 ± 0.008 | 0.301 ± 0.015 | 0.301 ± 0.013 | 0.302 ± 0.019 | 0.305 ± 0.02 | 0.31 ± 0.02 | 0.307 ± 0.02 | 0.321 ± 0.025 |
+
+Thrombocytopenia
+ Model | All | K |
| | 1 | 2 | 4 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
CLMBR | 0.784 ± 0.0 | 0.37 ± 0.067 | 0.409 ± 0.061 | 0.456 ± 0.065 | 0.473 ± 0.047 | 0.468 ± 0.036 | 0.5 ± 0.039 | 0.527 ± 0.023 | 0.564 ± 0.037 | 0.6 ± 0.046 | 0.635 ± 0.041 | 0.671 ± 0.02 |
GBM | 0.736 ± 0.0 | 0.346 ± 0.008 | 0.341 ± 0.013 | 0.35 ± 0.019 | 0.44 ± 0.045 | 0.444 ± 0.028 | 0.462 ± 0.074 | 0.464 ± 0.05 | 0.473 ± 0.029 | 0.529 ± 0.027 | 0.571 ± 0.02 | 0.593 ± 0.016 |
Logistic Regression | 0.63 ± 0.0 | 0.353 ± 0.042 | 0.416 ± 0.083 | 0.419 ± 0.039 | 0.461 ± 0.019 | 0.462 ± 0.018 | 0.476 ± 0.039 | 0.439 ± 0.028 | 0.44 ± 0.04 | 0.48 ± 0.028 | 0.49 ± 0.03 | 0.513 ± 0.012 |
Random Forest | 0.723 ± 0.0 | 0.345 ± 0.019 | 0.37 ± 0.052 | 0.381 ± 0.04 | 0.456 ± 0.043 | 0.429 ± 0.048 | 0.458 ± 0.052 | 0.471 ± 0.036 | 0.491 ± 0.024 | 0.562 ± 0.032 | 0.576 ± 0.023 | 0.598 ± 0.009 |
+
+##### Assignment of New Diagnoses
+
+Acute MI
+ Model | All | K |
| | 1 | 2 | 4 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
CLMBR | 0.183 ± 0.0 | 0.086 ± 0.014 | 0.093 ± 0.031 | 0.12 ± 0.023 | 0.096 ± 0.019 | 0.099 ± 0.038 | 0.118 ± 0.055 | 0.137 ± 0.028 | 0.159 ± 0.027 | 0.138 ± 0.02 | 0.154 ± 0.021 | 0.158 ± 0.012 |
GBM | 0.184 ± 0.0 | 0.066 ± 0.009 | 0.073 ± 0.01 | 0.081 ± 0.01 | 0.087 ± 0.018 | 0.084 ± 0.021 | 0.107 ± 0.015 | 0.122 ± 0.03 | 0.117 ± 0.026 | 0.134 ± 0.017 | 0.152 ± 0.024 | 0.158 ± 0.013 |
Logistic Regression | 0.135 ± 0.0 | 0.082 ± 0.018 | 0.087 ± 0.024 | 0.098 ± 0.019 | 0.092 ± 0.016 | 0.093 ± 0.018 | 0.092 ± 0.012 | 0.106 ± 0.006 | 0.103 ± 0.011 | 0.11 ± 0.012 | 0.111 ± 0.013 | 0.116 ± 0.009 |
Random Forest | 0.165 ± 0.0 | 0.083 ± 0.019 | 0.082 ± 0.017 | 0.088 ± 0.009 | 0.096 ± 0.017 | 0.09 ± 0.022 | 0.103 ± 0.008 | 0.111 ± 0.019 | 0.122 ± 0.025 | 0.128 ± 0.027 | 0.143 ± 0.023 | 0.152 ± 0.013 |
+
+Pancreatic Cancer
+ Model | All | K |
| | 1 | 2 | 4 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
CLMBR | 0.252 ± 0.0 | 0.047 ± 0.018 | 0.059 ± 0.016 | 0.087 ± 0.07 | 0.08 ± 0.028 | 0.102 ± 0.04 | 0.123 ± 0.052 | 0.123 ± 0.039 | 0.134 ± 0.053 | 0.137 ± 0.049 | 0.15 ± 0.058 | 0.177 ± 0.044 |
GBM | 0.372 ± 0.0 | 0.027 ± 0.004 | 0.028 ± 0.003 | 0.04 ± 0.03 | 0.068 ± 0.024 | 0.094 ± 0.047 | 0.071 ± 0.032 | 0.08 ± 0.024 | 0.128 ± 0.047 | 0.177 ± 0.059 | 0.181 ± 0.063 | 0.243 ± 0.068 |
Logistic Regression | 0.157 ± 0.0 | 0.058 ± 0.028 | 0.043 ± 0.007 | 0.05 ± 0.011 | 0.051 ± 0.011 | 0.056 ± 0.015 | 0.063 ± 0.025 | 0.072 ± 0.026 | 0.067 ± 0.015 | 0.085 ± 0.026 | 0.115 ± 0.042 | 0.122 ± 0.032 |
Random Forest | 0.472 ± 0.0 | 0.028 ± 0.003 | 0.04 ± 0.01 | 0.049 ± 0.006 | 0.061 ± 0.047 | 0.069 ± 0.028 | 0.086 ± 0.032 | 0.103 ± 0.033 | 0.113 ± 0.037 | 0.136 ± 0.036 | 0.153 ± 0.039 | 0.172 ± 0.043 |
+
+Lupus
+ Model | All | K |
| | 1 | 2 | 4 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
CLMBR | 0.024 ± 0.0 | 0.012 ± 0.002 | 0.011 ± 0.002 | 0.012 ± 0.003 | 0.015 ± 0.005 | 0.015 ± 0.004 | 0.016 ± 0.003 | 0.018 ± 0.007 | 0.026 ± 0.022 | 0.02 ± 0.009 | 0.018 ± 0.006 | 0.018 ± 0.006 |
GBM | 0.179 ± 0.0 | 0.009 ± 0.001 | 0.01 ± 0.001 | 0.011 ± 0.002 | 0.015 ± 0.005 | 0.03 ± 0.03 | 0.017 ± 0.007 | 0.029 ± 0.021 | 0.036 ± 0.022 | 0.058 ± 0.032 | 0.061 ± 0.038 | 0.079 ± 0.023 |
Logistic Regression | 0.093 ± 0.0 | 0.011 ± 0.003 | 0.012 ± 0.002 | 0.01 ± 0.002 | 0.012 ± 0.003 | 0.012 ± 0.003 | 0.015 ± 0.004 | 0.013 ± 0.004 | 0.015 ± 0.002 | 0.016 ± 0.002 | 0.018 ± 0.003 | 0.019 ± 0.003 |
Random Forest | 0.016 ± 0.0 | 0.009 ± 0.001 | 0.012 ± 0.004 | 0.01 ± 0.002 | 0.012 ± 0.004 | 0.014 ± 0.005 | 0.016 ± 0.008 | 0.025 ± 0.016 | 0.022 ± 0.009 | 0.036 ± 0.022 | 0.055 ± 0.067 | 0.049 ± 0.038 |
+
+Hyperlipidemia
+ Model | All | K |
| | 1 | 2 | 4 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
CLMBR | 0.225 ± 0.0 | 0.142 ± 0.013 | 0.149 ± 0.029 | 0.161 ± 0.02 | 0.18 ± 0.017 | 0.175 ± 0.015 | 0.179 ± 0.016 | 0.193 ± 0.013 | 0.191 ± 0.017 | 0.181 ± 0.021 | 0.198 ± 0.006 | 0.214 ± 0.004 |
GBM | 0.258 ± 0.0 | 0.126 ± 0.006 | 0.13 ± 0.004 | 0.142 ± 0.01 | 0.158 ± 0.018 | 0.152 ± 0.013 | 0.157 ± 0.02 | 0.165 ± 0.022 | 0.202 ± 0.025 | 0.184 ± 0.031 | 0.21 ± 0.011 | 0.222 ± 0.017 |
Logistic Regression | 0.247 ± 0.0 | 0.144 ± 0.025 | 0.166 ± 0.046 | 0.164 ± 0.015 | 0.169 ± 0.026 | 0.174 ± 0.028 | 0.183 ± 0.019 | 0.188 ± 0.027 | 0.212 ± 0.02 | 0.203 ± 0.018 | 0.208 ± 0.029 | 0.244 ± 0.013 |
Random Forest | 0.193 ± 0.0 | 0.138 ± 0.019 | 0.143 ± 0.022 | 0.151 ± 0.03 | 0.161 ± 0.014 | 0.149 ± 0.014 | 0.16 ± 0.006 | 0.181 ± 0.026 | 0.195 ± 0.021 | 0.193 ± 0.019 | 0.186 ± 0.02 | 0.227 ± 0.013 |
+
+Hypertension
+ Model | All | K |
| | 1 | 2 | 4 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
CLMBR | 0.258 ± 0.0 | 0.151 ± 0.033 | 0.189 ± 0.017 | 0.188 ± 0.024 | 0.205 ± 0.02 | 0.213 ± 0.022 | 0.224 ± 0.027 | 0.222 ± 0.038 | 0.22 ± 0.03 | 0.226 ± 0.023 | 0.233 ± 0.024 | 0.243 ± 0.019 |
GBM | 0.221 ± 0.0 | 0.127 ± 0.013 | 0.129 ± 0.008 | 0.14 ± 0.019 | 0.138 ± 0.01 | 0.148 ± 0.016 | 0.152 ± 0.008 | 0.175 ± 0.034 | 0.165 ± 0.021 | 0.198 ± 0.009 | 0.209 ± 0.023 | 0.206 ± 0.017 |
Logistic Regression | 0.212 ± 0.0 | 0.138 ± 0.01 | 0.151 ± 0.022 | 0.158 ± 0.033 | 0.147 ± 0.013 | 0.16 ± 0.034 | 0.175 ± 0.037 | 0.176 ± 0.024 | 0.169 ± 0.023 | 0.182 ± 0.02 | 0.188 ± 0.018 | 0.191 ± 0.021 |
Random Forest | 0.226 ± 0.0 | 0.133 ± 0.008 | 0.142 ± 0.038 | 0.146 ± 0.016 | 0.159 ± 0.031 | 0.164 ± 0.037 | 0.175 ± 0.036 | 0.175 ± 0.052 | 0.167 ± 0.01 | 0.19 ± 0.038 | 0.208 ± 0.03 | 0.203 ± 0.035 |
+
+Celiac
+ Model | All | K |
| | 1 | 2 | 4 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
CLMBR | 0.017 ± 0.0 | 0.016 ± 0.016 | 0.017 ± 0.017 | 0.016 ± 0.008 | 0.023 ± 0.015 | 0.021 ± 0.008 | 0.022 ± 0.013 | 0.014 ± 0.001 | 0.018 ± 0.006 | 0.024 ± 0.016 | 0.015 ± 0.005 | 0.016 ± 0.005 |
GBM | 0.058 ± 0.0 | 0.01 ± 0.002 | 0.01 ± 0.001 | 0.01 ± 0.003 | 0.052 ± 0.065 | 0.014 ± 0.007 | 0.013 ± 0.005 | 0.015 ± 0.004 | 0.012 ± 0.004 | 0.016 ± 0.008 | 0.031 ± 0.022 | 0.026 ± 0.012 |
Logistic Regression | 0.231 ± 0.0 | 0.015 ± 0.009 | 0.017 ± 0.011 | 0.015 ± 0.011 | 0.02 ± 0.014 | 0.02 ± 0.011 | 0.026 ± 0.016 | 0.04 ± 0.026 | 0.049 ± 0.038 | 0.082 ± 0.019 | 0.088 ± 0.068 | 0.094 ± 0.017 |
Random Forest | 0.045 ± 0.0 | 0.01 ± 0.002 | 0.024 ± 0.026 | 0.012 ± 0.006 | 0.016 ± 0.009 | 0.019 ± 0.015 | 0.014 ± 0.008 | 0.014 ± 0.005 | 0.015 ± 0.003 | 0.03 ± 0.014 | 0.039 ± 0.046 | 0.019 ± 0.012 |
+
+##### Chest X-ray Findings
+
+Lung Opacity
+ Model | All | K |
| | 1 | 2 | 4 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
CLMBR | 0.399 ± 0.0 | 0.248 ± 0.049 | 0.26 ± 0.063 | 0.276 ± 0.051 | 0.29 ± 0.045 | 0.3 ± 0.047 | 0.314 ± 0.043 | 0.315 ± 0.063 | 0.317 ± 0.06 | 0.329 ± 0.041 | 0.34 ± 0.041 | 0.336 ± 0.028 |
GBM | 0.362 ± 0.0 | 0.198 ± 0.002 | 0.195 ± 0.003 | 0.2 ± 0.012 | 0.225 ± 0.019 | 0.246 ± 0.026 | 0.238 ± 0.025 | 0.231 ± 0.013 | 0.252 ± 0.032 | 0.257 ± 0.03 | 0.276 ± 0.013 | 0.26 ± 0.017 |
Logistic Regression | 0.288 ± 0.0 | 0.202 ± 0.014 | 0.202 ± 0.017 | 0.222 ± 0.017 | 0.211 ± 0.014 | 0.212 ± 0.022 | 0.216 ± 0.011 | 0.231 ± 0.034 | 0.231 ± 0.032 | 0.24 ± 0.021 | 0.234 ± 0.017 | 0.248 ± 0.013 |
Random Forest | 0.32 ± 0.0 | 0.211 ± 0.023 | 0.206 ± 0.015 | 0.225 ± 0.029 | 0.233 ± 0.027 | 0.221 ± 0.034 | 0.221 ± 0.029 | 0.234 ± 0.02 | 0.245 ± 0.037 | 0.246 ± 0.041 | 0.255 ± 0.032 | 0.277 ± 0.039 |
+
+Pleural Effusion
+ Model | All | K |
| | 1 | 2 | 4 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
CLMBR | 0.299 ± 0.0 | 0.147 ± 0.022 | 0.155 ± 0.035 | 0.165 ± 0.057 | 0.199 ± 0.058 | 0.222 ± 0.038 | 0.232 ± 0.029 | 0.226 ± 0.043 | 0.237 ± 0.039 | 0.266 ± 0.009 | 0.27 ± 0.018 | 0.263 ± 0.015 |
GBM | 0.226 ± 0.0 | 0.129 ± 0.002 | 0.132 ± 0.009 | 0.14 ± 0.026 | 0.132 ± 0.013 | 0.152 ± 0.021 | 0.147 ± 0.021 | 0.14 ± 0.018 | 0.158 ± 0.017 | 0.198 ± 0.029 | 0.2 ± 0.025 | 0.216 ± 0.019 |
Logistic Regression | 0.249 ± 0.0 | 0.121 ± 0.007 | 0.123 ± 0.009 | 0.131 ± 0.014 | 0.142 ± 0.022 | 0.146 ± 0.013 | 0.158 ± 0.016 | 0.151 ± 0.016 | 0.164 ± 0.017 | 0.171 ± 0.012 | 0.192 ± 0.014 | 0.215 ± 0.013 |
Random Forest | 0.212 ± 0.0 | 0.13 ± 0.003 | 0.123 ± 0.015 | 0.128 ± 0.017 | 0.149 ± 0.018 | 0.157 ± 0.024 | 0.154 ± 0.02 | 0.149 ± 0.018 | 0.174 ± 0.031 | 0.195 ± 0.043 | 0.213 ± 0.01 | 0.207 ± 0.019 |
+
+Consolidation
+ Model | All | K |
| | 1 | 2 | 4 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
CLMBR | 0.073 ± 0.0 | 0.039 ± 0.005 | 0.044 ± 0.008 | 0.042 ± 0.004 | 0.047 ± 0.004 | 0.045 ± 0.002 | 0.046 ± 0.004 | 0.052 ± 0.006 | 0.053 ± 0.006 | 0.052 ± 0.004 | 0.055 ± 0.003 | 0.061 ± 0.004 |
GBM | 0.05 ± 0.0 | 0.039 ± 0.003 | 0.039 ± 0.002 | 0.04 ± 0.004 | 0.046 ± 0.008 | 0.042 ± 0.005 | 0.043 ± 0.011 | 0.05 ± 0.011 | 0.047 ± 0.006 | 0.058 ± 0.014 | 0.053 ± 0.009 | 0.057 ± 0.012 |
Logistic Regression | 0.066 ± 0.0 | 0.049 ± 0.013 | 0.05 ± 0.012 | 0.047 ± 0.012 | 0.051 ± 0.007 | 0.048 ± 0.009 | 0.048 ± 0.008 | 0.057 ± 0.01 | 0.051 ± 0.01 | 0.052 ± 0.012 | 0.058 ± 0.01 | 0.06 ± 0.008 |
Random Forest | 0.057 ± 0.0 | 0.038 ± 0.006 | 0.045 ± 0.01 | 0.045 ± 0.007 | 0.042 ± 0.004 | 0.047 ± 0.013 | 0.044 ± 0.007 | 0.051 ± 0.007 | 0.048 ± 0.005 | 0.051 ± 0.01 | 0.056 ± 0.008 | 0.061 ± 0.011 |
+
+Pleural Other
+ Model | All | K |
| | 1 | 2 | 4 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
CLMBR | 0.063 ± 0.0 | 0.018 ± 0.003 | 0.021 ± 0.005 | 0.024 ± 0.005 | 0.029 ± 0.007 | 0.029 ± 0.01 | 0.027 ± 0.008 | 0.03 ± 0.01 | 0.029 ± 0.011 | 0.027 ± 0.009 | 0.035 ± 0.016 | 0.037 ± 0.004 |
GBM | 0.052 ± 0.0 | 0.016 ± 0.002 | 0.018 ± 0.004 | 0.018 ± 0.007 | 0.028 ± 0.004 | 0.027 ± 0.007 | 0.024 ± 0.007 | 0.029 ± 0.006 | 0.031 ± 0.01 | 0.028 ± 0.006 | 0.035 ± 0.009 | 0.044 ± 0.01 |
Logistic Regression | 0.043 ± 0.0 | 0.022 ± 0.008 | 0.023 ± 0.008 | 0.02 ± 0.006 | 0.018 ± 0.006 | 0.022 ± 0.007 | 0.03 ± 0.009 | 0.028 ± 0.006 | 0.028 ± 0.009 | 0.026 ± 0.007 | 0.027 ± 0.005 | 0.032 ± 0.004 |
Random Forest | 0.022 ± 0.0 | 0.019 ± 0.005 | 0.018 ± 0.006 | 0.024 ± 0.013 | 0.025 ± 0.004 | 0.03 ± 0.011 | 0.03 ± 0.007 | 0.038 ± 0.005 | 0.032 ± 0.01 | 0.033 ± 0.004 | 0.041 ± 0.014 | 0.041 ± 0.005 |
+
+Pneumothorax
+ Model | All | K |
| | 1 | 2 | 4 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
CLMBR | 0.184 ± 0.0 | 0.048 ± 0.008 | 0.07 ± 0.014 | 0.069 ± 0.02 | 0.076 ± 0.025 | 0.096 ± 0.029 | 0.097 ± 0.02 | 0.101 ± 0.016 | 0.119 ± 0.007 | 0.14 ± 0.013 | 0.142 ± 0.018 | 0.14 ± 0.017 |
GBM | 0.083 ± 0.0 | 0.056 ± 0.009 | 0.048 ± 0.005 | 0.042 ± 0.005 | 0.047 ± 0.01 | 0.064 ± 0.016 | 0.063 ± 0.018 | 0.083 ± 0.033 | 0.085 ± 0.035 | 0.074 ± 0.024 | 0.069 ± 0.009 | 0.09 ± 0.023 |
Logistic Regression | 0.063 ± 0.0 | 0.049 ± 0.014 | 0.048 ± 0.006 | 0.066 ± 0.048 | 0.055 ± 0.016 | 0.078 ± 0.041 | 0.054 ± 0.012 | 0.063 ± 0.033 | 0.074 ± 0.032 | 0.078 ± 0.038 | 0.086 ± 0.049 | 0.058 ± 0.016 |
Random Forest | 0.063 ± 0.0 | 0.044 ± 0.003 | 0.056 ± 0.007 | 0.047 ± 0.011 | 0.049 ± 0.018 | 0.061 ± 0.021 | 0.061 ± 0.018 | 0.061 ± 0.019 | 0.067 ± 0.021 | 0.064 ± 0.016 | 0.06 ± 0.012 | 0.074 ± 0.013 |
+
+Edema
+ Model | All | K |
| | 1 | 2 | 4 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
CLMBR | 0.175 ± 0.0 | 0.076 ± 0.022 | 0.077 ± 0.013 | 0.095 ± 0.02 | 0.106 ± 0.026 | 0.127 ± 0.03 | 0.132 ± 0.024 | 0.142 ± 0.024 | 0.143 ± 0.017 | 0.149 ± 0.02 | 0.156 ± 0.004 | 0.158 ± 0.017 |
GBM | 0.138 ± 0.0 | 0.077 ± 0.004 | 0.076 ± 0.002 | 0.074 ± 0.007 | 0.087 ± 0.014 | 0.089 ± 0.017 | 0.096 ± 0.017 | 0.107 ± 0.019 | 0.111 ± 0.016 | 0.112 ± 0.011 | 0.121 ± 0.014 | 0.131 ± 0.014 |
Logistic Regression | 0.125 ± 0.0 | 0.077 ± 0.002 | 0.081 ± 0.007 | 0.084 ± 0.006 | 0.082 ± 0.008 | 0.083 ± 0.006 | 0.09 ± 0.008 | 0.095 ± 0.01 | 0.097 ± 0.011 | 0.112 ± 0.011 | 0.114 ± 0.013 | 0.124 ± 0.011 |
Random Forest | 0.098 ± 0.0 | 0.074 ± 0.004 | 0.08 ± 0.009 | 0.084 ± 0.013 | 0.083 ± 0.007 | 0.086 ± 0.012 | 0.097 ± 0.017 | 0.093 ± 0.012 | 0.096 ± 0.009 | 0.117 ± 0.011 | 0.132 ± 0.022 | 0.127 ± 0.017 |
+
+Enlarged Cardiomediastinum
+ Model | All | K |
| | 1 | 2 | 4 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
CLMBR | 0.033 ± 0.0 | 0.017 ± 0.002 | 0.02 ± 0.006 | 0.02 ± 0.004 | 0.022 ± 0.002 | 0.022 ± 0.002 | 0.023 ± 0.002 | 0.026 ± 0.006 | 0.025 ± 0.004 | 0.026 ± 0.003 | 0.028 ± 0.002 | 0.029 ± 0.001 |
GBM | 0.029 ± 0.0 | 0.018 ± 0.002 | 0.019 ± 0.002 | 0.019 ± 0.003 | 0.022 ± 0.005 | 0.021 ± 0.003 | 0.022 ± 0.004 | 0.025 ± 0.003 | 0.029 ± 0.004 | 0.028 ± 0.004 | 0.027 ± 0.003 | 0.028 ± 0.005 |
Logistic Regression | 0.033 ± 0.0 | 0.017 ± 0.006 | 0.019 ± 0.004 | 0.019 ± 0.005 | 0.019 ± 0.002 | 0.021 ± 0.004 | 0.021 ± 0.003 | 0.026 ± 0.006 | 0.026 ± 0.005 | 0.028 ± 0.003 | 0.028 ± 0.004 | 0.031 ± 0.003 |
Random Forest | 0.021 ± 0.0 | 0.02 ± 0.005 | 0.018 ± 0.003 | 0.019 ± 0.003 | 0.024 ± 0.007 | 0.023 ± 0.005 | 0.026 ± 0.006 | 0.026 ± 0.002 | 0.024 ± 0.004 | 0.025 ± 0.005 | 0.027 ± 0.004 | 0.029 ± 0.004 |
+
+Support Devices
+ Model | All | K |
| | 1 | 2 | 4 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
CLMBR | 0.525 ± 0.0 | 0.301 ± 0.039 | 0.309 ± 0.061 | 0.323 ± 0.078 | 0.355 ± 0.04 | 0.398 ± 0.054 | 0.414 ± 0.027 | 0.404 ± 0.063 | 0.414 ± 0.048 | 0.443 ± 0.035 | 0.463 ± 0.013 | 0.457 ± 0.016 |
