diff --git a/content/docs/intro/_index.md b/content/docs/intro/_index.md index 34f135f..b5d8a2b 100644 --- a/content/docs/intro/_index.md +++ b/content/docs/intro/_index.md @@ -13,5 +13,3 @@ seo: canonical: "" # custom canonical URL (optional) noindex: false # false (default) or true --- - -B;aj b;aj \ No newline at end of file diff --git a/content/docs/intro/benchmark.md b/content/docs/intro/benchmark.md new file mode 100644 index 0000000..cf7c8b9 --- /dev/null +++ b/content/docs/intro/benchmark.md @@ -0,0 +1,93 @@ +--- +title: "Benchmark" +description: "" +summary: "" +date: 2023-09-07T16:06:50+02:00 +lastmod: 2023-09-07T16:06:50+02:00 +draft: false +weight: 800 +toc: true +seo: + title: "" # custom title (optional) + description: "" # custom description (recommended) + canonical: "" # custom canonical URL (optional) + noindex: false # false (default) or true +--- + +EHRSHOT contains 15 clinical prediction tasks. All tasks are binary classification. + +### Tasks + +#### Operational Outcomes + +These tasks are related to hospital operations. They are defined as follows: + +1. **Long Length of Stay:** Predict whether a patient’s total length of stay during a visit to the hospital will be at least 7 days. The prediction time is at 11:59pm on the day of admission, and visits that last less than one day (i.e. discharge occurs on the same day of admission) are ignored. +2. **30-day Readmission:** Predict whether a patient will be re-admitted to the hospital within 30 days after being discharged from a visit. The prediction time is at 11:59pm on the day of admission, and admissions where a readmission occurs on the same day as the corresponding discharge are ignored. +3. **ICU Transfer:** Predict whether a patient will be transferred to the ICU during a visit to the hospital. The prediction time is at 11:59pm on the day of admission, and ICU transfers that occur on the same day as admission are ignored. + +#### Anticipating Lab Test Results + +These tasks are related to lab value prediction. While we treat these tasks as binary classification tasks in our benchmark (where a label is "negative" if the lab result is normal and "positive" otherwise), we provide multiclass labels (i.e. normal, mild, moderate, severe) for completeness. The prediction time is immediately before the lab result is recorded. They are defined as follows: + +1. **Thrombocytopenia:** Predict whether a thrombocytopenia lab comes back as normal (>=150 109/L), mild (>=100 and <150 109/L), moderate (>=50 and <100 109/L), or severe (<50 109/L),. We consider all lab results coded as LOINC/LP393218-5, LOINC/LG32892-8, or LOINC/777-3. +2. **Hyperkalemia:** Predict whether a hyperkalemia lab comes back as normal (<=5.5 mmol/L), mild (>5.5 and <=6mmol/L), moderate (>6 and <=7 mmol/L), or severe (>7 mmol/L). We consider all lab results coded as LOINC LG7931-1, LOINC/LP386618-5, LOINC/LG109906, LOINC/6298-4, or LOINC/2823-3. +3. **Hypoglycemia:** Predict whether a hypoglycemia lab comes back as normal (>=3.9 mmol/L), mild (>=3.5 and <3.9 mmol/L), moderate (>=3 and <3.5 mmol/L), or severe (<3 mmol/L). We consider all lab results coded as SNOMED/33747003, LOINC/LP4161453, or LOINC/14749-6. +4. **Hyponatremia:** Predict whether a hyponatremia lab comes back as normal (>=135 mmol/L), mild (>=130 and <135 mmol/L), moderate (>=125 and <130 mmol/L), or severe (<125 mmol/L). We consider all lab results coded as LOINC/LG11363-5, LOINC/2951-2, or LOINC/2947-0. +5. **Anemia:** Predict whether an anemia lab comes back as normal (>=120 g/L), mild (>=110 and <120 g/L), moderate (>=70 and <110 g/L), or severe (<70 g/L). We consider all lab results coded as LOINC/LP392452-1. + +#### Assignment of New Diagnoses + +These tasks are related to predicting the first diagnosis of a disease. The prediction time is at 11:59pm on the day of discharge from an inpatient visit, and we count any diagnosis that occurs within 365 days post-discharge as a positive outcome. We ignore all discharges in which the patient already has an existing diagnosis of a disease. The tasks are defined as follows: + +1. **Acute MI:** Predict whether the patient will have her first diagnosis of acute myocardial infarction within the next year. We define hypertension as an occurrence of the code SNOMED/57054005, as well as its children codes in our ontology. +1. **Hypertension:** Predict whether the patient will have her first diagnosis of essential hypertension within the next year. We define hypertension as an occurrence of the code SNOMED/59621000, as well as its children codes in our ontology. +2. **Hyperlipidemia:** Predict whether the patient will have her first diagnosis of hyperlipidemia within the next year. We define hyperlipidemia as an occurrence of the code SNOMED/55822004, as well as its children codes in our ontology. +3. **Pancreatic Cancer:** Predict whether the patient will have her first diagnosis of pancreatic cancer within the next year. We define pancreatic cancer as an occurrence of the code SNOMED/372003004, as well as its children codes in our ontology. +4. **Celiac:** Predict whether the patient will have her first diagnosis of celiac disease within the next year. We define celiac disease as an occurrence of the code SNOMED/396331005, as well as its children codes in our ontology. +5. **Lupus:** Predict whether the patient will have her first diagnosis of lupus within the next year. We define lupus as an occurrence of the code SNOMED/55464009, as well as its children codes in our ontology. + +#### Anticipating Chest X-ray Findings. + +The chest X-ray findings task requires identifying which of 14 possible findings were included in a chest X-ray report. + +While we treat this task as a binary classification task in our benchmark (where a label is "negative" if the X-ray finding is "No Finding" and "positive" otherwise), we provide multilabel labels (i.e. "No Finding", "Enlarged Cardiomediastinum", "Cardiomegaly", "Lung Lesion", "Lung Opacity", "Edema", "Consolidation", "Pneumonia", "Atelectasis", "Pneumothorax", "Pleural Effusion", "Pleural Other", "Fracture", "Support Devices") for completeness. The prediction time is 24 hours before the radiology report is recorded. The labels are derived by running the CheXpert NLP labeler on the unstructured text of the corresponding radiology report. We do not release this unstructured text as part of our dataset due to patient privacy concerns. + +### Label Counts + +This is the total number of patients and labels for each task in the benchmark across all splits. Note that the number of labels is greater than the number of patients because each patient can have multiple labels. + +| Task Name | # Total Patients | # Positive Patients | # Negative Patients | Total Labels | # Positive Labels | # Negative Labels | Label Prevalence | +|:-------------------|-------------:|----------------------:|----------------------:|-----------:|--------------------:|--------------------:|-------------------:| +| Long LOS | 3855 | 1271 | 2584 | 6995 | 1767 | 5228 | 0.252609 | +| 30-Day Readmission | 3718 | 474 | 3244 | 7003 | 911 | 6092 | 0.130087 | +| ICU Admission | 3617 | 266 | 3351 | 6491 | 290 | 6201 | 0.0446772 | +| Thrombocytopenia | 6063 | 2566 | 3497 | 179618 | 59718 | 119900 | 0.332472 | +| Hyperkalemia | 5931 | 1289 | 4642 | 200170 | 4769 | 195401 | 0.0238247 | +| Hypoglycemia | 5974 | 1379 | 4595 | 318164 | 4721 | 313443 | 0.0148383 | +| Hyponatremia | 5921 | 3692 | 2229 | 212837 | 60708 | 152129 | 0.285232 | +| Anemia | 6086 | 4271 | 1815 | 184880 | 127496 | 57384 | 0.689615 | +| Hypertension | 2328 | 386 | 1942 | 3764 | 516 | 3248 | 0.137088 | +| Hyperlipidemia | 2650 | 410 | 2240 | 4442 | 566 | 3876 | 0.12742 | +| Pancreatic Cancer | 3864 | 214 | 3650 | 7011 | 264 | 6747 | 0.0376551 | +| Celiac | 3899 | 69 | 3830 | 7129 | 94 | 7035 | 0.0131856 | +| Lupus | 3864 | 122 | 3742 | 7038 | 157 | 6881 | 0.0223075 | +| Acute MI | 3834 | 357 | 3477 | 6837 | 464 | 6373 | 0.067866 | +| Chest X-Ray | 1045 | 996 | 49 | 26275 | 17203 | 9072 | 0.654729 | + +Please note that these numbers are slightly different from the numbers in the paper as the dataset was slightly altered in preparation for public release. + +### Access + +Please find the benchmark on Redivis, and the code to execute the benchmark on Github here: + +* [Dataset + Benchmark](https://redivis.com/datasets/53gc-8rhx41kgt) +* [Code](https://github.com/som-shahlab/ehrshot-benchmark/) + +### Additional Details + +For more information, please read [the original EHRSHOT paper](https://arxiv.org/abs/2307.02028). + +### Questions? + +For questions and feedback, please open an [Issue on Github](https://github.com/som-shahlab/ehrshot-benchmark/) \ No newline at end of file diff --git a/content/docs/intro/dataset.md b/content/docs/intro/dataset.md index f097c46..a28f9e0 100644 --- a/content/docs/intro/dataset.md +++ b/content/docs/intro/dataset.md @@ -20,8 +20,8 @@ EHRSHOT is a collection of 6,739 deidentified longitudinal electronic health rec EHRSHOT contains: * 6,739 patients -* 40,796,769 million clinical events -* 923,687 visits +* 41,661,637 million clinical events +* 921,499 visits * 15 prediction tasks Each patient consists of an ordered timeline of clinical events taken from the structured data of their EHR (e.g. diagnoses, procedures, prescriptions, etc.). diff --git a/content/leaderboard/paper/index.md b/content/leaderboard/paper/index.md new file mode 100644 index 0000000..c2d9e18 --- /dev/null +++ b/content/leaderboard/paper/index.md @@ -0,0 +1,283 @@ +--- +title: "EHRSHOT Leaderboard" +description: "Benchmarking results of ML models on EHRSHOT" +summary: "" +date: 2023-09-07T16:27:22+02:00 +lastmod: 2023-09-07T16:27:22+02:00 +draft: false +weight: 50 +categories: [] +tags: [] +contributors: [] +pinned: false +homepage: false +seo: + title: "" # custom title (optional) + description: "" # custom description (recommended) + canonical: "" # custom canonical URL (optional) + noindex: false # false (default) or true +--- + +Leaerboard of model performance on the EHRSHOT benchmark using the original dataset from the EHRSHOT paper. + +**Dataset:** + +* **Stats:** + * 6,739 patients + * 41,661,637 million clinical events + * 921,499 visits +* **Source:** Stanford Medicine + +**Benchmark:** +* **Metrics:** AUROC, AUPRC +* **Number of Tasks:** 15 + +**Models:** + * **Logistic Regression:** A logistic regression trained on the count featurization described in [the EHRSHOT paper](https://arxiv.org/abs/2307.02028) + * **Random Forest:** A random forest trained on the count featurization described in [the EHRSHOT paper](https://arxiv.org/abs/2307.02028) + * **GBM:** A gradient boosted machine trained on the count featurization described in [the EHRSHOT paper](https://arxiv.org/abs/2307.02028) + * **CLMBR-t-base:** The foundation model released in [the EHRSHOT paper](https://arxiv.org/abs/2307.02028) with frozen weights and a task-specific logistic regression head. Available for [download here](https://huggingface.co/StanfordShahLab/clmbr-t-base) + +----- + +## Results + +In the tables below, `k` is the number of few-shot examples used to train each model. + +### By Task Group + +Results averaged across all subtasks in a task group. + +#### AUROC + + + +
Operational Outcomes
+
Model All K
1 2 4 8 12 16 24 32 48 64 128
CLMBR 0.824 0.555 0.59 0.628 0.659 0.688 0.713 0.724 0.739 0.758 0.768 0.789
GBM 0.774 0.513 0.52 0.535 0.59 0.575 0.588 0.625 0.656 0.678 0.693 0.736
Logistic Regression 0.719 0.525 0.541 0.591 0.611 0.613 0.631 0.645 0.656 0.667 0.68 0.702
Random Forest 0.751 0.525 0.511 0.558 0.581 0.59 0.61 0.628 0.658 0.672 0.689 0.745
+ +
Anticipating Lab Test Results
+
Model All K
1 2 4 8 12 16 24 32 48 64 128
CLMBR 0.832 0.546 0.583 0.612 0.639 0.645 0.663 0.673 0.692 0.711 0.723 0.753
GBM 0.728 0.504 0.511 0.517 0.552 0.553 0.554 0.577 0.592 0.61 0.617 0.64
Logistic Regression 0.669 0.504 0.526 0.546 0.561 0.56 0.569 0.567 0.582 0.589 0.595 0.606
Random Forest 0.701 0.499 0.514 0.542 0.564 0.566 0.575 0.584 0.591 0.609 0.615 0.637
+ +
Assignment of New Diagnoses
+
Model All K
1 2 4 8 12 16 24 32 48 64 128
CLMBR 0.707 0.534 0.554 0.593 0.616 0.624 0.64 0.649 0.656 0.666 0.676 0.693
GBM 0.719 0.487 0.521 0.537 0.571 0.588 0.586 0.622 0.618 0.652 0.691 0.723
Logistic Regression 0.749 0.543 0.556 0.566 0.599 0.604 0.631 0.644 0.66 0.685 0.703 0.722
Random Forest 0.684 0.503 0.54 0.549 0.569 0.585 0.595 0.627 0.638 0.665 0.674 0.673
+ +
Chest X-ray Findings
+
Model All K
1 2 4 8 12 16 24 32 48 64 128
CLMBR 0.713 0.525 0.55 0.571 0.596 0.614 0.622 0.633 0.641 0.657 0.665 0.679
GBM 0.656 0.508 0.509 0.504 0.542 0.556 0.553 0.573 0.591 0.602 0.61 0.632
Logistic Regression 0.646 0.522 0.533 0.536 0.542 0.557 0.565 0.581 0.588 0.6 0.606 0.618
Random Forest 0.631 0.506 0.514 0.524 0.547 0.554 0.562 0.571 0.586 0.602 0.613 0.637
+ + +#### AUPRC + + + + +
Operational Outcomes
+
Model All K
1 2 4 8 12 16 24 32 48 64 128
CLMBR 0.437 0.17 0.192 0.223 0.231 0.251 0.272 0.29 0.303 0.329 0.339 0.359
GBM 0.359 0.14 0.144 0.149 0.183 0.175 0.182 0.2 0.215 0.23 0.251 0.28
Logistic Regression 0.246 0.148 0.155 0.176 0.184 0.185 0.189 0.196 0.2 0.211 0.212 0.23
Random Forest 0.303 0.15 0.146 0.161 0.176 0.184 0.205 0.206 0.222 0.234 0.246 0.294
+ +
Anticipating Lab Test Results
+
Model All K
1 2 4 8 12 16 24 32 48 64 128
CLMBR 0.516 0.297 0.318 0.338 0.353 0.355 0.366 0.375 0.39 0.401 0.413 0.434
