-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathexample.v
154 lines (131 loc) · 3.63 KB
/
example.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
(* *********************************************************************)
(* *)
(* Software Foundations Laboratory's Lemmas & Tactic *)
(* based on Viktor and Gil's lemmas & tactic *)
(* *)
(* *********************************************************************)
(** This file contains example usages of sflib. *)
Require Import sflib.
(** list notations *)
Check [1].
Check [1; 2].
Check [1; 2; 3].
(** negation *)
Check ~True.
(* Check (~nat:Type). *) (* TODO: why ~ is defined? *)
(** composition **)
Definition mul2 l := l * 2.
Definition add3 l := l + 3.
Definition mul2_then_add3 := add3 <*> mul2.
Goal mul2_then_add3 0 = 3. Proof. reflexivity. Qed.
(** coercion of bools into Prop *)
Goal true. Proof. reflexivity. Qed.
(** catch-all tactics: done, edone, by X, clarify, vauto *)
Goal 2 * 3 = 6.
Proof. done.
Restart. edone. (* evariable version *)
Qed.
Goal exists x, x * 3 = 6.
Proof. by exists 2. (* by X = X; done *) Qed.
(** inv & hinv: inversion *)
Module Example_Inv.
Inductive p: forall (n:nat), Prop :=
| p0: p 0
| p3: p 3.
Goal forall n, p n -> n = 0 \/ n = 3.
Proof. i. inv H. auto. auto.
Restart. i. hinv H. auto. auto.
Qed.
End Example_Inv.
(** simpls, ins *)
Goal (2 * 3 = 5 \/ 3 * 4 = 11 -> 4 * 5 = 19).
Proof. simpls.
Restart. ins. destruct H. inv H. inv H.
Qed.
(** <<x:X>>, des, splits *)
Module Example_Des.
Section Example_Des.
Variable (P Q R:Prop).
Goal <<PQ: P -> Q>> /\ <<QR: Q -> R>> -> <<PR: P -> R>>.
Proof.
i. des. auto.
Qed.
Goal <<PR: P -> R>> /\ <<QR: Q -> R>> ->
(<<p: P>> \/ <<q: Q>>) -> R.
Proof.
i. des. auto. auto.
Qed.
Goal <<PQ: P -> Q>> /\ <<PR: P -> R>> ->
<<p: P>> ->
<<q: Q>> /\ <<r: R>>.
Proof.
i. des. splits. auto. auto. (* cf: esplits *)
Qed.
End Example_Des.
End Example_Des.
(** exploit, hexploit: they are similar; if you are stuck with one tactic, try another. *)
Module Example_Exploit.
Section Example_Exploit.
Variable (P Q R:Prop).
Goal <<PQ: P -> Q>> /\ <<QR: Q -> R>> -> <<PR: P -> R>>.
Proof. ii. des. exploit PQ. auto. auto.
Restart. ii. des. hexploit PQ. auto. auto.
Qed.
End Example_Exploit.
End Example_Exploit.
(** destructs **)
Goal forall (n m:nat), True.
Proof. i. destructs n m. auto. auto. auto. auto.
Restart. i. edestructs n m. auto. auto. auto. auto. (* evariable version *)
Restart. i. depdes n m. auto. auto. auto. auto. (* dependent destruction version *)
Qed.
(** depgen: generalize dependent *)
Goal forall n:nat, True.
Proof. i. depgen n. auto. Qed.
(** mark *)
Module Example_Mark.
Section Example_Mark.
Variable (P Q R:Prop).
Goal <<PQ: P -> Q>> /\ <<QR: Q -> R>> -> <<PR: P -> R>>.
Proof.
ii. des.
exploit PQ; [M|]; Mdo auto.
Restart.
ii. des.
exploit PQ; [M|]; Mskip auto.
Abort.
End Example_Mark.
End Example_Mark.
(** revert_until *)
Goal forall (n m p q r:nat), True.
Proof. i. revert_until p. Abort.
(** eadmit *)
Goal exists m:nat, m + 1 = 2.
Proof.
eexists. eadmit.
Unshelve.
admit.
Admitted.
Module Example_Guard.
Section Example_Guard.
Variable (P Q R:Prop).
Goal <<PQ: P -> Q>> /\ <<QR: Q -> R>> -> <<PR: P -> R>>.
Proof.
i. guardH H. des.
unguardH H. des.
auto.
Restart.
i. guard. des. (* guard all *)
unguard. des. (* unguard all *)
auto.
Restart.
i. guard. desH H. (* des in spite of guard *)
auto.
Restart.
i. guard (P -> Q) in H. desH H.
Restart.
i. sguard (P -> Q) in H. desH H. (* "super" guard *)
auto.
Qed.
End Example_Guard.
End Example_Guard.