GBM | 0.447 ± 0.0 | 0.242 ± 0.005 | 0.243 ± 0.01 | 0.25 ± 0.027 | 0.252 ± 0.026 | 0.304 ± 0.05 | 0.274 ± 0.031 | 0.307 ± 0.032 | 0.283 ± 0.033 | 0.328 ± 0.051 | 0.339 ± 0.03 | 0.359 ± 0.038 |
Logistic Regression | 0.363 ± 0.0 | 0.231 ± 0.01 | 0.24 ± 0.019 | 0.252 ± 0.034 | 0.247 ± 0.028 | 0.266 ± 0.03 | 0.265 ± 0.032 | 0.259 ± 0.032 | 0.25 ± 0.017 | 0.278 ± 0.023 | 0.282 ± 0.026 | 0.311 ± 0.024 |
Random Forest | 0.409 ± 0.0 | 0.239 ± 0.006 | 0.242 ± 0.019 | 0.244 ± 0.02 | 0.258 ± 0.044 | 0.286 ± 0.047 | 0.29 ± 0.043 | 0.267 ± 0.045 | 0.295 ± 0.018 | 0.326 ± 0.036 | 0.342 ± 0.042 | 0.368 ± 0.036 |
+
+Cardiomegaly
+ Model | All | K |
| | 1 | 2 | 4 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
CLMBR | 0.161 ± 0.0 | 0.056 ± 0.015 | 0.057 ± 0.02 | 0.062 ± 0.016 | 0.067 ± 0.021 | 0.066 ± 0.015 | 0.069 ± 0.017 | 0.087 ± 0.02 | 0.09 ± 0.012 | 0.097 ± 0.013 | 0.111 ± 0.012 | 0.113 ± 0.008 |
GBM | 0.139 ± 0.0 | 0.037 ± 0.003 | 0.039 ± 0.005 | 0.043 ± 0.007 | 0.059 ± 0.013 | 0.063 ± 0.021 | 0.061 ± 0.019 | 0.072 ± 0.017 | 0.098 ± 0.027 | 0.107 ± 0.032 | 0.109 ± 0.017 | 0.114 ± 0.015 |
Logistic Regression | 0.118 ± 0.0 | 0.047 ± 0.017 | 0.041 ± 0.007 | 0.046 ± 0.011 | 0.053 ± 0.02 | 0.05 ± 0.016 | 0.056 ± 0.017 | 0.067 ± 0.015 | 0.069 ± 0.012 | 0.073 ± 0.018 | 0.08 ± 0.024 | 0.084 ± 0.013 |
Random Forest | 0.13 ± 0.0 | 0.049 ± 0.02 | 0.042 ± 0.003 | 0.042 ± 0.005 | 0.06 ± 0.024 | 0.058 ± 0.02 | 0.06 ± 0.02 | 0.072 ± 0.035 | 0.097 ± 0.042 | 0.094 ± 0.032 | 0.104 ± 0.031 | 0.101 ± 0.008 |
+
+Atelectasis
+ Model | All | K |
| | 1 | 2 | 4 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
CLMBR | 0.068 ± 0.0 | 0.04 ± 0.013 | 0.044 ± 0.012 | 0.053 ± 0.01 | 0.051 ± 0.012 | 0.052 ± 0.009 | 0.055 ± 0.008 | 0.053 ± 0.008 | 0.055 ± 0.012 | 0.063 ± 0.008 | 0.065 ± 0.01 | 0.063 ± 0.002 |
GBM | 0.043 ± 0.0 | 0.041 ± 0.002 | 0.042 ± 0.003 | 0.042 ± 0.005 | 0.044 ± 0.006 | 0.044 ± 0.005 | 0.046 ± 0.005 | 0.052 ± 0.008 | 0.047 ± 0.005 | 0.047 ± 0.006 | 0.045 ± 0.004 | 0.052 ± 0.004 |
Logistic Regression | 0.045 ± 0.0 | 0.039 ± 0.005 | 0.043 ± 0.005 | 0.039 ± 0.005 | 0.042 ± 0.005 | 0.041 ± 0.005 | 0.041 ± 0.003 | 0.042 ± 0.002 | 0.045 ± 0.004 | 0.043 ± 0.004 | 0.042 ± 0.004 | 0.044 ± 0.002 |
Random Forest | 0.041 ± 0.0 | 0.043 ± 0.004 | 0.042 ± 0.005 | 0.039 ± 0.003 | 0.043 ± 0.005 | 0.043 ± 0.003 | 0.048 ± 0.007 | 0.046 ± 0.004 | 0.043 ± 0.004 | 0.046 ± 0.003 | 0.044 ± 0.008 | 0.049 ± 0.005 |
+
+Fracture
+ Model | All | K |
| | 1 | 2 | 4 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
CLMBR | 0.094 ± 0.0 | 0.031 ± 0.007 | 0.033 ± 0.007 | 0.032 ± 0.008 | 0.039 ± 0.011 | 0.047 ± 0.012 | 0.046 ± 0.012 | 0.054 ± 0.01 | 0.062 ± 0.011 | 0.058 ± 0.008 | 0.059 ± 0.012 | 0.066 ± 0.007 |
GBM | 0.057 ± 0.0 | 0.031 ± 0.004 | 0.029 ± 0.003 | 0.033 ± 0.006 | 0.039 ± 0.012 | 0.043 ± 0.011 | 0.034 ± 0.008 | 0.046 ± 0.013 | 0.048 ± 0.014 | 0.043 ± 0.009 | 0.047 ± 0.007 | 0.062 ± 0.012 |
Logistic Regression | 0.061 ± 0.0 | 0.054 ± 0.018 | 0.041 ± 0.019 | 0.033 ± 0.013 | 0.044 ± 0.019 | 0.033 ± 0.005 | 0.043 ± 0.009 | 0.045 ± 0.008 | 0.044 ± 0.004 | 0.048 ± 0.01 | 0.044 ± 0.007 | 0.05 ± 0.01 |
Random Forest | 0.039 ± 0.0 | 0.03 ± 0.003 | 0.036 ± 0.006 | 0.042 ± 0.012 | 0.042 ± 0.012 | 0.038 ± 0.015 | 0.041 ± 0.012 | 0.036 ± 0.006 | 0.048 ± 0.012 | 0.046 ± 0.013 | 0.045 ± 0.012 | 0.052 ± 0.011 |
+
+Pneumonia
+ Model | All | K |
| | 1 | 2 | 4 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
CLMBR | 0.056 ± 0.0 | 0.033 ± 0.003 | 0.037 ± 0.006 | 0.036 ± 0.007 | 0.035 ± 0.005 | 0.039 ± 0.006 | 0.037 ± 0.005 | 0.039 ± 0.006 | 0.04 ± 0.009 | 0.04 ± 0.006 | 0.04 ± 0.006 | 0.045 ± 0.003 |
GBM | 0.042 ± 0.0 | 0.033 ± 0.001 | 0.033 ± 0.002 | 0.033 ± 0.003 | 0.035 ± 0.003 | 0.041 ± 0.004 | 0.039 ± 0.003 | 0.037 ± 0.002 | 0.037 ± 0.005 | 0.041 ± 0.005 | 0.039 ± 0.003 | 0.039 ± 0.004 |
Logistic Regression | 0.044 ± 0.0 | 0.043 ± 0.005 | 0.043 ± 0.005 | 0.044 ± 0.004 | 0.047 ± 0.005 | 0.047 ± 0.004 | 0.04 ± 0.005 | 0.037 ± 0.004 | 0.041 ± 0.007 | 0.04 ± 0.004 | 0.035 ± 0.002 | 0.038 ± 0.005 |
Random Forest | 0.038 ± 0.0 | 0.033 ± 0.003 | 0.036 ± 0.005 | 0.035 ± 0.003 | 0.038 ± 0.001 | 0.039 ± 0.006 | 0.036 ± 0.002 | 0.042 ± 0.004 | 0.038 ± 0.002 | 0.041 ± 0.003 | 0.04 ± 0.003 | 0.041 ± 0.004 |
+
+Lung Lesion
+ Model | All | K |
| | 1 | 2 | 4 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
CLMBR | 0.321 ± 0.0 | 0.184 ± 0.033 | 0.187 ± 0.051 | 0.221 ± 0.038 | 0.216 ± 0.012 | 0.225 ± 0.02 | 0.235 ± 0.019 | 0.246 ± 0.005 | 0.258 ± 0.019 | 0.279 ± 0.024 | 0.288 ± 0.017 | 0.299 ± 0.018 |
GBM | 0.278 ± 0.0 | 0.13 ± 0.013 | 0.132 ± 0.006 | 0.133 ± 0.007 | 0.142 ± 0.016 | 0.145 ± 0.008 | 0.156 ± 0.02 | 0.167 ± 0.009 | 0.175 ± 0.026 | 0.194 ± 0.024 | 0.203 ± 0.017 | 0.235 ± 0.014 |
Logistic Regression | 0.262 ± 0.0 | 0.147 ± 0.026 | 0.146 ± 0.026 | 0.157 ± 0.031 | 0.156 ± 0.028 | 0.168 ± 0.025 | 0.178 ± 0.018 | 0.178 ± 0.019 | 0.179 ± 0.022 | 0.196 ± 0.024 | 0.21 ± 0.019 | 0.225 ± 0.037 |
Random Forest | 0.305 ± 0.0 | 0.138 ± 0.01 | 0.135 ± 0.012 | 0.139 ± 0.013 | 0.143 ± 0.013 | 0.139 ± 0.011 | 0.15 ± 0.015 | 0.168 ± 0.012 | 0.182 ± 0.02 | 0.174 ± 0.014 | 0.209 ± 0.03 | 0.23 ± 0.024 |
+
+No Finding
+ Model | All | K |
| | 1 | 2 | 4 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
CLMBR | 0.48 ± 0.0 | 0.386 ± 0.023 | 0.415 ± 0.033 | 0.419 ± 0.012 | 0.425 ± 0.015 | 0.425 ± 0.006 | 0.423 ± 0.01 | 0.432 ± 0.015 | 0.428 ± 0.012 | 0.446 ± 0.018 | 0.443 ± 0.014 | 0.445 ± 0.011 |
GBM | 0.464 ± 0.0 | 0.395 ± 0.009 | 0.393 ± 0.009 | 0.398 ± 0.006 | 0.406 ± 0.013 | 0.398 ± 0.008 | 0.407 ± 0.014 | 0.408 ± 0.022 | 0.424 ± 0.014 | 0.422 ± 0.018 | 0.426 ± 0.013 | 0.424 ± 0.009 |
Logistic Regression | 0.456 ± 0.0 | 0.387 ± 0.026 | 0.407 ± 0.03 | 0.405 ± 0.017 | 0.409 ± 0.015 | 0.422 ± 0.011 | 0.409 ± 0.013 | 0.422 ± 0.024 | 0.433 ± 0.031 | 0.435 ± 0.018 | 0.431 ± 0.015 | 0.441 ± 0.014 |
Random Forest | 0.456 ± 0.0 | 0.387 ± 0.013 | 0.393 ± 0.016 | 0.393 ± 0.014 | 0.405 ± 0.02 | 0.413 ± 0.017 | 0.397 ± 0.011 | 0.41 ± 0.016 | 0.418 ± 0.015 | 0.417 ± 0.013 | 0.422 ± 0.008 | 0.443 ± 0.014 |
diff --git a/content/leaderboard/v2023/index.md b/content/leaderboard/v2023/index.md
deleted file mode 100644
index c9805c3..0000000
--- a/content/leaderboard/v2023/index.md
+++ /dev/null
@@ -1,5699 +0,0 @@
----
-title: "EHRSHOT-2023"
-description: "Benchmarking results of ML models on EHRSHOT (version 2023)"
-summary: ""
-date: 2023-09-07T16:27:22+02:00
-lastmod: 2023-09-07T16:27:22+02:00
-draft: false
-weight: 50
-categories: []
-tags: []
-contributors: []
-pinned: false
-homepage: false
-seo:
- title: "" # custom title (optional)
- description: "" # custom description (recommended)
- canonical: "" # custom canonical URL (optional)
- noindex: false # false (default) or true
----
-
-* **Dataset:** [EHRSHOT (2023)](https://redivis.com/datasets/53gc-8rhx41kgt)
- * 6,739 patients
- * 40,796,769 million clinical events
- * 923,687 visits
-* **Release Date:** 05/08/2024
-* **Source:** Stanford Medicine
-* **Metrics:** AUROC, AUPRC
-* **Number of Tasks:** 15
-
------
-
-### Leaderboard
-
-* **K** = # of few-shot examples used to train model
-* **Model** = Model name
-
-Please reach out to mwornow@stanford.edu to add your model's scores to the leaderboard!
-
------
-
-#### By Task Group
-
-Results across all subtasks in a task group. Mean scores shown across all subtasks.
-
-##### AUROC
-
-
-
-Abnormal Lab Values
-
-
-
- Model |
- All |
- K |
-
-
- |
- |
- 1 |
- 2 |
- 4 |
- 8 |
- 12 |
- 16 |
- 24 |
- 32 |
- 48 |
- 64 |
- 128 |
-
-
-
-
- CLMBR |
- 0.832 |
- 0.538 |
- 0.56 |
- 0.591 |
- 0.624 |
- 0.641 |
- 0.665 |
- 0.687 |
- 0.698 |
- 0.715 |
- 0.728 |
- 0.752 |
-
-
- GBM |
- 0.722 |
- 0.496 |
- 0.501 |
- 0.509 |
- 0.523 |
- 0.559 |
- 0.555 |
- 0.58 |
- 0.595 |
- 0.611 |
- 0.619 |
- 0.644 |
-
-
- Logistic Regression |
- 0.671 |
- 0.513 |
- 0.52 |
- 0.543 |
- 0.547 |
- 0.555 |
- 0.567 |
- 0.581 |
- 0.584 |
- 0.598 |
- 0.604 |
- 0.61 |
-
-
- Random Forest |
- 0.695 |
- 0.521 |
- 0.528 |
- 0.538 |
- 0.545 |
- 0.569 |
- 0.565 |
- 0.59 |
- 0.597 |
- 0.609 |
- 0.619 |
- 0.651 |
-
-
-
-
-Operational Outcomes
-
-
-
- Model |
- All |
- K |
-
-
- |
- |
- 1 |
- 2 |
- 4 |
- 8 |
- 12 |
- 16 |
- 24 |
- 32 |
- 48 |
- 64 |
- 128 |
-
-
-
-
- CLMBR |
- 0.822 |
- 0.556 |
- 0.586 |
- 0.613 |
- 0.643 |
- 0.662 |
- 0.694 |
- 0.722 |
- 0.746 |
- 0.76 |
- 0.774 |
- 0.79 |
-
-
- GBM |
- 0.77 |
- 0.523 |
- 0.518 |
- 0.535 |
- 0.584 |
- 0.591 |
- 0.605 |
- 0.618 |
- 0.656 |
- 0.674 |
- 0.699 |
- 0.737 |
-
-
- Logistic Regression |
- 0.721 |
- 0.517 |
- 0.529 |
- 0.549 |
- 0.596 |
- 0.598 |
- 0.612 |
- 0.638 |
- 0.653 |
- 0.669 |
- 0.676 |
- 0.693 |
-
-
- Random Forest |
- 0.75 |
- 0.525 |
- 0.514 |
- 0.541 |
- 0.566 |
- 0.599 |
- 0.609 |
- 0.624 |
- 0.657 |
- 0.692 |
- 0.702 |
- 0.74 |
-
-
-
-
-New Diagnoses
-
-
-
- Model |
- All |
- K |
-
-
- |
- |
- 1 |
- 2 |
- 4 |
- 8 |
- 12 |
- 16 |
- 24 |
- 32 |
- 48 |
- 64 |
- 128 |
-
-
-
-
- CLMBR |
- 0.721 |
- 0.528 |
- 0.543 |
- 0.562 |
- 0.611 |
- 0.624 |
- 0.642 |
- 0.66 |
- 0.674 |
- 0.68 |
- 0.688 |
- 0.708 |
-
-
- GBM |
- 0.719 |
- 0.509 |
- 0.502 |
- 0.518 |
- 0.572 |
- 0.572 |
- 0.601 |
- 0.615 |
- 0.651 |
- 0.679 |
- 0.682 |
- 0.713 |
-
-
- Logistic Regression |
- 0.752 |
- 0.521 |
- 0.531 |
- 0.56 |
- 0.608 |
- 0.596 |
- 0.617 |
- 0.646 |
- 0.658 |
- 0.673 |
- 0.685 |
- 0.72 |
-
-
- Random Forest |
- 0.696 |
- 0.497 |
- 0.517 |
- 0.538 |
- 0.561 |
- 0.564 |
- 0.597 |
- 0.616 |
- 0.632 |
- 0.652 |
- 0.671 |
- 0.691 |
-
-
-
-
-Chest X-Ray
-
-
-
- Model |
- All |
- K |
-
-
- |
- |
- 1 |
- 2 |
- 4 |
- 8 |
- 12 |
- 16 |
- 24 |
- 32 |
- 48 |
- 64 |
- 128 |
-
-
-
-
- CLMBR |
- 0.714 |
- 0.528 |
- 0.548 |
- 0.571 |
- 0.597 |
- 0.614 |
- 0.622 |
- 0.635 |
- 0.644 |
- 0.659 |
- 0.667 |
- 0.682 |
-
-
- GBM |
- 0.651 |
- 0.513 |
- 0.512 |
- 0.504 |
- 0.544 |
- 0.548 |
- 0.557 |
- 0.576 |
- 0.587 |
- 0.602 |
- 0.612 |
- 0.634 |
-
-
- Logistic Regression |
- 0.648 |
- 0.517 |
- 0.536 |
- 0.54 |
- 0.545 |
- 0.565 |
- 0.57 |
- 0.582 |
- 0.591 |
- 0.602 |
- 0.603 |
- 0.62 |
-
-
- Random Forest |
- 0.624 |
- 0.498 |
- 0.514 |
- 0.521 |
- 0.548 |
- 0.553 |
- 0.563 |
- 0.577 |
- 0.593 |
- 0.609 |
- 0.618 |
- 0.64 |
-
-
-
-
-
-##### AUPRC
-
-
-
-Abnormal Lab Values
-
-
-
- Model |
- All |
- K |
-
-
- |
- |
- 1 |
- 2 |
- 4 |
- 8 |
- 12 |
- 16 |
- 24 |
- 32 |
- 48 |
- 64 |
- 128 |
-
-
-
-
- CLMBR |
- 0.516 |
- 0.295 |
- 0.3 |
- 0.328 |
- 0.344 |
- 0.352 |
- 0.369 |
- 0.388 |
- 0.394 |
- 0.405 |
- 0.409 |
- 0.432 |
-
-
- GBM |
- 0.432 |
- 0.271 |
- 0.272 |
- 0.276 |
- 0.286 |
- 0.302 |
- 0.307 |
- 0.324 |
- 0.337 |
- 0.344 |
- 0.353 |
- 0.37 |
-
-
- Logistic Regression |
- 0.382 |
- 0.278 |
- 0.289 |
- 0.306 |
- 0.303 |
- 0.303 |
- 0.309 |
- 0.319 |
- 0.319 |
- 0.331 |
- 0.334 |
- 0.339 |
-
-
- Random Forest |
- 0.417 |
- 0.284 |
- 0.286 |
- 0.3 |
- 0.297 |
- 0.311 |
- 0.306 |
- 0.322 |
- 0.33 |
- 0.338 |
- 0.349 |
- 0.374 |
-
-
-
-
-Operational Outcomes
-
-
-
- Model |
- All |
- K |
-
-
- |
- |
- 1 |
- 2 |
- 4 |
- 8 |
- 12 |
- 16 |
- 24 |
- 32 |
- 48 |
- 64 |
- 128 |
-
-
-
-
- CLMBR |
- 0.435 |
- 0.164 |
- 0.179 |
- 0.212 |
- 0.218 |
- 0.235 |
- 0.269 |
- 0.298 |
- 0.317 |
- 0.332 |
- 0.347 |
- 0.374 |
-
-
- GBM |
- 0.347 |
- 0.143 |
- 0.144 |
- 0.147 |
- 0.172 |
- 0.189 |
- 0.19 |
- 0.196 |
- 0.213 |
- 0.231 |
- 0.246 |
- 0.281 |
-
-
- Logistic Regression |
- 0.252 |
- 0.147 |
- 0.154 |
- 0.164 |
- 0.173 |
- 0.174 |
- 0.181 |
- 0.188 |
- 0.197 |
- 0.207 |
- 0.213 |
- 0.223 |
-
-
- Random Forest |
- 0.315 |
- 0.15 |
- 0.15 |
- 0.156 |
- 0.165 |
- 0.185 |
- 0.187 |
- 0.195 |
- 0.215 |
- 0.251 |
- 0.254 |
- 0.294 |
-
-
-
-
-New Diagnoses
-
-
-
- Model |
- All |
- K |
-
-
- |
- |
- 1 |
- 2 |
- 4 |
- 8 |
- 12 |
- 16 |
- 24 |
- 32 |
- 48 |
- 64 |
- 128 |
-
-
-
-
- CLMBR |
- 0.166 |
- 0.076 |
- 0.084 |
- 0.089 |
- 0.106 |
- 0.106 |
- 0.115 |
- 0.116 |
- 0.125 |
- 0.128 |
- 0.132 |
- 0.146 |
-
-
- GBM |
- 0.22 |
- 0.062 |
- 0.06 |
- 0.066 |
- 0.081 |
- 0.083 |
- 0.096 |
- 0.106 |
- 0.113 |
- 0.133 |
- 0.138 |
- 0.154 |
-
-
- Logistic Regression |
- 0.169 |
- 0.072 |
- 0.075 |
- 0.081 |
- 0.088 |
- 0.084 |
- 0.087 |
- 0.099 |
- 0.105 |
- 0.114 |
- 0.121 |
- 0.132 |
-
-
- Random Forest |
- 0.167 |
- 0.065 |
- 0.072 |
- 0.072 |
- 0.081 |
- 0.082 |
- 0.093 |
- 0.1 |
- 0.108 |
- 0.116 |
- 0.132 |
- 0.146 |
-
-
-
-
-Chest X-Ray
-
-
-
- Model |
- All |
- K |
-
-
- |
- |
- 1 |
- 2 |
- 4 |
- 8 |
- 12 |
- 16 |
- 24 |
- 32 |
- 48 |
- 64 |
- 128 |
-
-
-
-
- CLMBR |
- 0.209 |
- 0.116 |
- 0.124 |
- 0.13 |
- 0.139 |
- 0.149 |
- 0.153 |
- 0.158 |
- 0.161 |
- 0.17 |
- 0.177 |
- 0.18 |
-
-
- GBM |
- 0.169 |
- 0.103 |
- 0.103 |
- 0.104 |
- 0.113 |
- 0.118 |
- 0.12 |
- 0.126 |
- 0.129 |
- 0.137 |
- 0.142 |
- 0.151 |
-
-
- Logistic Regression |
- 0.161 |
- 0.106 |
- 0.11 |
- 0.113 |
- 0.114 |
- 0.121 |
- 0.121 |
- 0.123 |
- 0.125 |
- 0.132 |
- 0.132 |
- 0.139 |
-
-
- Random Forest |
- 0.16 |
- 0.102 |
- 0.107 |
- 0.107 |
- 0.113 |
- 0.117 |
- 0.12 |
- 0.121 |
- 0.129 |
- 0.138 |
- 0.145 |
- 0.151 |
-
-
-
-
-
------
-
-#### Individual
-
-Results for each individual task. Mean scores shown with standard deviations.