GBM 0.435 0.271 0.273 0.28 0.307 0.311 0.314 0.321 0.327 0.344 0.352 0.369
Logistic Regression 0.383 0.273 0.289 0.3 0.311 0.314 0.318 0.311 0.313 0.32 0.324 0.332
Random Forest 0.415 0.273 0.278 0.294 0.312 0.31 0.318 0.321 0.328 0.346 0.353 0.366
+ +
Assignment of New Diagnoses
+
Model All K
1 2 4 8 12 16 24 32 48 64 128
CLMBR 0.16 0.076 0.086 0.097 0.1 0.104 0.114 0.118 0.125 0.121 0.128 0.138
GBM 0.212 0.061 0.063 0.071 0.086 0.087 0.086 0.098 0.11 0.128 0.141 0.156
Logistic Regression 0.179 0.075 0.079 0.083 0.082 0.086 0.092 0.099 0.103 0.113 0.121 0.131
Random Forest 0.186 0.067 0.074 0.076 0.084 0.084 0.092 0.102 0.106 0.119 0.131 0.137
+ +
Chest X-ray Findings
+
Model All K
1 2 4 8 12 16 24 32 48 64 128
CLMBR 0.209 0.116 0.124 0.131 0.14 0.149 0.154 0.158 0.162 0.173 0.178 0.179
GBM 0.172 0.103 0.103 0.105 0.112 0.12 0.118 0.125 0.13 0.138 0.142 0.151
Logistic Regression 0.158 0.106 0.108 0.112 0.113 0.117 0.118 0.121 0.124 0.13 0.133 0.14
Random Forest 0.158 0.104 0.105 0.108 0.114 0.117 0.118 0.121 0.129 0.134 0.142 0.15
+ + + +----- + +### Individual + +Results for each individual task. Mean scores across 5 replicates are shown with standard deviations. + +#### AUROC + + + +##### Operational Outcomes + +
ICU Admission
+
Model All K
1 2 4 8 12 16 24 32 48 64 128
CLMBR 0.848 ± 0.0 0.597 ± 0.109 0.598 ± 0.069 0.601 ± 0.082 0.701 ± 0.072 0.742 ± 0.039 0.763 ± 0.041 0.763 ± 0.04 0.786 ± 0.041 0.792 ± 0.015 0.796 ± 0.014 0.827 ± 0.007
GBM 0.799 ± 0.0 0.534 ± 0.051 0.523 ± 0.072 0.545 ± 0.057 0.586 ± 0.047 0.565 ± 0.031 0.585 ± 0.058 0.626 ± 0.061 0.676 ± 0.052 0.706 ± 0.033 0.709 ± 0.056 0.774 ± 0.015
Logistic Regression 0.701 ± 0.0 0.543 ± 0.053 0.555 ± 0.07 0.577 ± 0.067 0.603 ± 0.054 0.638 ± 0.048 0.649 ± 0.063 0.667 ± 0.054 0.685 ± 0.04 0.667 ± 0.042 0.682 ± 0.025 0.697 ± 0.016
Random Forest 0.721 ± 0.0 0.524 ± 0.035 0.521 ± 0.043 0.565 ± 0.056 0.577 ± 0.064 0.573 ± 0.088 0.563 ± 0.071 0.628 ± 0.079 0.677 ± 0.073 0.676 ± 0.059 0.674 ± 0.072 0.764 ± 0.02
+ +
Long LOS
+
Model All K
1 2 4 8 12 16 24 32 48 64 128
CLMBR 0.814 ± 0.0 0.537 ± 0.077 0.56 ± 0.062 0.563 ± 0.043 0.571 ± 0.039 0.607 ± 0.027 0.618 ± 0.043 0.632 ± 0.037 0.655 ± 0.025 0.694 ± 0.027 0.716 ± 0.014 0.751 ± 0.013
GBM 0.783 ± 0.0 0.506 ± 0.043 0.498 ± 0.046 0.516 ± 0.054 0.562 ± 0.032 0.56 ± 0.041 0.557 ± 0.016 0.568 ± 0.041 0.603 ± 0.016 0.633 ± 0.051 0.664 ± 0.04 0.692 ± 0.029
Logistic Regression 0.704 ± 0.0 0.474 ± 0.041 0.507 ± 0.035 0.538 ± 0.042 0.557 ± 0.037 0.56 ± 0.02 0.579 ± 0.016 0.591 ± 0.034 0.597 ± 0.019 0.637 ± 0.006 0.645 ± 0.022 0.677 ± 0.008
Random Forest 0.758 ± 0.0 0.492 ± 0.033 0.49 ± 0.067 0.537 ± 0.076 0.547 ± 0.042 0.574 ± 0.027 0.594 ± 0.029 0.574 ± 0.051 0.615 ± 0.025 0.633 ± 0.042 0.681 ± 0.022 0.72 ± 0.016
+ +
30-day Readmission
+
Model All K
1 2 4 8 12 16 24 32 48 64 128
CLMBR 0.81 ± 0.0 0.532 ± 0.09 0.611 ± 0.099 0.719 ± 0.028 0.704 ± 0.027 0.715 ± 0.083 0.757 ± 0.012 0.777 ± 0.013 0.777 ± 0.018 0.789 ± 0.004 0.791 ± 0.004 0.791 ± 0.003
GBM 0.741 ± 0.0 0.498 ± 0.022 0.54 ± 0.052 0.544 ± 0.05 0.621 ± 0.056 0.599 ± 0.068 0.621 ± 0.041 0.68 ± 0.023 0.688 ± 0.033 0.696 ± 0.018 0.706 ± 0.026 0.742 ± 0.013
Logistic Regression 0.751 ± 0.0 0.557 ± 0.113 0.561 ± 0.108 0.657 ± 0.029 0.672 ± 0.04 0.641 ± 0.032 0.666 ± 0.047 0.676 ± 0.043 0.685 ± 0.032 0.697 ± 0.013 0.713 ± 0.013 0.732 ± 0.013
Random Forest 0.775 ± 0.0 0.559 ± 0.06 0.524 ± 0.083 0.573 ± 0.09 0.617 ± 0.045 0.622 ± 0.057 0.672 ± 0.027 0.683 ± 0.036 0.682 ± 0.026 0.706 ± 0.024 0.713 ± 0.027 0.75 ± 0.011
+ +##### Anticipating Lab Test Results + +
Anemia
+
Model All K
1 2 4 8 12 16 24 32 48 64 128
CLMBR 0.962 ± 0.0 0.645 ± 0.091 0.711 ± 0.098 0.763 ± 0.104 0.838 ± 0.029 0.853 ± 0.036 0.877 ± 0.028 0.895 ± 0.017 0.905 ± 0.013 0.914 ± 0.013 0.925 ± 0.005 0.94 ± 0.003
GBM 0.814 ± 0.0 0.486 ± 0.028 0.524 ± 0.051 0.552 ± 0.01 0.613 ± 0.041 0.629 ± 0.036 0.625 ± 0.075 0.644 ± 0.046 0.666 ± 0.027 0.703 ± 0.016 0.709 ± 0.006 0.731 ± 0.006
Logistic Regression 0.739 ± 0.0 0.48 ± 0.134 0.515 ± 0.112 0.588 ± 0.026 0.619 ± 0.016 0.619 ± 0.036 0.633 ± 0.025 0.628 ± 0.02 0.638 ± 0.034 0.643 ± 0.023 0.652 ± 0.014 0.667 ± 0.013
Random Forest 0.799 ± 0.0 0.493 ± 0.084 0.503 ± 0.112 0.612 ± 0.01 0.637 ± 0.019 0.651 ± 0.039 0.661 ± 0.032 0.657 ± 0.017 0.674 ± 0.029 0.69 ± 0.021 0.707 ± 0.008 0.737 ± 0.015
+ +
Hyponatremia
+
Model All K
1 2 4 8 12 16 24 32 48 64 128
CLMBR 0.76 ± 0.0 0.517 ± 0.03 0.528 ± 0.036 0.547 ± 0.033 0.552 ± 0.028 0.555 ± 0.03 0.554 ± 0.033 0.568 ± 0.032 0.585 ± 0.026 0.59 ± 0.033 0.603 ± 0.033 0.639 ± 0.018
GBM 0.659 ± 0.0 0.5 ± 0.0 0.497 ± 0.006 0.515 ± 0.01 0.513 ± 0.023 0.522 ± 0.024 0.515 ± 0.025 0.522 ± 0.012 0.531 ± 0.025 0.533 ± 0.025 0.528 ± 0.031 0.561 ± 0.027
Logistic Regression 0.612 ± 0.0 0.502 ± 0.012 0.501 ± 0.028 0.509 ± 0.021 0.511 ± 0.019 0.528 ± 0.014 0.525 ± 0.015 0.514 ± 0.018 0.527 ± 0.024 0.51 ± 0.023 0.513 ± 0.021 0.521 ± 0.037
Random Forest 0.631 ± 0.0 0.516 ± 0.011 0.501 ± 0.015 0.515 ± 0.016 0.513 ± 0.018 0.527 ± 0.022 0.522 ± 0.019 0.524 ± 0.017 0.526 ± 0.027 0.535 ± 0.028 0.53 ± 0.033 0.551 ± 0.025
+ +
Thrombocytopenia
+
Model All K
1 2 4 8 12 16 24 32 48 64 128
CLMBR 0.852 ± 0.0 0.53 ± 0.096 0.59 ± 0.061 0.628 ± 0.039 0.647 ± 0.039 0.651 ± 0.036 0.672 ± 0.027 0.682 ± 0.025 0.706 ± 0.029 0.737 ± 0.027 0.757 ± 0.022 0.777 ± 0.012
GBM 0.815 ± 0.0 0.511 ± 0.011 0.502 ± 0.028 0.513 ± 0.033 0.598 ± 0.03 0.59 ± 0.036 0.613 ± 0.06 0.62 ± 0.037 0.642 ± 0.029 0.675 ± 0.016 0.706 ± 0.013 0.724 ± 0.008
Logistic Regression 0.753 ± 0.0 0.53 ± 0.066 0.585 ± 0.065 0.6 ± 0.029 0.631 ± 0.024 0.635 ± 0.02 0.641 ± 0.034 0.61 ± 0.042 0.617 ± 0.025 0.657 ± 0.023 0.661 ± 0.019 0.683 ± 0.006
Random Forest 0.811 ± 0.0 0.512 ± 0.028 0.54 ± 0.054 0.562 ± 0.042 0.629 ± 0.027 0.598 ± 0.041 0.624 ± 0.034 0.641 ± 0.018 0.651 ± 0.014 0.696 ± 0.011 0.705 ± 0.011 0.719 ± 0.01
+ +
Hyperkalemia
+
Model All K
1 2 4 8 12 16 24 32 48 64 128
CLMBR 0.792 ± 0.0 0.534 ± 0.06 0.559 ± 0.055 0.579 ± 0.044 0.616 ± 0.041 0.621 ± 0.011 0.634 ± 0.019 0.631 ± 0.028 0.659 ± 0.039 0.681 ± 0.038 0.693 ± 0.037 0.718 ± 0.021
GBM 0.727 ± 0.0 0.504 ± 0.021 0.507 ± 0.027 0.497 ± 0.038 0.533 ± 0.03 0.516 ± 0.042 0.524 ± 0.039 0.574 ± 0.035 0.588 ± 0.035 0.6 ± 0.029 0.598 ± 0.033 0.629 ± 0.039
Logistic Regression 0.658 ± 0.0 0.501 ± 0.027 0.504 ± 0.028 0.508 ± 0.045 0.531 ± 0.039 0.513 ± 0.044 0.517 ± 0.037 0.541 ± 0.04 0.577 ± 0.026 0.591 ± 0.034 0.602 ± 0.016 0.605 ± 0.018
Random Forest 0.66 ± 0.0 0.47 ± 0.05 0.529 ± 0.026 0.508 ± 0.048 0.546 ± 0.032 0.559 ± 0.033 0.563 ± 0.042 0.567 ± 0.018 0.573 ± 0.029 0.582 ± 0.035 0.602 ± 0.026 0.63 ± 0.017
+ +
Hypoglycemia
+
Model All K
1 2 4 8 12 16 24 32 48 64 128
CLMBR 0.794 ± 0.0 0.506 ± 0.023 0.527 ± 0.037 0.542 ± 0.05 0.541 ± 0.046 0.548 ± 0.049 0.578 ± 0.031 0.589 ± 0.029 0.604 ± 0.023 0.636 ± 0.026 0.637 ± 0.025 0.693 ± 0.02
GBM 0.627 ± 0.0 0.52 ± 0.034 0.523 ± 0.031 0.508 ± 0.028 0.504 ± 0.028 0.509 ± 0.017 0.494 ± 0.029 0.526 ± 0.023 0.533 ± 0.032 0.541 ± 0.028 0.543 ± 0.022 0.557 ± 0.024
Logistic Regression 0.582 ± 0.0 0.507 ± 0.017 0.524 ± 0.018 0.524 ± 0.033 0.515 ± 0.048 0.505 ± 0.049 0.528 ± 0.043 0.542 ± 0.03 0.549 ± 0.038 0.544 ± 0.03 0.545 ± 0.025 0.556 ± 0.007
Random Forest 0.606 ± 0.0 0.503 ± 0.02 0.496 ± 0.016 0.51 ± 0.033 0.497 ± 0.031 0.497 ± 0.026 0.505 ± 0.04 0.533 ± 0.024 0.529 ± 0.035 0.541 ± 0.031 0.533 ± 0.025 0.547 ± 0.018
+ +##### Assignment of New Diagnoses + +
Acute MI
+
Model All K
1 2 4 8 12 16 24 32 48 64 128
CLMBR 0.729 ± 0.0 0.551 ± 0.056 0.54 ± 0.109 0.62 ± 0.045 0.574 ± 0.066 0.566 ± 0.099 0.59 ± 0.106 0.653 ± 0.035 0.688 ± 0.028 0.672 ± 0.027 0.692 ± 0.023 0.708 ± 0.008
GBM 0.725 ± 0.0 0.471 ± 0.068 0.528 ± 0.063 0.566 ± 0.064 0.563 ± 0.068 0.557 ± 0.093 0.611 ± 0.06 0.632 ± 0.07 0.647 ± 0.044 0.678 ± 0.027 0.709 ± 0.019 0.722 ± 0.015
Logistic Regression 0.678 ± 0.0 0.542 ± 0.081 0.556 ± 0.091 0.586 ± 0.075 0.575 ± 0.046 0.565 ± 0.059 0.579 ± 0.055 0.622 ± 0.025 0.624 ± 0.015 0.637 ± 0.027 0.641 ± 0.034 0.655 ± 0.018
Random Forest 0.741 ± 0.0 0.542 ± 0.083 0.537 ± 0.07 0.592 ± 0.044 0.603 ± 0.04 0.569 ± 0.09 0.616 ± 0.036 0.644 ± 0.04 0.673 ± 0.039 0.683 ± 0.027 0.707 ± 0.026 0.72 ± 0.029
+ +
Lupus
+
Model All K
1 2 4 8 12 16 24 32 48 64 128
CLMBR 0.747 ± 0.0 0.526 ± 0.058 0.493 ± 0.04 0.529 ± 0.057 0.608 ± 0.095 0.62 ± 0.057 0.656 ± 0.058 0.646 ± 0.031 0.651 ± 0.04 0.671 ± 0.075 0.677 ± 0.093 0.7 ± 0.068
GBM 0.703 ± 0.0 0.478 ± 0.088 0.555 ± 0.043 0.555 ± 0.077 0.615 ± 0.089 0.595 ± 0.041 0.588 ± 0.066 0.634 ± 0.052 0.599 ± 0.047 0.642 ± 0.074 0.723 ± 0.026 0.755 ± 0.022
Logistic Regression 0.793 ± 0.0 0.535 ± 0.095 0.556 ± 0.04 0.553 ± 0.046 0.605 ± 0.071 0.611 ± 0.073 0.652 ± 0.085 0.617 ± 0.11 0.657 ± 0.035 0.684 ± 0.028 0.712 ± 0.02 0.715 ± 0.037
Random Forest 0.587 ± 0.0 0.487 ± 0.048 0.565 ± 0.07 0.512 ± 0.095 0.553 ± 0.124 0.571 ± 0.061 0.607 ± 0.047 0.642 ± 0.087 0.642 ± 0.054 0.656 ± 0.019 0.672 ± 0.015 0.639 ± 0.02
+ +
Hyperlipidemia
+
Model All K
1 2 4 8 12 16 24 32 48 64 128
CLMBR 0.675 ± 0.0 0.503 ± 0.036 0.519 ± 0.058 0.555 ± 0.032 0.597 ± 0.039 0.592 ± 0.028 0.597 ± 0.026 0.619 ± 0.013 0.618 ± 0.021 0.604 ± 0.044 0.638 ± 0.011 0.654 ± 0.011
GBM 0.699 ± 0.0 0.474 ± 0.032 0.498 ± 0.017 0.533 ± 0.034 0.564 ± 0.032 0.569 ± 0.033 0.55 ± 0.061 0.565 ± 0.034 0.605 ± 0.028 0.611 ± 0.033 0.647 ± 0.019 0.667 ± 0.032
Logistic Regression 0.72 ± 0.0 0.511 ± 0.06 0.532 ± 0.06 0.545 ± 0.045 0.578 ± 0.055 0.588 ± 0.039 0.603 ± 0.031 0.616 ± 0.045 0.651 ± 0.018 0.65 ± 0.028 0.658 ± 0.042 0.698 ± 0.017
Random Forest 0.625 ± 0.0 0.5 ± 0.05 0.517 ± 0.061 0.533 ± 0.071 0.575 ± 0.035 0.556 ± 0.032 0.559 ± 0.023 0.585 ± 0.035 0.598 ± 0.028 0.611 ± 0.017 0.613 ± 0.025 0.657 ± 0.015
+ +
Hypertension
+
Model All K
1 2 4 8 12 16 24 32 48 64 128
CLMBR 0.718 ± 0.0 0.554 ± 0.061 0.632 ± 0.03 0.631 ± 0.051 0.646 ± 0.022 0.645 ± 0.023 0.668 ± 0.018 0.659 ± 0.032 0.663 ± 0.03 0.679 ± 0.021 0.682 ± 0.011 0.7 ± 0.011
GBM 0.637 ± 0.0 0.486 ± 0.067 0.509 ± 0.033 0.532 ± 0.073 0.538 ± 0.046 0.547 ± 0.047 0.558 ± 0.014 0.58 ± 0.037 0.566 ± 0.03 0.624 ± 0.027 0.642 ± 0.028 0.644 ± 0.014
Logistic Regression 0.689 ± 0.0 0.54 ± 0.028 0.575 ± 0.052 0.58 ± 0.069 0.571 ± 0.026 0.586 ± 0.053 0.612 ± 0.055 0.623 ± 0.035 0.603 ± 0.041 0.634 ± 0.027 0.647 ± 0.03 0.666 ± 0.041
Random Forest 0.627 ± 0.0 0.512 ± 0.022 0.504 ± 0.028 0.536 ± 0.016 0.549 ± 0.05 0.572 ± 0.059 0.572 ± 0.056 0.586 ± 0.061 0.578 ± 0.026 0.609 ± 0.043 0.63 ± 0.033 0.627 ± 0.028
+ +
Celiac
+
Model All K
1 2 4 8 12 16 24 32 48 64 128
CLMBR 0.557 ± 0.0 0.455 ± 0.104 0.512 ± 0.155 0.573 ± 0.055 0.597 ± 0.109 0.617 ± 0.084 0.617 ± 0.065 0.613 ± 0.026 0.584 ± 0.072 0.613 ± 0.062 0.596 ± 0.1 0.6 ± 0.016
GBM 0.723 ± 0.0 0.482 ± 0.137 0.491 ± 0.08 0.465 ± 0.072 0.478 ± 0.114 0.55 ± 0.131 0.539 ± 0.095 0.596 ± 0.102 0.539 ± 0.087 0.563 ± 0.116 0.609 ± 0.09 0.69 ± 0.057
Logistic Regression 0.758 ± 0.0 0.519 ± 0.165 0.495 ± 0.199 0.481 ± 0.22 0.587 ± 0.149 0.571 ± 0.168 0.612 ± 0.134 0.668 ± 0.063 0.712 ± 0.054 0.754 ± 0.017 0.772 ± 0.031 0.78 ± 0.082
Random Forest 0.639 ± 0.0 0.456 ± 0.124 0.518 ± 0.097 0.502 ± 0.125 0.508 ± 0.101 0.536 ± 0.122 0.498 ± 0.137 0.57 ± 0.088 0.574 ± 0.047 0.649 ± 0.072 0.605 ± 0.093 0.579 ± 0.105
+ +
Pancreatic Cancer
+
Model All K
1 2 4 8 12 16 24 32 48 64 128
CLMBR 0.813 ± 0.0 0.613 ± 0.044 0.628 ± 0.063 0.65 ± 0.054 0.677 ± 0.042 0.701 ± 0.076 0.715 ± 0.046 0.703 ± 0.028 0.729 ± 0.016 0.76 ± 0.035 0.772 ± 0.029 0.798 ± 0.015
GBM 0.824 ± 0.0 0.528 ± 0.054 0.544 ± 0.043 0.567 ± 0.127 0.668 ± 0.065 0.711 ± 0.074 0.666 ± 0.071 0.725 ± 0.038 0.752 ± 0.056 0.796 ± 0.021 0.816 ± 0.034 0.86 ± 0.023
Logistic Regression 0.856 ± 0.0 0.611 ± 0.031 0.623 ± 0.03 0.651 ± 0.079 0.675 ± 0.056 0.705 ± 0.046 0.726 ± 0.073 0.719 ± 0.064 0.715 ± 0.051 0.752 ± 0.053 0.787 ± 0.055 0.817 ± 0.034
Random Forest 0.885 ± 0.0 0.522 ± 0.032 0.596 ± 0.046 0.621 ± 0.035 0.627 ± 0.103 0.708 ± 0.065 0.719 ± 0.072 0.733 ± 0.054 0.764 ± 0.041 0.784 ± 0.022 0.814 ± 0.041 0.815 ± 0.013
+ + +##### Chest X-ray Findings +
Lung Opacity
+
Model All K
1 2 4 8 12 16 24 32 48 64 128
CLMBR 0.709 ± 0.0 0.581 ± 0.061 0.579 ± 0.096 0.607 ± 0.043 0.628 ± 0.033 0.632 ± 0.035 0.646 ± 0.031 0.641 ± 0.043 0.645 ± 0.034 0.658 ± 0.02 0.663 ± 0.017 0.667 ± 0.01
GBM 0.675 ± 0.0 0.515 ± 0.003 0.505 ± 0.01 0.512 ± 0.024 0.546 ± 0.031 0.564 ± 0.037 0.569 ± 0.032 0.557 ± 0.024 0.584 ± 0.032 0.586 ± 0.031 0.606 ± 0.011 0.596 ± 0.015
Logistic Regression 0.637 ± 0.0 0.533 ± 0.037 0.533 ± 0.043 0.571 ± 0.018 0.547 ± 0.017 0.543 ± 0.031 0.557 ± 0.008 0.565 ± 0.046 0.565 ± 0.031 0.586 ± 0.036 0.581 ± 0.023 0.59 ± 0.017
Random Forest 0.652 ± 0.0 0.531 ± 0.041 0.528 ± 0.034 0.556 ± 0.035 0.561 ± 0.037 0.554 ± 0.048 0.551 ± 0.035 0.562 ± 0.029 0.572 ± 0.046 0.579 ± 0.041 0.592 ± 0.032 0.615 ± 0.036
+ +
Pleural Effusion
+
Model All K
1 2 4 8 12 16 24 32 48 64 128
CLMBR 0.754 ± 0.0 0.549 ± 0.056 0.571 ± 0.082 0.577 ± 0.106 0.626 ± 0.081 0.664 ± 0.04 0.68 ± 0.022 0.67 ± 0.047 0.684 ± 0.044 0.715 ± 0.004 0.719 ± 0.011 0.717 ± 0.013
GBM 0.673 ± 0.0 0.499 ± 0.012 0.504 ± 0.042 0.512 ± 0.053 0.496 ± 0.038 0.539 ± 0.04 0.536 ± 0.047 0.521 ± 0.037 0.566 ± 0.042 0.616 ± 0.044 0.618 ± 0.026 0.637 ± 0.032
Logistic Regression 0.676 ± 0.0 0.482 ± 0.031 0.49 ± 0.038 0.502 ± 0.07 0.537 ± 0.056 0.547 ± 0.047 0.559 ± 0.041 0.547 ± 0.019 0.57 ± 0.023 0.596 ± 0.024 0.617 ± 0.033 0.634 ± 0.018
Random Forest 0.678 ± 0.0 0.504 ± 0.006 0.48 ± 0.063 0.498 ± 0.061 0.55 ± 0.032 0.557 ± 0.052 0.556 ± 0.039 0.545 ± 0.044 0.58 ± 0.043 0.617 ± 0.042 0.642 ± 0.02 0.648 ± 0.015
+ +
Consolidation
+
Model All K
1 2 4 8 12 16 24 32 48 64 128
CLMBR 0.68 ± 0.0 0.497 ± 0.028 0.528 ± 0.056 0.523 ± 0.04 0.561 ± 0.017 0.554 ± 0.015 0.552 ± 0.035 0.577 ± 0.044 0.587 ± 0.02 0.606 ± 0.018 0.617 ± 0.02 0.646 ± 0.008
GBM 0.604 ± 0.0 0.511 ± 0.033 0.513 ± 0.025 0.508 ± 0.034 0.534 ± 0.057 0.521 ± 0.042 0.514 ± 0.068 0.557 ± 0.049 0.566 ± 0.024 0.594 ± 0.055 0.591 ± 0.043 0.601 ± 0.045
Logistic Regression 0.615 ± 0.0 0.505 ± 0.057 0.537 ± 0.066 0.535 ± 0.076 0.551 ± 0.044 0.541 ± 0.047 0.553 ± 0.045 0.588 ± 0.048 0.563 ± 0.06 0.567 ± 0.046 0.589 ± 0.033 0.604 ± 0.025
Random Forest 0.617 ± 0.0 0.487 ± 0.058 0.535 ± 0.088 0.55 ± 0.053 0.528 ± 0.036 0.55 ± 0.042 0.532 ± 0.058 0.562 ± 0.035 0.571 ± 0.034 0.579 ± 0.035 0.606 ± 0.031 0.617 ± 0.014
+ +
Pleural Other
+
Model All K
1 2 4 8 12 16 24 32 48 64 128
CLMBR 0.714 ± 0.0 0.497 ± 0.041 0.524 ± 0.055 0.555 ± 0.038 0.592 ± 0.053 0.597 ± 0.074 0.606 ± 0.069 0.609 ± 0.077 0.598 ± 0.092 0.601 ± 0.06 0.612 ± 0.05 0.65 ± 0.022
GBM 0.731 ± 0.0 0.488 ± 0.071 0.511 ± 0.111 0.526 ± 0.122 0.653 ± 0.023 0.614 ± 0.076 0.602 ± 0.057 0.657 ± 0.024 0.662 ± 0.074 0.645 ± 0.055 0.675 ± 0.048 0.701 ± 0.037
Logistic Regression 0.735 ± 0.0 0.578 ± 0.16 0.625 ± 0.076 0.578 ± 0.089 0.544 ± 0.097 0.61 ± 0.084 0.682 ± 0.04 0.685 ± 0.038 0.672 ± 0.067 0.661 ± 0.06 0.683 ± 0.045 0.72 ± 0.028
Random Forest 0.617 ± 0.0 0.516 ± 0.134 0.511 ± 0.122 0.559 ± 0.167 0.637 ± 0.049 0.636 ± 0.073 0.661 ± 0.066 0.709 ± 0.031 0.686 ± 0.082 0.693 ± 0.017 0.699 ± 0.045 0.734 ± 0.029
+ +
Pneumothorax
+
Model All K
1 2 4 8 12 16 24 32 48 64 128
CLMBR 0.823 ± 0.0 0.528 ± 0.073 0.65 ± 0.047 0.641 ± 0.063 0.661 ± 0.108 0.703 ± 0.098 0.717 ± 0.046 0.738 ± 0.029 0.762 ± 0.012 0.777 ± 0.015 0.783 ± 0.019 0.786 ± 0.019
GBM 0.593 ± 0.0 0.596 ± 0.079 0.544 ± 0.056 0.44 ± 0.062 0.501 ± 0.108 0.605 ± 0.046 0.591 ± 0.075 0.592 ± 0.101 0.643 ± 0.062 0.632 ± 0.061 0.635 ± 0.03 0.662 ± 0.055
Logistic Regression 0.633 ± 0.0 0.532 ± 0.091 0.494 ± 0.066 0.544 ± 0.11 0.52 ± 0.105 0.58 ± 0.119 0.503 ± 0.033 0.541 ± 0.075 0.576 ± 0.1 0.594 ± 0.103 0.62 ± 0.111 0.561 ± 0.087
Random Forest 0.646 ± 0.0 0.482 ± 0.047 0.54 ± 0.06 0.502 ± 0.078 0.497 ± 0.129 0.568 ± 0.038 0.546 ± 0.078 0.56 ± 0.095 0.607 ± 0.056 0.584 ± 0.062 0.603 ± 0.062 0.626 ± 0.04
+ +
Edema
+
Model All K
1 2 4 8 12 16 24 32 48 64 128
CLMBR 0.722 ± 0.0 0.476 ± 0.113 0.495 ± 0.077 0.561 ± 0.078 0.596 ± 0.071 0.639 ± 0.08 0.653 ± 0.049 0.671 ± 0.029 0.678 ± 0.019 0.684 ± 0.024 0.692 ± 0.005 0.702 ± 0.012
GBM 0.671 ± 0.0 0.504 ± 0.027 0.498 ± 0.024 0.482 ± 0.048 0.541 ± 0.06 0.536 ± 0.053 0.568 ± 0.039 0.587 ± 0.047 0.594 ± 0.032 0.613 ± 0.016 0.615 ± 0.021 0.629 ± 0.019
Logistic Regression 0.631 ± 0.0 0.508 ± 0.021 0.537 ± 0.038 0.55 ± 0.039 0.536 ± 0.038 0.538 ± 0.024 0.565 ± 0.032 0.581 ± 0.023 0.585 ± 0.027 0.623 ± 0.021 0.627 ± 0.029 0.646 ± 0.015
Random Forest 0.6 ± 0.0 0.489 ± 0.025 0.52 ± 0.045 0.528 ± 0.029 0.518 ± 0.031 0.537 ± 0.036 0.575 ± 0.047 0.554 ± 0.043 0.566 ± 0.03 0.616 ± 0.022 0.636 ± 0.033 0.636 ± 0.029
+ +
Enlarged Cardiomediastinum
+
Model All K
1 2 4 8 12 16 24 32 48 64 128
CLMBR 0.64 ± 0.0 0.486 ± 0.049 0.513 ± 0.055 0.516 ± 0.06 0.553 ± 0.043 0.564 ± 0.034 0.561 ± 0.018 0.578 ± 0.037 0.583 ± 0.032 0.599 ± 0.01 0.606 ± 0.017 0.622 ± 0.018
GBM 0.656 ± 0.0 0.494 ± 0.058 0.53 ± 0.049 0.506 ± 0.086 0.56 ± 0.068 0.541 ± 0.049 0.552 ± 0.078 0.589 ± 0.045 0.611 ± 0.023 0.606 ± 0.028 0.606 ± 0.031 0.648 ± 0.038
Logistic Regression 0.691 ± 0.0 0.46 ± 0.105 0.535 ± 0.072 0.532 ± 0.107 0.553 ± 0.057 0.588 ± 0.059 0.587 ± 0.042 0.626 ± 0.044 0.625 ± 0.053 0.657 ± 0.017 0.646 ± 0.027 0.674 ± 0.008
Random Forest 0.568 ± 0.0 0.507 ± 0.109 0.475 ± 0.082 0.512 ± 0.085 0.561 ± 0.109 0.574 ± 0.065 0.583 ± 0.049 0.605 ± 0.021 0.581 ± 0.058 0.607 ± 0.052 0.634 ± 0.048 0.639 ± 0.038
+ +
Cardiomegaly
+
Model All K
1 2 4 8 12 16 24 32 48 64 128
CLMBR 0.822 ± 0.0 0.578 ± 0.079 0.575 ± 0.085 0.628 ± 0.084 0.643 ± 0.098 0.65 ± 0.069 0.668 ± 0.062 0.721 ± 0.037 0.735 ± 0.031 0.754 ± 0.025 0.773 ± 0.018 0.78 ± 0.019
GBM 0.79 ± 0.0 0.476 ± 0.043 0.498 ± 0.064 0.519 ± 0.046 0.611 ± 0.065 0.604 ± 0.06 0.605 ± 0.08 0.622 ± 0.036 0.691 ± 0.046 0.706 ± 0.045 0.721 ± 0.041 0.761 ± 0.016
Logistic Regression 0.748 ± 0.0 0.565 ± 0.098 0.554 ± 0.063 0.572 ± 0.079 0.582 ± 0.13 0.586 ± 0.079 0.627 ± 0.089 0.686 ± 0.064 0.688 ± 0.052 0.704 ± 0.081 0.713 ± 0.083 0.714 ± 0.037
Random Forest 0.784 ± 0.0 0.546 ± 0.075 0.528 ± 0.03 0.523 ± 0.043 0.591 ± 0.093 0.59 ± 0.068 0.612 ± 0.053 0.644 ± 0.083 0.695 ± 0.063 0.708 ± 0.051 0.73 ± 0.044 0.752 ± 0.026
+ +
Support Devices
+
Model All K
1 2 4 8 12 16 24 32 48 64 128
CLMBR 0.752 ± 0.0 0.59 ± 0.039 0.595 ± 0.091 0.604 ± 0.102 0.644 ± 0.03 0.662 ± 0.03 0.668 ± 0.016 0.666 ± 0.04 0.67 ± 0.029 0.687 ± 0.015 0.698 ± 0.012 0.707 ± 0.015
GBM 0.682 ± 0.0 0.501 ± 0.013 0.503 ± 0.027 0.503 ± 0.047 0.514 ± 0.044 0.56 ± 0.061 0.551 ± 0.051 0.577 ± 0.041 0.558 ± 0.047 0.596 ± 0.037 0.621 ± 0.022 0.628 ± 0.028
Logistic Regression 0.65 ± 0.0 0.493 ± 0.02 0.512 ± 0.036 0.522 ± 0.05 0.517 ± 0.06 0.545 ± 0.044 0.542 ± 0.052 0.536 ± 0.055 0.527 ± 0.031 0.556 ± 0.036 0.564 ± 0.029 0.596 ± 0.019
Random Forest 0.673 ± 0.0 0.502 ± 0.014 0.504 ± 0.035 0.508 ± 0.05 0.531 ± 0.064 0.558 ± 0.085 0.574 ± 0.059 0.538 ± 0.074 0.576 ± 0.021 0.607 ± 0.023 0.613 ± 0.025 0.645 ± 0.021
+ +
Fracture
+
Model All K
1 2 4 8 12 16 24 32 48 64 128
CLMBR 0.734 ± 0.0 0.509 ± 0.068 0.52 ± 0.058 0.52 ± 0.068 0.588 ± 0.096 0.626 ± 0.046 0.633 ± 0.06 0.665 ± 0.018 0.678 ± 0.043 0.667 ± 0.045 0.682 ± 0.017 0.707 ± 0.017
GBM 0.71 ± 0.0 0.528 ± 0.035 0.505 ± 0.054 0.537 ± 0.036 0.563 ± 0.047 0.587 ± 0.062 0.54 ± 0.055 0.613 ± 0.066 0.628 ± 0.088 0.612 ± 0.063 0.622 ± 0.051 0.677 ± 0.04
Logistic Regression 0.67 ± 0.0 0.602 ± 0.044 0.552 ± 0.11 0.52 ± 0.09 0.588 ± 0.118 0.554 ± 0.057 0.616 ± 0.059 0.641 ± 0.026 0.653 ± 0.029 0.648 ± 0.049 0.648 ± 0.028 0.661 ± 0.038
Random Forest 0.607 ± 0.0 0.526 ± 0.057 0.547 ± 0.064 0.579 ± 0.082 0.586 ± 0.047 0.531 ± 0.076 0.57 ± 0.064 0.54 ± 0.068 0.609 ± 0.083 0.626 ± 0.064 0.613 ± 0.074 0.669 ± 0.05
+ +
Pneumonia
+
Model All K
1 2 4 8 12 16 24 32 48 64 128
CLMBR 0.609 ± 0.0 0.492 ± 0.029 0.503 ± 0.036 0.513 ± 0.043 0.506 ± 0.044 0.532 ± 0.047 0.526 ± 0.044 0.534 ± 0.041 0.538 ± 0.054 0.54 ± 0.035 0.541 ± 0.046 0.572 ± 0.025
GBM 0.58 ± 0.0 0.506 ± 0.02 0.495 ± 0.026 0.489 ± 0.033 0.52 ± 0.027 0.55 ± 0.015 0.536 ± 0.036 0.508 ± 0.017 0.51 ± 0.041 0.54 ± 0.027 0.534 ± 0.018 0.544 ± 0.024
Logistic Regression 0.553 ± 0.0 0.547 ± 0.033 0.538 ± 0.034 0.533 ± 0.045 0.539 ± 0.028 0.556 ± 0.009 0.519 ± 0.026 0.505 ± 0.031 0.534 ± 0.045 0.542 ± 0.026 0.506 ± 0.027 0.53 ± 0.041
Random Forest 0.567 ± 0.0 0.485 ± 0.042 0.51 ± 0.048 0.526 ± 0.044 0.551 ± 0.008 0.536 ± 0.046 0.522 ± 0.025 0.562 ± 0.017 0.527 ± 0.019 0.545 ± 0.016 0.544 ± 0.016 0.559 ± 0.017
+ +
Lung Lesion
+
Model All K
1 2 4 8 12 16 24 32 48 64 128
CLMBR 0.761 ± 0.0 0.606 ± 0.057 0.611 ± 0.076 0.673 ± 0.038 0.657 ± 0.018 0.672 ± 0.029 0.676 ± 0.022 0.685 ± 0.013 0.699 ± 0.005 0.716 ± 0.017 0.721 ± 0.015 0.733 ± 0.016
GBM 0.709 ± 0.0 0.495 ± 0.06 0.511 ± 0.026 0.513 ± 0.027 0.531 ± 0.041 0.537 ± 0.024 0.549 ± 0.039 0.57 ± 0.021 0.594 ± 0.039 0.619 ± 0.029 0.634 ± 0.03 0.663 ± 0.015
Logistic Regression 0.696 ± 0.0 0.544 ± 0.069 0.535 ± 0.061 0.554 ± 0.064 0.557 ± 0.052 0.58 ± 0.031 0.594 ± 0.024 0.601 ± 0.03 0.599 ± 0.034 0.61 ± 0.031 0.644 ± 0.023 0.648 ± 0.046
Random Forest 0.737 ± 0.0 0.507 ± 0.045 0.522 ± 0.035 0.518 ± 0.042 0.531 ± 0.046 0.529 ± 0.041 0.55 ± 0.022 0.579 ± 0.028 0.593 ± 0.03 0.594 ± 0.02 0.62 ± 0.029 0.661 ± 0.032
+ +
Atelectasis
+
Model All K
1 2 4 8 12 16 24 32 48 64 128
CLMBR 0.655 ± 0.0 0.466 ± 0.11 0.502 ± 0.091 0.542 ± 0.089 0.552 ± 0.105 0.569 ± 0.073 0.586 ± 0.057 0.566 ± 0.046 0.581 ± 0.059 0.63 ± 0.019 0.638 ± 0.019 0.65 ± 0.009
GBM 0.515 ± 0.0 0.49 ± 0.026 0.508 ± 0.039 0.5 ± 0.041 0.504 ± 0.046 0.51 ± 0.036 0.515 ± 0.03 0.545 ± 0.018 0.538 ± 0.034 0.53 ± 0.039 0.515 ± 0.026 0.561 ± 0.022
Logistic Regression 0.538 ± 0.0 0.488 ± 0.053 0.513 ± 0.036 0.484 ± 0.049 0.512 ± 0.044 0.502 ± 0.051 0.496 ± 0.034 0.508 ± 0.021 0.527 ± 0.021 0.518 ± 0.039 0.507 ± 0.043 0.525 ± 0.018
Random Forest 0.502 ± 0.0 0.515 ± 0.039 0.499 ± 0.041 0.474 ± 0.032 0.505 ± 0.048 0.515 ± 0.021 0.531 ± 0.051 0.517 ± 0.03 0.51 ± 0.038 0.54 ± 0.027 0.518 ± 0.052 0.556 ± 0.015
+ +
No Finding
+
Model All K
1 2 4 8 12 16 24 32 48 64 128
CLMBR 0.606 ± 0.0 0.494 ± 0.028 0.529 ± 0.037 0.533 ± 0.014 0.54 ± 0.022 0.54 ± 0.009 0.536 ± 0.011 0.547 ± 0.016 0.543 ± 0.014 0.564 ± 0.027 0.559 ± 0.019 0.57 ± 0.015
GBM 0.594 ± 0.0 0.504 ± 0.018 0.5 ± 0.02 0.51 ± 0.01 0.515 ± 0.021 0.508 ± 0.015 0.515 ± 0.024 0.525 ± 0.024 0.533 ± 0.01 0.534 ± 0.021 0.543 ± 0.016 0.537 ± 0.009
Logistic Regression 0.578 ± 0.0 0.477 ± 0.029 0.509 ± 0.036 0.502 ± 0.016 0.507 ± 0.016 0.524 ± 0.017 0.514 ± 0.019 0.528 ± 0.027 0.542 ± 0.035 0.543 ± 0.02 0.539 ± 0.016 0.551 ± 0.016
Random Forest 0.583 ± 0.0 0.491 ± 0.024 0.497 ± 0.023 0.5 ± 0.027 0.519 ± 0.028 0.521 ± 0.015 0.505 ± 0.015 0.522 ± 0.016 0.529 ± 0.021 0.529 ± 0.023 0.537 ± 0.014 0.561 ± 0.02
+ +#### AUPRC + + + +##### Operational Outcomes + +
Long LOS
+
Model All K
1 2 4 8 12 16 24 32 48 64 128
CLMBR 0.576 ± 0.0 0.282 ± 0.051 0.3 ± 0.044 0.309 ± 0.045 0.315 ± 0.032 0.335 ± 0.026 0.337 ± 0.03 0.358 ± 0.033 0.364 ± 0.015 0.41 ± 0.044 0.439 ± 0.035 0.473 ± 0.036
GBM 0.532 ± 0.0 0.255 ± 0.017 0.253 ± 0.018 0.265 ± 0.032 0.295 ± 0.03 0.292 ± 0.025 0.296 ± 0.027 0.305 ± 0.03 0.323 ± 0.012 0.349 ± 0.041 0.38 ± 0.036 0.4 ± 0.033
Logistic Regression 0.384 ± 0.0 0.237 ± 0.022 0.251 ± 0.016 0.283 ± 0.032 0.283 ± 0.02 0.283 ± 0.012 0.294 ± 0.012 0.308 ± 0.027 0.311 ± 0.013 0.346 ± 0.017 0.34 ± 0.014 0.365 ± 0.015
Random Forest 0.483 ± 0.0 0.249 ± 0.014 0.25 ± 0.035 0.279 ± 0.058 0.284 ± 0.027 0.312 ± 0.024 0.324 ± 0.029 0.311 ± 0.04 0.334 ± 0.025 0.347 ± 0.038 0.383 ± 0.037 0.424 ± 0.022
+ +
ICU Admission
+
Model All K
1 2 4 8 12 16 24 32 48 64 128
CLMBR 0.324 ± 0.0 0.093 ± 0.042 0.095 ± 0.036 0.108 ± 0.044 0.142 ± 0.068 0.152 ± 0.022 0.181 ± 0.039 0.195 ± 0.059 0.215 ± 0.055 0.211 ± 0.042 0.209 ± 0.057 0.256 ± 0.024
GBM 0.218 ± 0.0 0.046 ± 0.004 0.046 ± 0.007 0.049 ± 0.009 0.064 ± 0.019 0.065 ± 0.019 0.073 ± 0.015 0.079 ± 0.014 0.109 ± 0.027 0.113 ± 0.041 0.129 ± 0.045 0.165 ± 0.028
Logistic Regression 0.094 ± 0.0 0.056 ± 0.015 0.053 ± 0.015 0.054 ± 0.014 0.067 ± 0.026 0.076 ± 0.023 0.079 ± 0.032 0.089 ± 0.026 0.093 ± 0.025 0.081 ± 0.017 0.078 ± 0.009 0.097 ± 0.009
Random Forest 0.089 ± 0.0 0.055 ± 0.021 0.048 ± 0.007 0.056 ± 0.016 0.069 ± 0.023 0.07 ± 0.035 0.086 ± 0.026 0.095 ± 0.035 0.127 ± 0.048 0.115 ± 0.034 0.116 ± 0.046 0.19 ± 0.02
+ +
30-day Readmission
+
Model All K
1 2 4 8 12 16 24 32 48 64 128
CLMBR 0.412 ± 0.0 0.135 ± 0.049 0.182 ± 0.067 0.253 ± 0.051 0.237 ± 0.059 0.267 ± 0.09 0.297 ± 0.04 0.317 ± 0.028 0.329 ± 0.023 0.364 ± 0.021 0.368 ± 0.028 0.35 ± 0.021
GBM 0.327 ± 0.0 0.119 ± 0.005 0.133 ± 0.018 0.134 ± 0.016 0.189 ± 0.035 0.169 ± 0.036 0.177 ± 0.015 0.215 ± 0.02 0.212 ± 0.039 0.228 ± 0.017 0.245 ± 0.019 0.276 ± 0.034
Logistic Regression 0.258 ± 0.0 0.15 ± 0.047 0.162 ± 0.044 0.19 ± 0.033 0.201 ± 0.048 0.196 ± 0.042 0.194 ± 0.043 0.191 ± 0.029 0.195 ± 0.02 0.207 ± 0.021 0.217 ± 0.019 0.229 ± 0.023
Random Forest 0.335 ± 0.0 0.145 ± 0.021 0.142 ± 0.031 0.147 ± 0.034 0.175 ± 0.026 0.169 ± 0.031 0.205 ± 0.026 0.213 ± 0.024 0.206 ± 0.029 0.24 ± 0.015 0.24 ± 0.023 0.267 ± 0.01
+ +##### Anticipating Lab Test Results + +
Anemia
+
Model All K
1 2 4 8 12 16 24 32 48 64 128
CLMBR 0.982 ± 0.0 0.777 ± 0.066 0.826 ± 0.078 0.862 ± 0.077 0.918 ± 0.017 0.925 ± 0.024 0.938 ± 0.016 0.948 ± 0.009 0.954 ± 0.007 0.959 ± 0.007 0.964 ± 0.003 0.972 ± 0.001
GBM 0.899 ± 0.0 0.682 ± 0.012 0.699 ± 0.024 0.716 ± 0.005 0.757 ± 0.022 0.765 ± 0.022 0.771 ± 0.039 0.784 ± 0.027 0.797 ± 0.016 0.823 ± 0.018 0.826 ± 0.007 0.846 ± 0.007
Logistic Regression 0.838 ± 0.0 0.678 ± 0.074 0.698 ± 0.065 0.743 ± 0.016 0.756 ± 0.009 0.761 ± 0.02 0.769 ± 0.017 0.767 ± 0.014 0.77 ± 0.022 0.774 ± 0.011 0.78 ± 0.012 0.793 ± 0.014
Random Forest 0.891 ± 0.0 0.686 ± 0.043 0.688 ± 0.06 0.749 ± 0.007 0.768 ± 0.015 0.775 ± 0.028 0.786 ± 0.024 0.786 ± 0.013 0.797 ± 0.019 0.807 ± 0.021 0.825 ± 0.007 0.847 ± 0.007
+ +
Hyperkalemia
+
Model All K
1 2 4 8 12 16 24 32 48 64 128
CLMBR 0.153 ± 0.0 0.029 ± 0.006 0.033 ± 0.008 0.034 ± 0.006 0.041 ± 0.006 0.045 ± 0.01 0.049 ± 0.014 0.049 ± 0.012 0.059 ± 0.011 0.068 ± 0.018 0.075 ± 0.019 0.083 ± 0.011
GBM 0.082 ± 0.0 0.025 ± 0.001 0.025 ± 0.001 0.026 ± 0.005 0.029 ± 0.004 0.026 ± 0.004 0.026 ± 0.003 0.038 ± 0.013 0.037 ± 0.007 0.04 ± 0.009 0.039 ± 0.006 0.052 ± 0.014
Logistic Regression 0.055 ± 0.0 0.028 ± 0.004 0.029 ± 0.002 0.029 ± 0.005 0.03 ± 0.005 0.031 ± 0.007 0.029 ± 0.006 0.031 ± 0.005 0.035 ± 0.003 0.036 ± 0.004 0.037 ± 0.002 0.036 ± 0.004
Random Forest 0.052 ± 0.0 0.025 ± 0.006 0.028 ± 0.004 0.027 ± 0.005 0.03 ± 0.003 0.032 ± 0.006 0.032 ± 0.007 0.03 ± 0.001 0.034 ± 0.006 0.037 ± 0.008 0.043 ± 0.008 0.048 ± 0.007
+ +
Hypoglycemia
+
Model All K
1 2 4 8 12 16 24 32 48 64 128
CLMBR 0.086 ± 0.0 0.014 ± 0.001 0.015 ± 0.002 0.016 ± 0.004 0.016 ± 0.004 0.017 ± 0.004 0.018 ± 0.003 0.02 ± 0.004 0.022 ± 0.004 0.025 ± 0.003 0.026 ± 0.003 0.037 ± 0.006