-
-##### AUROC
-
-
-
-Abnormal Lab Value: Hyperkalemia
-
-
-
- Model |
- All |
- K |
-
-
- |
- |
- 1 |
- 2 |
- 4 |
- 8 |
- 12 |
- 16 |
- 24 |
- 32 |
- 48 |
- 64 |
- 128 |
-
-
-
-
- CLMBR |
- 0.794 ± 0.0 |
- 0.524 ± 0.073 |
- 0.548 ± 0.1 |
- 0.537 ± 0.064 |
- 0.556 ± 0.089 |
- 0.587 ± 0.109 |
- 0.606 ± 0.116 |
- 0.632 ± 0.086 |
- 0.637 ± 0.077 |
- 0.666 ± 0.067 |
- 0.697 ± 0.036 |
- 0.738 ± 0.024 |
-
-
- GBM |
- 0.724 ± 0.0 |
- 0.513 ± 0.014 |
- 0.514 ± 0.027 |
- 0.501 ± 0.014 |
- 0.527 ± 0.022 |
- 0.566 ± 0.033 |
- 0.559 ± 0.031 |
- 0.585 ± 0.05 |
- 0.575 ± 0.033 |
- 0.613 ± 0.028 |
- 0.611 ± 0.045 |
- 0.65 ± 0.037 |
-
-
- Logistic Regression |
- 0.666 ± 0.0 |
- 0.499 ± 0.04 |
- 0.507 ± 0.038 |
- 0.495 ± 0.082 |
- 0.527 ± 0.029 |
- 0.537 ± 0.057 |
- 0.551 ± 0.056 |
- 0.579 ± 0.039 |
- 0.581 ± 0.016 |
- 0.596 ± 0.019 |
- 0.585 ± 0.029 |
- 0.609 ± 0.031 |
-
-
- Random Forest |
- 0.649 ± 0.0 |
- 0.52 ± 0.025 |
- 0.522 ± 0.056 |
- 0.501 ± 0.031 |
- 0.526 ± 0.028 |
- 0.577 ± 0.026 |
- 0.574 ± 0.048 |
- 0.577 ± 0.04 |
- 0.583 ± 0.03 |
- 0.608 ± 0.045 |
- 0.623 ± 0.039 |
- 0.66 ± 0.024 |
-
-
-
-
-Abnormal Lab Value: Hyponatremia
-
-
-
- Model |
- All |
- K |
-
-
- |
- |
- 1 |
- 2 |
- 4 |
- 8 |
- 12 |
- 16 |
- 24 |
- 32 |
- 48 |
- 64 |
- 128 |
-
-
-
-
- CLMBR |
- 0.761 ± 0.0 |
- 0.535 ± 0.028 |
- 0.517 ± 0.031 |
- 0.512 ± 0.05 |
- 0.528 ± 0.033 |
- 0.542 ± 0.023 |
- 0.576 ± 0.033 |
- 0.593 ± 0.014 |
- 0.603 ± 0.014 |
- 0.6 ± 0.011 |
- 0.61 ± 0.025 |
- 0.63 ± 0.031 |
-
-
- GBM |
- 0.66 ± 0.0 |
- 0.5 ± 0.0 |
- 0.503 ± 0.009 |
- 0.504 ± 0.017 |
- 0.499 ± 0.018 |
- 0.514 ± 0.022 |
- 0.52 ± 0.019 |
- 0.524 ± 0.017 |
- 0.523 ± 0.009 |
- 0.519 ± 0.028 |
- 0.538 ± 0.025 |
- 0.542 ± 0.031 |
-
-
- Logistic Regression |
- 0.605 ± 0.0 |
- 0.505 ± 0.015 |
- 0.505 ± 0.019 |
- 0.498 ± 0.015 |
- 0.498 ± 0.017 |
- 0.51 ± 0.019 |
- 0.509 ± 0.018 |
- 0.512 ± 0.025 |
- 0.516 ± 0.026 |
- 0.518 ± 0.022 |
- 0.525 ± 0.023 |
- 0.527 ± 0.017 |
-
-
- Random Forest |
- 0.634 ± 0.0 |
- 0.494 ± 0.019 |
- 0.502 ± 0.021 |
- 0.492 ± 0.026 |
- 0.51 ± 0.021 |
- 0.509 ± 0.031 |
- 0.501 ± 0.011 |
- 0.529 ± 0.017 |
- 0.521 ± 0.016 |
- 0.521 ± 0.021 |
- 0.531 ± 0.025 |
- 0.548 ± 0.029 |
-
-
-
-
-Abnormal Lab Value: Anemia
-
-
-
- Model |
- All |
- K |
-
-
- |
- |
- 1 |
- 2 |
- 4 |
- 8 |
- 12 |
- 16 |
- 24 |
- 32 |
- 48 |
- 64 |
- 128 |
-
-
-
-
- CLMBR |
- 0.963 ± 0.0 |
- 0.583 ± 0.077 |
- 0.632 ± 0.065 |
- 0.757 ± 0.059 |
- 0.861 ± 0.027 |
- 0.866 ± 0.01 |
- 0.876 ± 0.017 |
- 0.912 ± 0.009 |
- 0.914 ± 0.012 |
- 0.923 ± 0.007 |
- 0.93 ± 0.002 |
- 0.941 ± 0.001 |
-
-
- GBM |
- 0.808 ± 0.0 |
- 0.495 ± 0.011 |
- 0.511 ± 0.03 |
- 0.531 ± 0.063 |
- 0.579 ± 0.065 |
- 0.603 ± 0.062 |
- 0.58 ± 0.054 |
- 0.639 ± 0.025 |
- 0.674 ± 0.023 |
- 0.686 ± 0.016 |
- 0.705 ± 0.007 |
- 0.732 ± 0.011 |
-
-
- Logistic Regression |
- 0.739 ± 0.0 |
- 0.538 ± 0.093 |
- 0.555 ± 0.118 |
- 0.596 ± 0.077 |
- 0.626 ± 0.028 |
- 0.608 ± 0.041 |
- 0.601 ± 0.028 |
- 0.643 ± 0.017 |
- 0.644 ± 0.012 |
- 0.646 ± 0.029 |
- 0.664 ± 0.009 |
- 0.668 ± 0.018 |
-
-
- Random Forest |
- 0.797 ± 0.0 |
- 0.556 ± 0.057 |
- 0.589 ± 0.034 |
- 0.589 ± 0.074 |
- 0.612 ± 0.074 |
- 0.628 ± 0.065 |
- 0.607 ± 0.072 |
- 0.676 ± 0.036 |
- 0.679 ± 0.031 |
- 0.704 ± 0.012 |
- 0.721 ± 0.01 |
- 0.747 ± 0.018 |
-
-
-
-
-Abnormal Lab Value: Thrombocytopenia
-
-
-
- Model |
- All |
- K |
-
-
- |
- |
- 1 |
- 2 |
- 4 |
- 8 |
- 12 |
- 16 |
- 24 |
- 32 |
- 48 |
- 64 |
- 128 |
-
-
-
-
- CLMBR |
- 0.85 ± 0.0 |
- 0.548 ± 0.102 |
- 0.554 ± 0.103 |
- 0.598 ± 0.092 |
- 0.611 ± 0.09 |
- 0.627 ± 0.08 |
- 0.669 ± 0.04 |
- 0.709 ± 0.028 |
- 0.719 ± 0.022 |
- 0.747 ± 0.016 |
- 0.748 ± 0.021 |
- 0.771 ± 0.014 |
-
-
- GBM |
- 0.818 ± 0.0 |
- 0.501 ± 0.012 |
- 0.501 ± 0.018 |
- 0.511 ± 0.031 |
- 0.504 ± 0.071 |
- 0.581 ± 0.048 |
- 0.605 ± 0.037 |
- 0.631 ± 0.044 |
- 0.678 ± 0.024 |
- 0.69 ± 0.027 |
- 0.688 ± 0.01 |
- 0.726 ± 0.011 |
-
-
- Logistic Regression |
- 0.754 ± 0.0 |
- 0.515 ± 0.052 |
- 0.529 ± 0.087 |
- 0.611 ± 0.065 |
- 0.56 ± 0.104 |
- 0.592 ± 0.076 |
- 0.628 ± 0.061 |
- 0.647 ± 0.032 |
- 0.653 ± 0.036 |
- 0.686 ± 0.015 |
- 0.685 ± 0.015 |
- 0.695 ± 0.031 |
-
-
- Random Forest |
- 0.809 ± 0.0 |
- 0.543 ± 0.031 |
- 0.537 ± 0.049 |
- 0.593 ± 0.037 |
- 0.552 ± 0.078 |
- 0.606 ± 0.045 |
- 0.615 ± 0.057 |
- 0.626 ± 0.033 |
- 0.664 ± 0.032 |
- 0.668 ± 0.055 |
- 0.679 ± 0.017 |
- 0.727 ± 0.007 |
-
-
-
-
-Abnormal Lab Value: Hypoglycemia
-
-
-
- Model |
- All |
- K |
-
-
- |
- |
- 1 |
- 2 |
- 4 |
- 8 |
- 12 |
- 16 |
- 24 |
- 32 |
- 48 |
- 64 |
- 128 |
-
-
-
-
- CLMBR |
- 0.791 ± 0.0 |
- 0.502 ± 0.037 |
- 0.546 ± 0.031 |
- 0.549 ± 0.042 |
- 0.563 ± 0.045 |
- 0.583 ± 0.026 |
- 0.598 ± 0.025 |
- 0.591 ± 0.039 |
- 0.616 ± 0.017 |
- 0.639 ± 0.027 |
- 0.655 ± 0.026 |
- 0.68 ± 0.02 |
-
-
- GBM |
- 0.6 ± 0.0 |
- 0.469 ± 0.069 |
- 0.478 ± 0.037 |
- 0.497 ± 0.015 |
- 0.503 ± 0.044 |
- 0.532 ± 0.028 |
- 0.514 ± 0.039 |
- 0.518 ± 0.023 |
- 0.526 ± 0.026 |
- 0.547 ± 0.029 |
- 0.553 ± 0.028 |
- 0.568 ± 0.02 |
-
-
- Logistic Regression |
- 0.59 ± 0.0 |
- 0.506 ± 0.011 |
- 0.505 ± 0.021 |
- 0.514 ± 0.017 |
- 0.524 ± 0.025 |
- 0.525 ± 0.044 |
- 0.544 ± 0.04 |
- 0.524 ± 0.044 |
- 0.529 ± 0.032 |
- 0.546 ± 0.036 |
- 0.56 ± 0.014 |
- 0.551 ± 0.023 |
-
-
- Random Forest |
- 0.586 ± 0.0 |
- 0.493 ± 0.02 |
- 0.491 ± 0.017 |
- 0.517 ± 0.041 |
- 0.522 ± 0.03 |
- 0.525 ± 0.009 |
- 0.528 ± 0.016 |
- 0.54 ± 0.022 |
- 0.54 ± 0.019 |
- 0.545 ± 0.028 |
- 0.542 ± 0.02 |
- 0.573 ± 0.016 |
-
-
-
-
-Operational Outcome: ICU Transfer
-
-
-
- Model |
- All |
- K |
-
-
- |
- |
- 1 |
- 2 |
- 4 |
- 8 |
- 12 |
- 16 |
- 24 |
- 32 |
- 48 |
- 64 |
- 128 |
-
-
-
-
- CLMBR |
- 0.847 ± 0.0 |
- 0.549 ± 0.082 |
- 0.599 ± 0.048 |
- 0.595 ± 0.052 |
- 0.658 ± 0.05 |
- 0.677 ± 0.086 |
- 0.715 ± 0.054 |
- 0.748 ± 0.024 |
- 0.771 ± 0.028 |
- 0.797 ± 0.022 |
- 0.82 ± 0.019 |
- 0.826 ± 0.008 |
-
-
- GBM |
- 0.768 ± 0.0 |
- 0.533 ± 0.03 |
- 0.519 ± 0.029 |
- 0.546 ± 0.05 |
- 0.594 ± 0.054 |
- 0.581 ± 0.024 |
- 0.626 ± 0.05 |
- 0.651 ± 0.038 |
- 0.706 ± 0.016 |
- 0.726 ± 0.016 |
- 0.746 ± 0.01 |
- 0.762 ± 0.013 |
-
-
- Logistic Regression |
- 0.683 ± 0.0 |
- 0.521 ± 0.059 |
- 0.507 ± 0.035 |
- 0.559 ± 0.074 |
- 0.621 ± 0.044 |
- 0.61 ± 0.046 |
- 0.633 ± 0.04 |
- 0.663 ± 0.049 |
- 0.684 ± 0.035 |
- 0.688 ± 0.03 |
- 0.687 ± 0.018 |
- 0.691 ± 0.023 |
-
-
- Random Forest |
- 0.705 ± 0.0 |
- 0.524 ± 0.045 |
- 0.466 ± 0.035 |
- 0.552 ± 0.021 |
- 0.543 ± 0.06 |
- 0.606 ± 0.073 |
- 0.61 ± 0.071 |
- 0.654 ± 0.039 |
- 0.681 ± 0.038 |
- 0.73 ± 0.023 |
- 0.739 ± 0.008 |
- 0.768 ± 0.023 |
-
-
-
-
-Operational Outcome: Long Length of Stay
-
-
-
- Model |
- All |
- K |
-
-
- |
- |
- 1 |
- 2 |
- 4 |
- 8 |
- 12 |
- 16 |
- 24 |
- 32 |
- 48 |
- 64 |
- 128 |
-
-
-
-
- CLMBR |
- 0.807 ± 0.0 |
- 0.534 ± 0.049 |
- 0.575 ± 0.063 |
- 0.614 ± 0.055 |
- 0.597 ± 0.07 |
- 0.611 ± 0.065 |
- 0.646 ± 0.039 |
- 0.684 ± 0.015 |
- 0.706 ± 0.015 |
- 0.714 ± 0.025 |
- 0.722 ± 0.032 |
- 0.754 ± 0.008 |
-
-
- GBM |
- 0.781 ± 0.0 |
- 0.524 ± 0.02 |
- 0.526 ± 0.02 |
- 0.517 ± 0.016 |
- 0.548 ± 0.064 |
- 0.561 ± 0.03 |
- 0.574 ± 0.032 |
- 0.588 ± 0.016 |
- 0.62 ± 0.034 |
- 0.627 ± 0.017 |
- 0.65 ± 0.036 |
- 0.703 ± 0.012 |
-
-
- Logistic Regression |
- 0.71 ± 0.0 |
- 0.489 ± 0.047 |
- 0.522 ± 0.033 |
- 0.56 ± 0.033 |
- 0.559 ± 0.023 |
- 0.546 ± 0.035 |
- 0.558 ± 0.032 |
- 0.576 ± 0.035 |
- 0.598 ± 0.033 |
- 0.621 ± 0.037 |
- 0.656 ± 0.019 |
- 0.661 ± 0.006 |
-
-
- Random Forest |
- 0.755 ± 0.0 |
- 0.519 ± 0.026 |
- 0.53 ± 0.044 |
- 0.536 ± 0.046 |
- 0.537 ± 0.015 |
- 0.583 ± 0.051 |
- 0.589 ± 0.05 |
- 0.571 ± 0.026 |
- 0.611 ± 0.035 |
- 0.662 ± 0.033 |
- 0.669 ± 0.028 |
- 0.711 ± 0.018 |
-
-
-
-
-Operational Outcome: 30-day Readmission
-
-
-
- Model |
- All |
- K |
-
-
- |
- |
- 1 |
- 2 |
- 4 |
- 8 |
- 12 |
- 16 |
- 24 |
- 32 |
- 48 |
- 64 |
- 128 |
-
-
-
-
- CLMBR |
- 0.813 ± 0.0 |
- 0.586 ± 0.079 |
- 0.585 ± 0.105 |
- 0.629 ± 0.104 |
- 0.675 ± 0.044 |
- 0.698 ± 0.034 |
- 0.722 ± 0.019 |
- 0.734 ± 0.017 |
- 0.763 ± 0.022 |
- 0.77 ± 0.023 |
- 0.78 ± 0.017 |
- 0.79 ± 0.008 |
-
-
- GBM |
- 0.76 ± 0.0 |
- 0.512 ± 0.021 |
- 0.508 ± 0.075 |
- 0.541 ± 0.082 |
- 0.61 ± 0.069 |
- 0.632 ± 0.077 |
- 0.616 ± 0.082 |
- 0.614 ± 0.047 |
- 0.642 ± 0.075 |
- 0.668 ± 0.023 |
- 0.7 ± 0.035 |
- 0.745 ± 0.018 |
-
-
- Logistic Regression |
- 0.77 ± 0.0 |
- 0.541 ± 0.128 |
- 0.557 ± 0.147 |
- 0.528 ± 0.122 |
- 0.608 ± 0.083 |
- 0.639 ± 0.055 |
- 0.647 ± 0.062 |
- 0.675 ± 0.044 |
- 0.677 ± 0.03 |
- 0.698 ± 0.034 |
- 0.685 ± 0.034 |
- 0.726 ± 0.015 |
-
-
- Random Forest |
- 0.79 ± 0.0 |
- 0.532 ± 0.118 |
- 0.545 ± 0.118 |
- 0.536 ± 0.134 |
- 0.617 ± 0.039 |
- 0.607 ± 0.051 |
- 0.628 ± 0.078 |
- 0.648 ± 0.049 |
- 0.679 ± 0.041 |
- 0.684 ± 0.027 |
- 0.698 ± 0.023 |
- 0.742 ± 0.018 |
-
-
-
-
-New Diagnosis: Pancreatic Cancer
-
-
-
- Model |
- All |
- K |
-
-
- |
- |
- 1 |
- 2 |
- 4 |
- 8 |
- 12 |
- 16 |
- 24 |
- 32 |
- 48 |
- 64 |
- 128 |
-
-
-
-
- CLMBR |
- 0.827 ± 0.0 |
- 0.58 ± 0.041 |
- 0.626 ± 0.056 |
- 0.64 ± 0.076 |
- 0.682 ± 0.063 |
- 0.696 ± 0.047 |
- 0.724 ± 0.048 |
- 0.738 ± 0.042 |
- 0.762 ± 0.034 |
- 0.773 ± 0.007 |
- 0.787 ± 0.007 |
- 0.82 ± 0.015 |
-
-
- GBM |
- 0.835 ± 0.0 |
- 0.574 ± 0.045 |
- 0.54 ± 0.054 |
- 0.533 ± 0.06 |
- 0.647 ± 0.112 |
- 0.648 ± 0.035 |
- 0.729 ± 0.076 |
- 0.769 ± 0.069 |
- 0.782 ± 0.043 |
- 0.836 ± 0.018 |
- 0.849 ± 0.012 |
- 0.842 ± 0.028 |
-
-
- Logistic Regression |
- 0.875 ± 0.0 |
- 0.607 ± 0.105 |
- 0.634 ± 0.043 |
- 0.635 ± 0.063 |
- 0.655 ± 0.073 |
- 0.671 ± 0.061 |
- 0.692 ± 0.041 |
- 0.771 ± 0.044 |
- 0.766 ± 0.047 |
- 0.76 ± 0.039 |
- 0.763 ± 0.03 |
- 0.816 ± 0.04 |
-
-
- Random Forest |
- 0.862 ± 0.0 |
- 0.545 ± 0.047 |
- 0.558 ± 0.032 |
- 0.561 ± 0.049 |
- 0.582 ± 0.074 |
- 0.673 ± 0.043 |
- 0.725 ± 0.054 |
- 0.695 ± 0.074 |
- 0.772 ± 0.024 |
- 0.796 ± 0.021 |
- 0.817 ± 0.004 |
- 0.818 ± 0.02 |
-
-
-
-
-New Diagnosis: Acute MI
-
-
-
- Model |
- All |
- K |
-
-
- |
- |
- 1 |
- 2 |
- 4 |
- 8 |
- 12 |
- 16 |
- 24 |
- 32 |
- 48 |
- 64 |
- 128 |
-
-
-
-
- CLMBR |
- 0.757 ± 0.0 |
- 0.51 ± 0.09 |
- 0.542 ± 0.095 |
- 0.563 ± 0.11 |
- 0.629 ± 0.097 |
- 0.639 ± 0.079 |
- 0.634 ± 0.091 |
- 0.678 ± 0.047 |
- 0.717 ± 0.036 |
- 0.709 ± 0.026 |
- 0.724 ± 0.03 |
- 0.745 ± 0.011 |
-
-
- GBM |
- 0.75 ± 0.0 |
- 0.483 ± 0.04 |
- 0.483 ± 0.031 |
- 0.555 ± 0.033 |
- 0.608 ± 0.036 |
- 0.602 ± 0.059 |
- 0.61 ± 0.086 |
- 0.666 ± 0.048 |
- 0.696 ± 0.056 |
- 0.703 ± 0.044 |
- 0.696 ± 0.017 |
- 0.719 ± 0.03 |
-
-
- Logistic Regression |
- 0.675 ± 0.0 |
- 0.525 ± 0.12 |
- 0.515 ± 0.085 |
- 0.557 ± 0.103 |
- 0.618 ± 0.049 |
- 0.611 ± 0.044 |
- 0.604 ± 0.037 |
- 0.621 ± 0.021 |
- 0.627 ± 0.021 |
- 0.644 ± 0.026 |
- 0.669 ± 0.023 |
- 0.681 ± 0.026 |
-
-
- Random Forest |
- 0.721 ± 0.0 |
- 0.515 ± 0.088 |
- 0.564 ± 0.1 |
- 0.595 ± 0.067 |
- 0.618 ± 0.067 |
- 0.585 ± 0.092 |
- 0.629 ± 0.065 |
- 0.661 ± 0.049 |
- 0.66 ± 0.037 |
- 0.682 ± 0.047 |
- 0.702 ± 0.038 |
- 0.717 ± 0.022 |
-
-
-
-
-New Diagnosis: Lupus
-
-
-
- Model |
- All |
- K |
-
-
- |
- |
- 1 |
- 2 |
- 4 |
- 8 |
- 12 |
- 16 |
- 24 |
- 32 |
- 48 |
- 64 |
- 128 |
-
-
-
-
- CLMBR |
- 0.788 ± 0.0 |
- 0.431 ± 0.044 |
- 0.441 ± 0.032 |
- 0.483 ± 0.077 |
- 0.556 ± 0.065 |
- 0.576 ± 0.081 |
- 0.622 ± 0.059 |
- 0.639 ± 0.065 |
- 0.667 ± 0.075 |
- 0.677 ± 0.071 |
- 0.695 ± 0.06 |
- 0.718 ± 0.039 |
-
-
- GBM |
- 0.782 ± 0.0 |
- 0.507 ± 0.066 |
- 0.551 ± 0.04 |
- 0.48 ± 0.059 |
- 0.533 ± 0.075 |
- 0.543 ± 0.062 |
- 0.582 ± 0.072 |
- 0.582 ± 0.05 |
- 0.649 ± 0.071 |
- 0.634 ± 0.056 |
- 0.693 ± 0.028 |
- 0.73 ± 0.013 |
-
-
- Logistic Regression |
- 0.8 ± 0.0 |
- 0.44 ± 0.054 |
- 0.489 ± 0.024 |
- 0.484 ± 0.067 |
- 0.599 ± 0.078 |
- 0.565 ± 0.053 |
- 0.603 ± 0.09 |
- 0.602 ± 0.052 |
- 0.627 ± 0.035 |
- 0.648 ± 0.042 |
- 0.646 ± 0.056 |
- 0.742 ± 0.029 |
-
-
- Random Forest |
- 0.63 ± 0.0 |
- 0.423 ± 0.014 |
- 0.476 ± 0.082 |
- 0.536 ± 0.051 |
- 0.558 ± 0.088 |
- 0.55 ± 0.084 |
- 0.547 ± 0.08 |
- 0.598 ± 0.076 |
- 0.585 ± 0.07 |
- 0.615 ± 0.038 |
- 0.634 ± 0.039 |
- 0.672 ± 0.044 |
-
-
-
-
-New Diagnosis: Hyperlipidemia
-
-
-
- Model |
- All |
- K |
-
-
- |
- |
- 1 |
- 2 |
- 4 |
- 8 |
- 12 |
- 16 |
- 24 |
- 32 |
- 48 |
- 64 |
- 128 |
-
-
-
-
- CLMBR |
- 0.674 ± 0.0 |
- 0.499 ± 0.065 |
- 0.57 ± 0.061 |
- 0.58 ± 0.049 |
- 0.614 ± 0.011 |
- 0.608 ± 0.019 |
- 0.624 ± 0.028 |
- 0.62 ± 0.018 |
- 0.626 ± 0.008 |
- 0.636 ± 0.019 |
- 0.627 ± 0.042 |
- 0.658 ± 0.011 |
-
-
- GBM |
- 0.681 ± 0.0 |
- 0.481 ± 0.051 |
- 0.475 ± 0.026 |
- 0.507 ± 0.062 |
- 0.522 ± 0.024 |
- 0.536 ± 0.045 |
- 0.554 ± 0.033 |
- 0.561 ± 0.058 |
- 0.581 ± 0.039 |
- 0.627 ± 0.031 |
- 0.647 ± 0.023 |
- 0.652 ± 0.018 |
-
-
- Logistic Regression |
- 0.711 ± 0.0 |
- 0.542 ± 0.046 |
- 0.548 ± 0.045 |
- 0.569 ± 0.033 |
- 0.562 ± 0.035 |
- 0.572 ± 0.049 |
- 0.59 ± 0.044 |
- 0.599 ± 0.023 |
- 0.629 ± 0.022 |
- 0.641 ± 0.028 |
- 0.653 ± 0.022 |
- 0.666 ± 0.016 |
-
-
- Random Forest |
- 0.649 ± 0.0 |
- 0.503 ± 0.035 |
- 0.522 ± 0.046 |
- 0.513 ± 0.04 |
- 0.538 ± 0.047 |
- 0.549 ± 0.052 |
- 0.544 ± 0.035 |
- 0.567 ± 0.056 |
- 0.595 ± 0.04 |
- 0.601 ± 0.032 |
- 0.647 ± 0.015 |
- 0.665 ± 0.016 |
-
-
-
-
-New Diagnosis: Hypertension
-
-
-
- Model |
- All |
- K |
-
-
- |
- |
- 1 |
- 2 |
- 4 |
- 8 |
- 12 |
- 16 |
- 24 |
- 32 |
- 48 |
- 64 |
- 128 |
-
-
-
-
- CLMBR |
- 0.721 ± 0.0 |
- 0.61 ± 0.029 |
- 0.58 ± 0.062 |
- 0.595 ± 0.078 |
- 0.655 ± 0.04 |
- 0.658 ± 0.041 |
- 0.672 ± 0.026 |
- 0.68 ± 0.021 |
- 0.675 ± 0.023 |
- 0.683 ± 0.019 |
- 0.692 ± 0.017 |
- 0.696 ± 0.009 |
-
-
- GBM |
- 0.661 ± 0.0 |
- 0.474 ± 0.045 |
- 0.499 ± 0.02 |
- 0.507 ± 0.06 |
- 0.561 ± 0.02 |
- 0.569 ± 0.018 |
- 0.568 ± 0.019 |
- 0.573 ± 0.017 |
- 0.592 ± 0.019 |
- 0.593 ± 0.036 |
- 0.635 ± 0.027 |
- 0.653 ± 0.007 |
-
-
- Logistic Regression |
- 0.696 ± 0.0 |
- 0.51 ± 0.018 |
- 0.506 ± 0.038 |
- 0.56 ± 0.069 |
- 0.597 ± 0.04 |
- 0.573 ± 0.034 |
- 0.599 ± 0.045 |
- 0.617 ± 0.049 |
- 0.613 ± 0.043 |
- 0.614 ± 0.034 |
- 0.651 ± 0.035 |
- 0.666 ± 0.036 |
-
-
- Random Forest |
- 0.62 ± 0.0 |
- 0.535 ± 0.024 |
- 0.513 ± 0.02 |
- 0.498 ± 0.021 |
- 0.574 ± 0.041 |
- 0.551 ± 0.052 |
- 0.586 ± 0.027 |
- 0.586 ± 0.019 |
- 0.591 ± 0.046 |
- 0.601 ± 0.041 |
- 0.618 ± 0.041 |
- 0.64 ± 0.019 |
-
-
-
-
-New Diagnosis: Celiac
-
-
-
- Model |
- All |
- K |
-
-
- |
- |
- 1 |
- 2 |
- 4 |
- 8 |
- 12 |
- 16 |
- 24 |
- 32 |
- 48 |
- 64 |
- 128 |
-
-
-
-
- CLMBR |
- 0.562 ± 0.0 |
- 0.542 ± 0.077 |
- 0.5 ± 0.065 |
- 0.509 ± 0.046 |
- 0.529 ± 0.075 |
- 0.568 ± 0.077 |
- 0.573 ± 0.077 |
- 0.606 ± 0.032 |
- 0.599 ± 0.047 |
- 0.599 ± 0.084 |
- 0.604 ± 0.055 |
- 0.611 ± 0.041 |
-
-
- GBM |
- 0.608 ± 0.0 |
- 0.537 ± 0.206 |
- 0.463 ± 0.049 |
- 0.528 ± 0.12 |
- 0.561 ± 0.04 |
- 0.535 ± 0.134 |
- 0.564 ± 0.062 |
- 0.537 ± 0.087 |
- 0.606 ± 0.046 |
- 0.68 ± 0.096 |
- 0.574 ± 0.125 |
- 0.681 ± 0.093 |
-
-
- Logistic Regression |
- 0.755 ± 0.0 |
- 0.5 ± 0.163 |
- 0.494 ± 0.211 |
- 0.558 ± 0.142 |
- 0.618 ± 0.166 |
- 0.581 ± 0.149 |
- 0.611 ± 0.108 |
- 0.669 ± 0.062 |
- 0.685 ± 0.07 |
- 0.732 ± 0.07 |
- 0.727 ± 0.055 |
- 0.751 ± 0.035 |
-
-
- Random Forest |
- 0.691 ± 0.0 |
- 0.458 ± 0.136 |
- 0.472 ± 0.106 |
- 0.524 ± 0.15 |
- 0.494 ± 0.109 |
- 0.477 ± 0.139 |
- 0.551 ± 0.074 |
- 0.587 ± 0.043 |
- 0.588 ± 0.109 |
- 0.614 ± 0.128 |
- 0.61 ± 0.051 |
- 0.632 ± 0.072 |
-
-
-
-
-Chest X-Ray: Lung Opacity
-
-
-
- Model |
- All |
- K |
-
-
- |
- |
- 1 |
- 2 |
- 4 |
- 8 |
- 12 |
- 16 |
- 24 |
- 32 |
- 48 |
- 64 |
- 128 |
-
-
-
-
- CLMBR |
- 0.71 ± 0.0 |
- 0.588 ± 0.072 |
- 0.577 ± 0.098 |
- 0.61 ± 0.042 |
- 0.625 ± 0.036 |
- 0.623 ± 0.044 |
- 0.648 ± 0.032 |
- 0.64 ± 0.048 |
- 0.644 ± 0.043 |
- 0.656 ± 0.024 |
- 0.669 ± 0.009 |
- 0.671 ± 0.007 |
-
-
- GBM |
- 0.667 ± 0.0 |
- 0.514 ± 0.004 |
- 0.497 ± 0.018 |
- 0.51 ± 0.021 |
- 0.545 ± 0.033 |
- 0.554 ± 0.027 |
- 0.55 ± 0.021 |
- 0.562 ± 0.027 |
- 0.573 ± 0.019 |
- 0.593 ± 0.019 |
- 0.577 ± 0.04 |
- 0.592 ± 0.013 |
-
-
- Logistic Regression |
- 0.637 ± 0.0 |
- 0.53 ± 0.037 |
- 0.544 ± 0.048 |
- 0.569 ± 0.022 |
- 0.547 ± 0.019 |
- 0.563 ± 0.016 |
- 0.562 ± 0.019 |
- 0.573 ± 0.039 |
- 0.555 ± 0.042 |
- 0.589 ± 0.036 |
- 0.587 ± 0.022 |
- 0.592 ± 0.016 |
-
-
- Random Forest |
- 0.656 ± 0.0 |
- 0.505 ± 0.022 |
- 0.523 ± 0.017 |
- 0.547 ± 0.037 |
- 0.546 ± 0.032 |
- 0.531 ± 0.056 |
- 0.555 ± 0.035 |
- 0.547 ± 0.024 |
- 0.586 ± 0.047 |
- 0.603 ± 0.021 |
- 0.617 ± 0.021 |
- 0.607 ± 0.042 |
-
-
-
-
-Chest X-Ray: Pleural Effusion
-
-
-
- Model |
- All |
- K |
-
-
- |
- |
- 1 |
- 2 |
- 4 |
- 8 |
- 12 |
- 16 |
- 24 |
- 32 |
- 48 |
- 64 |
- 128 |
-
-
-
-
- CLMBR |
- 0.753 ± 0.0 |
- 0.561 ± 0.05 |
- 0.573 ± 0.093 |
- 0.58 ± 0.092 |
- 0.632 ± 0.071 |
- 0.669 ± 0.045 |
- 0.67 ± 0.047 |
- 0.668 ± 0.043 |
- 0.677 ± 0.049 |
- 0.704 ± 0.013 |
- 0.712 ± 0.011 |
- 0.718 ± 0.017 |
-
-
- GBM |
- 0.682 ± 0.0 |
- 0.494 ± 0.009 |
- 0.491 ± 0.044 |
- 0.498 ± 0.042 |
- 0.511 ± 0.03 |
- 0.546 ± 0.017 |
- 0.547 ± 0.051 |
- 0.541 ± 0.037 |
- 0.561 ± 0.063 |
- 0.592 ± 0.042 |
- 0.628 ± 0.029 |
- 0.647 ± 0.016 |
-
-
- Logistic Regression |
- 0.67 ± 0.0 |
- 0.497 ± 0.034 |
- 0.495 ± 0.054 |
- 0.504 ± 0.064 |
- 0.534 ± 0.046 |
- 0.539 ± 0.047 |
- 0.568 ± 0.034 |
- 0.55 ± 0.02 |
- 0.581 ± 0.036 |
- 0.591 ± 0.029 |
- 0.614 ± 0.029 |
- 0.63 ± 0.015 |
-
-
- Random Forest |
- 0.669 ± 0.0 |
- 0.488 ± 0.022 |
- 0.51 ± 0.063 |
- 0.497 ± 0.058 |
- 0.54 ± 0.063 |
- 0.552 ± 0.054 |
- 0.544 ± 0.071 |
- 0.568 ± 0.038 |
- 0.592 ± 0.02 |
- 0.615 ± 0.05 |
- 0.626 ± 0.027 |
- 0.669 ± 0.012 |
-
-
-
-
-Chest X-Ray: Consolidation
-
-
-
- Model |
- All |
- K |
-
-
- |
- |
- 1 |
- 2 |
- 4 |
- 8 |
- 12 |
- 16 |
- 24 |
- 32 |
- 48 |
- 64 |
- 128 |
-
-
-
-
- CLMBR |
- 0.677 ± 0.0 |
- 0.522 ± 0.036 |
- 0.531 ± 0.059 |
- 0.521 ± 0.041 |
- 0.56 ± 0.023 |
- 0.552 ± 0.024 |
- 0.545 ± 0.043 |
- 0.576 ± 0.038 |
- 0.583 ± 0.019 |
- 0.602 ± 0.011 |
- 0.607 ± 0.015 |
- 0.641 ± 0.008 |
-
-
- GBM |
- 0.631 ± 0.0 |
- 0.5 ± 0.021 |
- 0.52 ± 0.034 |
- 0.523 ± 0.015 |
- 0.544 ± 0.044 |
- 0.514 ± 0.041 |
- 0.515 ± 0.06 |
- 0.549 ± 0.03 |
- 0.541 ± 0.036 |
- 0.59 ± 0.034 |
- 0.598 ± 0.032 |
- 0.61 ± 0.012 |
-
-
- Logistic Regression |
- 0.614 ± 0.0 |
- 0.497 ± 0.047 |
- 0.546 ± 0.066 |
- 0.528 ± 0.072 |
- 0.54 ± 0.051 |
- 0.557 ± 0.056 |
- 0.55 ± 0.053 |
- 0.583 ± 0.052 |
- 0.561 ± 0.061 |
- 0.558 ± 0.046 |
- 0.583 ± 0.04 |
- 0.604 ± 0.026 |
-
-
- Random Forest |
- 0.589 ± 0.0 |
- 0.507 ± 0.062 |
- 0.524 ± 0.069 |
- 0.528 ± 0.071 |
- 0.533 ± 0.044 |
- 0.542 ± 0.063 |
- 0.528 ± 0.066 |
- 0.572 ± 0.046 |
- 0.567 ± 0.036 |
- 0.601 ± 0.023 |
- 0.595 ± 0.034 |
- 0.608 ± 0.038 |
-
-
-
-
-Chest X-Ray: Pleural Other
-
-
-
- Model |
- All |
- K |
-
-
- |
- |
- 1 |
- 2 |
- 4 |
- 8 |
- 12 |
- 16 |
- 24 |
- 32 |
- 48 |
- 64 |
- 128 |
-
-
-
-
- CLMBR |
- 0.719 ± 0.0 |
- 0.507 ± 0.043 |
- 0.53 ± 0.061 |
- 0.562 ± 0.055 |
- 0.605 ± 0.062 |
- 0.604 ± 0.079 |
- 0.62 ± 0.06 |
- 0.616 ± 0.074 |
- 0.614 ± 0.077 |
- 0.627 ± 0.051 |
- 0.633 ± 0.042 |
- 0.668 ± 0.024 |
-
-
- GBM |
- 0.741 ± 0.0 |
- 0.515 ± 0.022 |
- 0.521 ± 0.074 |
- 0.527 ± 0.128 |
- 0.643 ± 0.057 |
- 0.591 ± 0.098 |
- 0.635 ± 0.051 |
- 0.653 ± 0.053 |
- 0.657 ± 0.036 |
- 0.661 ± 0.043 |
- 0.666 ± 0.048 |
- 0.701 ± 0.04 |
-
-
- Logistic Regression |
- 0.74 ± 0.0 |
- 0.583 ± 0.156 |
- 0.628 ± 0.075 |
- 0.609 ± 0.087 |
- 0.585 ± 0.099 |
- 0.613 ± 0.094 |
- 0.689 ± 0.038 |
- 0.69 ± 0.033 |
- 0.677 ± 0.055 |
- 0.675 ± 0.057 |
- 0.692 ± 0.05 |
- 0.707 ± 0.026 |
-
-
- Random Forest |
- 0.55 ± 0.0 |
- 0.521 ± 0.161 |
- 0.499 ± 0.159 |
- 0.527 ± 0.183 |
- 0.669 ± 0.051 |
- 0.649 ± 0.102 |
- 0.659 ± 0.103 |
- 0.678 ± 0.085 |
- 0.688 ± 0.044 |
- 0.691 ± 0.049 |
- 0.699 ± 0.052 |
- 0.736 ± 0.044 |
-
-
-
-
-Chest X-Ray: Pneumothorax
-
-
-
- Model |
- All |
- K |
-
-
- |
- |
- 1 |
- 2 |
- 4 |
- 8 |
- 12 |
- 16 |
- 24 |
- 32 |
- 48 |
- 64 |
- 128 |
-
-
-
-
- CLMBR |
- 0.82 ± 0.0 |
- 0.526 ± 0.102 |
- 0.651 ± 0.049 |
- 0.645 ± 0.069 |
- 0.654 ± 0.091 |
- 0.7 ± 0.078 |
- 0.708 ± 0.056 |
- 0.731 ± 0.037 |
- 0.756 ± 0.016 |
- 0.768 ± 0.03 |
- 0.782 ± 0.02 |
- 0.786 ± 0.013 |
-
-
- GBM |
- 0.535 ± 0.0 |
- 0.603 ± 0.056 |
- 0.525 ± 0.075 |
- 0.455 ± 0.075 |
- 0.525 ± 0.104 |
- 0.564 ± 0.085 |
- 0.568 ± 0.116 |
- 0.608 ± 0.104 |
- 0.665 ± 0.051 |
- 0.654 ± 0.059 |
- 0.662 ± 0.062 |
- 0.707 ± 0.028 |
-
-
- Logistic Regression |
- 0.636 ± 0.0 |
- 0.484 ± 0.054 |
- 0.499 ± 0.068 |
- 0.542 ± 0.133 |
- 0.505 ± 0.081 |
- 0.601 ± 0.121 |
- 0.524 ± 0.06 |
- 0.587 ± 0.102 |
- 0.606 ± 0.1 |
- 0.63 ± 0.123 |
- 0.572 ± 0.107 |
- 0.578 ± 0.111 |
-
-
- Random Forest |
- 0.657 ± 0.0 |
- 0.491 ± 0.092 |
- 0.473 ± 0.075 |
- 0.495 ± 0.072 |
- 0.516 ± 0.091 |
- 0.527 ± 0.054 |
- 0.506 ± 0.074 |
- 0.571 ± 0.049 |
- 0.603 ± 0.086 |
- 0.591 ± 0.094 |
- 0.619 ± 0.066 |
- 0.626 ± 0.066 |
-
-
-
-
-Chest X-Ray: Edema
-
-
-
- Model |
- All |
- K |
-
-
- |
- |
- 1 |
- 2 |
- 4 |
- 8 |
- 12 |
- 16 |
- 24 |
- 32 |
- 48 |
- 64 |
- 128 |
-
-
-
-
- CLMBR |
- 0.723 ± 0.0 |
- 0.484 ± 0.091 |
- 0.492 ± 0.068 |
- 0.575 ± 0.087 |
- 0.597 ± 0.073 |
- 0.644 ± 0.076 |
- 0.648 ± 0.052 |
- 0.678 ± 0.029 |
- 0.679 ± 0.022 |
- 0.688 ± 0.025 |
- 0.699 ± 0.009 |
- 0.707 ± 0.011 |
-
-
- GBM |
- 0.655 ± 0.0 |
- 0.511 ± 0.029 |