GBM 0.021 ± 0.0 0.014 ± 0.001 0.014 ± 0.001 0.014 ± 0.001 0.014 ± 0.001 0.014 ± 0.001 0.014 ± 0.001 0.015 ± 0.001 0.016 ± 0.003 0.016 ± 0.001 0.016 ± 0.002 0.017 ± 0.001
Logistic Regression 0.02 ± 0.0 0.016 ± 0.002 0.016 ± 0.001 0.016 ± 0.003 0.015 ± 0.003 0.015 ± 0.003 0.016 ± 0.003 0.017 ± 0.002 0.016 ± 0.002 0.016 ± 0.002 0.016 ± 0.002 0.018 ± 0.001
Random Forest 0.02 ± 0.0 0.015 ± 0.002 0.014 ± 0.001 0.014 ± 0.001 0.014 ± 0.002 0.014 ± 0.002 0.014 ± 0.002 0.016 ± 0.001 0.016 ± 0.002 0.016 ± 0.002 0.016 ± 0.001 0.016 ± 0.001
+ +
Hyponatremia
+
Model All K
1 2 4 8 12 16 24 32 48 64 128
CLMBR 0.575 ± 0.0 0.296 ± 0.018 0.307 ± 0.026 0.32 ± 0.021 0.318 ± 0.016 0.319 ± 0.02 0.322 ± 0.023 0.333 ± 0.027 0.35 ± 0.025 0.354 ± 0.027 0.367 ± 0.026 0.408 ± 0.029
GBM 0.438 ± 0.0 0.287 ± 0.0 0.287 ± 0.002 0.296 ± 0.006 0.297 ± 0.01 0.304 ± 0.021 0.3 ± 0.013 0.302 ± 0.007 0.311 ± 0.011 0.312 ± 0.016 0.309 ± 0.019 0.339 ± 0.027
Logistic Regression 0.374 ± 0.0 0.29 ± 0.009 0.288 ± 0.02 0.292 ± 0.012 0.294 ± 0.014 0.3 ± 0.01 0.3 ± 0.01 0.299 ± 0.015 0.304 ± 0.018 0.293 ± 0.016 0.295 ± 0.015 0.302 ± 0.026
Random Forest 0.392 ± 0.0 0.295 ± 0.005 0.288 ± 0.009 0.297 ± 0.014 0.293 ± 0.008 0.301 ± 0.015 0.301 ± 0.013 0.302 ± 0.019 0.305 ± 0.02 0.31 ± 0.02 0.307 ± 0.02 0.321 ± 0.025
+ +
Thrombocytopenia
+
Model All K
1 2 4 8 12 16 24 32 48 64 128
CLMBR 0.784 ± 0.0 0.37 ± 0.067 0.409 ± 0.061 0.456 ± 0.065 0.473 ± 0.047 0.468 ± 0.036 0.5 ± 0.039 0.527 ± 0.023 0.564 ± 0.037 0.6 ± 0.046 0.635 ± 0.041 0.671 ± 0.02
GBM 0.736 ± 0.0 0.346 ± 0.008 0.341 ± 0.013 0.35 ± 0.019 0.44 ± 0.045 0.444 ± 0.028 0.462 ± 0.074 0.464 ± 0.05 0.473 ± 0.029 0.529 ± 0.027 0.571 ± 0.02 0.593 ± 0.016
Logistic Regression 0.63 ± 0.0 0.353 ± 0.042 0.416 ± 0.083 0.419 ± 0.039 0.461 ± 0.019 0.462 ± 0.018 0.476 ± 0.039 0.439 ± 0.028 0.44 ± 0.04 0.48 ± 0.028 0.49 ± 0.03 0.513 ± 0.012
Random Forest 0.723 ± 0.0 0.345 ± 0.019 0.37 ± 0.052 0.381 ± 0.04 0.456 ± 0.043 0.429 ± 0.048 0.458 ± 0.052 0.471 ± 0.036 0.491 ± 0.024 0.562 ± 0.032 0.576 ± 0.023 0.598 ± 0.009
+ +##### Assignment of New Diagnoses + +
Acute MI
+
Model All K
1 2 4 8 12 16 24 32 48 64 128
CLMBR 0.183 ± 0.0 0.086 ± 0.014 0.093 ± 0.031 0.12 ± 0.023 0.096 ± 0.019 0.099 ± 0.038 0.118 ± 0.055 0.137 ± 0.028 0.159 ± 0.027 0.138 ± 0.02 0.154 ± 0.021 0.158 ± 0.012
GBM 0.184 ± 0.0 0.066 ± 0.009 0.073 ± 0.01 0.081 ± 0.01 0.087 ± 0.018 0.084 ± 0.021 0.107 ± 0.015 0.122 ± 0.03 0.117 ± 0.026 0.134 ± 0.017 0.152 ± 0.024 0.158 ± 0.013
Logistic Regression 0.135 ± 0.0 0.082 ± 0.018 0.087 ± 0.024 0.098 ± 0.019 0.092 ± 0.016 0.093 ± 0.018 0.092 ± 0.012 0.106 ± 0.006 0.103 ± 0.011 0.11 ± 0.012 0.111 ± 0.013 0.116 ± 0.009
Random Forest 0.165 ± 0.0 0.083 ± 0.019 0.082 ± 0.017 0.088 ± 0.009 0.096 ± 0.017 0.09 ± 0.022 0.103 ± 0.008 0.111 ± 0.019 0.122 ± 0.025 0.128 ± 0.027 0.143 ± 0.023 0.152 ± 0.013
+ +
Pancreatic Cancer
+
Model All K
1 2 4 8 12 16 24 32 48 64 128
CLMBR 0.252 ± 0.0 0.047 ± 0.018 0.059 ± 0.016 0.087 ± 0.07 0.08 ± 0.028 0.102 ± 0.04 0.123 ± 0.052 0.123 ± 0.039 0.134 ± 0.053 0.137 ± 0.049 0.15 ± 0.058 0.177 ± 0.044
GBM 0.372 ± 0.0 0.027 ± 0.004 0.028 ± 0.003 0.04 ± 0.03 0.068 ± 0.024 0.094 ± 0.047 0.071 ± 0.032 0.08 ± 0.024 0.128 ± 0.047 0.177 ± 0.059 0.181 ± 0.063 0.243 ± 0.068
Logistic Regression 0.157 ± 0.0 0.058 ± 0.028 0.043 ± 0.007 0.05 ± 0.011 0.051 ± 0.011 0.056 ± 0.015 0.063 ± 0.025 0.072 ± 0.026 0.067 ± 0.015 0.085 ± 0.026 0.115 ± 0.042 0.122 ± 0.032
Random Forest 0.472 ± 0.0 0.028 ± 0.003 0.04 ± 0.01 0.049 ± 0.006 0.061 ± 0.047 0.069 ± 0.028 0.086 ± 0.032 0.103 ± 0.033 0.113 ± 0.037 0.136 ± 0.036 0.153 ± 0.039 0.172 ± 0.043
+ +
Lupus
+
Model All K
1 2 4 8 12 16 24 32 48 64 128
CLMBR 0.024 ± 0.0 0.012 ± 0.002 0.011 ± 0.002 0.012 ± 0.003 0.015 ± 0.005 0.015 ± 0.004 0.016 ± 0.003 0.018 ± 0.007 0.026 ± 0.022 0.02 ± 0.009 0.018 ± 0.006 0.018 ± 0.006
GBM 0.179 ± 0.0 0.009 ± 0.001 0.01 ± 0.001 0.011 ± 0.002 0.015 ± 0.005 0.03 ± 0.03 0.017 ± 0.007 0.029 ± 0.021 0.036 ± 0.022 0.058 ± 0.032 0.061 ± 0.038 0.079 ± 0.023
Logistic Regression 0.093 ± 0.0 0.011 ± 0.003 0.012 ± 0.002 0.01 ± 0.002 0.012 ± 0.003 0.012 ± 0.003 0.015 ± 0.004 0.013 ± 0.004 0.015 ± 0.002 0.016 ± 0.002 0.018 ± 0.003 0.019 ± 0.003
Random Forest 0.016 ± 0.0 0.009 ± 0.001 0.012 ± 0.004 0.01 ± 0.002 0.012 ± 0.004 0.014 ± 0.005 0.016 ± 0.008 0.025 ± 0.016 0.022 ± 0.009 0.036 ± 0.022 0.055 ± 0.067 0.049 ± 0.038
+ +
Hyperlipidemia
+
Model All K
1 2 4 8 12 16 24 32 48 64 128
CLMBR 0.225 ± 0.0 0.142 ± 0.013 0.149 ± 0.029 0.161 ± 0.02 0.18 ± 0.017 0.175 ± 0.015 0.179 ± 0.016 0.193 ± 0.013 0.191 ± 0.017 0.181 ± 0.021 0.198 ± 0.006 0.214 ± 0.004
GBM 0.258 ± 0.0 0.126 ± 0.006 0.13 ± 0.004 0.142 ± 0.01 0.158 ± 0.018 0.152 ± 0.013 0.157 ± 0.02 0.165 ± 0.022 0.202 ± 0.025 0.184 ± 0.031 0.21 ± 0.011 0.222 ± 0.017
Logistic Regression 0.247 ± 0.0 0.144 ± 0.025 0.166 ± 0.046 0.164 ± 0.015 0.169 ± 0.026 0.174 ± 0.028 0.183 ± 0.019 0.188 ± 0.027 0.212 ± 0.02 0.203 ± 0.018 0.208 ± 0.029 0.244 ± 0.013
Random Forest 0.193 ± 0.0 0.138 ± 0.019 0.143 ± 0.022 0.151 ± 0.03 0.161 ± 0.014 0.149 ± 0.014 0.16 ± 0.006 0.181 ± 0.026 0.195 ± 0.021 0.193 ± 0.019 0.186 ± 0.02 0.227 ± 0.013
+ +
Hypertension
+
Model All K
1 2 4 8 12 16 24 32 48 64 128
CLMBR 0.258 ± 0.0 0.151 ± 0.033 0.189 ± 0.017 0.188 ± 0.024 0.205 ± 0.02 0.213 ± 0.022 0.224 ± 0.027 0.222 ± 0.038 0.22 ± 0.03 0.226 ± 0.023 0.233 ± 0.024 0.243 ± 0.019
GBM 0.221 ± 0.0 0.127 ± 0.013 0.129 ± 0.008 0.14 ± 0.019 0.138 ± 0.01 0.148 ± 0.016 0.152 ± 0.008 0.175 ± 0.034 0.165 ± 0.021 0.198 ± 0.009 0.209 ± 0.023 0.206 ± 0.017
Logistic Regression 0.212 ± 0.0 0.138 ± 0.01 0.151 ± 0.022 0.158 ± 0.033 0.147 ± 0.013 0.16 ± 0.034 0.175 ± 0.037 0.176 ± 0.024 0.169 ± 0.023 0.182 ± 0.02 0.188 ± 0.018 0.191 ± 0.021
Random Forest 0.226 ± 0.0 0.133 ± 0.008 0.142 ± 0.038 0.146 ± 0.016 0.159 ± 0.031 0.164 ± 0.037 0.175 ± 0.036 0.175 ± 0.052 0.167 ± 0.01 0.19 ± 0.038 0.208 ± 0.03 0.203 ± 0.035
+ +
Celiac
+
Model All K
1 2 4 8 12 16 24 32 48 64 128
CLMBR 0.017 ± 0.0 0.016 ± 0.016 0.017 ± 0.017 0.016 ± 0.008 0.023 ± 0.015 0.021 ± 0.008 0.022 ± 0.013 0.014 ± 0.001 0.018 ± 0.006 0.024 ± 0.016 0.015 ± 0.005 0.016 ± 0.005
GBM 0.058 ± 0.0 0.01 ± 0.002 0.01 ± 0.001 0.01 ± 0.003 0.052 ± 0.065 0.014 ± 0.007 0.013 ± 0.005 0.015 ± 0.004 0.012 ± 0.004 0.016 ± 0.008 0.031 ± 0.022 0.026 ± 0.012
Logistic Regression 0.231 ± 0.0 0.015 ± 0.009 0.017 ± 0.011 0.015 ± 0.011 0.02 ± 0.014 0.02 ± 0.011 0.026 ± 0.016 0.04 ± 0.026 0.049 ± 0.038 0.082 ± 0.019 0.088 ± 0.068 0.094 ± 0.017
Random Forest 0.045 ± 0.0 0.01 ± 0.002 0.024 ± 0.026 0.012 ± 0.006 0.016 ± 0.009 0.019 ± 0.015 0.014 ± 0.008 0.014 ± 0.005 0.015 ± 0.003 0.03 ± 0.014 0.039 ± 0.046 0.019 ± 0.012
+ +##### Chest X-ray Findings + +
Lung Opacity
+
Model All K
1 2 4 8 12 16 24 32 48 64 128
CLMBR 0.399 ± 0.0 0.248 ± 0.049 0.26 ± 0.063 0.276 ± 0.051 0.29 ± 0.045 0.3 ± 0.047 0.314 ± 0.043 0.315 ± 0.063 0.317 ± 0.06 0.329 ± 0.041 0.34 ± 0.041 0.336 ± 0.028
GBM 0.362 ± 0.0 0.198 ± 0.002 0.195 ± 0.003 0.2 ± 0.012 0.225 ± 0.019 0.246 ± 0.026 0.238 ± 0.025 0.231 ± 0.013 0.252 ± 0.032 0.257 ± 0.03 0.276 ± 0.013 0.26 ± 0.017
Logistic Regression 0.288 ± 0.0 0.202 ± 0.014 0.202 ± 0.017 0.222 ± 0.017 0.211 ± 0.014 0.212 ± 0.022 0.216 ± 0.011 0.231 ± 0.034 0.231 ± 0.032 0.24 ± 0.021 0.234 ± 0.017 0.248 ± 0.013
Random Forest 0.32 ± 0.0 0.211 ± 0.023 0.206 ± 0.015 0.225 ± 0.029 0.233 ± 0.027 0.221 ± 0.034 0.221 ± 0.029 0.234 ± 0.02 0.245 ± 0.037 0.246 ± 0.041 0.255 ± 0.032 0.277 ± 0.039
+ +
Pleural Effusion
+
Model All K
1 2 4 8 12 16 24 32 48 64 128
CLMBR 0.299 ± 0.0 0.147 ± 0.022 0.155 ± 0.035 0.165 ± 0.057 0.199 ± 0.058 0.222 ± 0.038 0.232 ± 0.029 0.226 ± 0.043 0.237 ± 0.039 0.266 ± 0.009 0.27 ± 0.018 0.263 ± 0.015
GBM 0.226 ± 0.0 0.129 ± 0.002 0.132 ± 0.009 0.14 ± 0.026 0.132 ± 0.013 0.152 ± 0.021 0.147 ± 0.021 0.14 ± 0.018 0.158 ± 0.017 0.198 ± 0.029 0.2 ± 0.025 0.216 ± 0.019
Logistic Regression 0.249 ± 0.0 0.121 ± 0.007 0.123 ± 0.009 0.131 ± 0.014 0.142 ± 0.022 0.146 ± 0.013 0.158 ± 0.016 0.151 ± 0.016 0.164 ± 0.017 0.171 ± 0.012 0.192 ± 0.014 0.215 ± 0.013
Random Forest 0.212 ± 0.0 0.13 ± 0.003 0.123 ± 0.015 0.128 ± 0.017 0.149 ± 0.018 0.157 ± 0.024 0.154 ± 0.02 0.149 ± 0.018 0.174 ± 0.031 0.195 ± 0.043 0.213 ± 0.01 0.207 ± 0.019
+ +
Consolidation
+
Model All K
1 2 4 8 12 16 24 32 48 64 128
CLMBR 0.073 ± 0.0 0.039 ± 0.005 0.044 ± 0.008 0.042 ± 0.004 0.047 ± 0.004 0.045 ± 0.002 0.046 ± 0.004 0.052 ± 0.006 0.053 ± 0.006 0.052 ± 0.004 0.055 ± 0.003 0.061 ± 0.004
GBM 0.05 ± 0.0 0.039 ± 0.003 0.039 ± 0.002 0.04 ± 0.004 0.046 ± 0.008 0.042 ± 0.005 0.043 ± 0.011 0.05 ± 0.011 0.047 ± 0.006 0.058 ± 0.014 0.053 ± 0.009 0.057 ± 0.012
Logistic Regression 0.066 ± 0.0 0.049 ± 0.013 0.05 ± 0.012 0.047 ± 0.012 0.051 ± 0.007 0.048 ± 0.009 0.048 ± 0.008 0.057 ± 0.01 0.051 ± 0.01 0.052 ± 0.012 0.058 ± 0.01 0.06 ± 0.008
Random Forest 0.057 ± 0.0 0.038 ± 0.006 0.045 ± 0.01 0.045 ± 0.007 0.042 ± 0.004 0.047 ± 0.013 0.044 ± 0.007 0.051 ± 0.007 0.048 ± 0.005 0.051 ± 0.01 0.056 ± 0.008 0.061 ± 0.011
+ +
Pleural Other
+
Model All K
1 2 4 8 12 16 24 32 48 64 128
CLMBR 0.063 ± 0.0 0.018 ± 0.003 0.021 ± 0.005 0.024 ± 0.005 0.029 ± 0.007 0.029 ± 0.01 0.027 ± 0.008 0.03 ± 0.01 0.029 ± 0.011 0.027 ± 0.009 0.035 ± 0.016 0.037 ± 0.004
GBM 0.052 ± 0.0 0.016 ± 0.002 0.018 ± 0.004 0.018 ± 0.007 0.028 ± 0.004 0.027 ± 0.007 0.024 ± 0.007 0.029 ± 0.006 0.031 ± 0.01 0.028 ± 0.006 0.035 ± 0.009 0.044 ± 0.01
Logistic Regression 0.043 ± 0.0 0.022 ± 0.008 0.023 ± 0.008 0.02 ± 0.006 0.018 ± 0.006 0.022 ± 0.007 0.03 ± 0.009 0.028 ± 0.006 0.028 ± 0.009 0.026 ± 0.007 0.027 ± 0.005 0.032 ± 0.004
Random Forest 0.022 ± 0.0 0.019 ± 0.005 0.018 ± 0.006 0.024 ± 0.013 0.025 ± 0.004 0.03 ± 0.011 0.03 ± 0.007 0.038 ± 0.005 0.032 ± 0.01 0.033 ± 0.004 0.041 ± 0.014 0.041 ± 0.005
+ +
Pneumothorax
+
Model All K
1 2 4 8 12 16 24 32 48 64 128
CLMBR 0.184 ± 0.0 0.048 ± 0.008 0.07 ± 0.014 0.069 ± 0.02 0.076 ± 0.025 0.096 ± 0.029 0.097 ± 0.02 0.101 ± 0.016 0.119 ± 0.007 0.14 ± 0.013 0.142 ± 0.018 0.14 ± 0.017
GBM 0.083 ± 0.0 0.056 ± 0.009 0.048 ± 0.005 0.042 ± 0.005 0.047 ± 0.01 0.064 ± 0.016 0.063 ± 0.018 0.083 ± 0.033 0.085 ± 0.035 0.074 ± 0.024 0.069 ± 0.009 0.09 ± 0.023
Logistic Regression 0.063 ± 0.0 0.049 ± 0.014 0.048 ± 0.006 0.066 ± 0.048 0.055 ± 0.016 0.078 ± 0.041 0.054 ± 0.012 0.063 ± 0.033 0.074 ± 0.032 0.078 ± 0.038 0.086 ± 0.049 0.058 ± 0.016
Random Forest 0.063 ± 0.0 0.044 ± 0.003 0.056 ± 0.007 0.047 ± 0.011 0.049 ± 0.018 0.061 ± 0.021 0.061 ± 0.018 0.061 ± 0.019 0.067 ± 0.021 0.064 ± 0.016 0.06 ± 0.012 0.074 ± 0.013
+ +
Edema
+
Model All K
1 2 4 8 12 16 24 32 48 64 128
CLMBR 0.175 ± 0.0 0.076 ± 0.022 0.077 ± 0.013 0.095 ± 0.02 0.106 ± 0.026 0.127 ± 0.03 0.132 ± 0.024 0.142 ± 0.024 0.143 ± 0.017 0.149 ± 0.02 0.156 ± 0.004 0.158 ± 0.017
GBM 0.138 ± 0.0 0.077 ± 0.004 0.076 ± 0.002 0.074 ± 0.007 0.087 ± 0.014 0.089 ± 0.017 0.096 ± 0.017 0.107 ± 0.019 0.111 ± 0.016 0.112 ± 0.011 0.121 ± 0.014 0.131 ± 0.014
Logistic Regression 0.125 ± 0.0 0.077 ± 0.002 0.081 ± 0.007 0.084 ± 0.006 0.082 ± 0.008 0.083 ± 0.006 0.09 ± 0.008 0.095 ± 0.01 0.097 ± 0.011 0.112 ± 0.011 0.114 ± 0.013 0.124 ± 0.011
Random Forest 0.098 ± 0.0 0.074 ± 0.004 0.08 ± 0.009 0.084 ± 0.013 0.083 ± 0.007 0.086 ± 0.012 0.097 ± 0.017 0.093 ± 0.012 0.096 ± 0.009 0.117 ± 0.011 0.132 ± 0.022 0.127 ± 0.017
+ +
Enlarged Cardiomediastinum
+
Model All K
1 2 4 8 12 16 24 32 48 64 128
CLMBR 0.033 ± 0.0 0.017 ± 0.002 0.02 ± 0.006 0.02 ± 0.004 0.022 ± 0.002 0.022 ± 0.002 0.023 ± 0.002 0.026 ± 0.006 0.025 ± 0.004 0.026 ± 0.003 0.028 ± 0.002 0.029 ± 0.001
GBM 0.029 ± 0.0 0.018 ± 0.002 0.019 ± 0.002 0.019 ± 0.003 0.022 ± 0.005 0.021 ± 0.003 0.022 ± 0.004 0.025 ± 0.003 0.029 ± 0.004 0.028 ± 0.004 0.027 ± 0.003 0.028 ± 0.005
Logistic Regression 0.033 ± 0.0 0.017 ± 0.006 0.019 ± 0.004 0.019 ± 0.005 0.019 ± 0.002 0.021 ± 0.004 0.021 ± 0.003 0.026 ± 0.006 0.026 ± 0.005 0.028 ± 0.003 0.028 ± 0.004 0.031 ± 0.003
Random Forest 0.021 ± 0.0 0.02 ± 0.005 0.018 ± 0.003 0.019 ± 0.003 0.024 ± 0.007 0.023 ± 0.005 0.026 ± 0.006 0.026 ± 0.002 0.024 ± 0.004 0.025 ± 0.005 0.027 ± 0.004 0.029 ± 0.004
+ +
Support Devices
+
Model All K
1 2 4 8 12 16 24 32 48 64 128
CLMBR 0.525 ± 0.0 0.301 ± 0.039 0.309 ± 0.061 0.323 ± 0.078 0.355 ± 0.04 0.398 ± 0.054 0.414 ± 0.027 0.404 ± 0.063 0.414 ± 0.048 0.443 ± 0.035 0.463 ± 0.013 0.457 ± 0.016
GBM 0.447 ± 0.0 0.242 ± 0.005 0.243 ± 0.01 0.25 ± 0.027 0.252 ± 0.026 0.304 ± 0.05 0.274 ± 0.031 0.307 ± 0.032 0.283 ± 0.033 0.328 ± 0.051 0.339 ± 0.03 0.359 ± 0.038
Logistic Regression 0.363 ± 0.0 0.231 ± 0.01 0.24 ± 0.019 0.252 ± 0.034 0.247 ± 0.028 0.266 ± 0.03 0.265 ± 0.032 0.259 ± 0.032 0.25 ± 0.017 0.278 ± 0.023 0.282 ± 0.026 0.311 ± 0.024
Random Forest 0.409 ± 0.0 0.239 ± 0.006 0.242 ± 0.019 0.244 ± 0.02 0.258 ± 0.044 0.286 ± 0.047 0.29 ± 0.043 0.267 ± 0.045 0.295 ± 0.018 0.326 ± 0.036 0.342 ± 0.042 0.368 ± 0.036
+ +
Cardiomegaly
+
Model All K
1 2 4 8 12 16 24 32 48 64 128
CLMBR 0.161 ± 0.0 0.056 ± 0.015 0.057 ± 0.02 0.062 ± 0.016 0.067 ± 0.021 0.066 ± 0.015 0.069 ± 0.017 0.087 ± 0.02 0.09 ± 0.012 0.097 ± 0.013 0.111 ± 0.012 0.113 ± 0.008
GBM 0.139 ± 0.0 0.037 ± 0.003 0.039 ± 0.005 0.043 ± 0.007 0.059 ± 0.013 0.063 ± 0.021 0.061 ± 0.019 0.072 ± 0.017 0.098 ± 0.027 0.107 ± 0.032 0.109 ± 0.017 0.114 ± 0.015
Logistic Regression 0.118 ± 0.0 0.047 ± 0.017 0.041 ± 0.007 0.046 ± 0.011 0.053 ± 0.02 0.05 ± 0.016 0.056 ± 0.017 0.067 ± 0.015 0.069 ± 0.012 0.073 ± 0.018 0.08 ± 0.024 0.084 ± 0.013
Random Forest 0.13 ± 0.0 0.049 ± 0.02 0.042 ± 0.003 0.042 ± 0.005 0.06 ± 0.024 0.058 ± 0.02 0.06 ± 0.02 0.072 ± 0.035 0.097 ± 0.042 0.094 ± 0.032 0.104 ± 0.031 0.101 ± 0.008
+ +
Atelectasis
+
Model All K
1 2 4 8 12 16 24 32 48 64 128
CLMBR 0.068 ± 0.0 0.04 ± 0.013 0.044 ± 0.012 0.053 ± 0.01 0.051 ± 0.012 0.052 ± 0.009 0.055 ± 0.008 0.053 ± 0.008 0.055 ± 0.012 0.063 ± 0.008 0.065 ± 0.01 0.063 ± 0.002
GBM 0.043 ± 0.0 0.041 ± 0.002 0.042 ± 0.003 0.042 ± 0.005 0.044 ± 0.006 0.044 ± 0.005 0.046 ± 0.005 0.052 ± 0.008 0.047 ± 0.005 0.047 ± 0.006 0.045 ± 0.004 0.052 ± 0.004
Logistic Regression 0.045 ± 0.0 0.039 ± 0.005 0.043 ± 0.005 0.039 ± 0.005 0.042 ± 0.005 0.041 ± 0.005 0.041 ± 0.003 0.042 ± 0.002 0.045 ± 0.004 0.043 ± 0.004 0.042 ± 0.004 0.044 ± 0.002
Random Forest 0.041 ± 0.0 0.043 ± 0.004 0.042 ± 0.005 0.039 ± 0.003 0.043 ± 0.005 0.043 ± 0.003 0.048 ± 0.007 0.046 ± 0.004 0.043 ± 0.004 0.046 ± 0.003 0.044 ± 0.008 0.049 ± 0.005
+ +
Fracture
+
Model All K
1 2 4 8 12 16 24 32 48 64 128
CLMBR 0.094 ± 0.0 0.031 ± 0.007 0.033 ± 0.007 0.032 ± 0.008 0.039 ± 0.011 0.047 ± 0.012 0.046 ± 0.012 0.054 ± 0.01 0.062 ± 0.011 0.058 ± 0.008 0.059 ± 0.012 0.066 ± 0.007
GBM 0.057 ± 0.0 0.031 ± 0.004 0.029 ± 0.003 0.033 ± 0.006 0.039 ± 0.012 0.043 ± 0.011 0.034 ± 0.008 0.046 ± 0.013 0.048 ± 0.014 0.043 ± 0.009 0.047 ± 0.007 0.062 ± 0.012
Logistic Regression 0.061 ± 0.0 0.054 ± 0.018 0.041 ± 0.019 0.033 ± 0.013 0.044 ± 0.019 0.033 ± 0.005 0.043 ± 0.009 0.045 ± 0.008 0.044 ± 0.004 0.048 ± 0.01 0.044 ± 0.007 0.05 ± 0.01
Random Forest 0.039 ± 0.0 0.03 ± 0.003 0.036 ± 0.006 0.042 ± 0.012 0.042 ± 0.012 0.038 ± 0.015 0.041 ± 0.012 0.036 ± 0.006 0.048 ± 0.012 0.046 ± 0.013 0.045 ± 0.012 0.052 ± 0.011
+ +
Pneumonia
+
Model All K
1 2 4 8 12 16 24 32 48 64 128
CLMBR 0.056 ± 0.0 0.033 ± 0.003 0.037 ± 0.006 0.036 ± 0.007 0.035 ± 0.005 0.039 ± 0.006 0.037 ± 0.005 0.039 ± 0.006 0.04 ± 0.009 0.04 ± 0.006 0.04 ± 0.006 0.045 ± 0.003
GBM 0.042 ± 0.0 0.033 ± 0.001 0.033 ± 0.002 0.033 ± 0.003 0.035 ± 0.003 0.041 ± 0.004 0.039 ± 0.003 0.037 ± 0.002 0.037 ± 0.005 0.041 ± 0.005 0.039 ± 0.003 0.039 ± 0.004
Logistic Regression 0.044 ± 0.0 0.043 ± 0.005 0.043 ± 0.005 0.044 ± 0.004 0.047 ± 0.005 0.047 ± 0.004 0.04 ± 0.005 0.037 ± 0.004 0.041 ± 0.007 0.04 ± 0.004 0.035 ± 0.002 0.038 ± 0.005
Random Forest 0.038 ± 0.0 0.033 ± 0.003 0.036 ± 0.005 0.035 ± 0.003 0.038 ± 0.001 0.039 ± 0.006 0.036 ± 0.002 0.042 ± 0.004 0.038 ± 0.002 0.041 ± 0.003 0.04 ± 0.003 0.041 ± 0.004
+ +
Lung Lesion
+
Model All K
1 2 4 8 12 16 24 32 48 64 128
CLMBR 0.321 ± 0.0 0.184 ± 0.033 0.187 ± 0.051 0.221 ± 0.038 0.216 ± 0.012 0.225 ± 0.02 0.235 ± 0.019 0.246 ± 0.005 0.258 ± 0.019 0.279 ± 0.024 0.288 ± 0.017 0.299 ± 0.018
GBM 0.278 ± 0.0 0.13 ± 0.013 0.132 ± 0.006 0.133 ± 0.007 0.142 ± 0.016 0.145 ± 0.008 0.156 ± 0.02 0.167 ± 0.009 0.175 ± 0.026 0.194 ± 0.024 0.203 ± 0.017 0.235 ± 0.014
Logistic Regression 0.262 ± 0.0 0.147 ± 0.026 0.146 ± 0.026 0.157 ± 0.031 0.156 ± 0.028 0.168 ± 0.025 0.178 ± 0.018 0.178 ± 0.019 0.179 ± 0.022 0.196 ± 0.024 0.21 ± 0.019 0.225 ± 0.037
Random Forest 0.305 ± 0.0 0.138 ± 0.01 0.135 ± 0.012 0.139 ± 0.013 0.143 ± 0.013 0.139 ± 0.011 0.15 ± 0.015 0.168 ± 0.012 0.182 ± 0.02 0.174 ± 0.014 0.209 ± 0.03 0.23 ± 0.024
+ +
No Finding
+
Model All K
1 2 4 8 12 16 24 32 48 64 128
CLMBR 0.48 ± 0.0 0.386 ± 0.023 0.415 ± 0.033 0.419 ± 0.012 0.425 ± 0.015 0.425 ± 0.006 0.423 ± 0.01 0.432 ± 0.015 0.428 ± 0.012 0.446 ± 0.018 0.443 ± 0.014 0.445 ± 0.011
GBM 0.464 ± 0.0 0.395 ± 0.009 0.393 ± 0.009 0.398 ± 0.006 0.406 ± 0.013 0.398 ± 0.008 0.407 ± 0.014 0.408 ± 0.022 0.424 ± 0.014 0.422 ± 0.018 0.426 ± 0.013 0.424 ± 0.009
Logistic Regression 0.456 ± 0.0 0.387 ± 0.026 0.407 ± 0.03 0.405 ± 0.017 0.409 ± 0.015 0.422 ± 0.011 0.409 ± 0.013 0.422 ± 0.024 0.433 ± 0.031 0.435 ± 0.018 0.431 ± 0.015 0.441 ± 0.014
Random Forest 0.456 ± 0.0 0.387 ± 0.013 0.393 ± 0.016 0.393 ± 0.014 0.405 ± 0.02 0.413 ± 0.017 0.397 ± 0.011 0.41 ± 0.016 0.418 ± 0.015 0.417 ± 0.013 0.422 ± 0.008 0.443 ± 0.014
diff --git a/content/leaderboard/v2023/index.md b/content/leaderboard/v2023/index.md deleted file mode 100644 index c9805c3..0000000 --- a/content/leaderboard/v2023/index.md +++ /dev/null @@ -1,5699 +0,0 @@ ---- -title: "EHRSHOT-2023" -description: "Benchmarking results of ML models on EHRSHOT (version 2023)" -summary: "" -date: 2023-09-07T16:27:22+02:00 -lastmod: 2023-09-07T16:27:22+02:00 -draft: false -weight: 50 -categories: [] -tags: [] -contributors: [] -pinned: false -homepage: false -seo: - title: "" # custom title (optional) - description: "" # custom description (recommended) - canonical: "" # custom canonical URL (optional) - noindex: false # false (default) or true ---- - -* **Dataset:** [EHRSHOT (2023)](https://redivis.com/datasets/53gc-8rhx41kgt) - * 6,739 patients - * 40,796,769 million clinical events - * 923,687 visits -* **Release Date:** 05/08/2024 -* **Source:** Stanford Medicine -* **Metrics:** AUROC, AUPRC -* **Number of Tasks:** 15 - ------ - -### Leaderboard - -* **K** = # of few-shot examples used to train model -* **Model** = Model name - -Please reach out to mwornow@stanford.edu to add your model's scores to the leaderboard! - ------ - -#### By Task Group - -Results across all subtasks in a task group. Mean scores shown across all subtasks. - -##### AUROC - - - -
Abnormal Lab Values
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ModelAllK
1248121624324864128
CLMBR0.8320.5380.560.5910.6240.6410.6650.6870.6980.7150.7280.752
GBM0.7220.4960.5010.5090.5230.5590.5550.580.5950.6110.6190.644
Logistic Regression0.6710.5130.520.5430.5470.5550.5670.5810.5840.5980.6040.61
Random Forest0.6950.5210.5280.5380.5450.5690.5650.590.5970.6090.6190.651
- -
Operational Outcomes
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ModelAllK
1248121624324864128
CLMBR0.8220.5560.5860.6130.6430.6620.6940.7220.7460.760.7740.79
GBM0.770.5230.5180.5350.5840.5910.6050.6180.6560.6740.6990.737
Logistic Regression0.7210.5170.5290.5490.5960.5980.6120.6380.6530.6690.6760.693
Random Forest0.750.5250.5140.5410.5660.5990.6090.6240.6570.6920.7020.74
- -
New Diagnoses
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ModelAllK
1248121624324864128
CLMBR0.7210.5280.5430.5620.6110.6240.6420.660.6740.680.6880.708
GBM0.7190.5090.5020.5180.5720.5720.6010.6150.6510.6790.6820.713
Logistic Regression0.7520.5210.5310.560.6080.5960.6170.6460.6580.6730.6850.72
Random Forest0.6960.4970.5170.5380.5610.5640.5970.6160.6320.6520.6710.691
- -
Chest X-Ray
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ModelAllK
1248121624324864128
CLMBR0.7140.5280.5480.5710.5970.6140.6220.6350.6440.6590.6670.682
GBM0.6510.5130.5120.5040.5440.5480.5570.5760.5870.6020.6120.634
Logistic Regression0.6480.5170.5360.540.5450.5650.570.5820.5910.6020.6030.62
Random Forest0.6240.4980.5140.5210.5480.5530.5630.5770.5930.6090.6180.64
- - -##### AUPRC - - - -
Abnormal Lab Values
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ModelAllK
1248121624324864128
CLMBR0.5160.2950.30.3280.3440.3520.3690.3880.3940.4050.4090.432
GBM0.4320.2710.2720.2760.2860.3020.3070.3240.3370.3440.3530.37
Logistic Regression0.3820.2780.2890.3060.3030.3030.3090.3190.3190.3310.3340.339
Random Forest0.4170.2840.2860.30.2970.3110.3060.3220.330.3380.3490.374
- -
Operational Outcomes
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ModelAllK
1248121624324864128
CLMBR0.4350.1640.1790.2120.2180.2350.2690.2980.3170.3320.3470.374
GBM0.3470.1430.1440.1470.1720.1890.190.1960.2130.2310.2460.281
Logistic Regression0.2520.1470.1540.1640.1730.1740.1810.1880.1970.2070.2130.223
Random Forest0.3150.150.150.1560.1650.1850.1870.1950.2150.2510.2540.294
- -
New Diagnoses
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ModelAllK
1248121624324864128
CLMBR0.1660.0760.0840.0890.1060.1060.1150.1160.1250.1280.1320.146
GBM0.220.0620.060.0660.0810.0830.0960.1060.1130.1330.1380.154
Logistic Regression0.1690.0720.0750.0810.0880.0840.0870.0990.1050.1140.1210.132
Random Forest0.1670.0650.0720.0720.0810.0820.0930.10.1080.1160.1320.146
- -
Chest X-Ray
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ModelAllK
1248121624324864128
CLMBR0.2090.1160.1240.130.1390.1490.1530.1580.1610.170.1770.18
GBM0.1690.1030.1030.1040.1130.1180.120.1260.1290.1370.1420.151
Logistic Regression0.1610.1060.110.1130.1140.1210.1210.1230.1250.1320.1320.139
Random Forest0.160.1020.1070.1070.1130.1170.120.1210.1290.1380.1450.151
- - ------ - -#### Individual - -Results for each individual task. Mean scores shown with standard deviations. - -##### AUROC - - - -
Abnormal Lab Value: Hyperkalemia
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ModelAllK
1248121624324864128
CLMBR0.794 ± 0.00.524 ± 0.0730.548 ± 0.10.537 ± 0.0640.556 ± 0.0890.587 ± 0.1090.606 ± 0.1160.632 ± 0.0860.637 ± 0.0770.666 ± 0.0670.697 ± 0.0360.738 ± 0.024
GBM0.724 ± 0.00.513 ± 0.0140.514 ± 0.0270.501 ± 0.0140.527 ± 0.0220.566 ± 0.0330.559 ± 0.0310.585 ± 0.050.575 ± 0.0330.613 ± 0.0280.611 ± 0.0450.65 ± 0.037
Logistic Regression0.666 ± 0.00.499 ± 0.040.507 ± 0.0380.495 ± 0.0820.527 ± 0.0290.537 ± 0.0570.551 ± 0.0560.579 ± 0.0390.581 ± 0.0160.596 ± 0.0190.585 ± 0.0290.609 ± 0.031
Random Forest0.649 ± 0.00.52 ± 0.0250.522 ± 0.0560.501 ± 0.0310.526 ± 0.0280.577 ± 0.0260.574 ± 0.0480.577 ± 0.040.583 ± 0.030.608 ± 0.0450.623 ± 0.0390.66 ± 0.024
- -
Abnormal Lab Value: Hyponatremia
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ModelAllK
1248121624324864128
CLMBR0.761 ± 0.00.535 ± 0.0280.517 ± 0.0310.512 ± 0.050.528 ± 0.0330.542 ± 0.0230.576 ± 0.0330.593 ± 0.0140.603 ± 0.0140.6 ± 0.0110.61 ± 0.0250.63 ± 0.031
GBM0.66 ± 0.00.5 ± 0.00.503 ± 0.0090.504 ± 0.0170.499 ± 0.0180.514 ± 0.0220.52 ± 0.0190.524 ± 0.0170.523 ± 0.0090.519 ± 0.0280.538 ± 0.0250.542 ± 0.031
Logistic Regression0.605 ± 0.00.505 ± 0.0150.505 ± 0.0190.498 ± 0.0150.498 ± 0.0170.51 ± 0.0190.509 ± 0.0180.512 ± 0.0250.516 ± 0.0260.518 ± 0.0220.525 ± 0.0230.527 ± 0.017
Random Forest0.634 ± 0.00.494 ± 0.0190.502 ± 0.0210.492 ± 0.0260.51 ± 0.0210.509 ± 0.0310.501 ± 0.0110.529 ± 0.0170.521 ± 0.0160.521 ± 0.0210.531 ± 0.0250.548 ± 0.029
- -
Abnormal Lab Value: Anemia
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ModelAllK
1248121624324864128
CLMBR0.963 ± 0.00.583 ± 0.0770.632 ± 0.0650.757 ± 0.0590.861 ± 0.0270.866 ± 0.010.876 ± 0.0170.912 ± 0.0090.914 ± 0.0120.923 ± 0.0070.93 ± 0.0020.941 ± 0.001
GBM0.808 ± 0.00.495 ± 0.0110.511 ± 0.030.531 ± 0.0630.579 ± 0.0650.603 ± 0.0620.58 ± 0.0540.639 ± 0.0250.674 ± 0.0230.686 ± 0.0160.705 ± 0.0070.732 ± 0.011
Logistic Regression0.739 ± 0.00.538 ± 0.0930.555 ± 0.1180.596 ± 0.0770.626 ± 0.0280.608 ± 0.0410.601 ± 0.0280.643 ± 0.0170.644 ± 0.0120.646 ± 0.0290.664 ± 0.0090.668 ± 0.018
Random Forest0.797 ± 0.00.556 ± 0.0570.589 ± 0.0340.589 ± 0.0740.612 ± 0.0740.628 ± 0.0650.607 ± 0.0720.676 ± 0.0360.679 ± 0.0310.704 ± 0.0120.721 ± 0.010.747 ± 0.018
- -
Abnormal Lab Value: Thrombocytopenia
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ModelAllK
1248121624324864128
CLMBR0.85 ± 0.00.548 ± 0.1020.554 ± 0.1030.598 ± 0.0920.611 ± 0.090.627 ± 0.080.669 ± 0.040.709 ± 0.0280.719 ± 0.0220.747 ± 0.0160.748 ± 0.0210.771 ± 0.014
GBM0.818 ± 0.00.501 ± 0.0120.501 ± 0.0180.511 ± 0.0310.504 ± 0.0710.581 ± 0.0480.605 ± 0.0370.631 ± 0.0440.678 ± 0.0240.69 ± 0.0270.688 ± 0.010.726 ± 0.011
Logistic Regression0.754 ± 0.00.515 ± 0.0520.529 ± 0.0870.611 ± 0.0650.56 ± 0.1040.592 ± 0.0760.628 ± 0.0610.647 ± 0.0320.653 ± 0.0360.686 ± 0.0150.685 ± 0.0150.695 ± 0.031
Random Forest0.809 ± 0.00.543 ± 0.0310.537 ± 0.0490.593 ± 0.0370.552 ± 0.0780.606 ± 0.0450.615 ± 0.0570.626 ± 0.0330.664 ± 0.0320.668 ± 0.0550.679 ± 0.0170.727 ± 0.007
- -
Abnormal Lab Value: Hypoglycemia
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ModelAllK
1248121624324864128
CLMBR0.791 ± 0.00.502 ± 0.0370.546 ± 0.0310.549 ± 0.0420.563 ± 0.0450.583 ± 0.0260.598 ± 0.0250.591 ± 0.0390.616 ± 0.0170.639 ± 0.0270.655 ± 0.0260.68 ± 0.02
GBM0.6 ± 0.00.469 ± 0.0690.478 ± 0.0370.497 ± 0.0150.503 ± 0.0440.532 ± 0.0280.514 ± 0.0390.518 ± 0.0230.526 ± 0.0260.547 ± 0.0290.553 ± 0.0280.568 ± 0.02
Logistic Regression0.59 ± 0.00.506 ± 0.0110.505 ± 0.0210.514 ± 0.0170.524 ± 0.0250.525 ± 0.0440.544 ± 0.040.524 ± 0.0440.529 ± 0.0320.546 ± 0.0360.56 ± 0.0140.551 ± 0.023
Random Forest0.586 ± 0.00.493 ± 0.020.491 ± 0.0170.517 ± 0.0410.522 ± 0.030.525 ± 0.0090.528 ± 0.0160.54 ± 0.0220.54 ± 0.0190.545 ± 0.0280.542 ± 0.020.573 ± 0.016
- -
Operational Outcome: ICU Transfer
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ModelAllK
1248121624324864128
CLMBR0.847 ± 0.00.549 ± 0.0820.599 ± 0.0480.595 ± 0.0520.658 ± 0.050.677 ± 0.0860.715 ± 0.0540.748 ± 0.0240.771 ± 0.0280.797 ± 0.0220.82 ± 0.0190.826 ± 0.008
GBM0.768 ± 0.00.533 ± 0.030.519 ± 0.0290.546 ± 0.050.594 ± 0.0540.581 ± 0.0240.626 ± 0.050.651 ± 0.0380.706 ± 0.0160.726 ± 0.0160.746 ± 0.010.762 ± 0.013
Logistic Regression0.683 ± 0.00.521 ± 0.0590.507 ± 0.0350.559 ± 0.0740.621 ± 0.0440.61 ± 0.0460.633 ± 0.040.663 ± 0.0490.684 ± 0.0350.688 ± 0.030.687 ± 0.0180.691 ± 0.023
Random Forest0.705 ± 0.00.524 ± 0.0450.466 ± 0.0350.552 ± 0.0210.543 ± 0.060.606 ± 0.0730.61 ± 0.0710.654 ± 0.0390.681 ± 0.0380.73 ± 0.0230.739 ± 0.0080.768 ± 0.023
- -
Operational Outcome: Long Length of Stay
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ModelAllK
1248121624324864128
CLMBR0.807 ± 0.00.534 ± 0.0490.575 ± 0.0630.614 ± 0.0550.597 ± 0.070.611 ± 0.0650.646 ± 0.0390.684 ± 0.0150.706 ± 0.0150.714 ± 0.0250.722 ± 0.0320.754 ± 0.008
GBM0.781 ± 0.00.524 ± 0.020.526 ± 0.020.517 ± 0.0160.548 ± 0.0640.561 ± 0.030.574 ± 0.0320.588 ± 0.0160.62 ± 0.0340.627 ± 0.0170.65 ± 0.0360.703 ± 0.012