- 0.5 ± 0.023 |
- 0.482 ± 0.047 |
- 0.54 ± 0.068 |
- 0.534 ± 0.056 |
- 0.565 ± 0.03 |
- 0.593 ± 0.028 |
- 0.601 ± 0.035 |
- 0.594 ± 0.013 |
- 0.622 ± 0.023 |
- 0.629 ± 0.018 |
-
-
- Logistic Regression |
- 0.62 ± 0.0 |
- 0.509 ± 0.024 |
- 0.535 ± 0.032 |
- 0.549 ± 0.039 |
- 0.54 ± 0.043 |
- 0.552 ± 0.013 |
- 0.568 ± 0.038 |
- 0.582 ± 0.025 |
- 0.572 ± 0.029 |
- 0.619 ± 0.026 |
- 0.623 ± 0.026 |
- 0.634 ± 0.021 |
-
-
- Random Forest |
- 0.614 ± 0.0 |
- 0.502 ± 0.025 |
- 0.516 ± 0.032 |
- 0.535 ± 0.043 |
- 0.518 ± 0.047 |
- 0.535 ± 0.042 |
- 0.563 ± 0.045 |
- 0.543 ± 0.03 |
- 0.586 ± 0.019 |
- 0.601 ± 0.014 |
- 0.641 ± 0.028 |
- 0.646 ± 0.022 |
-
-
-
-
-Chest X-Ray: Enlarged Cardiomediastinum
-
-
-
- Model |
- All |
- K |
-
-
- |
- |
- 1 |
- 2 |
- 4 |
- 8 |
- 12 |
- 16 |
- 24 |
- 32 |
- 48 |
- 64 |
- 128 |
-
-
-
-
- CLMBR |
- 0.646 ± 0.0 |
- 0.483 ± 0.028 |
- 0.512 ± 0.057 |
- 0.519 ± 0.057 |
- 0.56 ± 0.043 |
- 0.568 ± 0.035 |
- 0.568 ± 0.024 |
- 0.575 ± 0.034 |
- 0.589 ± 0.033 |
- 0.607 ± 0.015 |
- 0.609 ± 0.013 |
- 0.631 ± 0.013 |
-
-
- GBM |
- 0.651 ± 0.0 |
- 0.521 ± 0.07 |
- 0.555 ± 0.066 |
- 0.511 ± 0.087 |
- 0.569 ± 0.075 |
- 0.571 ± 0.056 |
- 0.579 ± 0.054 |
- 0.584 ± 0.058 |
- 0.586 ± 0.048 |
- 0.618 ± 0.012 |
- 0.594 ± 0.022 |
- 0.634 ± 0.034 |
-
-
- Logistic Regression |
- 0.691 ± 0.0 |
- 0.458 ± 0.107 |
- 0.549 ± 0.078 |
- 0.543 ± 0.092 |
- 0.571 ± 0.064 |
- 0.597 ± 0.049 |
- 0.598 ± 0.048 |
- 0.628 ± 0.058 |
- 0.634 ± 0.058 |
- 0.665 ± 0.018 |
- 0.667 ± 0.012 |
- 0.683 ± 0.008 |
-
-
- Random Forest |
- 0.587 ± 0.0 |
- 0.474 ± 0.11 |
- 0.528 ± 0.073 |
- 0.534 ± 0.126 |
- 0.582 ± 0.077 |
- 0.613 ± 0.064 |
- 0.611 ± 0.024 |
- 0.641 ± 0.013 |
- 0.623 ± 0.029 |
- 0.64 ± 0.04 |
- 0.633 ± 0.044 |
- 0.676 ± 0.043 |
-
-
-
-
-Chest X-Ray: Support Devices
-
-
-
- Model |
- All |
- K |
-
-
- |
- |
- 1 |
- 2 |
- 4 |
- 8 |
- 12 |
- 16 |
- 24 |
- 32 |
- 48 |
- 64 |
- 128 |
-
-
-
-
- CLMBR |
- 0.753 ± 0.0 |
- 0.588 ± 0.065 |
- 0.593 ± 0.097 |
- 0.601 ± 0.11 |
- 0.643 ± 0.035 |
- 0.651 ± 0.036 |
- 0.659 ± 0.027 |
- 0.665 ± 0.035 |
- 0.672 ± 0.02 |
- 0.691 ± 0.005 |
- 0.698 ± 0.014 |
- 0.707 ± 0.016 |
-
-
- GBM |
- 0.673 ± 0.0 |
- 0.501 ± 0.013 |
- 0.515 ± 0.013 |
- 0.504 ± 0.04 |
- 0.512 ± 0.018 |
- 0.543 ± 0.064 |
- 0.548 ± 0.049 |
- 0.573 ± 0.049 |
- 0.576 ± 0.039 |
- 0.593 ± 0.043 |
- 0.614 ± 0.021 |
- 0.631 ± 0.026 |
-
-
- Logistic Regression |
- 0.646 ± 0.0 |
- 0.494 ± 0.019 |
- 0.517 ± 0.042 |
- 0.535 ± 0.052 |
- 0.523 ± 0.066 |
- 0.547 ± 0.046 |
- 0.547 ± 0.053 |
- 0.537 ± 0.049 |
- 0.534 ± 0.034 |
- 0.563 ± 0.036 |
- 0.56 ± 0.032 |
- 0.581 ± 0.031 |
-
-
- Random Forest |
- 0.689 ± 0.0 |
- 0.486 ± 0.025 |
- 0.51 ± 0.031 |
- 0.516 ± 0.035 |
- 0.523 ± 0.055 |
- 0.575 ± 0.069 |
- 0.561 ± 0.061 |
- 0.555 ± 0.031 |
- 0.562 ± 0.065 |
- 0.598 ± 0.022 |
- 0.62 ± 0.016 |
- 0.637 ± 0.011 |
-
-
-
-
-Chest X-Ray: No Finding
-
-
-
- Model |
- All |
- K |
-
-
- |
- |
- 1 |
- 2 |
- 4 |
- 8 |
- 12 |
- 16 |
- 24 |
- 32 |
- 48 |
- 64 |
- 128 |
-
-
-
-
- CLMBR |
- 0.608 ± 0.0 |
- 0.502 ± 0.013 |
- 0.526 ± 0.03 |
- 0.529 ± 0.015 |
- 0.541 ± 0.025 |
- 0.544 ± 0.007 |
- 0.534 ± 0.015 |
- 0.55 ± 0.015 |
- 0.548 ± 0.014 |
- 0.56 ± 0.028 |
- 0.555 ± 0.019 |
- 0.571 ± 0.009 |
-
-
- GBM |
- 0.597 ± 0.0 |
- 0.507 ± 0.021 |
- 0.508 ± 0.017 |
- 0.506 ± 0.029 |
- 0.521 ± 0.017 |
- 0.512 ± 0.01 |
- 0.514 ± 0.017 |
- 0.517 ± 0.016 |
- 0.531 ± 0.014 |
- 0.538 ± 0.007 |
- 0.539 ± 0.015 |
- 0.54 ± 0.016 |
-
-
- Logistic Regression |
- 0.582 ± 0.0 |
- 0.476 ± 0.029 |
- 0.517 ± 0.03 |
- 0.508 ± 0.021 |
- 0.524 ± 0.013 |
- 0.53 ± 0.02 |
- 0.516 ± 0.016 |
- 0.53 ± 0.019 |
- 0.544 ± 0.031 |
- 0.541 ± 0.02 |
- 0.538 ± 0.016 |
- 0.553 ± 0.013 |
-
-
- Random Forest |
- 0.593 ± 0.0 |
- 0.488 ± 0.023 |
- 0.501 ± 0.028 |
- 0.496 ± 0.023 |
- 0.516 ± 0.023 |
- 0.52 ± 0.015 |
- 0.521 ± 0.023 |
- 0.522 ± 0.016 |
- 0.538 ± 0.022 |
- 0.536 ± 0.012 |
- 0.533 ± 0.012 |
- 0.559 ± 0.009 |
-
-
-
-
-Chest X-Ray: Cardiomegaly
-
-
-
- Model |
- All |
- K |
-
-
- |
- |
- 1 |
- 2 |
- 4 |
- 8 |
- 12 |
- 16 |
- 24 |
- 32 |
- 48 |
- 64 |
- 128 |
-
-
-
-
- CLMBR |
- 0.826 ± 0.0 |
- 0.553 ± 0.078 |
- 0.564 ± 0.089 |
- 0.624 ± 0.091 |
- 0.641 ± 0.095 |
- 0.636 ± 0.076 |
- 0.664 ± 0.06 |
- 0.722 ± 0.036 |
- 0.735 ± 0.028 |
- 0.754 ± 0.021 |
- 0.775 ± 0.016 |
- 0.782 ± 0.019 |
-
-
- GBM |
- 0.788 ± 0.0 |
- 0.49 ± 0.042 |
- 0.532 ± 0.046 |
- 0.526 ± 0.038 |
- 0.584 ± 0.053 |
- 0.58 ± 0.044 |
- 0.616 ± 0.082 |
- 0.641 ± 0.065 |
- 0.665 ± 0.048 |
- 0.693 ± 0.033 |
- 0.695 ± 0.034 |
- 0.752 ± 0.016 |
-
-
- Logistic Regression |
- 0.759 ± 0.0 |
- 0.528 ± 0.107 |
- 0.529 ± 0.045 |
- 0.58 ± 0.077 |
- 0.577 ± 0.141 |
- 0.593 ± 0.091 |
- 0.624 ± 0.093 |
- 0.676 ± 0.076 |
- 0.682 ± 0.065 |
- 0.664 ± 0.123 |
- 0.715 ± 0.096 |
- 0.723 ± 0.033 |
-
-
- Random Forest |
- 0.785 ± 0.0 |
- 0.484 ± 0.071 |
- 0.514 ± 0.029 |
- 0.536 ± 0.063 |
- 0.564 ± 0.071 |
- 0.566 ± 0.052 |
- 0.611 ± 0.062 |
- 0.663 ± 0.066 |
- 0.696 ± 0.046 |
- 0.714 ± 0.05 |
- 0.736 ± 0.057 |
- 0.763 ± 0.017 |
-
-
-
-
-Chest X-Ray: Atelectasis
-
-
-
- Model |
- All |
- K |
-
-
- |
- |
- 1 |
- 2 |
- 4 |
- 8 |
- 12 |
- 16 |
- 24 |
- 32 |
- 48 |
- 64 |
- 128 |
-
-
-
-
- CLMBR |
- 0.656 ± 0.0 |
- 0.483 ± 0.091 |
- 0.507 ± 0.089 |
- 0.533 ± 0.095 |
- 0.566 ± 0.092 |
- 0.575 ± 0.066 |
- 0.589 ± 0.052 |
- 0.572 ± 0.043 |
- 0.587 ± 0.045 |
- 0.62 ± 0.036 |
- 0.628 ± 0.03 |
- 0.646 ± 0.009 |
-
-
- GBM |
- 0.548 ± 0.0 |
- 0.494 ± 0.031 |
- 0.497 ± 0.04 |
- 0.498 ± 0.042 |
- 0.514 ± 0.041 |
- 0.525 ± 0.031 |
- 0.518 ± 0.043 |
- 0.535 ± 0.027 |
- 0.533 ± 0.039 |
- 0.521 ± 0.024 |
- 0.535 ± 0.022 |
- 0.55 ± 0.009 |
-
-
- Logistic Regression |
- 0.542 ± 0.0 |
- 0.492 ± 0.043 |
- 0.52 ± 0.018 |
- 0.481 ± 0.042 |
- 0.503 ± 0.039 |
- 0.501 ± 0.041 |
- 0.502 ± 0.033 |
- 0.497 ± 0.019 |
- 0.525 ± 0.02 |
- 0.513 ± 0.031 |
- 0.511 ± 0.042 |
- 0.535 ± 0.014 |
-
-
- Random Forest |
- 0.513 ± 0.0 |
- 0.494 ± 0.021 |
- 0.489 ± 0.021 |
- 0.498 ± 0.041 |
- 0.518 ± 0.031 |
- 0.517 ± 0.047 |
- 0.54 ± 0.031 |
- 0.523 ± 0.031 |
- 0.526 ± 0.024 |
- 0.528 ± 0.016 |
- 0.526 ± 0.024 |
- 0.539 ± 0.013 |
-
-
-
-
->Chest X-Ray: Fracture
-
-
-
- Model |
- All |
- K |
-
-
- |
- |
- 1 |
- 2 |
- 4 |
- 8 |
- 12 |
- 16 |
- 24 |
- 32 |
- 48 |
- 64 |
- 128 |
-
-
-
-
- CLMBR |
- 0.728 ± 0.0 |
- 0.528 ± 0.086 |
- 0.51 ± 0.073 |
- 0.521 ± 0.084 |
- 0.587 ± 0.099 |
- 0.631 ± 0.044 |
- 0.648 ± 0.049 |
- 0.682 ± 0.024 |
- 0.697 ± 0.042 |
- 0.693 ± 0.03 |
- 0.693 ± 0.043 |
- 0.72 ± 0.026 |
-
-
- GBM |
- 0.716 ± 0.0 |
- 0.527 ± 0.034 |
- 0.503 ± 0.065 |
- 0.537 ± 0.048 |
- 0.567 ± 0.03 |
- 0.579 ± 0.065 |
- 0.581 ± 0.076 |
- 0.614 ± 0.057 |
- 0.617 ± 0.097 |
- 0.631 ± 0.051 |
- 0.673 ± 0.017 |
- 0.697 ± 0.05 |
-
-
- Logistic Regression |
- 0.688 ± 0.0 |
- 0.609 ± 0.035 |
- 0.554 ± 0.112 |
- 0.524 ± 0.098 |
- 0.573 ± 0.119 |
- 0.593 ± 0.079 |
- 0.615 ± 0.054 |
- 0.605 ± 0.087 |
- 0.643 ± 0.03 |
- 0.656 ± 0.035 |
- 0.634 ± 0.035 |
- 0.679 ± 0.026 |
-
-
- Random Forest |
- 0.554 ± 0.0 |
- 0.508 ± 0.094 |
- 0.554 ± 0.086 |
- 0.536 ± 0.067 |
- 0.568 ± 0.063 |
- 0.532 ± 0.041 |
- 0.586 ± 0.079 |
- 0.601 ± 0.102 |
- 0.602 ± 0.084 |
- 0.634 ± 0.07 |
- 0.619 ± 0.048 |
- 0.7 ± 0.029 |
-
-
-
-
->Chest X-Ray: Pneumonia
-
-
-
- Model |
- All |
- K |
-
-
- |
- |
- 1 |
- 2 |
- 4 |
- 8 |
- 12 |
- 16 |
- 24 |
- 32 |
- 48 |
- 64 |
- 128 |
-
-
-
-
- CLMBR |
- 0.621 ± 0.0 |
- 0.49 ± 0.029 |
- 0.499 ± 0.037 |
- 0.51 ± 0.047 |
- 0.503 ± 0.044 |
- 0.524 ± 0.044 |
- 0.522 ± 0.043 |
- 0.532 ± 0.045 |
- 0.536 ± 0.059 |
- 0.551 ± 0.036 |
- 0.553 ± 0.04 |
- 0.574 ± 0.029 |
-
-
- GBM |
- 0.523 ± 0.0 |
- 0.49 ± 0.018 |
- 0.498 ± 0.028 |
- 0.478 ± 0.051 |
- 0.523 ± 0.024 |
- 0.532 ± 0.026 |
- 0.515 ± 0.049 |
- 0.515 ± 0.026 |
- 0.514 ± 0.046 |
- 0.548 ± 0.026 |
- 0.534 ± 0.032 |
- 0.528 ± 0.027 |
-
-
- Logistic Regression |
- 0.562 ± 0.0 |
- 0.533 ± 0.035 |
- 0.525 ± 0.045 |
- 0.534 ± 0.044 |
- 0.547 ± 0.03 |
- 0.559 ± 0.009 |
- 0.525 ± 0.027 |
- 0.52 ± 0.025 |
- 0.545 ± 0.026 |
- 0.546 ± 0.016 |
- 0.514 ± 0.04 |
- 0.542 ± 0.025 |
-
-
- Random Forest |
- 0.551 ± 0.0 |
- 0.511 ± 0.046 |
- 0.517 ± 0.03 |
- 0.513 ± 0.04 |
- 0.528 ± 0.027 |
- 0.545 ± 0.007 |
- 0.53 ± 0.054 |
- 0.534 ± 0.039 |
- 0.541 ± 0.017 |
- 0.556 ± 0.024 |
- 0.551 ± 0.016 |
- 0.54 ± 0.029 |
-
-
-
-
->Chest X-Ray: Lung Lesion
-
-
-
- Model |
- All |
- K |
-
-
- |
- |
- 1 |
- 2 |
- 4 |
- 8 |
- 12 |
- 16 |
- 24 |
- 32 |
- 48 |
- 64 |
- 128 |
-
-
-
-
- CLMBR |
- 0.761 ± 0.0 |
- 0.573 ± 0.066 |
- 0.599 ± 0.089 |
- 0.66 ± 0.042 |
- 0.65 ± 0.036 |
- 0.679 ± 0.02 |
- 0.681 ± 0.011 |
- 0.689 ± 0.009 |
- 0.698 ± 0.013 |
- 0.706 ± 0.023 |
- 0.719 ± 0.012 |
- 0.731 ± 0.017 |
-
-
- GBM |
- 0.712 ± 0.0 |
- 0.508 ± 0.022 |
- 0.51 ± 0.019 |
- 0.506 ± 0.031 |
- 0.525 ± 0.047 |
- 0.529 ± 0.016 |
- 0.548 ± 0.027 |
- 0.571 ± 0.007 |
- 0.595 ± 0.041 |
- 0.604 ± 0.021 |
- 0.633 ± 0.031 |
- 0.653 ± 0.033 |
-
-
- Logistic Regression |
- 0.691 ± 0.0 |
- 0.55 ± 0.07 |
- 0.539 ± 0.061 |
- 0.557 ± 0.07 |
- 0.56 ± 0.062 |
- 0.571 ± 0.046 |
- 0.587 ± 0.022 |
- 0.588 ± 0.022 |
- 0.608 ± 0.022 |
- 0.622 ± 0.036 |
- 0.63 ± 0.022 |
- 0.632 ± 0.043 |
-
-
- Random Forest |
- 0.732 ± 0.0 |
- 0.519 ± 0.039 |
- 0.531 ± 0.078 |
- 0.529 ± 0.051 |
- 0.547 ± 0.04 |
- 0.544 ± 0.053 |
- 0.573 ± 0.028 |
- 0.561 ± 0.018 |
- 0.586 ± 0.026 |
- 0.615 ± 0.013 |
- 0.638 ± 0.03 |
- 0.661 ± 0.034 |
-
-
-
-
-
-##### AUPRC
-
-
-
-Abnormal Lab Value: Hypoglycemia
-
-
-
- Model |
- All |
- K |
-
-
- |
- |
- 1 |
- 2 |
- 4 |
- 8 |
- 12 |
- 16 |
- 24 |
- 32 |
- 48 |
- 64 |
- 128 |
-
-
-
-
- CLMBR |
- 0.085 ± 0.0 |
- 0.014 ± 0.002 |
- 0.017 ± 0.002 |
- 0.017 ± 0.003 |
- 0.018 ± 0.003 |
- 0.019 ± 0.001 |
- 0.02 ± 0.001 |
- 0.02 ± 0.003 |
- 0.022 ± 0.002 |
- 0.025 ± 0.003 |
- 0.03 ± 0.004 |
- 0.034 ± 0.004 |
-
-
- GBM |
- 0.02 ± 0.0 |
- 0.013 ± 0.002 |
- 0.013 ± 0.001 |
- 0.014 ± 0.001 |
- 0.014 ± 0.002 |
- 0.015 ± 0.001 |
- 0.014 ± 0.002 |
- 0.015 ± 0.001 |
- 0.015 ± 0.001 |
- 0.016 ± 0.002 |
- 0.017 ± 0.002 |
- 0.018 ± 0.002 |
-
-
- Logistic Regression |
- 0.021 ± 0.0 |
- 0.017 ± 0.001 |
- 0.015 ± 0.002 |
- 0.016 ± 0.001 |
- 0.016 ± 0.002 |
- 0.016 ± 0.002 |
- 0.016 ± 0.002 |
- 0.015 ± 0.002 |
- 0.016 ± 0.001 |
- 0.017 ± 0.002 |
- 0.018 ± 0.001 |
- 0.017 ± 0.002 |
-
-
- Random Forest |
- 0.024 ± 0.0 |
- 0.015 ± 0.001 |
- 0.014 ± 0.001 |
- 0.015 ± 0.002 |
- 0.016 ± 0.002 |
- 0.015 ± 0.001 |
- 0.015 ± 0.001 |
- 0.016 ± 0.001 |
- 0.016 ± 0.002 |
- 0.016 ± 0.002 |
- 0.016 ± 0.001 |
- 0.019 ± 0.002 |
-
-
-
-
-Abnormal Lab Value: Thrombocytopenia
-
-
-
- Model |
- All |
- K |
-
-
- |
- |
- 1 |