Logistic Regression0.71 ± 0.00.489 ± 0.0470.522 ± 0.0330.56 ± 0.0330.559 ± 0.0230.546 ± 0.0350.558 ± 0.0320.576 ± 0.0350.598 ± 0.0330.621 ± 0.0370.656 ± 0.0190.661 ± 0.006
Random Forest0.755 ± 0.00.519 ± 0.0260.53 ± 0.0440.536 ± 0.0460.537 ± 0.0150.583 ± 0.0510.589 ± 0.050.571 ± 0.0260.611 ± 0.0350.662 ± 0.0330.669 ± 0.0280.711 ± 0.018
- -
Operational Outcome: 30-day Readmission
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ModelAllK
1248121624324864128
CLMBR0.813 ± 0.00.586 ± 0.0790.585 ± 0.1050.629 ± 0.1040.675 ± 0.0440.698 ± 0.0340.722 ± 0.0190.734 ± 0.0170.763 ± 0.0220.77 ± 0.0230.78 ± 0.0170.79 ± 0.008
GBM0.76 ± 0.00.512 ± 0.0210.508 ± 0.0750.541 ± 0.0820.61 ± 0.0690.632 ± 0.0770.616 ± 0.0820.614 ± 0.0470.642 ± 0.0750.668 ± 0.0230.7 ± 0.0350.745 ± 0.018
Logistic Regression0.77 ± 0.00.541 ± 0.1280.557 ± 0.1470.528 ± 0.1220.608 ± 0.0830.639 ± 0.0550.647 ± 0.0620.675 ± 0.0440.677 ± 0.030.698 ± 0.0340.685 ± 0.0340.726 ± 0.015
Random Forest0.79 ± 0.00.532 ± 0.1180.545 ± 0.1180.536 ± 0.1340.617 ± 0.0390.607 ± 0.0510.628 ± 0.0780.648 ± 0.0490.679 ± 0.0410.684 ± 0.0270.698 ± 0.0230.742 ± 0.018
- -
New Diagnosis: Pancreatic Cancer
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ModelAllK
1248121624324864128
CLMBR0.827 ± 0.00.58 ± 0.0410.626 ± 0.0560.64 ± 0.0760.682 ± 0.0630.696 ± 0.0470.724 ± 0.0480.738 ± 0.0420.762 ± 0.0340.773 ± 0.0070.787 ± 0.0070.82 ± 0.015
GBM0.835 ± 0.00.574 ± 0.0450.54 ± 0.0540.533 ± 0.060.647 ± 0.1120.648 ± 0.0350.729 ± 0.0760.769 ± 0.0690.782 ± 0.0430.836 ± 0.0180.849 ± 0.0120.842 ± 0.028
Logistic Regression0.875 ± 0.00.607 ± 0.1050.634 ± 0.0430.635 ± 0.0630.655 ± 0.0730.671 ± 0.0610.692 ± 0.0410.771 ± 0.0440.766 ± 0.0470.76 ± 0.0390.763 ± 0.030.816 ± 0.04
Random Forest0.862 ± 0.00.545 ± 0.0470.558 ± 0.0320.561 ± 0.0490.582 ± 0.0740.673 ± 0.0430.725 ± 0.0540.695 ± 0.0740.772 ± 0.0240.796 ± 0.0210.817 ± 0.0040.818 ± 0.02
- -
New Diagnosis: Acute MI
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ModelAllK
1248121624324864128
CLMBR0.757 ± 0.00.51 ± 0.090.542 ± 0.0950.563 ± 0.110.629 ± 0.0970.639 ± 0.0790.634 ± 0.0910.678 ± 0.0470.717 ± 0.0360.709 ± 0.0260.724 ± 0.030.745 ± 0.011
GBM0.75 ± 0.00.483 ± 0.040.483 ± 0.0310.555 ± 0.0330.608 ± 0.0360.602 ± 0.0590.61 ± 0.0860.666 ± 0.0480.696 ± 0.0560.703 ± 0.0440.696 ± 0.0170.719 ± 0.03
Logistic Regression0.675 ± 0.00.525 ± 0.120.515 ± 0.0850.557 ± 0.1030.618 ± 0.0490.611 ± 0.0440.604 ± 0.0370.621 ± 0.0210.627 ± 0.0210.644 ± 0.0260.669 ± 0.0230.681 ± 0.026
Random Forest0.721 ± 0.00.515 ± 0.0880.564 ± 0.10.595 ± 0.0670.618 ± 0.0670.585 ± 0.0920.629 ± 0.0650.661 ± 0.0490.66 ± 0.0370.682 ± 0.0470.702 ± 0.0380.717 ± 0.022
- -
New Diagnosis: Lupus
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ModelAllK
1248121624324864128
CLMBR0.788 ± 0.00.431 ± 0.0440.441 ± 0.0320.483 ± 0.0770.556 ± 0.0650.576 ± 0.0810.622 ± 0.0590.639 ± 0.0650.667 ± 0.0750.677 ± 0.0710.695 ± 0.060.718 ± 0.039
GBM0.782 ± 0.00.507 ± 0.0660.551 ± 0.040.48 ± 0.0590.533 ± 0.0750.543 ± 0.0620.582 ± 0.0720.582 ± 0.050.649 ± 0.0710.634 ± 0.0560.693 ± 0.0280.73 ± 0.013
Logistic Regression0.8 ± 0.00.44 ± 0.0540.489 ± 0.0240.484 ± 0.0670.599 ± 0.0780.565 ± 0.0530.603 ± 0.090.602 ± 0.0520.627 ± 0.0350.648 ± 0.0420.646 ± 0.0560.742 ± 0.029
Random Forest0.63 ± 0.00.423 ± 0.0140.476 ± 0.0820.536 ± 0.0510.558 ± 0.0880.55 ± 0.0840.547 ± 0.080.598 ± 0.0760.585 ± 0.070.615 ± 0.0380.634 ± 0.0390.672 ± 0.044
- -
New Diagnosis: Hyperlipidemia
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ModelAllK
1248121624324864128
CLMBR0.674 ± 0.00.499 ± 0.0650.57 ± 0.0610.58 ± 0.0490.614 ± 0.0110.608 ± 0.0190.624 ± 0.0280.62 ± 0.0180.626 ± 0.0080.636 ± 0.0190.627 ± 0.0420.658 ± 0.011
GBM0.681 ± 0.00.481 ± 0.0510.475 ± 0.0260.507 ± 0.0620.522 ± 0.0240.536 ± 0.0450.554 ± 0.0330.561 ± 0.0580.581 ± 0.0390.627 ± 0.0310.647 ± 0.0230.652 ± 0.018
Logistic Regression0.711 ± 0.00.542 ± 0.0460.548 ± 0.0450.569 ± 0.0330.562 ± 0.0350.572 ± 0.0490.59 ± 0.0440.599 ± 0.0230.629 ± 0.0220.641 ± 0.0280.653 ± 0.0220.666 ± 0.016
Random Forest0.649 ± 0.00.503 ± 0.0350.522 ± 0.0460.513 ± 0.040.538 ± 0.0470.549 ± 0.0520.544 ± 0.0350.567 ± 0.0560.595 ± 0.040.601 ± 0.0320.647 ± 0.0150.665 ± 0.016
- -
New Diagnosis: Hypertension
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ModelAllK
1248121624324864128
CLMBR0.721 ± 0.00.61 ± 0.0290.58 ± 0.0620.595 ± 0.0780.655 ± 0.040.658 ± 0.0410.672 ± 0.0260.68 ± 0.0210.675 ± 0.0230.683 ± 0.0190.692 ± 0.0170.696 ± 0.009
GBM0.661 ± 0.00.474 ± 0.0450.499 ± 0.020.507 ± 0.060.561 ± 0.020.569 ± 0.0180.568 ± 0.0190.573 ± 0.0170.592 ± 0.0190.593 ± 0.0360.635 ± 0.0270.653 ± 0.007
Logistic Regression0.696 ± 0.00.51 ± 0.0180.506 ± 0.0380.56 ± 0.0690.597 ± 0.040.573 ± 0.0340.599 ± 0.0450.617 ± 0.0490.613 ± 0.0430.614 ± 0.0340.651 ± 0.0350.666 ± 0.036
Random Forest0.62 ± 0.00.535 ± 0.0240.513 ± 0.020.498 ± 0.0210.574 ± 0.0410.551 ± 0.0520.586 ± 0.0270.586 ± 0.0190.591 ± 0.0460.601 ± 0.0410.618 ± 0.0410.64 ± 0.019
- -
New Diagnosis: Celiac
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ModelAllK
1248121624324864128
CLMBR0.562 ± 0.00.542 ± 0.0770.5 ± 0.0650.509 ± 0.0460.529 ± 0.0750.568 ± 0.0770.573 ± 0.0770.606 ± 0.0320.599 ± 0.0470.599 ± 0.0840.604 ± 0.0550.611 ± 0.041
GBM0.608 ± 0.00.537 ± 0.2060.463 ± 0.0490.528 ± 0.120.561 ± 0.040.535 ± 0.1340.564 ± 0.0620.537 ± 0.0870.606 ± 0.0460.68 ± 0.0960.574 ± 0.1250.681 ± 0.093
Logistic Regression0.755 ± 0.00.5 ± 0.1630.494 ± 0.2110.558 ± 0.1420.618 ± 0.1660.581 ± 0.1490.611 ± 0.1080.669 ± 0.0620.685 ± 0.070.732 ± 0.070.727 ± 0.0550.751 ± 0.035
Random Forest0.691 ± 0.00.458 ± 0.1360.472 ± 0.1060.524 ± 0.150.494 ± 0.1090.477 ± 0.1390.551 ± 0.0740.587 ± 0.0430.588 ± 0.1090.614 ± 0.1280.61 ± 0.0510.632 ± 0.072
- -
Chest X-Ray: Lung Opacity
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ModelAllK
1248121624324864128
CLMBR0.71 ± 0.00.588 ± 0.0720.577 ± 0.0980.61 ± 0.0420.625 ± 0.0360.623 ± 0.0440.648 ± 0.0320.64 ± 0.0480.644 ± 0.0430.656 ± 0.0240.669 ± 0.0090.671 ± 0.007
GBM0.667 ± 0.00.514 ± 0.0040.497 ± 0.0180.51 ± 0.0210.545 ± 0.0330.554 ± 0.0270.55 ± 0.0210.562 ± 0.0270.573 ± 0.0190.593 ± 0.0190.577 ± 0.040.592 ± 0.013
Logistic Regression0.637 ± 0.00.53 ± 0.0370.544 ± 0.0480.569 ± 0.0220.547 ± 0.0190.563 ± 0.0160.562 ± 0.0190.573 ± 0.0390.555 ± 0.0420.589 ± 0.0360.587 ± 0.0220.592 ± 0.016
Random Forest0.656 ± 0.00.505 ± 0.0220.523 ± 0.0170.547 ± 0.0370.546 ± 0.0320.531 ± 0.0560.555 ± 0.0350.547 ± 0.0240.586 ± 0.0470.603 ± 0.0210.617 ± 0.0210.607 ± 0.042
- -
Chest X-Ray: Pleural Effusion
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ModelAllK
1248121624324864128
CLMBR0.753 ± 0.00.561 ± 0.050.573 ± 0.0930.58 ± 0.0920.632 ± 0.0710.669 ± 0.0450.67 ± 0.0470.668 ± 0.0430.677 ± 0.0490.704 ± 0.0130.712 ± 0.0110.718 ± 0.017
GBM0.682 ± 0.00.494 ± 0.0090.491 ± 0.0440.498 ± 0.0420.511 ± 0.030.546 ± 0.0170.547 ± 0.0510.541 ± 0.0370.561 ± 0.0630.592 ± 0.0420.628 ± 0.0290.647 ± 0.016
Logistic Regression0.67 ± 0.00.497 ± 0.0340.495 ± 0.0540.504 ± 0.0640.534 ± 0.0460.539 ± 0.0470.568 ± 0.0340.55 ± 0.020.581 ± 0.0360.591 ± 0.0290.614 ± 0.0290.63 ± 0.015
Random Forest0.669 ± 0.00.488 ± 0.0220.51 ± 0.0630.497 ± 0.0580.54 ± 0.0630.552 ± 0.0540.544 ± 0.0710.568 ± 0.0380.592 ± 0.020.615 ± 0.050.626 ± 0.0270.669 ± 0.012
- -
Chest X-Ray: Consolidation
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ModelAllK
1248121624324864128
CLMBR0.677 ± 0.00.522 ± 0.0360.531 ± 0.0590.521 ± 0.0410.56 ± 0.0230.552 ± 0.0240.545 ± 0.0430.576 ± 0.0380.583 ± 0.0190.602 ± 0.0110.607 ± 0.0150.641 ± 0.008
GBM0.631 ± 0.00.5 ± 0.0210.52 ± 0.0340.523 ± 0.0150.544 ± 0.0440.514 ± 0.0410.515 ± 0.060.549 ± 0.030.541 ± 0.0360.59 ± 0.0340.598 ± 0.0320.61 ± 0.012
Logistic Regression0.614 ± 0.00.497 ± 0.0470.546 ± 0.0660.528 ± 0.0720.54 ± 0.0510.557 ± 0.0560.55 ± 0.0530.583 ± 0.0520.561 ± 0.0610.558 ± 0.0460.583 ± 0.040.604 ± 0.026
Random Forest0.589 ± 0.00.507 ± 0.0620.524 ± 0.0690.528 ± 0.0710.533 ± 0.0440.542 ± 0.0630.528 ± 0.0660.572 ± 0.0460.567 ± 0.0360.601 ± 0.0230.595 ± 0.0340.608 ± 0.038
- -
Chest X-Ray: Pleural Other
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ModelAllK
1248121624324864128
CLMBR0.719 ± 0.00.507 ± 0.0430.53 ± 0.0610.562 ± 0.0550.605 ± 0.0620.604 ± 0.0790.62 ± 0.060.616 ± 0.0740.614 ± 0.0770.627 ± 0.0510.633 ± 0.0420.668 ± 0.024
GBM0.741 ± 0.00.515 ± 0.0220.521 ± 0.0740.527 ± 0.1280.643 ± 0.0570.591 ± 0.0980.635 ± 0.0510.653 ± 0.0530.657 ± 0.0360.661 ± 0.0430.666 ± 0.0480.701 ± 0.04
Logistic Regression0.74 ± 0.00.583 ± 0.1560.628 ± 0.0750.609 ± 0.0870.585 ± 0.0990.613 ± 0.0940.689 ± 0.0380.69 ± 0.0330.677 ± 0.0550.675 ± 0.0570.692 ± 0.050.707 ± 0.026
Random Forest0.55 ± 0.00.521 ± 0.1610.499 ± 0.1590.527 ± 0.1830.669 ± 0.0510.649 ± 0.1020.659 ± 0.1030.678 ± 0.0850.688 ± 0.0440.691 ± 0.0490.699 ± 0.0520.736 ± 0.044
- -
Chest X-Ray: Pneumothorax
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ModelAllK
1248121624324864128
CLMBR0.82 ± 0.00.526 ± 0.1020.651 ± 0.0490.645 ± 0.0690.654 ± 0.0910.7 ± 0.0780.708 ± 0.0560.731 ± 0.0370.756 ± 0.0160.768 ± 0.030.782 ± 0.020.786 ± 0.013
GBM0.535 ± 0.00.603 ± 0.0560.525 ± 0.0750.455 ± 0.0750.525 ± 0.1040.564 ± 0.0850.568 ± 0.1160.608 ± 0.1040.665 ± 0.0510.654 ± 0.0590.662 ± 0.0620.707 ± 0.028
Logistic Regression0.636 ± 0.00.484 ± 0.0540.499 ± 0.0680.542 ± 0.1330.505 ± 0.0810.601 ± 0.1210.524 ± 0.060.587 ± 0.1020.606 ± 0.10.63 ± 0.1230.572 ± 0.1070.578 ± 0.111
Random Forest0.657 ± 0.00.491 ± 0.0920.473 ± 0.0750.495 ± 0.0720.516 ± 0.0910.527 ± 0.0540.506 ± 0.0740.571 ± 0.0490.603 ± 0.0860.591 ± 0.0940.619 ± 0.0660.626 ± 0.066
- -
Chest X-Ray: Edema
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ModelAllK
1248121624324864128
CLMBR0.723 ± 0.00.484 ± 0.0910.492 ± 0.0680.575 ± 0.0870.597 ± 0.0730.644 ± 0.0760.648 ± 0.0520.678 ± 0.0290.679 ± 0.0220.688 ± 0.0250.699 ± 0.0090.707 ± 0.011
GBM0.655 ± 0.00.511 ± 0.0290.5 ± 0.0230.482 ± 0.0470.54 ± 0.0680.534 ± 0.0560.565 ± 0.030.593 ± 0.0280.601 ± 0.0350.594 ± 0.0130.622 ± 0.0230.629 ± 0.018
Logistic Regression0.62 ± 0.00.509 ± 0.0240.535 ± 0.0320.549 ± 0.0390.54 ± 0.0430.552 ± 0.0130.568 ± 0.0380.582 ± 0.0250.572 ± 0.0290.619 ± 0.0260.623 ± 0.0260.634 ± 0.021
Random Forest0.614 ± 0.00.502 ± 0.0250.516 ± 0.0320.535 ± 0.0430.518 ± 0.0470.535 ± 0.0420.563 ± 0.0450.543 ± 0.030.586 ± 0.0190.601 ± 0.0140.641 ± 0.0280.646 ± 0.022
- -
Chest X-Ray: Enlarged Cardiomediastinum
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ModelAllK
1248121624324864128
CLMBR0.646 ± 0.00.483 ± 0.0280.512 ± 0.0570.519 ± 0.0570.56 ± 0.0430.568 ± 0.0350.568 ± 0.0240.575 ± 0.0340.589 ± 0.0330.607 ± 0.0150.609 ± 0.0130.631 ± 0.013
GBM0.651 ± 0.00.521 ± 0.070.555 ± 0.0660.511 ± 0.0870.569 ± 0.0750.571 ± 0.0560.579 ± 0.0540.584 ± 0.0580.586 ± 0.0480.618 ± 0.0120.594 ± 0.0220.634 ± 0.034
Logistic Regression0.691 ± 0.00.458 ± 0.1070.549 ± 0.0780.543 ± 0.0920.571 ± 0.0640.597 ± 0.0490.598 ± 0.0480.628 ± 0.0580.634 ± 0.0580.665 ± 0.0180.667 ± 0.0120.683 ± 0.008
Random Forest0.587 ± 0.00.474 ± 0.110.528 ± 0.0730.534 ± 0.1260.582 ± 0.0770.613 ± 0.0640.611 ± 0.0240.641 ± 0.0130.623 ± 0.0290.64 ± 0.040.633 ± 0.0440.676 ± 0.043
- -
Chest X-Ray: Support Devices
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ModelAllK
1248121624324864128
CLMBR0.753 ± 0.00.588 ± 0.0650.593 ± 0.0970.601 ± 0.110.643 ± 0.0350.651 ± 0.0360.659 ± 0.0270.665 ± 0.0350.672 ± 0.020.691 ± 0.0050.698 ± 0.0140.707 ± 0.016
GBM0.673 ± 0.00.501 ± 0.0130.515 ± 0.0130.504 ± 0.040.512 ± 0.0180.543 ± 0.0640.548 ± 0.0490.573 ± 0.0490.576 ± 0.0390.593 ± 0.0430.614 ± 0.0210.631 ± 0.026
Logistic Regression0.646 ± 0.00.494 ± 0.0190.517 ± 0.0420.535 ± 0.0520.523 ± 0.0660.547 ± 0.0460.547 ± 0.0530.537 ± 0.0490.534 ± 0.0340.563 ± 0.0360.56 ± 0.0320.581 ± 0.031
Random Forest0.689 ± 0.00.486 ± 0.0250.51 ± 0.0310.516 ± 0.0350.523 ± 0.0550.575 ± 0.0690.561 ± 0.0610.555 ± 0.0310.562 ± 0.0650.598 ± 0.0220.62 ± 0.0160.637 ± 0.011
- -
Chest X-Ray: No Finding
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ModelAllK
1248121624324864128
CLMBR0.608 ± 0.00.502 ± 0.0130.526 ± 0.030.529 ± 0.0150.541 ± 0.0250.544 ± 0.0070.534 ± 0.0150.55 ± 0.0150.548 ± 0.0140.56 ± 0.0280.555 ± 0.0190.571 ± 0.009
GBM0.597 ± 0.00.507 ± 0.0210.508 ± 0.0170.506 ± 0.0290.521 ± 0.0170.512 ± 0.010.514 ± 0.0170.517 ± 0.0160.531 ± 0.0140.538 ± 0.0070.539 ± 0.0150.54 ± 0.016
Logistic Regression0.582 ± 0.00.476 ± 0.0290.517 ± 0.030.508 ± 0.0210.524 ± 0.0130.53 ± 0.020.516 ± 0.0160.53 ± 0.0190.544 ± 0.0310.541 ± 0.020.538 ± 0.0160.553 ± 0.013
Random Forest0.593 ± 0.00.488 ± 0.0230.501 ± 0.0280.496 ± 0.0230.516 ± 0.0230.52 ± 0.0150.521 ± 0.0230.522 ± 0.0160.538 ± 0.0220.536 ± 0.0120.533 ± 0.0120.559 ± 0.009
- -
Chest X-Ray: Cardiomegaly
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ModelAllK
1248121624324864128
CLMBR0.826 ± 0.00.553 ± 0.0780.564 ± 0.0890.624 ± 0.0910.641 ± 0.0950.636 ± 0.0760.664 ± 0.060.722 ± 0.0360.735 ± 0.0280.754 ± 0.0210.775 ± 0.0160.782 ± 0.019
GBM0.788 ± 0.00.49 ± 0.0420.532 ± 0.0460.526 ± 0.0380.584 ± 0.0530.58 ± 0.0440.616 ± 0.0820.641 ± 0.0650.665 ± 0.0480.693 ± 0.0330.695 ± 0.0340.752 ± 0.016
Logistic Regression0.759 ± 0.00.528 ± 0.1070.529 ± 0.0450.58 ± 0.0770.577 ± 0.1410.593 ± 0.0910.624 ± 0.0930.676 ± 0.0760.682 ± 0.0650.664 ± 0.1230.715 ± 0.0960.723 ± 0.033
Random Forest0.785 ± 0.00.484 ± 0.0710.514 ± 0.0290.536 ± 0.0630.564 ± 0.0710.566 ± 0.0520.611 ± 0.0620.663 ± 0.0660.696 ± 0.0460.714 ± 0.050.736 ± 0.0570.763 ± 0.017
- -
Chest X-Ray: Atelectasis
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ModelAllK