- 2 |
- 4 |
- 8 |
- 12 |
- 16 |
- 24 |
- 32 |
- 48 |
- 64 |
- 128 |
-
-
-
-
- CLMBR |
- 0.783 ± 0.0 |
- 0.389 ± 0.108 |
- 0.39 ± 0.094 |
- 0.433 ± 0.086 |
- 0.439 ± 0.084 |
- 0.46 ± 0.094 |
- 0.501 ± 0.056 |
- 0.555 ± 0.053 |
- 0.574 ± 0.047 |
- 0.616 ± 0.031 |
- 0.608 ± 0.045 |
- 0.66 ± 0.024 |
-
-
- GBM |
- 0.734 ± 0.0 |
- 0.34 ± 0.006 |
- 0.341 ± 0.009 |
- 0.345 ± 0.016 |
- 0.361 ± 0.054 |
- 0.411 ± 0.055 |
- 0.45 ± 0.053 |
- 0.474 ± 0.062 |
- 0.529 ± 0.039 |
- 0.544 ± 0.053 |
- 0.565 ± 0.017 |
- 0.609 ± 0.013 |
-
-
- Logistic Regression |
- 0.628 ± 0.0 |
- 0.341 ± 0.032 |
- 0.392 ± 0.082 |
- 0.451 ± 0.06 |
- 0.421 ± 0.102 |
- 0.414 ± 0.064 |
- 0.443 ± 0.06 |
- 0.467 ± 0.049 |
- 0.473 ± 0.056 |
- 0.521 ± 0.044 |
- 0.527 ± 0.026 |
- 0.539 ± 0.052 |
-
-
- Random Forest |
- 0.719 ± 0.0 |
- 0.374 ± 0.033 |
- 0.365 ± 0.029 |
- 0.431 ± 0.056 |
- 0.389 ± 0.062 |
- 0.44 ± 0.057 |
- 0.436 ± 0.055 |
- 0.454 ± 0.041 |
- 0.494 ± 0.051 |
- 0.506 ± 0.085 |
- 0.551 ± 0.042 |
- 0.623 ± 0.014 |
-
-
-
-
-Abnormal Lab Value: Anemia
-
-
-
- Model |
- All |
- K |
-
-
- |
- |
- 1 |
- 2 |
- 4 |
- 8 |
- 12 |
- 16 |
- 24 |
- 32 |
- 48 |
- 64 |
- 128 |
-
-
-
-
- CLMBR |
- 0.982 ± 0.0 |
- 0.736 ± 0.058 |
- 0.765 ± 0.043 |
- 0.861 ± 0.031 |
- 0.927 ± 0.017 |
- 0.93 ± 0.005 |
- 0.937 ± 0.01 |
- 0.956 ± 0.006 |
- 0.957 ± 0.006 |
- 0.962 ± 0.004 |
- 0.967 ± 0.001 |
- 0.972 ± 0.001 |
-
-
- GBM |
- 0.898 ± 0.0 |
- 0.686 ± 0.005 |
- 0.694 ± 0.014 |
- 0.706 ± 0.039 |
- 0.739 ± 0.035 |
- 0.755 ± 0.041 |
- 0.741 ± 0.034 |
- 0.787 ± 0.017 |
- 0.802 ± 0.009 |
- 0.811 ± 0.017 |
- 0.825 ± 0.01 |
- 0.848 ± 0.01 |
-
-
- Logistic Regression |
- 0.838 ± 0.0 |
- 0.713 ± 0.056 |
- 0.721 ± 0.073 |
- 0.748 ± 0.039 |
- 0.765 ± 0.009 |
- 0.759 ± 0.02 |
- 0.755 ± 0.014 |
- 0.78 ± 0.012 |
- 0.775 ± 0.005 |
- 0.778 ± 0.014 |
- 0.789 ± 0.002 |
- 0.794 ± 0.005 |
-
-
- Random Forest |
- 0.89 ± 0.0 |
- 0.721 ± 0.031 |
- 0.735 ± 0.015 |
- 0.742 ± 0.035 |
- 0.76 ± 0.049 |
- 0.773 ± 0.039 |
- 0.757 ± 0.047 |
- 0.8 ± 0.03 |
- 0.802 ± 0.028 |
- 0.823 ± 0.009 |
- 0.831 ± 0.014 |
- 0.853 ± 0.016 |
-
-
-
-
-Abnormal Lab Value: hyponatremia
-
-
-
- Model |
- All |
- K |
-
-
- |
- |
- 1 |
- 2 |
- 4 |
- 8 |
- 12 |
- 16 |
- 24 |
- 32 |
- 48 |
- 64 |
- 128 |
-
-
-
-
- CLMBR |
- 0.577 ± 0.0 |
- 0.31 ± 0.02 |
- 0.297 ± 0.02 |
- 0.298 ± 0.033 |
- 0.306 ± 0.025 |
- 0.313 ± 0.019 |
- 0.342 ± 0.025 |
- 0.358 ± 0.01 |
- 0.364 ± 0.016 |
- 0.359 ± 0.009 |
- 0.373 ± 0.023 |
- 0.395 ± 0.032 |
-
-
- GBM |
- 0.435 ± 0.0 |
- 0.288 ± 0.0 |
- 0.289 ± 0.004 |
- 0.291 ± 0.011 |
- 0.287 ± 0.007 |
- 0.293 ± 0.015 |
- 0.301 ± 0.011 |
- 0.307 ± 0.019 |
- 0.305 ± 0.01 |
- 0.307 ± 0.017 |
- 0.316 ± 0.019 |
- 0.319 ± 0.02 |
-
-
- Logistic Regression |
- 0.367 ± 0.0 |
- 0.288 ± 0.012 |
- 0.288 ± 0.014 |
- 0.289 ± 0.009 |
- 0.285 ± 0.009 |
- 0.295 ± 0.012 |
- 0.295 ± 0.012 |
- 0.297 ± 0.02 |
- 0.3 ± 0.016 |
- 0.3 ± 0.02 |
- 0.302 ± 0.017 |
- 0.305 ± 0.011 |
-
-
- Random Forest |
- 0.401 ± 0.0 |
- 0.283 ± 0.009 |
- 0.289 ± 0.01 |
- 0.285 ± 0.015 |
- 0.294 ± 0.012 |
- 0.294 ± 0.021 |
- 0.287 ± 0.006 |
- 0.308 ± 0.013 |
- 0.304 ± 0.016 |
- 0.302 ± 0.017 |
- 0.306 ± 0.016 |
- 0.323 ± 0.021 |
-
-
-
-
-Abnormal Lab Value: Hyperkalemia
-
-
-
- Model |
- All |
- K |
-
-
- |
- |
- 1 |
- 2 |
- 4 |
- 8 |
- 12 |
- 16 |
- 24 |
- 32 |
- 48 |
- 64 |
- 128 |
-
-
-
-
- CLMBR |
- 0.154 ± 0.0 |
- 0.028 ± 0.008 |
- 0.032 ± 0.011 |
- 0.03 ± 0.008 |
- 0.032 ± 0.01 |
- 0.04 ± 0.016 |
- 0.047 ± 0.023 |
- 0.049 ± 0.023 |
- 0.052 ± 0.022 |
- 0.062 ± 0.025 |
- 0.066 ± 0.02 |
- 0.1 ± 0.024 |
-
-
- GBM |
- 0.074 ± 0.0 |
- 0.025 ± 0.001 |
- 0.025 ± 0.001 |
- 0.024 ± 0.001 |
- 0.028 ± 0.003 |
- 0.035 ± 0.007 |
- 0.031 ± 0.002 |
- 0.036 ± 0.01 |
- 0.033 ± 0.01 |
- 0.042 ± 0.007 |
- 0.04 ± 0.008 |
- 0.054 ± 0.012 |
-
-
- Logistic Regression |
- 0.056 ± 0.0 |
- 0.029 ± 0.005 |
- 0.029 ± 0.004 |
- 0.028 ± 0.008 |
- 0.028 ± 0.003 |
- 0.03 ± 0.007 |
- 0.033 ± 0.007 |
- 0.036 ± 0.008 |
- 0.034 ± 0.003 |
- 0.036 ± 0.005 |
- 0.035 ± 0.007 |
- 0.041 ± 0.005 |
-
-
- Random Forest |
- 0.049 ± 0.0 |
- 0.028 ± 0.004 |
- 0.028 ± 0.004 |
- 0.025 ± 0.002 |
- 0.028 ± 0.002 |
- 0.032 ± 0.002 |
- 0.033 ± 0.007 |
- 0.034 ± 0.006 |
- 0.034 ± 0.003 |
- 0.042 ± 0.011 |
- 0.043 ± 0.014 |
- 0.053 ± 0.014 |
-
-
-
-
-Operational Outcome: ICU Transfer
-
-
-
- Model |
- All |
- K |
-
-
- |
- |
- 1 |
- 2 |
- 4 |
- 8 |
- 12 |
- 16 |
- 24 |
- 32 |
- 48 |
- 64 |
- 128 |
-
-
-
-
- CLMBR |
- 0.31 ± 0.0 |
- 0.058 ± 0.015 |
- 0.066 ± 0.011 |
- 0.076 ± 0.02 |
- 0.1 ± 0.015 |
- 0.13 ± 0.052 |
- 0.162 ± 0.038 |
- 0.202 ± 0.023 |
- 0.209 ± 0.045 |
- 0.222 ± 0.033 |
- 0.252 ± 0.03 |
- 0.276 ± 0.023 |
-
-
- GBM |
- 0.156 ± 0.0 |
- 0.044 ± 0.003 |
- 0.042 ± 0.003 |
- 0.046 ± 0.006 |
- 0.057 ± 0.012 |
- 0.059 ± 0.011 |
- 0.071 ± 0.024 |
- 0.092 ± 0.022 |
- 0.116 ± 0.021 |
- 0.135 ± 0.035 |
- 0.133 ± 0.02 |
- 0.16 ± 0.017 |
-
-
- Logistic Regression |
- 0.087 ± 0.0 |
- 0.049 ± 0.017 |
- 0.045 ± 0.007 |
- 0.061 ± 0.028 |
- 0.07 ± 0.018 |
- 0.064 ± 0.015 |
- 0.068 ± 0.009 |
- 0.075 ± 0.013 |
- 0.087 ± 0.017 |
- 0.083 ± 0.018 |
- 0.083 ± 0.013 |
- 0.09 ± 0.018 |
-
-
- Random Forest |
- 0.082 ± 0.0 |
- 0.051 ± 0.014 |
- 0.039 ± 0.004 |
- 0.047 ± 0.004 |
- 0.047 ± 0.007 |
- 0.067 ± 0.021 |
- 0.07 ± 0.02 |
- 0.103 ± 0.036 |
- 0.104 ± 0.033 |
- 0.161 ± 0.034 |
- 0.157 ± 0.034 |
- 0.202 ± 0.042 |
-
-
-
-
-Operational Outcome: los
-
-
-
- Model |
- All |
- K |
-
-
- |
- |
- 1 |
- 2 |
- 4 |
- 8 |
- 12 |
- 16 |
- 24 |
- 32 |
- 48 |
- 64 |
- 128 |
-
-
-
-
- CLMBR |
- 0.569 ± 0.0 |
- 0.274 ± 0.031 |
- 0.311 ± 0.046 |
- 0.36 ± 0.047 |
- 0.342 ± 0.066 |
- 0.344 ± 0.056 |
- 0.384 ± 0.055 |
- 0.413 ± 0.024 |
- 0.441 ± 0.033 |
- 0.452 ± 0.037 |
- 0.457 ± 0.036 |
- 0.493 ± 0.015 |
-
-
- GBM |
- 0.535 ± 0.0 |
- 0.26 ± 0.009 |
- 0.262 ± 0.009 |
- 0.258 ± 0.007 |
- 0.289 ± 0.046 |
- 0.3 ± 0.023 |
- 0.311 ± 0.027 |
- 0.318 ± 0.015 |
- 0.334 ± 0.032 |
- 0.351 ± 0.015 |
- 0.366 ± 0.035 |
- 0.409 ± 0.02 |
-
-
- Logistic Regression |
- 0.391 ± 0.0 |
- 0.251 ± 0.024 |
- 0.266 ± 0.019 |
- 0.295 ± 0.037 |
- 0.283 ± 0.008 |
- 0.28 ± 0.018 |
- 0.286 ± 0.016 |
- 0.301 ± 0.029 |
- 0.314 ± 0.027 |
- 0.326 ± 0.027 |
- 0.354 ± 0.016 |
- 0.355 ± 0.013 |
-
-
- Random Forest |
- 0.485 ± 0.0 |
- 0.258 ± 0.012 |
- 0.268 ± 0.024 |
- 0.278 ± 0.029 |
- 0.283 ± 0.015 |
- 0.321 ± 0.032 |
- 0.315 ± 0.031 |
- 0.295 ± 0.014 |
- 0.328 ± 0.024 |
- 0.373 ± 0.038 |
- 0.38 ± 0.029 |
- 0.408 ± 0.032 |
-
-
-
-
-Operational Outcome: 30-Day Readmission
-
-
-
- Model |
- All |
- K |
-
-
- |
- |
- 1 |
- 2 |
- 4 |
- 8 |
- 12 |
- 16 |
- 24 |
- 32 |
- 48 |
- 64 |
- 128 |
-
-
-
-
- CLMBR |
- 0.425 ± 0.0 |
- 0.16 ± 0.037 |
- 0.16 ± 0.051 |
- 0.2 ± 0.071 |
- 0.212 ± 0.044 |
- 0.232 ± 0.026 |
- 0.262 ± 0.029 |
- 0.279 ± 0.021 |
- 0.3 ± 0.03 |
- 0.321 ± 0.04 |
- 0.331 ± 0.033 |
- 0.352 ± 0.029 |
-
-
- GBM |
- 0.349 ± 0.0 |
- 0.124 ± 0.004 |
- 0.127 ± 0.02 |
- 0.137 ± 0.023 |
- 0.171 ± 0.039 |
- 0.209 ± 0.073 |
- 0.187 ± 0.059 |
- 0.179 ± 0.037 |
- 0.188 ± 0.049 |
- 0.205 ± 0.018 |
- 0.24 ± 0.031 |
- 0.274 ± 0.024 |
-
-
- Logistic Regression |
- 0.278 ± 0.0 |
- 0.141 ± 0.035 |
- 0.151 ± 0.047 |
- 0.135 ± 0.034 |
- 0.166 ± 0.039 |
- 0.179 ± 0.029 |
- 0.188 ± 0.036 |
- 0.19 ± 0.027 |
- 0.189 ± 0.02 |
- 0.211 ± 0.027 |
- 0.202 ± 0.017 |
- 0.224 ± 0.007 |
-
-
- Random Forest |
- 0.378 ± 0.0 |
- 0.14 ± 0.038 |
- 0.143 ± 0.038 |
- 0.142 ± 0.04 |
- 0.165 ± 0.022 |
- 0.168 ± 0.026 |
- 0.176 ± 0.049 |
- 0.188 ± 0.03 |
- 0.214 ± 0.037 |
- 0.218 ± 0.026 |
- 0.225 ± 0.022 |
- 0.273 ± 0.034 |
-
-
-
-
-New Diagnosis: Hyperlipidemia
-
-
-
- Model |
- All |
- K |
-
-
- |
- |
- 1 |
- 2 |
- 4 |
- 8 |
- 12 |
- 16 |
- 24 |
- 32 |
- 48 |
- 64 |
- 128 |
-
-
-
-
- CLMBR |
- 0.224 ± 0.0 |
- 0.143 ± 0.039 |
- 0.165 ± 0.024 |
- 0.172 ± 0.023 |
- 0.183 ± 0.012 |
- 0.18 ± 0.009 |
- 0.193 ± 0.019 |
- 0.193 ± 0.015 |
- 0.196 ± 0.015 |
- 0.198 ± 0.011 |
- 0.193 ± 0.018 |
- 0.214 ± 0.009 |
-
-
- GBM |
- 0.24 ± 0.0 |
- 0.127 ± 0.012 |
- 0.125 ± 0.005 |
- 0.138 ± 0.018 |
- 0.141 ± 0.014 |
- 0.146 ± 0.016 |
- 0.152 ± 0.014 |
- 0.159 ± 0.029 |
- 0.174 ± 0.012 |
- 0.199 ± 0.02 |
- 0.212 ± 0.026 |
- 0.212 ± 0.017 |
-
-
- Logistic Regression |
- 0.239 ± 0.0 |
- 0.149 ± 0.024 |
- 0.149 ± 0.018 |
- 0.162 ± 0.009 |
- 0.16 ± 0.011 |
- 0.167 ± 0.022 |
- 0.17 ± 0.02 |
- 0.179 ± 0.021 |
- 0.182 ± 0.014 |
- 0.204 ± 0.023 |
- 0.208 ± 0.019 |
- 0.217 ± 0.015 |
-
-
- Random Forest |
- 0.215 ± 0.0 |
- 0.132 ± 0.009 |
- 0.143 ± 0.014 |
- 0.137 ± 0.014 |
- 0.15 ± 0.012 |
- 0.154 ± 0.024 |
- 0.15 ± 0.015 |
- 0.158 ± 0.027 |
- 0.168 ± 0.018 |
- 0.179 ± 0.029 |
- 0.214 ± 0.025 |
- 0.224 ± 0.016 |
-
-
-
-
-New Diagnosis: Pancreatic Cancer
-
-
-
- Model |
- All |
- K |
-
-
- |
- |
- 1 |
- 2 |
- 4 |
- 8 |
- 12 |
- 16 |
- 24 |
- 32 |
- 48 |
- 64 |
- 128 |
-
-
-
-
- CLMBR |
- 0.299 ± 0.0 |
- 0.04 ± 0.005 |
- 0.06 ± 0.016 |
- 0.066 ± 0.031 |
- 0.106 ± 0.064 |
- 0.099 ± 0.034 |
- 0.119 ± 0.069 |
- 0.12 ± 0.065 |
- 0.144 ± 0.061 |
- 0.167 ± 0.058 |
- 0.177 ± 0.041 |
- 0.231 ± 0.056 |
-
-
- GBM |
- 0.379 ± 0.0 |
- 0.03 ± 0.004 |
- 0.027 ± 0.004 |
- 0.028 ± 0.005 |
- 0.065 ± 0.04 |
- 0.064 ± 0.021 |
- 0.11 ± 0.051 |
- 0.134 ± 0.075 |
- 0.121 ± 0.027 |
- 0.197 ± 0.046 |
- 0.189 ± 0.054 |
- 0.252 ± 0.022 |
-
-
- Logistic Regression |
- 0.158 ± 0.0 |
- 0.057 ± 0.028 |
- 0.063 ± 0.034 |
- 0.042 ± 0.013 |
- 0.059 ± 0.034 |
- 0.049 ± 0.014 |
- 0.056 ± 0.017 |
- 0.088 ± 0.017 |
- 0.096 ± 0.041 |
- 0.097 ± 0.015 |
- 0.108 ± 0.017 |
- 0.135 ± 0.011 |
-
-
- Random Forest |
- 0.317 ± 0.0 |
- 0.031 ± 0.004 |
- 0.034 ± 0.008 |
- 0.032 ± 0.005 |
- 0.039 ± 0.013 |
- 0.064 ± 0.026 |
- 0.083 ± 0.015 |
- 0.092 ± 0.058 |
- 0.129 ± 0.056 |
- 0.156 ± 0.023 |
- 0.173 ± 0.044 |
- 0.229 ± 0.055 |
-
-
-
-
-New Diagnosis: Acute MI
-
-
-
- Model |
- All |
- K |
-
-
- |
- |
- 1 |
- 2 |
- 4 |
- 8 |
- 12 |
- 16 |
- 24 |
- 32 |
- 48 |
- 64 |
- 128 |
-
-
-
-
- CLMBR |
- 0.181 ± 0.0 |
- 0.081 ± 0.023 |
- 0.089 ± 0.029 |
- 0.101 ± 0.031 |
- 0.121 ± 0.037 |
- 0.122 ± 0.045 |
- 0.123 ± 0.045 |
- 0.137 ± 0.034 |
- 0.163 ± 0.016 |
- 0.156 ± 0.012 |
- 0.162 ± 0.019 |
- 0.173 ± 0.003 |
-
-
- GBM |
- 0.185 ± 0.0 |
- 0.066 ± 0.004 |
- 0.065 ± 0.003 |
- 0.08 ± 0.007 |
- 0.103 ± 0.011 |
- 0.098 ± 0.023 |
- 0.108 ± 0.028 |
- 0.133 ± 0.032 |
- 0.15 ± 0.031 |
- 0.141 ± 0.025 |
- 0.145 ± 0.015 |
- 0.16 ± 0.036 |
-
-
- Logistic Regression |
- 0.131 ± 0.0 |
- 0.081 ± 0.029 |
- 0.089 ± 0.027 |
- 0.095 ± 0.031 |
- 0.104 ± 0.022 |
- 0.104 ± 0.028 |
- 0.099 ± 0.02 |
- 0.103 ± 0.023 |
- 0.105 ± 0.014 |
- 0.109 ± 0.016 |
- 0.116 ± 0.017 |
- 0.121 ± 0.012 |
-
-
- Random Forest |
- 0.158 ± 0.0 |
- 0.075 ± 0.015 |
- 0.089 ± 0.03 |
- 0.096 ± 0.023 |
- 0.11 ± 0.03 |
- 0.095 ± 0.028 |
- 0.115 ± 0.027 |
- 0.117 ± 0.025 |
- 0.122 ± 0.02 |
- 0.13 ± 0.025 |
- 0.137 ± 0.014 |
- 0.154 ± 0.021 |
-
-
-
-
-New Diagnosis: Lupus
-
-
-
- Model |
- All |
- K |
-
-
- |
- |
- 1 |
- 2 |
- 4 |
- 8 |
- 12 |
- 16 |
- 24 |
- 32 |
- 48 |
- 64 |
- 128 |
-
-
-
-
- CLMBR |
- 0.035 ± 0.0 |
- 0.008 ± 0.002 |
- 0.018 ± 0.022 |
- 0.009 ± 0.002 |
- 0.011 ± 0.002 |
- 0.012 ± 0.005 |
- 0.014 ± 0.004 |
- 0.015 ± 0.005 |
- 0.019 ± 0.008 |
- 0.017 ± 0.004 |
- 0.031 ± 0.019 |
- 0.025 ± 0.009 |
-
-
- GBM |
- 0.221 ± 0.0 |
- 0.009 ± 0.001 |
- 0.01 ± 0.001 |
- 0.009 ± 0.001 |
- 0.015 ± 0.008 |
- 0.012 ± 0.003 |
- 0.018 ± 0.012 |
- 0.016 ± 0.008 |
- 0.031 ± 0.017 |
- 0.057 ± 0.054 |
- 0.052 ± 0.038 |
- 0.065 ± 0.04 |
-
-
- Logistic Regression |
- 0.085 ± 0.0 |
- 0.008 ± 0.001 |
- 0.009 ± 0.0 |
- 0.009 ± 0.002 |
- 0.012 ± 0.003 |
- 0.01 ± 0.001 |
- 0.013 ± 0.004 |
- 0.012 ± 0.002 |
- 0.013 ± 0.001 |
- 0.014 ± 0.003 |
- 0.015 ± 0.005 |
- 0.02 ± 0.003 |
-
-
- Random Forest |
- 0.017 ± 0.0 |
- 0.008 ± 0.0 |
- 0.009 ± 0.003 |
- 0.011 ± 0.001 |
- 0.014 ± 0.005 |
- 0.012 ± 0.003 |
- 0.012 ± 0.003 |
- 0.018 ± 0.008 |
- 0.039 ± 0.036 |
- 0.025 ± 0.018 |
- 0.025 ± 0.013 |
- 0.031 ± 0.019 |
-
-
-
-
-New Diagnosis: Hypertension
-
-
-
- Model |
- All |
- K |
-
-
- |
- |
- 1 |
- 2 |
- 4 |
- 8 |
- 12 |
- 16 |
- 24 |
- 32 |
- 48 |
- 64 |
- 128 |
-
-
-
-
- CLMBR |
- 0.242 ± 0.0 |
- 0.172 ± 0.017 |
- 0.163 ± 0.031 |
- 0.175 ± 0.035 |
- 0.203 ± 0.028 |
- 0.205 ± 0.033 |
- 0.216 ± 0.016 |
- 0.216 ± 0.025 |
- 0.21 ± 0.016 |
- 0.21 ± 0.017 |
- 0.215 ± 0.017 |
- 0.214 ± 0.01 |
-
-
- GBM |
- 0.238 ± 0.0 |
- 0.122 ± 0.007 |
- 0.125 ± 0.004 |
- 0.128 ± 0.015 |
- 0.146 ± 0.013 |
- 0.166 ± 0.03 |
- 0.174 ± 0.016 |
- 0.177 ± 0.019 |
- 0.172 ± 0.011 |
- 0.165 ± 0.023 |
- 0.2 ± 0.018 |
- 0.205 ± 0.01 |
-
-
- Logistic Regression |
- 0.21 ± 0.0 |
- 0.127 ± 0.012 |
- 0.124 ± 0.014 |
- 0.145 ± 0.031 |
- 0.16 ± 0.031 |
- 0.148 ± 0.016 |
- 0.16 ± 0.016 |
- 0.167 ± 0.027 |
- 0.167 ± 0.026 |
- 0.162 ± 0.013 |
- 0.183 ± 0.02 |
- 0.188 ± 0.021 |
-
-
- Random Forest |
- 0.186 ± 0.0 |
- 0.135 ± 0.009 |
- 0.136 ± 0.01 |
- 0.126 ± 0.008 |
- 0.16 ± 0.022 |
- 0.151 ± 0.019 |
- 0.183 ± 0.029 |
- 0.176 ± 0.026 |
- 0.175 ± 0.027 |
- 0.184 ± 0.018 |
- 0.186 ± 0.024 |
- 0.204 ± 0.018 |
-
-
-
-
-New Diagnosis: Celiac
-
-
-
- Model |
- All |
- K |
-
-
- |
- |
- 1 |
- 2 |
- 4 |
- 8 |
- 12 |
- 16 |
- 24 |
- 32 |
- 48 |
- 64 |
- 128 |
-
-
-
-
- CLMBR |
- 0.014 ± 0.0 |
- 0.012 ± 0.002 |
- 0.01 ± 0.001 |
- 0.011 ± 0.002 |
- 0.014 ± 0.005 |
- 0.017 ± 0.006 |
- 0.022 ± 0.014 |
- 0.016 ± 0.005 |
- 0.015 ± 0.003 |
- 0.017 ± 0.009 |
- 0.016 ± 0.004 |
- 0.019 ± 0.01 |
-
-
- GBM |
- 0.053 ± 0.0 |
- 0.021 ± 0.016 |
- 0.009 ± 0.001 |
- 0.013 ± 0.005 |
- 0.013 ± 0.003 |
- 0.015 ± 0.005 |
- 0.015 ± 0.006 |
- 0.017 ± 0.012 |
- 0.028 ± 0.02 |
- 0.04 ± 0.037 |
- 0.033 ± 0.031 |
- 0.027 ± 0.011 |
-
-
- Logistic Regression |
- 0.189 ± 0.0 |
- 0.013 ± 0.006 |
- 0.019 ± 0.017 |
- 0.031 ± 0.028 |
- 0.034 ± 0.042 |
- 0.026 ± 0.023 |
- 0.026 ± 0.015 |
- 0.045 ± 0.028 |
- 0.071 ± 0.039 |
- 0.098 ± 0.029 |
- 0.096 ± 0.044 |
- 0.108 ± 0.027 |
-
-
- Random Forest |
- 0.108 ± 0.0 |
- 0.011 ± 0.005 |
- 0.02 ± 0.02 |
- 0.028 ± 0.037 |
- 0.011 ± 0.003 |
- 0.016 ± 0.015 |
- 0.017 ± 0.011 |
- 0.041 ± 0.06 |
- 0.018 ± 0.012 |
- 0.025 ± 0.022 |
- 0.059 ± 0.076 |
- 0.031 ± 0.039 |
-
-
-
-
-Chest X-Ray: Lung Opacity
-
-
-
- Model |
- All |
- K |
-
-
- |
- |
- 1 |
- 2 |
- 4 |
- 8 |
- 12 |
- 16 |
- 24 |
- 32 |
- 48 |
- 64 |
- 128 |
-
-
-
-
- CLMBR |
- 0.399 ± 0.0 |
- 0.256 ± 0.048 |
- 0.261 ± 0.064 |
- 0.275 ± 0.045 |
- 0.284 ± 0.046 |
- 0.293 ± 0.054 |
- 0.315 ± 0.039 |
- 0.313 ± 0.064 |
- 0.314 ± 0.067 |
- 0.324 ± 0.044 |
- 0.343 ± 0.028 |
- 0.333 ± 0.018 |
-
-
- GBM |
- 0.346 ± 0.0 |
- 0.199 ± 0.002 |
- 0.193 ± 0.005 |
- 0.198 ± 0.007 |
- 0.223 ± 0.02 |
- 0.232 ± 0.012 |
- 0.235 ± 0.017 |
- 0.236 ± 0.024 |
- 0.244 ± 0.017 |
- 0.26 ± 0.022 |
- 0.242 ± 0.028 |
- 0.255 ± 0.012 |
-
-
- Logistic Regression |
- 0.292 ± 0.0 |
- 0.2 ± 0.015 |
- 0.209 ± 0.021 |
- 0.221 ± 0.018 |
- 0.213 ± 0.016 |
- 0.224 ± 0.019 |
- 0.22 ± 0.015 |
- 0.236 ± 0.028 |
- 0.225 ± 0.035 |
- 0.247 ± 0.023 |
- 0.243 ± 0.017 |
- 0.245 ± 0.017 |
-
-
- Random Forest |
- 0.326 ± 0.0 |
- 0.196 ± 0.007 |
- 0.205 ± 0.005 |
- 0.212 ± 0.014 |
- 0.216 ± 0.027 |
- 0.212 ± 0.038 |
- 0.227 ± 0.028 |
- 0.22 ± 0.018 |
- 0.256 ± 0.046 |
- 0.256 ± 0.015 |
- 0.285 ± 0.027 |
- 0.27 ± 0.033 |
-
-
-
-
-Chest X-Ray: Pleural Effusion
-
-
-
- Model |
- All |
- K |
-
-
- |
- |
- 1 |
- 2 |
- 4 |
- 8 |
- 12 |
- 16 |
- 24 |
- 32 |
- 48 |
- 64 |
- 128 |
-
-
-
-
- CLMBR |
- 0.302 ± 0.0 |
- 0.154 ± 0.023 |
- 0.164 ± 0.043 |
- 0.164 ± 0.052 |
- 0.203 ± 0.057 |
- 0.226 ± 0.042 |
- 0.231 ± 0.044 |
- 0.219 ± 0.043 |
- 0.229 ± 0.044 |
- 0.253 ± 0.011 |
- 0.261 ± 0.016 |
- 0.265 ± 0.017 |
-
-
- GBM |
- 0.229 ± 0.0 |
- 0.129 ± 0.002 |
- 0.13 ± 0.008 |
- 0.129 ± 0.011 |
- 0.142 ± 0.019 |
- 0.158 ± 0.018 |
- 0.152 ± 0.025 |
- 0.147 ± 0.018 |
- 0.162 ± 0.033 |
- 0.187 ± 0.024 |
- 0.208 ± 0.027 |
- 0.214 ± 0.024 |
-
-
- Logistic Regression |
- 0.256 ± 0.0 |
- 0.124 ± 0.008 |
- 0.125 ± 0.012 |
- 0.13 ± 0.017 |
- 0.141 ± 0.019 |
- 0.148 ± 0.017 |
- 0.161 ± 0.014 |
- 0.154 ± 0.017 |
- 0.166 ± 0.017 |
- 0.173 ± 0.011 |
- 0.188 ± 0.014 |
- 0.208 ± 0.003 |
-
-
- Random Forest |
- 0.201 ± 0.0 |
- 0.125 ± 0.007 |
- 0.129 ± 0.014 |
- 0.126 ± 0.015 |
- 0.145 ± 0.024 |
- 0.157 ± 0.019 |
- 0.149 ± 0.03 |
- 0.158 ± 0.018 |
- 0.168 ± 0.011 |
- 0.194 ± 0.038 |
- 0.199 ± 0.026 |
- 0.238 ± 0.012 |
-
-
-
-
-Chest X-Ray: Consolidation
-
-
-
- Model |
- All |
- K |
-
-
- |
- |
- 1 |
- 2 |
- 4 |
- 8 |
- 12 |
- 16 |
- 24 |
- 32 |
- 48 |
- 64 |
- 128 |
-
-
-
-
- CLMBR |
- 0.072 ± 0.0 |
- 0.041 ± 0.006 |
- 0.043 ± 0.008 |
- 0.042 ± 0.006 |
- 0.048 ± 0.005 |
- 0.045 ± 0.004 |
- 0.045 ± 0.005 |
- 0.051 ± 0.005 |
- 0.054 ± 0.007 |
- 0.053 ± 0.003 |
- 0.055 ± 0.004 |
- 0.061 ± 0.005 |
-
-
- GBM |
- 0.061 ± 0.0 |
- 0.038 ± 0.002 |
- 0.04 ± 0.003 |
- 0.04 ± 0.003 |
- 0.044 ± 0.007 |
- 0.042 ± 0.006 |
- 0.043 ± 0.009 |
- 0.047 ± 0.007 |
- 0.045 ± 0.006 |
- 0.053 ± 0.007 |
- 0.055 ± 0.007 |
- 0.056 ± 0.006 |
-
-
- Logistic Regression |
- 0.072 ± 0.0 |
- 0.048 ± 0.013 |
- 0.053 ± 0.014 |
- 0.047 ± 0.012 |
- 0.05 ± 0.01 |
- 0.054 ± 0.011 |
- 0.052 ± 0.011 |
- 0.057 ± 0.014 |
- 0.05 ± 0.01 |
- 0.052 ± 0.014 |
- 0.056 ± 0.012 |
- 0.061 ± 0.009 |
-
-
- Random Forest |
- 0.058 ± 0.0 |
- 0.04 ± 0.008 |
- 0.045 ± 0.011 |
- 0.045 ± 0.009 |
- 0.043 ± 0.007 |
- 0.046 ± 0.01 |
- 0.046 ± 0.012 |
- 0.055 ± 0.007 |
- 0.05 ± 0.012 |
- 0.059 ± 0.005 |
- 0.054 ± 0.006 |
- 0.058 ± 0.013 |
-
-
-
-
-Chest X-Ray: Pleural Other
-
-
-
- Model |
- All |
- K |
-
-
- |
- |
- 1 |
- 2 |
- 4 |
- 8 |
- 12 |
- 16 |
- 24 |
- 32 |
- 48 |
- 64 |
- 128 |
-
-
-
-
- CLMBR |
- 0.063 ± 0.0 |
- 0.017 ± 0.002 |
- 0.02 ± 0.006 |
- 0.024 ± 0.005 |
- 0.03 ± 0.007 |
- 0.031 ± 0.011 |
- 0.031 ± 0.01 |
- 0.031 ± 0.012 |
- 0.03 ± 0.01 |
- 0.033 ± 0.01 |
- 0.039 ± 0.012 |
- 0.04 ± 0.003 |
-
-
- GBM |
- 0.049 ± 0.0 |
- 0.017 ± 0.001 |
- 0.017 ± 0.003 |
- 0.026 ± 0.02 |
- 0.026 ± 0.005 |
- 0.025 ± 0.008 |
- 0.029 ± 0.007 |
- 0.03 ± 0.004 |
- 0.029 ± 0.006 |
- 0.028 ± 0.004 |
- 0.037 ± 0.015 |
- 0.043 ± 0.007 |
-
-
- Logistic Regression |
- 0.046 ± 0.0 |
- 0.023 ± 0.009 |
- 0.024 ± 0.009 |
- 0.022 ± 0.006 |
- 0.022 ± 0.007 |
- 0.025 ± 0.01 |
- 0.032 ± 0.007 |
- 0.029 ± 0.006 |
- 0.028 ± 0.006 |
- 0.026 ± 0.006 |
- 0.028 ± 0.005 |
- 0.03 ± 0.004 |
-
-
- Random Forest |
- 0.021 ± 0.0 |
- 0.019 ± 0.006 |
- 0.02 ± 0.009 |
- 0.022 ± 0.013 |
- 0.029 ± 0.007 |
- 0.028 ± 0.008 |
- 0.032 ± 0.009 |
- 0.036 ± 0.012 |
- 0.033 ± 0.006 |
- 0.032 ± 0.006 |
- 0.036 ± 0.01 |
- 0.045 ± 0.014 |
-
-
-
-
-Chest X-Ray: Pneumothorax
-
-
-
- Model |
- All |
- K |
-
-
- |
- |
- 1 |
- 2 |
- 4 |
- 8 |
- 12 |
- 16 |
- 24 |
- 32 |
- 48 |
- 64 |
- 128 |
-
-
-
-
- CLMBR |
- 0.178 ± 0.0 |
- 0.047 ± 0.01 |
- 0.071 ± 0.013 |
- 0.07 ± 0.022 |
- 0.073 ± 0.023 |
- 0.094 ± 0.026 |
- 0.095 ± 0.027 |
- 0.103 ± 0.022 |
- 0.117 ± 0.01 |
- 0.129 ± 0.027 |
- 0.138 ± 0.024 |
- 0.142 ± 0.023 |
-
-
- GBM |
- 0.057 ± 0.0 |
- 0.056 ± 0.007 |
- 0.047 ± 0.006 |
- 0.042 ± 0.005 |
- 0.051 ± 0.013 |
- 0.058 ± 0.022 |
- 0.069 ± 0.036 |
- 0.09 ± 0.044 |
- 0.086 ± 0.033 |
- 0.095 ± 0.026 |
- 0.092 ± 0.029 |
- 0.111 ± 0.026 |
-
-
- Logistic Regression |
- 0.092 ± 0.0 |
- 0.043 ± 0.005 |
- 0.049 ± 0.008 |
- 0.069 ± 0.051 |
- 0.052 ± 0.011 |
- 0.096 ± 0.057 |
- 0.062 ± 0.021 |
- 0.077 ± 0.041 |
- 0.086 ± 0.036 |
- 0.09 ± 0.038 |
- 0.067 ± 0.026 |
- 0.072 ± 0.045 |
-
-
- Random Forest |
- 0.074 ± 0.0 |
- 0.046 ± 0.012 |
- 0.052 ± 0.027 |
- 0.045 ± 0.008 |
- 0.061 ± 0.03 |
- 0.05 ± 0.01 |
- 0.052 ± 0.009 |
- 0.057 ± 0.01 |
- 0.07 ± 0.027 |
- 0.072 ± 0.031 |
- 0.075 ± 0.016 |
- 0.073 ± 0.011 |
-
-
-
-
-Chest X-Ray: Edema
-
-
-
- Model |
- All |
- K |
-
-
- |
- |
- 1 |
- 2 |
- 4 |
- 8 |
- 12 |
- 16 |
- 24 |
- 32 |
- 48 |
- 64 |
- 128 |
-
-
-
-
- CLMBR |
- 0.178 ± 0.0 |
- 0.078 ± 0.018 |
- 0.077 ± 0.011 |
- 0.099 ± 0.025 |
- 0.106 ± 0.028 |
- 0.129 ± 0.03 |
- 0.13 ± 0.026 |
- 0.146 ± 0.024 |
- 0.143 ± 0.018 |
- 0.15 ± 0.017 |
- 0.158 ± 0.009 |
- 0.163 ± 0.015 |
-
-
- GBM |
- 0.133 ± 0.0 |
- 0.078 ± 0.004 |
- 0.077 ± 0.002 |
- 0.074 ± 0.007 |
- 0.089 ± 0.019 |
- 0.093 ± 0.024 |
- 0.093 ± 0.013 |
- 0.107 ± 0.009 |
- 0.111 ± 0.018 |
- 0.116 ± 0.017 |
- 0.127 ± 0.024 |
- 0.13 ± 0.009 |
-
-
- Logistic Regression |
- 0.125 ± 0.0 |
- 0.077 ± 0.004 |
- 0.081 ± 0.005 |
- 0.084 ± 0.007 |
- 0.083 ± 0.009 |
- 0.087 ± 0.004 |
- 0.091 ± 0.01 |
- 0.096 ± 0.01 |
- 0.093 ± 0.011 |
- 0.11 ± 0.009 |
- 0.111 ± 0.011 |
- 0.118 ± 0.015 |
-
-
- Random Forest |
- 0.127 ± 0.0 |
- 0.077 ± 0.005 |
- 0.079 ± 0.007 |
- 0.083 ± 0.01 |
- 0.083 ± 0.015 |
- 0.084 ± 0.011 |
- 0.103 ± 0.026 |
- 0.088 ± 0.008 |
- 0.098 ± 0.014 |
- 0.109 ± 0.006 |
- 0.135 ± 0.025 |
- 0.134 ± 0.016 |
-
-
-
-
-Chest X-Ray: Enlarged Cardiomediastinum
-
-
-
- Model |
- All |
- K |
-
-
- |
- |
- 1 |
- 2 |
- 4 |
- 8 |
- 12 |
- 16 |
- 24 |
- 32 |
- 48 |
- 64 |
- 128 |
-
-
-
-
- CLMBR |
- 0.031 ± 0.0 |
- 0.018 ± 0.002 |
- 0.021 ± 0.006 |
- 0.02 ± 0.004 |
- 0.022 ± 0.002 |
- 0.024 ± 0.004 |
- 0.024 ± 0.002 |
- 0.024 ± 0.004 |
- 0.025 ± 0.004 |
- 0.027 ± 0.002 |
- 0.028 ± 0.002 |
- 0.029 ± 0.002 |
-
-
- GBM |
- 0.03 ± 0.0 |
- 0.019 ± 0.002 |
- 0.021 ± 0.003 |
- 0.019 ± 0.003 |
- 0.022 ± 0.006 |
- 0.024 ± 0.003 |
- 0.024 ± 0.004 |
- 0.025 ± 0.004 |