1248121624324864128
CLMBR0.656 ± 0.00.483 ± 0.0910.507 ± 0.0890.533 ± 0.0950.566 ± 0.0920.575 ± 0.0660.589 ± 0.0520.572 ± 0.0430.587 ± 0.0450.62 ± 0.0360.628 ± 0.030.646 ± 0.009
GBM0.548 ± 0.00.494 ± 0.0310.497 ± 0.040.498 ± 0.0420.514 ± 0.0410.525 ± 0.0310.518 ± 0.0430.535 ± 0.0270.533 ± 0.0390.521 ± 0.0240.535 ± 0.0220.55 ± 0.009
Logistic Regression0.542 ± 0.00.492 ± 0.0430.52 ± 0.0180.481 ± 0.0420.503 ± 0.0390.501 ± 0.0410.502 ± 0.0330.497 ± 0.0190.525 ± 0.020.513 ± 0.0310.511 ± 0.0420.535 ± 0.014
Random Forest0.513 ± 0.00.494 ± 0.0210.489 ± 0.0210.498 ± 0.0410.518 ± 0.0310.517 ± 0.0470.54 ± 0.0310.523 ± 0.0310.526 ± 0.0240.528 ± 0.0160.526 ± 0.0240.539 ± 0.013
- -
>Chest X-Ray: Fracture
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ModelAllK
1248121624324864128
CLMBR0.728 ± 0.00.528 ± 0.0860.51 ± 0.0730.521 ± 0.0840.587 ± 0.0990.631 ± 0.0440.648 ± 0.0490.682 ± 0.0240.697 ± 0.0420.693 ± 0.030.693 ± 0.0430.72 ± 0.026
GBM0.716 ± 0.00.527 ± 0.0340.503 ± 0.0650.537 ± 0.0480.567 ± 0.030.579 ± 0.0650.581 ± 0.0760.614 ± 0.0570.617 ± 0.0970.631 ± 0.0510.673 ± 0.0170.697 ± 0.05
Logistic Regression0.688 ± 0.00.609 ± 0.0350.554 ± 0.1120.524 ± 0.0980.573 ± 0.1190.593 ± 0.0790.615 ± 0.0540.605 ± 0.0870.643 ± 0.030.656 ± 0.0350.634 ± 0.0350.679 ± 0.026
Random Forest0.554 ± 0.00.508 ± 0.0940.554 ± 0.0860.536 ± 0.0670.568 ± 0.0630.532 ± 0.0410.586 ± 0.0790.601 ± 0.1020.602 ± 0.0840.634 ± 0.070.619 ± 0.0480.7 ± 0.029
- -
>Chest X-Ray: Pneumonia
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ModelAllK
1248121624324864128
CLMBR0.621 ± 0.00.49 ± 0.0290.499 ± 0.0370.51 ± 0.0470.503 ± 0.0440.524 ± 0.0440.522 ± 0.0430.532 ± 0.0450.536 ± 0.0590.551 ± 0.0360.553 ± 0.040.574 ± 0.029
GBM0.523 ± 0.00.49 ± 0.0180.498 ± 0.0280.478 ± 0.0510.523 ± 0.0240.532 ± 0.0260.515 ± 0.0490.515 ± 0.0260.514 ± 0.0460.548 ± 0.0260.534 ± 0.0320.528 ± 0.027
Logistic Regression0.562 ± 0.00.533 ± 0.0350.525 ± 0.0450.534 ± 0.0440.547 ± 0.030.559 ± 0.0090.525 ± 0.0270.52 ± 0.0250.545 ± 0.0260.546 ± 0.0160.514 ± 0.040.542 ± 0.025
Random Forest0.551 ± 0.00.511 ± 0.0460.517 ± 0.030.513 ± 0.040.528 ± 0.0270.545 ± 0.0070.53 ± 0.0540.534 ± 0.0390.541 ± 0.0170.556 ± 0.0240.551 ± 0.0160.54 ± 0.029
- -
>Chest X-Ray: Lung Lesion
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ModelAllK
1248121624324864128
CLMBR0.761 ± 0.00.573 ± 0.0660.599 ± 0.0890.66 ± 0.0420.65 ± 0.0360.679 ± 0.020.681 ± 0.0110.689 ± 0.0090.698 ± 0.0130.706 ± 0.0230.719 ± 0.0120.731 ± 0.017
GBM0.712 ± 0.00.508 ± 0.0220.51 ± 0.0190.506 ± 0.0310.525 ± 0.0470.529 ± 0.0160.548 ± 0.0270.571 ± 0.0070.595 ± 0.0410.604 ± 0.0210.633 ± 0.0310.653 ± 0.033
Logistic Regression0.691 ± 0.00.55 ± 0.070.539 ± 0.0610.557 ± 0.070.56 ± 0.0620.571 ± 0.0460.587 ± 0.0220.588 ± 0.0220.608 ± 0.0220.622 ± 0.0360.63 ± 0.0220.632 ± 0.043
Random Forest0.732 ± 0.00.519 ± 0.0390.531 ± 0.0780.529 ± 0.0510.547 ± 0.040.544 ± 0.0530.573 ± 0.0280.561 ± 0.0180.586 ± 0.0260.615 ± 0.0130.638 ± 0.030.661 ± 0.034
- - -##### AUPRC - - - -
Abnormal Lab Value: Hypoglycemia
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ModelAllK
1248121624324864128
CLMBR0.085 ± 0.00.014 ± 0.0020.017 ± 0.0020.017 ± 0.0030.018 ± 0.0030.019 ± 0.0010.02 ± 0.0010.02 ± 0.0030.022 ± 0.0020.025 ± 0.0030.03 ± 0.0040.034 ± 0.004
GBM0.02 ± 0.00.013 ± 0.0020.013 ± 0.0010.014 ± 0.0010.014 ± 0.0020.015 ± 0.0010.014 ± 0.0020.015 ± 0.0010.015 ± 0.0010.016 ± 0.0020.017 ± 0.0020.018 ± 0.002
Logistic Regression0.021 ± 0.00.017 ± 0.0010.015 ± 0.0020.016 ± 0.0010.016 ± 0.0020.016 ± 0.0020.016 ± 0.0020.015 ± 0.0020.016 ± 0.0010.017 ± 0.0020.018 ± 0.0010.017 ± 0.002
Random Forest0.024 ± 0.00.015 ± 0.0010.014 ± 0.0010.015 ± 0.0020.016 ± 0.0020.015 ± 0.0010.015 ± 0.0010.016 ± 0.0010.016 ± 0.0020.016 ± 0.0020.016 ± 0.0010.019 ± 0.002
- -
Abnormal Lab Value: Thrombocytopenia
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ModelAllK
1248121624324864128
CLMBR0.783 ± 0.00.389 ± 0.1080.39 ± 0.0940.433 ± 0.0860.439 ± 0.0840.46 ± 0.0940.501 ± 0.0560.555 ± 0.0530.574 ± 0.0470.616 ± 0.0310.608 ± 0.0450.66 ± 0.024
GBM0.734 ± 0.00.34 ± 0.0060.341 ± 0.0090.345 ± 0.0160.361 ± 0.0540.411 ± 0.0550.45 ± 0.0530.474 ± 0.0620.529 ± 0.0390.544 ± 0.0530.565 ± 0.0170.609 ± 0.013
Logistic Regression0.628 ± 0.00.341 ± 0.0320.392 ± 0.0820.451 ± 0.060.421 ± 0.1020.414 ± 0.0640.443 ± 0.060.467 ± 0.0490.473 ± 0.0560.521 ± 0.0440.527 ± 0.0260.539 ± 0.052
Random Forest0.719 ± 0.00.374 ± 0.0330.365 ± 0.0290.431 ± 0.0560.389 ± 0.0620.44 ± 0.0570.436 ± 0.0550.454 ± 0.0410.494 ± 0.0510.506 ± 0.0850.551 ± 0.0420.623 ± 0.014
- -
Abnormal Lab Value: Anemia
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ModelAllK
1248121624324864128
CLMBR0.982 ± 0.00.736 ± 0.0580.765 ± 0.0430.861 ± 0.0310.927 ± 0.0170.93 ± 0.0050.937 ± 0.010.956 ± 0.0060.957 ± 0.0060.962 ± 0.0040.967 ± 0.0010.972 ± 0.001
GBM0.898 ± 0.00.686 ± 0.0050.694 ± 0.0140.706 ± 0.0390.739 ± 0.0350.755 ± 0.0410.741 ± 0.0340.787 ± 0.0170.802 ± 0.0090.811 ± 0.0170.825 ± 0.010.848 ± 0.01
Logistic Regression0.838 ± 0.00.713 ± 0.0560.721 ± 0.0730.748 ± 0.0390.765 ± 0.0090.759 ± 0.020.755 ± 0.0140.78 ± 0.0120.775 ± 0.0050.778 ± 0.0140.789 ± 0.0020.794 ± 0.005
Random Forest0.89 ± 0.00.721 ± 0.0310.735 ± 0.0150.742 ± 0.0350.76 ± 0.0490.773 ± 0.0390.757 ± 0.0470.8 ± 0.030.802 ± 0.0280.823 ± 0.0090.831 ± 0.0140.853 ± 0.016
- -
Abnormal Lab Value: hyponatremia
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ModelAllK
1248121624324864128
CLMBR0.577 ± 0.00.31 ± 0.020.297 ± 0.020.298 ± 0.0330.306 ± 0.0250.313 ± 0.0190.342 ± 0.0250.358 ± 0.010.364 ± 0.0160.359 ± 0.0090.373 ± 0.0230.395 ± 0.032
GBM0.435 ± 0.00.288 ± 0.00.289 ± 0.0040.291 ± 0.0110.287 ± 0.0070.293 ± 0.0150.301 ± 0.0110.307 ± 0.0190.305 ± 0.010.307 ± 0.0170.316 ± 0.0190.319 ± 0.02
Logistic Regression0.367 ± 0.00.288 ± 0.0120.288 ± 0.0140.289 ± 0.0090.285 ± 0.0090.295 ± 0.0120.295 ± 0.0120.297 ± 0.020.3 ± 0.0160.3 ± 0.020.302 ± 0.0170.305 ± 0.011
Random Forest0.401 ± 0.00.283 ± 0.0090.289 ± 0.010.285 ± 0.0150.294 ± 0.0120.294 ± 0.0210.287 ± 0.0060.308 ± 0.0130.304 ± 0.0160.302 ± 0.0170.306 ± 0.0160.323 ± 0.021
- -
Abnormal Lab Value: Hyperkalemia
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ModelAllK
1248121624324864128
CLMBR0.154 ± 0.00.028 ± 0.0080.032 ± 0.0110.03 ± 0.0080.032 ± 0.010.04 ± 0.0160.047 ± 0.0230.049 ± 0.0230.052 ± 0.0220.062 ± 0.0250.066 ± 0.020.1 ± 0.024
GBM0.074 ± 0.00.025 ± 0.0010.025 ± 0.0010.024 ± 0.0010.028 ± 0.0030.035 ± 0.0070.031 ± 0.0020.036 ± 0.010.033 ± 0.010.042 ± 0.0070.04 ± 0.0080.054 ± 0.012
Logistic Regression0.056 ± 0.00.029 ± 0.0050.029 ± 0.0040.028 ± 0.0080.028 ± 0.0030.03 ± 0.0070.033 ± 0.0070.036 ± 0.0080.034 ± 0.0030.036 ± 0.0050.035 ± 0.0070.041 ± 0.005
Random Forest0.049 ± 0.00.028 ± 0.0040.028 ± 0.0040.025 ± 0.0020.028 ± 0.0020.032 ± 0.0020.033 ± 0.0070.034 ± 0.0060.034 ± 0.0030.042 ± 0.0110.043 ± 0.0140.053 ± 0.014
- -
Operational Outcome: ICU Transfer
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ModelAllK
1248121624324864128
CLMBR0.31 ± 0.00.058 ± 0.0150.066 ± 0.0110.076 ± 0.020.1 ± 0.0150.13 ± 0.0520.162 ± 0.0380.202 ± 0.0230.209 ± 0.0450.222 ± 0.0330.252 ± 0.030.276 ± 0.023
GBM0.156 ± 0.00.044 ± 0.0030.042 ± 0.0030.046 ± 0.0060.057 ± 0.0120.059 ± 0.0110.071 ± 0.0240.092 ± 0.0220.116 ± 0.0210.135 ± 0.0350.133 ± 0.020.16 ± 0.017
Logistic Regression0.087 ± 0.00.049 ± 0.0170.045 ± 0.0070.061 ± 0.0280.07 ± 0.0180.064 ± 0.0150.068 ± 0.0090.075 ± 0.0130.087 ± 0.0170.083 ± 0.0180.083 ± 0.0130.09 ± 0.018
Random Forest0.082 ± 0.00.051 ± 0.0140.039 ± 0.0040.047 ± 0.0040.047 ± 0.0070.067 ± 0.0210.07 ± 0.020.103 ± 0.0360.104 ± 0.0330.161 ± 0.0340.157 ± 0.0340.202 ± 0.042
- -
Operational Outcome: los
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ModelAllK
1248121624324864128
CLMBR0.569 ± 0.00.274 ± 0.0310.311 ± 0.0460.36 ± 0.0470.342 ± 0.0660.344 ± 0.0560.384 ± 0.0550.413 ± 0.0240.441 ± 0.0330.452 ± 0.0370.457 ± 0.0360.493 ± 0.015
GBM0.535 ± 0.00.26 ± 0.0090.262 ± 0.0090.258 ± 0.0070.289 ± 0.0460.3 ± 0.0230.311 ± 0.0270.318 ± 0.0150.334 ± 0.0320.351 ± 0.0150.366 ± 0.0350.409 ± 0.02
Logistic Regression0.391 ± 0.00.251 ± 0.0240.266 ± 0.0190.295 ± 0.0370.283 ± 0.0080.28 ± 0.0180.286 ± 0.0160.301 ± 0.0290.314 ± 0.0270.326 ± 0.0270.354 ± 0.0160.355 ± 0.013
Random Forest0.485 ± 0.00.258 ± 0.0120.268 ± 0.0240.278 ± 0.0290.283 ± 0.0150.321 ± 0.0320.315 ± 0.0310.295 ± 0.0140.328 ± 0.0240.373 ± 0.0380.38 ± 0.0290.408 ± 0.032
- -
Operational Outcome: 30-Day Readmission
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ModelAllK
1248121624324864128
CLMBR0.425 ± 0.00.16 ± 0.0370.16 ± 0.0510.2 ± 0.0710.212 ± 0.0440.232 ± 0.0260.262 ± 0.0290.279 ± 0.0210.3 ± 0.030.321 ± 0.040.331 ± 0.0330.352 ± 0.029
GBM0.349 ± 0.00.124 ± 0.0040.127 ± 0.020.137 ± 0.0230.171 ± 0.0390.209 ± 0.0730.187 ± 0.0590.179 ± 0.0370.188 ± 0.0490.205 ± 0.0180.24 ± 0.0310.274 ± 0.024
Logistic Regression0.278 ± 0.00.141 ± 0.0350.151 ± 0.0470.135 ± 0.0340.166 ± 0.0390.179 ± 0.0290.188 ± 0.0360.19 ± 0.0270.189 ± 0.020.211 ± 0.0270.202 ± 0.0170.224 ± 0.007
Random Forest0.378 ± 0.00.14 ± 0.0380.143 ± 0.0380.142 ± 0.040.165 ± 0.0220.168 ± 0.0260.176 ± 0.0490.188 ± 0.030.214 ± 0.0370.218 ± 0.0260.225 ± 0.0220.273 ± 0.034
- -
New Diagnosis: Hyperlipidemia
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ModelAllK
1248121624324864128
CLMBR0.224 ± 0.00.143 ± 0.0390.165 ± 0.0240.172 ± 0.0230.183 ± 0.0120.18 ± 0.0090.193 ± 0.0190.193 ± 0.0150.196 ± 0.0150.198 ± 0.0110.193 ± 0.0180.214 ± 0.009
GBM0.24 ± 0.00.127 ± 0.0120.125 ± 0.0050.138 ± 0.0180.141 ± 0.0140.146 ± 0.0160.152 ± 0.0140.159 ± 0.0290.174 ± 0.0120.199 ± 0.020.212 ± 0.0260.212 ± 0.017
Logistic Regression0.239 ± 0.00.149 ± 0.0240.149 ± 0.0180.162 ± 0.0090.16 ± 0.0110.167 ± 0.0220.17 ± 0.020.179 ± 0.0210.182 ± 0.0140.204 ± 0.0230.208 ± 0.0190.217 ± 0.015
Random Forest0.215 ± 0.00.132 ± 0.0090.143 ± 0.0140.137 ± 0.0140.15 ± 0.0120.154 ± 0.0240.15 ± 0.0150.158 ± 0.0270.168 ± 0.0180.179 ± 0.0290.214 ± 0.0250.224 ± 0.016
- -
New Diagnosis: Pancreatic Cancer
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ModelAllK
1248121624324864128
CLMBR0.299 ± 0.00.04 ± 0.0050.06 ± 0.0160.066 ± 0.0310.106 ± 0.0640.099 ± 0.0340.119 ± 0.0690.12 ± 0.0650.144 ± 0.0610.167 ± 0.0580.177 ± 0.0410.231 ± 0.056
GBM0.379 ± 0.00.03 ± 0.0040.027 ± 0.0040.028 ± 0.0050.065 ± 0.040.064 ± 0.0210.11 ± 0.0510.134 ± 0.0750.121 ± 0.0270.197 ± 0.0460.189 ± 0.0540.252 ± 0.022
Logistic Regression0.158 ± 0.00.057 ± 0.0280.063 ± 0.0340.042 ± 0.0130.059 ± 0.0340.049 ± 0.0140.056 ± 0.0170.088 ± 0.0170.096 ± 0.0410.097 ± 0.0150.108 ± 0.0170.135 ± 0.011
Random Forest0.317 ± 0.00.031 ± 0.0040.034 ± 0.0080.032 ± 0.0050.039 ± 0.0130.064 ± 0.0260.083 ± 0.0150.092 ± 0.0580.129 ± 0.0560.156 ± 0.0230.173 ± 0.0440.229 ± 0.055
- -
New Diagnosis: Acute MI
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ModelAllK
1248121624324864128
CLMBR0.181 ± 0.00.081 ± 0.0230.089 ± 0.0290.101 ± 0.0310.121 ± 0.0370.122 ± 0.0450.123 ± 0.0450.137 ± 0.0340.163 ± 0.0160.156 ± 0.0120.162 ± 0.0190.173 ± 0.003
GBM0.185 ± 0.00.066 ± 0.0040.065 ± 0.0030.08 ± 0.0070.103 ± 0.0110.098 ± 0.0230.108 ± 0.0280.133 ± 0.0320.15 ± 0.0310.141 ± 0.0250.145 ± 0.0150.16 ± 0.036
Logistic Regression0.131 ± 0.00.081 ± 0.0290.089 ± 0.0270.095 ± 0.0310.104 ± 0.0220.104 ± 0.0280.099 ± 0.020.103 ± 0.0230.105 ± 0.0140.109 ± 0.0160.116 ± 0.0170.121 ± 0.012
Random Forest0.158 ± 0.00.075 ± 0.0150.089 ± 0.030.096 ± 0.0230.11 ± 0.030.095 ± 0.0280.115 ± 0.0270.117 ± 0.0250.122 ± 0.020.13 ± 0.0250.137 ± 0.0140.154 ± 0.021
- -
New Diagnosis: Lupus
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ModelAllK
1248121624324864128
CLMBR0.035 ± 0.00.008 ± 0.0020.018 ± 0.0220.009 ± 0.0020.011 ± 0.0020.012 ± 0.0050.014 ± 0.0040.015 ± 0.0050.019 ± 0.0080.017 ± 0.0040.031 ± 0.0190.025 ± 0.009
GBM0.221 ± 0.00.009 ± 0.0010.01 ± 0.0010.009 ± 0.0010.015 ± 0.0080.012 ± 0.0030.018 ± 0.0120.016 ± 0.0080.031 ± 0.0170.057 ± 0.0540.052 ± 0.0380.065 ± 0.04
Logistic Regression0.085 ± 0.00.008 ± 0.0010.009 ± 0.00.009 ± 0.0020.012 ± 0.0030.01 ± 0.0010.013 ± 0.0040.012 ± 0.0020.013 ± 0.0010.014 ± 0.0030.015 ± 0.0050.02 ± 0.003
Random Forest0.017 ± 0.00.008 ± 0.00.009 ± 0.0030.011 ± 0.0010.014 ± 0.0050.012 ± 0.0030.012 ± 0.0030.018 ± 0.0080.039 ± 0.0360.025 ± 0.0180.025 ± 0.0130.031 ± 0.019
- -
New Diagnosis: Hypertension
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ModelAllK
1248121624324864128
CLMBR0.242 ± 0.00.172 ± 0.0170.163 ± 0.0310.175 ± 0.0350.203 ± 0.0280.205 ± 0.0330.216 ± 0.0160.216 ± 0.0250.21 ± 0.0160.21 ± 0.0170.215 ± 0.0170.214 ± 0.01
GBM0.238 ± 0.00.122 ± 0.0070.125 ± 0.0040.128 ± 0.0150.146 ± 0.0130.166 ± 0.030.174 ± 0.0160.177 ± 0.0190.172 ± 0.0110.165 ± 0.0230.2 ± 0.0180.205 ± 0.01
Logistic Regression0.21 ± 0.00.127 ± 0.0120.124 ± 0.0140.145 ± 0.0310.16 ± 0.0310.148 ± 0.0160.16 ± 0.0160.167 ± 0.0270.167 ± 0.0260.162 ± 0.0130.183 ± 0.020.188 ± 0.021
Random Forest0.186 ± 0.00.135 ± 0.0090.136 ± 0.010.126 ± 0.0080.16 ± 0.0220.151 ± 0.0190.183 ± 0.0290.176 ± 0.0260.175 ± 0.0270.184 ± 0.0180.186 ± 0.0240.204 ± 0.018
- -
New Diagnosis: Celiac
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ModelAllK
1248121624324864128
CLMBR0.014 ± 0.00.012 ± 0.0020.01 ± 0.0010.011 ± 0.0020.014 ± 0.0050.017 ± 0.0060.022 ± 0.0140.016 ± 0.0050.015 ± 0.0030.017 ± 0.0090.016 ± 0.0040.019 ± 0.01
GBM0.053 ± 0.00.021 ± 0.0160.009 ± 0.0010.013 ± 0.0050.013 ± 0.0030.015 ± 0.0050.015 ± 0.0060.017 ± 0.0120.028 ± 0.020.04 ± 0.0370.033 ± 0.0310.027 ± 0.011
Logistic Regression0.189 ± 0.00.013 ± 0.0060.019 ± 0.0170.031 ± 0.0280.034 ± 0.0420.026 ± 0.0230.026 ± 0.0150.045 ± 0.0280.071 ± 0.0390.098 ± 0.0290.096 ± 0.0440.108 ± 0.027
Random Forest0.108 ± 0.00.011 ± 0.0050.02 ± 0.020.028 ± 0.0370.011 ± 0.0030.016 ± 0.0150.017 ± 0.0110.041 ± 0.060.018 ± 0.0120.025 ± 0.0220.059 ± 0.0760.031 ± 0.039
- -
Chest X-Ray: Lung Opacity
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ModelAllK
1248121624324864128
CLMBR0.399 ± 0.00.256 ± 0.0480.261 ± 0.0640.275 ± 0.0450.284 ± 0.0460.293 ± 0.0540.315 ± 0.0390.313 ± 0.0640.314 ± 0.0670.324 ± 0.0440.343 ± 0.0280.333 ± 0.018
GBM0.346 ± 0.00.199 ± 0.0020.193 ± 0.0050.198 ± 0.0070.223 ± 0.020.232 ± 0.0120.235 ± 0.0170.236 ± 0.0240.244 ± 0.0170.26 ± 0.0220.242 ± 0.0280.255 ± 0.012
Logistic Regression0.292 ± 0.00.2 ± 0.0150.209 ± 0.0210.221 ± 0.0180.213 ± 0.0160.224 ± 0.0190.22 ± 0.0150.236 ± 0.0280.225 ± 0.0350.247 ± 0.0230.243 ± 0.0170.245 ± 0.017
Random Forest0.326 ± 0.00.196 ± 0.0070.205 ± 0.0050.212 ± 0.0140.216 ± 0.0270.212 ± 0.0380.227 ± 0.0280.22 ± 0.0180.256 ± 0.0460.256 ± 0.0150.285 ± 0.0270.27 ± 0.033
- -
Chest X-Ray: Pleural Effusion
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ModelAllK
1248121624324864128
CLMBR0.302 ± 0.00.154 ± 0.0230.164 ± 0.0430.164 ± 0.0520.203 ± 0.0570.226 ± 0.0420.231 ± 0.0440.219 ± 0.0430.229 ± 0.0440.253 ± 0.0110.261 ± 0.0160.265 ± 0.017
GBM0.229 ± 0.00.129 ± 0.0020.13 ± 0.0080.129 ± 0.0110.142 ± 0.0190.158 ± 0.0180.152 ± 0.0250.147 ± 0.0180.162 ± 0.0330.187 ± 0.0240.208 ± 0.0270.214 ± 0.024
Logistic Regression0.256 ± 0.00.124 ± 0.0080.125 ± 0.0120.13 ± 0.0170.141 ± 0.0190.148 ± 0.0170.161 ± 0.0140.154 ± 0.0170.166 ± 0.0170.173 ± 0.0110.188 ± 0.0140.208 ± 0.003
Random Forest0.201 ± 0.00.125 ± 0.0070.129 ± 0.0140.126 ± 0.0150.145 ± 0.0240.157 ± 0.0190.149 ± 0.030.158 ± 0.0180.168 ± 0.0110.194 ± 0.0380.199 ± 0.0260.238 ± 0.012
- -
Chest X-Ray: Consolidation
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ModelAllK
1248121624324864128
CLMBR0.072 ± 0.00.041 ± 0.0060.043 ± 0.0080.042 ± 0.0060.048 ± 0.0050.045 ± 0.0040.045 ± 0.0050.051 ± 0.0050.054 ± 0.0070.053 ± 0.0030.055 ± 0.0040.061 ± 0.005
GBM0.061 ± 0.00.038 ± 0.0020.04 ± 0.0030.04 ± 0.0030.044 ± 0.0070.042 ± 0.0060.043 ± 0.0090.047 ± 0.0070.045 ± 0.0060.053 ± 0.0070.055 ± 0.0070.056 ± 0.006
Logistic Regression0.072 ± 0.00.048 ± 0.0130.053 ± 0.0140.047 ± 0.0120.05 ± 0.010.054 ± 0.0110.052 ± 0.0110.057 ± 0.0140.05 ± 0.010.052 ± 0.0140.056 ± 0.0120.061 ± 0.009
Random Forest0.058 ± 0.00.04 ± 0.0080.045 ± 0.0110.045 ± 0.0090.043 ± 0.0070.046 ± 0.010.046 ± 0.0120.055 ± 0.0070.05 ± 0.0120.059 ± 0.0050.054 ± 0.0060.058 ± 0.013
- -
Chest X-Ray: Pleural Other
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ModelAllK
1248121624324864128
CLMBR0.063 ± 0.00.017 ± 0.0020.02 ± 0.0060.024 ± 0.0050.03 ± 0.0070.031 ± 0.0110.031 ± 0.010.031 ± 0.0120.03 ± 0.010.033 ± 0.010.039 ± 0.0120.04 ± 0.003
GBM0.049 ± 0.00.017 ± 0.0010.017 ± 0.0030.026 ± 0.020.026 ± 0.0050.025 ± 0.0080.029 ± 0.0070.03 ± 0.0040.029 ± 0.0060.028 ± 0.0040.037 ± 0.0150.043 ± 0.007
Logistic Regression0.046 ± 0.00.023 ± 0.0090.024 ± 0.0090.022 ± 0.0060.022 ± 0.0070.025 ± 0.010.032 ± 0.0070.029 ± 0.0060.028 ± 0.0060.026 ± 0.0060.028 ± 0.0050.03 ± 0.004
Random Forest0.021 ± 0.00.019 ± 0.0060.02 ± 0.0090.022 ± 0.0130.029 ± 0.0070.028 ± 0.0080.032 ± 0.0090.036 ± 0.0120.033 ± 0.0060.032 ± 0.0060.036 ± 0.010.045 ± 0.014
- -
Chest X-Ray: Pneumothorax
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ModelAllK
1248121624324864128
CLMBR0.178 ± 0.00.047 ± 0.010.071 ± 0.0130.07 ± 0.0220.073 ± 0.0230.094 ± 0.0260.095 ± 0.0270.103 ± 0.0220.117 ± 0.010.129 ± 0.0270.138 ± 0.0240.142 ± 0.023
GBM0.057 ± 0.00.056 ± 0.0070.047 ± 0.0060.042 ± 0.0050.051 ± 0.0130.058 ± 0.0220.069 ± 0.0360.09 ± 0.0440.086 ± 0.0330.095 ± 0.0260.092 ± 0.0290.111 ± 0.026
Logistic Regression0.092 ± 0.00.043 ± 0.0050.049 ± 0.0080.069 ± 0.0510.052 ± 0.0110.096 ± 0.0570.062 ± 0.0210.077 ± 0.0410.086 ± 0.0360.09 ± 0.0380.067 ± 0.0260.072 ± 0.045
Random Forest0.074 ± 0.00.046 ± 0.0120.052 ± 0.0270.045 ± 0.0080.061 ± 0.030.05 ± 0.010.052 ± 0.0090.057 ± 0.010.07 ± 0.0270.072 ± 0.0310.075 ± 0.0160.073 ± 0.011
- -
Chest X-Ray: Edema
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ModelAllK
1248121624324864128
CLMBR0.178 ± 0.00.078 ± 0.0180.077 ± 0.0110.099 ± 0.0250.106 ± 0.0280.129 ± 0.030.13 ± 0.0260.146 ± 0.0240.143 ± 0.0180.15 ± 0.0170.158 ± 0.0090.163 ± 0.015
GBM0.133 ± 0.00.078 ± 0.0040.077 ± 0.0020.074 ± 0.0070.089 ± 0.0190.093 ± 0.0240.093 ± 0.0130.107 ± 0.0090.111 ± 0.0180.116 ± 0.0170.127 ± 0.0240.13 ± 0.009
Logistic Regression0.125 ± 0.00.077 ± 0.0040.081 ± 0.0050.084 ± 0.0070.083 ± 0.0090.087 ± 0.0040.091 ± 0.010.096 ± 0.010.093 ± 0.0110.11 ± 0.0090.111 ± 0.0110.118 ± 0.015
Random Forest0.127 ± 0.00.077 ± 0.0050.079 ± 0.0070.083 ± 0.010.083 ± 0.0150.084 ± 0.0110.103 ± 0.0260.088 ± 0.0080.098 ± 0.0140.109 ± 0.0060.135 ± 0.0250.134 ± 0.016
- -
Chest X-Ray: Enlarged Cardiomediastinum
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ModelAllK
1248121624324864128
CLMBR0.031 ± 0.00.018 ± 0.0020.021 ± 0.0060.02 ± 0.0040.022 ± 0.0020.024 ± 0.0040.024 ± 0.0020.024 ± 0.0040.025 ± 0.0040.027 ± 0.0020.028 ± 0.0020.029 ± 0.002
GBM0.03 ± 0.00.019 ± 0.0020.021 ± 0.0030.019 ± 0.0030.022 ± 0.0060.024 ± 0.0030.024 ± 0.0040.025 ± 0.0040.025 ± 0.0030.031 ± 0.0070.026 ± 0.0040.03 ± 0.005
Logistic Regression0.033 ± 0.00.017 ± 0.0070.019 ± 0.0040.02 ± 0.0040.02 ± 0.0030.022 ± 0.0050.023 ± 0.0060.028 ± 0.0080.027 ± 0.0060.029 ± 0.0040.03 ± 0.0040.032 ± 0.003
Random Forest0.023 ± 0.00.018 ± 0.0060.02 ± 0.0030.022 ± 0.0070.025 ± 0.0050.028 ± 0.0040.03 ± 0.0050.029 ± 0.0020.029 ± 0.0020.03 ± 0.0070.029 ± 0.0050.034 ± 0.006
- -
Chest X-Ray: Support Devices
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ModelAllK
1248121624324864128
CLMBR0.526 ± 0.00.299 ± 0.050.313 ± 0.0640.321 ± 0.0790.353 ± 0.0440.378 ± 0.0490.397 ± 0.0390.405 ± 0.0580.412 ± 0.0380.447 ± 0.0120.461 ± 0.0150.465 ± 0.02
GBM0.424 ± 0.00.243 ± 0.0050.248 ± 0.0050.251 ± 0.030.253 ± 0.020.288 ± 0.050.278 ± 0.0370.302 ± 0.0450.293 ± 0.0310.321 ± 0.0440.334 ± 0.0250.355 ± 0.042
Logistic Regression0.349 ± 0.00.232 ± 0.010.246 ± 0.0270.261 ± 0.0350.252 ± 0.0330.268 ± 0.0330.271 ± 0.0370.26 ± 0.0290.253 ± 0.020.282 ± 0.0250.277 ± 0.0160.301 ± 0.029
Random Forest0.416 ± 0.00.235 ± 0.0070.247 ± 0.0180.248 ± 0.0250.258 ± 0.0420.301 ± 0.0440.285 ± 0.0360.275 ± 0.0240.292 ± 0.0580.324 ± 0.030.334 ± 0.0190.357 ± 0.022
- -
Chest X-Ray: No Finding
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ModelAllK
1248121624324864128
CLMBR0.479 ± 0.00.392 ± 0.0120.413 ± 0.0280.417 ± 0.010.425 ± 0.020.428 ± 0.0040.422 ± 0.0120.433 ± 0.0120.432 ± 0.0110.442 ± 0.0190.439 ± 0.0130.446 ± 0.007
GBM0.468 ± 0.00.397 ± 0.0110.397 ± 0.0090.399 ± 0.0160.41 ± 0.0140.398 ± 0.0070.405 ± 0.0160.41 ± 0.010.422 ± 0.010.423 ± 0.0110.427 ± 0.0120.422 ± 0.014
Logistic Regression0.459 ± 0.00.386 ± 0.0260.415 ± 0.0260.405 ± 0.0210.421 ± 0.0080.429 ± 0.0140.413 ± 0.0120.424 ± 0.0150.434 ± 0.0270.435 ± 0.0190.433 ± 0.0130.444 ± 0.008
Random Forest0.468 ± 0.00.388 ± 0.0150.399 ± 0.0210.395 ± 0.0160.406 ± 0.0110.41 ± 0.0090.406 ± 0.0150.41 ± 0.0090.427 ± 0.0170.423 ± 0.0090.419 ± 0.0130.441 ± 0.009
- -
Chest X-Ray: Cardiomegaly
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ModelAllK
1248121624324864128
CLMBR0.161 ± 0.00.05 ± 0.0150.054 ± 0.020.061 ± 0.0160.067 ± 0.0180.063 ± 0.0140.069 ± 0.0160.087 ± 0.0190.091 ± 0.0130.098 ± 0.0120.109 ± 0.010.111 ± 0.005
GBM0.146 ± 0.00.038 ± 0.0030.042 ± 0.0070.044 ± 0.0080.056 ± 0.0140.055 ± 0.0110.067 ± 0.0180.072 ± 0.0190.088 ± 0.0230.087 ± 0.020.097 ± 0.0210.112 ± 0.016
Logistic Regression0.118 ± 0.00.043 ± 0.0190.039 ± 0.0050.047 ± 0.0110.053 ± 0.0210.051 ± 0.0160.056 ± 0.020.066 ± 0.020.068 ± 0.0150.068 ± 0.0260.083 ± 0.0260.083 ± 0.013
Random Forest0.12 ± 0.00.039 ± 0.0070.04 ± 0.0030.042 ± 0.0070.047 ± 0.0080.052 ± 0.0150.064 ± 0.0250.082 ± 0.0390.085 ± 0.030.095 ± 0.0350.11 ± 0.0250.102 ± 0.014
-
Chest X-Ray: Atelectasis
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ModelAllK
1248121624324864128
CLMBR0.064 ± 0.00.041 ± 0.0110.045 ± 0.0110.048 ± 0.0120.052 ± 0.0110.052 ± 0.0080.056 ± 0.0070.053 ± 0.0080.054 ± 0.0090.061 ± 0.0080.062 ± 0.0090.063 ± 0.003
GBM0.046 ± 0.00.041 ± 0.0020.042 ± 0.0030.042 ± 0.0050.045 ± 0.0040.05 ± 0.0090.045 ± 0.0060.048 ± 0.0030.048 ± 0.0060.045 ± 0.0020.046 ± 0.0030.05 ± 0.006
Logistic Regression0.046 ± 0.00.04 ± 0.0040.043 ± 0.0030.039 ± 0.0040.041 ± 0.0040.041 ± 0.0040.042 ± 0.0030.042 ± 0.0030.045 ± 0.0040.043 ± 0.0030.044 ± 0.0050.046 ± 0.004
Random Forest0.041 ± 0.00.041 ± 0.0030.041 ± 0.0030.042 ± 0.0070.044 ± 0.0040.044 ± 0.0060.048 ± 0.0050.045 ± 0.0060.045 ± 0.0050.045 ± 0.0020.045 ± 0.0040.047 ± 0.003
- -
Chest X-Ray: Fracture
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ModelAllK
1248121624324864128
CLMBR0.094 ± 0.00.035 ± 0.0120.032 ± 0.0060.034 ± 0.0110.04 ± 0.0110.048 ± 0.010.05 ± 0.0130.058 ± 0.0090.065 ± 0.0130.062 ± 0.0090.064 ± 0.0120.072 ± 0.008
GBM0.054 ± 0.00.031 ± 0.0040.029 ± 0.0040.033 ± 0.0070.037 ± 0.0060.039 ± 0.0110.041 ± 0.0110.044 ± 0.0090.043 ± 0.0140.047 ± 0.0060.054 ± 0.0070.069 ± 0.012
Logistic Regression0.066 ± 0.00.056 ± 0.0210.04 ± 0.0180.035 ± 0.0140.043 ± 0.0190.039 ± 0.0080.044 ± 0.0090.042 ± 0.010.045 ± 0.0030.048 ± 0.0080.046 ± 0.0070.054 ± 0.008
Random Forest0.035 ± 0.00.035 ± 0.0160.037 ± 0.0090.039 ± 0.0130.04 ± 0.0110.036 ± 0.0080.041 ± 0.0120.05 ± 0.020.046 ± 0.0090.05 ± 0.020.045 ± 0.0070.053 ± 0.006
- -
Chest X-Ray: Pneumonia
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ModelAllK
1248121624324864128
CLMBR0.056 ± 0.00.033 ± 0.0030.037 ± 0.0060.037 ± 0.010.035 ± 0.0060.038 ± 0.0050.037 ± 0.0050.039 ± 0.0060.039 ± 0.0080.042 ± 0.0050.042 ± 0.0050.045 ± 0.006
GBM0.039 ± 0.00.033 ± 0.0010.033 ± 0.0020.032 ± 0.0030.035 ± 0.0030.04 ± 0.0040.039 ± 0.0070.036 ± 0.0030.036 ± 0.0060.044 ± 0.0060.039 ± 0.0040.036 ± 0.003
Logistic Regression0.043 ± 0.00.042 ± 0.0050.044 ± 0.0080.045 ± 0.0060.048 ± 0.0050.049 ± 0.0040.044 ± 0.0060.042 ± 0.0070.045 ± 0.010.043 ± 0.0040.038 ± 0.0040.041 ± 0.004
Random Forest0.039 ± 0.00.035 ± 0.0050.035 ± 0.0040.035 ± 0.0040.037 ± 0.0030.042 ± 0.0060.039 ± 0.0080.036 ± 0.0040.041 ± 0.0010.041 ± 0.0050.041 ± 0.0030.04 ± 0.006
- -
Chest X-Ray: Lung Lesion
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ModelAllK
1248121624324864128
CLMBR0.322 ± 0.00.168 ± 0.0330.182 ± 0.0520.21 ± 0.0360.213 ± 0.0220.232 ± 0.0120.236 ± 0.0110.248 ± 0.0190.253 ± 0.0210.266 ± 0.0250.283 ± 0.0170.29 ± 0.017
GBM0.288 ± 0.00.131 ± 0.0050.132 ± 0.0040.131 ± 0.0080.144 ± 0.0210.145 ± 0.0110.153 ± 0.0150.166 ± 0.0060.177 ± 0.0250.186 ± 0.0150.206 ± 0.0260.224 ± 0.016
Logistic Regression0.252 ± 0.00.149 ± 0.0290.152 ± 0.0310.16 ± 0.0330.161 ± 0.0350.166 ± 0.030.177 ± 0.0140.172 ± 0.0140.186 ± 0.020.199 ± 0.0330.203 ± 0.020.208 ± 0.033
Random Forest0.295 ± 0.00.14 ± 0.0160.145 ± 0.0350.138 ± 0.0150.147 ± 0.0150.149 ± 0.0250.158 ± 0.0110.154 ± 0.0090.17 ± 0.0210.202 ± 0.0170.224 ± 0.0270.224 ± 0.024
\ No newline at end of file diff --git a/hugo_stats.json b/hugo_stats.json index 8fdc4aa..202a553 100644 --- a/hugo_stats.json +++ b/hugo_stats.json @@ -158,6 +158,7 @@ "list-inline-item", "list-unstyled", "list-view", + "m-2", "mb-0", "mb-1", "mb-2", @@ -256,31 +257,46 @@ "TableOfContents", "access", "additional-details", + "anticipating-chest-x-ray-findings", + "anticipating-lab-test-results", + "anticipating-lab-test-results-1", "arxiv-citation", + "assignment-of-new-diagnoses", + "assignment-of-new-diagnoses-1", "auprc", "auprc-1", "auroc", "auroc-1", "buttonColorMode", "by-task-group", + "chest-x-ray-findings", + "chest-x-ray-findings-1", + "dataset", "datasheet", "doks-docs-nav", "individual", + "label-counts", "leaderboard", + "models", "offcanvasNavMain", "offcanvasNavMainLabel", "offcanvasNavSection", "offcanvasNavSectionLabel", + "operational-outcomes", + "operational-outcomes-1", "query", "questions", + "results", "search-form", "searchModal", "searchModalLabel", "searchResults", "searchToggleDesktop", "searchToggleMobile", - "section-55d98c8822f0a17424b0eff0abcf3c2b", + "section-1b341b4c3296352e8f156bbf0e8a804c", + "section-a7400878fa3f58b5f33c323dbcfbf7a7", "section-e0c4332e8c13be976552a059f106354f", + "tasks", "toc" ] } diff --git a/layouts/index.html b/layouts/index.html index df97df1..b2d48c8 100644 --- a/layouts/index.html +++ b/layouts/index.html @@ -57,13 +57,13 @@

- 40,796,769 + 41,661,637

clinical events

- 923,687 + 921,499

visits
diff --git a/static/images/grouped_tasks_auprc.png b/static/images/grouped_tasks_auprc.png index a99a1f4..63aab8a 100644 Binary files a/static/images/grouped_tasks_auprc.png and b/static/images/grouped_tasks_auprc.png differ diff --git a/static/images/grouped_tasks_auroc.png b/static/images/grouped_tasks_auroc.png index 0e7e8c8..d2f99c5 100644 Binary files a/static/images/grouped_tasks_auroc.png and b/static/images/grouped_tasks_auroc.png differ diff --git a/static/images/individual_tasks_auprc.png b/static/images/individual_tasks_auprc.png index d042385..5b0f48c 100644 Binary files a/static/images/individual_tasks_auprc.png and b/static/images/individual_tasks_auprc.png differ diff --git a/static/images/individual_tasks_auroc.png b/static/images/individual_tasks_auroc.png index e756f40..598fc5f 100644 Binary files a/static/images/individual_tasks_auroc.png and b/static/images/individual_tasks_auroc.png differ