- 0.025 ± 0.003 |
- 0.031 ± 0.007 |
- 0.026 ± 0.004 |
- 0.03 ± 0.005 |
-
-
- Logistic Regression |
- 0.033 ± 0.0 |
- 0.017 ± 0.007 |
- 0.019 ± 0.004 |
- 0.02 ± 0.004 |
- 0.02 ± 0.003 |
- 0.022 ± 0.005 |
- 0.023 ± 0.006 |
- 0.028 ± 0.008 |
- 0.027 ± 0.006 |
- 0.029 ± 0.004 |
- 0.03 ± 0.004 |
- 0.032 ± 0.003 |
-
-
- Random Forest |
- 0.023 ± 0.0 |
- 0.018 ± 0.006 |
- 0.02 ± 0.003 |
- 0.022 ± 0.007 |
- 0.025 ± 0.005 |
- 0.028 ± 0.004 |
- 0.03 ± 0.005 |
- 0.029 ± 0.002 |
- 0.029 ± 0.002 |
- 0.03 ± 0.007 |
- 0.029 ± 0.005 |
- 0.034 ± 0.006 |
-
-
-
-
-Chest X-Ray: Support Devices
-
-
-
- Model |
- All |
- K |
-
-
- |
- |
- 1 |
- 2 |
- 4 |
- 8 |
- 12 |
- 16 |
- 24 |
- 32 |
- 48 |
- 64 |
- 128 |
-
-
-
-
- CLMBR |
- 0.526 ± 0.0 |
- 0.299 ± 0.05 |
- 0.313 ± 0.064 |
- 0.321 ± 0.079 |
- 0.353 ± 0.044 |
- 0.378 ± 0.049 |
- 0.397 ± 0.039 |
- 0.405 ± 0.058 |
- 0.412 ± 0.038 |
- 0.447 ± 0.012 |
- 0.461 ± 0.015 |
- 0.465 ± 0.02 |
-
-
- GBM |
- 0.424 ± 0.0 |
- 0.243 ± 0.005 |
- 0.248 ± 0.005 |
- 0.251 ± 0.03 |
- 0.253 ± 0.02 |
- 0.288 ± 0.05 |
- 0.278 ± 0.037 |
- 0.302 ± 0.045 |
- 0.293 ± 0.031 |
- 0.321 ± 0.044 |
- 0.334 ± 0.025 |
- 0.355 ± 0.042 |
-
-
- Logistic Regression |
- 0.349 ± 0.0 |
- 0.232 ± 0.01 |
- 0.246 ± 0.027 |
- 0.261 ± 0.035 |
- 0.252 ± 0.033 |
- 0.268 ± 0.033 |
- 0.271 ± 0.037 |
- 0.26 ± 0.029 |
- 0.253 ± 0.02 |
- 0.282 ± 0.025 |
- 0.277 ± 0.016 |
- 0.301 ± 0.029 |
-
-
- Random Forest |
- 0.416 ± 0.0 |
- 0.235 ± 0.007 |
- 0.247 ± 0.018 |
- 0.248 ± 0.025 |
- 0.258 ± 0.042 |
- 0.301 ± 0.044 |
- 0.285 ± 0.036 |
- 0.275 ± 0.024 |
- 0.292 ± 0.058 |
- 0.324 ± 0.03 |
- 0.334 ± 0.019 |
- 0.357 ± 0.022 |
-
-
-
-
-Chest X-Ray: No Finding
-
-
-
- Model |
- All |
- K |
-
-
- |
- |
- 1 |
- 2 |
- 4 |
- 8 |
- 12 |
- 16 |
- 24 |
- 32 |
- 48 |
- 64 |
- 128 |
-
-
-
-
- CLMBR |
- 0.479 ± 0.0 |
- 0.392 ± 0.012 |
- 0.413 ± 0.028 |
- 0.417 ± 0.01 |
- 0.425 ± 0.02 |
- 0.428 ± 0.004 |
- 0.422 ± 0.012 |
- 0.433 ± 0.012 |
- 0.432 ± 0.011 |
- 0.442 ± 0.019 |
- 0.439 ± 0.013 |
- 0.446 ± 0.007 |
-
-
- GBM |
- 0.468 ± 0.0 |
- 0.397 ± 0.011 |
- 0.397 ± 0.009 |
- 0.399 ± 0.016 |
- 0.41 ± 0.014 |
- 0.398 ± 0.007 |
- 0.405 ± 0.016 |
- 0.41 ± 0.01 |
- 0.422 ± 0.01 |
- 0.423 ± 0.011 |
- 0.427 ± 0.012 |
- 0.422 ± 0.014 |
-
-
- Logistic Regression |
- 0.459 ± 0.0 |
- 0.386 ± 0.026 |
- 0.415 ± 0.026 |
- 0.405 ± 0.021 |
- 0.421 ± 0.008 |
- 0.429 ± 0.014 |
- 0.413 ± 0.012 |
- 0.424 ± 0.015 |
- 0.434 ± 0.027 |
- 0.435 ± 0.019 |
- 0.433 ± 0.013 |
- 0.444 ± 0.008 |
-
-
- Random Forest |
- 0.468 ± 0.0 |
- 0.388 ± 0.015 |
- 0.399 ± 0.021 |
- 0.395 ± 0.016 |
- 0.406 ± 0.011 |
- 0.41 ± 0.009 |
- 0.406 ± 0.015 |
- 0.41 ± 0.009 |
- 0.427 ± 0.017 |
- 0.423 ± 0.009 |
- 0.419 ± 0.013 |
- 0.441 ± 0.009 |
-
-
-
-
-Chest X-Ray: Cardiomegaly
-
-
-
- Model |
- All |
- K |
-
-
- |
- |
- 1 |
- 2 |
- 4 |
- 8 |
- 12 |
- 16 |
- 24 |
- 32 |
- 48 |
- 64 |
- 128 |
-
-
-
-
- CLMBR |
- 0.161 ± 0.0 |
- 0.05 ± 0.015 |
- 0.054 ± 0.02 |
- 0.061 ± 0.016 |
- 0.067 ± 0.018 |
- 0.063 ± 0.014 |
- 0.069 ± 0.016 |
- 0.087 ± 0.019 |
- 0.091 ± 0.013 |
- 0.098 ± 0.012 |
- 0.109 ± 0.01 |
- 0.111 ± 0.005 |
-
-
- GBM |
- 0.146 ± 0.0 |
- 0.038 ± 0.003 |
- 0.042 ± 0.007 |
- 0.044 ± 0.008 |
- 0.056 ± 0.014 |
- 0.055 ± 0.011 |
- 0.067 ± 0.018 |
- 0.072 ± 0.019 |
- 0.088 ± 0.023 |
- 0.087 ± 0.02 |
- 0.097 ± 0.021 |
- 0.112 ± 0.016 |
-
-
- Logistic Regression |
- 0.118 ± 0.0 |
- 0.043 ± 0.019 |
- 0.039 ± 0.005 |
- 0.047 ± 0.011 |
- 0.053 ± 0.021 |
- 0.051 ± 0.016 |
- 0.056 ± 0.02 |
- 0.066 ± 0.02 |
- 0.068 ± 0.015 |
- 0.068 ± 0.026 |
- 0.083 ± 0.026 |
- 0.083 ± 0.013 |
-
-
- Random Forest |
- 0.12 ± 0.0 |
- 0.039 ± 0.007 |
- 0.04 ± 0.003 |
- 0.042 ± 0.007 |
- 0.047 ± 0.008 |
- 0.052 ± 0.015 |
- 0.064 ± 0.025 |
- 0.082 ± 0.039 |
- 0.085 ± 0.03 |
- 0.095 ± 0.035 |
- 0.11 ± 0.025 |
- 0.102 ± 0.014 |
-
-
-
-Chest X-Ray: Atelectasis
-
-
-
- Model |
- All |
- K |
-
-
- |
- |
- 1 |
- 2 |
- 4 |
- 8 |
- 12 |
- 16 |
- 24 |
- 32 |
- 48 |
- 64 |
- 128 |
-
-
-
-
- CLMBR |
- 0.064 ± 0.0 |
- 0.041 ± 0.011 |
- 0.045 ± 0.011 |
- 0.048 ± 0.012 |
- 0.052 ± 0.011 |
- 0.052 ± 0.008 |
- 0.056 ± 0.007 |
- 0.053 ± 0.008 |
- 0.054 ± 0.009 |
- 0.061 ± 0.008 |
- 0.062 ± 0.009 |
- 0.063 ± 0.003 |
-
-
- GBM |
- 0.046 ± 0.0 |
- 0.041 ± 0.002 |
- 0.042 ± 0.003 |
- 0.042 ± 0.005 |
- 0.045 ± 0.004 |
- 0.05 ± 0.009 |
- 0.045 ± 0.006 |
- 0.048 ± 0.003 |
- 0.048 ± 0.006 |
- 0.045 ± 0.002 |
- 0.046 ± 0.003 |
- 0.05 ± 0.006 |
-
-
- Logistic Regression |
- 0.046 ± 0.0 |
- 0.04 ± 0.004 |
- 0.043 ± 0.003 |
- 0.039 ± 0.004 |
- 0.041 ± 0.004 |
- 0.041 ± 0.004 |
- 0.042 ± 0.003 |
- 0.042 ± 0.003 |
- 0.045 ± 0.004 |
- 0.043 ± 0.003 |
- 0.044 ± 0.005 |
- 0.046 ± 0.004 |
-
-
- Random Forest |
- 0.041 ± 0.0 |
- 0.041 ± 0.003 |
- 0.041 ± 0.003 |
- 0.042 ± 0.007 |
- 0.044 ± 0.004 |
- 0.044 ± 0.006 |
- 0.048 ± 0.005 |
- 0.045 ± 0.006 |
- 0.045 ± 0.005 |
- 0.045 ± 0.002 |
- 0.045 ± 0.004 |
- 0.047 ± 0.003 |
-
-
-
-
-Chest X-Ray: Fracture
-
-
-
- Model |
- All |
- K |
-
-
- |
- |
- 1 |
- 2 |
- 4 |
- 8 |
- 12 |
- 16 |
- 24 |
- 32 |
- 48 |
- 64 |
- 128 |
-
-
-
-
- CLMBR |
- 0.094 ± 0.0 |
- 0.035 ± 0.012 |
- 0.032 ± 0.006 |
- 0.034 ± 0.011 |
- 0.04 ± 0.011 |
- 0.048 ± 0.01 |
- 0.05 ± 0.013 |
- 0.058 ± 0.009 |
- 0.065 ± 0.013 |
- 0.062 ± 0.009 |
- 0.064 ± 0.012 |
- 0.072 ± 0.008 |
-
-
- GBM |
- 0.054 ± 0.0 |
- 0.031 ± 0.004 |
- 0.029 ± 0.004 |
- 0.033 ± 0.007 |
- 0.037 ± 0.006 |
- 0.039 ± 0.011 |
- 0.041 ± 0.011 |
- 0.044 ± 0.009 |
- 0.043 ± 0.014 |
- 0.047 ± 0.006 |
- 0.054 ± 0.007 |
- 0.069 ± 0.012 |
-
-
- Logistic Regression |
- 0.066 ± 0.0 |
- 0.056 ± 0.021 |
- 0.04 ± 0.018 |
- 0.035 ± 0.014 |
- 0.043 ± 0.019 |
- 0.039 ± 0.008 |
- 0.044 ± 0.009 |
- 0.042 ± 0.01 |
- 0.045 ± 0.003 |
- 0.048 ± 0.008 |
- 0.046 ± 0.007 |
- 0.054 ± 0.008 |
-
-
- Random Forest |
- 0.035 ± 0.0 |
- 0.035 ± 0.016 |
- 0.037 ± 0.009 |
- 0.039 ± 0.013 |
- 0.04 ± 0.011 |
- 0.036 ± 0.008 |
- 0.041 ± 0.012 |
- 0.05 ± 0.02 |
- 0.046 ± 0.009 |
- 0.05 ± 0.02 |
- 0.045 ± 0.007 |
- 0.053 ± 0.006 |
-
-
-
-
-Chest X-Ray: Pneumonia
-
-
-
- Model |
- All |
- K |
-
-
- |
- |
- 1 |
- 2 |
- 4 |
- 8 |
- 12 |
- 16 |
- 24 |
- 32 |
- 48 |
- 64 |
- 128 |
-
-
-
-
- CLMBR |
- 0.056 ± 0.0 |
- 0.033 ± 0.003 |
- 0.037 ± 0.006 |
- 0.037 ± 0.01 |
- 0.035 ± 0.006 |
- 0.038 ± 0.005 |
- 0.037 ± 0.005 |
- 0.039 ± 0.006 |
- 0.039 ± 0.008 |
- 0.042 ± 0.005 |
- 0.042 ± 0.005 |
- 0.045 ± 0.006 |
-
-
- GBM |
- 0.039 ± 0.0 |
- 0.033 ± 0.001 |
- 0.033 ± 0.002 |
- 0.032 ± 0.003 |
- 0.035 ± 0.003 |
- 0.04 ± 0.004 |
- 0.039 ± 0.007 |
- 0.036 ± 0.003 |
- 0.036 ± 0.006 |
- 0.044 ± 0.006 |
- 0.039 ± 0.004 |
- 0.036 ± 0.003 |
-
-
- Logistic Regression |
- 0.043 ± 0.0 |
- 0.042 ± 0.005 |
- 0.044 ± 0.008 |
- 0.045 ± 0.006 |
- 0.048 ± 0.005 |
- 0.049 ± 0.004 |
- 0.044 ± 0.006 |
- 0.042 ± 0.007 |
- 0.045 ± 0.01 |
- 0.043 ± 0.004 |
- 0.038 ± 0.004 |
- 0.041 ± 0.004 |
-
-
- Random Forest |
- 0.039 ± 0.0 |
- 0.035 ± 0.005 |
- 0.035 ± 0.004 |
- 0.035 ± 0.004 |
- 0.037 ± 0.003 |
- 0.042 ± 0.006 |
- 0.039 ± 0.008 |
- 0.036 ± 0.004 |
- 0.041 ± 0.001 |
- 0.041 ± 0.005 |
- 0.041 ± 0.003 |
- 0.04 ± 0.006 |
-
-
-
-
-Chest X-Ray: Lung Lesion
-
-
-
- Model |
- All |
- K |
-
-
- |
- |
- 1 |
- 2 |
- 4 |
- 8 |
- 12 |
- 16 |
- 24 |
- 32 |
- 48 |
- 64 |
- 128 |
-
-
-
-
- CLMBR |
- 0.322 ± 0.0 |
- 0.168 ± 0.033 |
- 0.182 ± 0.052 |
- 0.21 ± 0.036 |
- 0.213 ± 0.022 |
- 0.232 ± 0.012 |
- 0.236 ± 0.011 |
- 0.248 ± 0.019 |
- 0.253 ± 0.021 |
- 0.266 ± 0.025 |
- 0.283 ± 0.017 |
- 0.29 ± 0.017 |
-
-
- GBM |
- 0.288 ± 0.0 |
- 0.131 ± 0.005 |
- 0.132 ± 0.004 |
- 0.131 ± 0.008 |
- 0.144 ± 0.021 |
- 0.145 ± 0.011 |
- 0.153 ± 0.015 |
- 0.166 ± 0.006 |
- 0.177 ± 0.025 |
- 0.186 ± 0.015 |
- 0.206 ± 0.026 |
- 0.224 ± 0.016 |
-
-
- Logistic Regression |
- 0.252 ± 0.0 |
- 0.149 ± 0.029 |
- 0.152 ± 0.031 |
- 0.16 ± 0.033 |
- 0.161 ± 0.035 |
- 0.166 ± 0.03 |
- 0.177 ± 0.014 |
- 0.172 ± 0.014 |
- 0.186 ± 0.02 |
- 0.199 ± 0.033 |
- 0.203 ± 0.02 |
- 0.208 ± 0.033 |
-
-
- Random Forest |
- 0.295 ± 0.0 |
- 0.14 ± 0.016 |
- 0.145 ± 0.035 |
- 0.138 ± 0.015 |
- 0.147 ± 0.015 |
- 0.149 ± 0.025 |
- 0.158 ± 0.011 |
- 0.154 ± 0.009 |
- 0.17 ± 0.021 |
- 0.202 ± 0.017 |
- 0.224 ± 0.027 |
- 0.224 ± 0.024 |
-
-
-
\ No newline at end of file
diff --git a/hugo_stats.json b/hugo_stats.json
index 8fdc4aa..202a553 100644
--- a/hugo_stats.json
+++ b/hugo_stats.json
@@ -158,6 +158,7 @@
"list-inline-item",
"list-unstyled",
"list-view",
+ "m-2",
"mb-0",
"mb-1",
"mb-2",
@@ -256,31 +257,46 @@
"TableOfContents",
"access",
"additional-details",
+ "anticipating-chest-x-ray-findings",
+ "anticipating-lab-test-results",
+ "anticipating-lab-test-results-1",
"arxiv-citation",
+ "assignment-of-new-diagnoses",
+ "assignment-of-new-diagnoses-1",
"auprc",
"auprc-1",
"auroc",
"auroc-1",
"buttonColorMode",
"by-task-group",
+ "chest-x-ray-findings",
+ "chest-x-ray-findings-1",
+ "dataset",
"datasheet",
"doks-docs-nav",
"individual",
+ "label-counts",
"leaderboard",
+ "models",
"offcanvasNavMain",
"offcanvasNavMainLabel",
"offcanvasNavSection",
"offcanvasNavSectionLabel",
+ "operational-outcomes",
+ "operational-outcomes-1",
"query",
"questions",
+ "results",
"search-form",
"searchModal",
"searchModalLabel",
"searchResults",
"searchToggleDesktop",
"searchToggleMobile",
- "section-55d98c8822f0a17424b0eff0abcf3c2b",
+ "section-1b341b4c3296352e8f156bbf0e8a804c",
+ "section-a7400878fa3f58b5f33c323dbcfbf7a7",
"section-e0c4332e8c13be976552a059f106354f",
+ "tasks",
"toc"
]
}
diff --git a/layouts/index.html b/layouts/index.html
index df97df1..b2d48c8 100644
--- a/layouts/index.html
+++ b/layouts/index.html
@@ -57,13 +57,13 @@
- 40,796,769
+ 41,661,637
clinical events
- 923,687
+ 921,499
visits
diff --git a/static/images/grouped_tasks_auprc.png b/static/images/grouped_tasks_auprc.png
index a99a1f4..63aab8a 100644
Binary files a/static/images/grouped_tasks_auprc.png and b/static/images/grouped_tasks_auprc.png differ
diff --git a/static/images/grouped_tasks_auroc.png b/static/images/grouped_tasks_auroc.png
index 0e7e8c8..d2f99c5 100644
Binary files a/static/images/grouped_tasks_auroc.png and b/static/images/grouped_tasks_auroc.png differ
diff --git a/static/images/individual_tasks_auprc.png b/static/images/individual_tasks_auprc.png
index d042385..5b0f48c 100644
Binary files a/static/images/individual_tasks_auprc.png and b/static/images/individual_tasks_auprc.png differ
diff --git a/static/images/individual_tasks_auroc.png b/static/images/individual_tasks_auroc.png
index e756f40..598fc5f 100644
Binary files a/static/images/individual_tasks_auroc.png and b/static/images/individual_tasks_auroc.png differ