-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathconstants_and_utils.py
266 lines (227 loc) · 9.74 KB
/
constants_and_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import networkx as nx
import numpy as np
import matplotlib.pyplot as plt
import os
from openai import OpenAI
import random
import json
from PIL import Image
import os
import time
import plotting
PATH_TO_FOLDER = '.'
PATH_TO_TEXT_FILES = PATH_TO_FOLDER + '/text-files' # folder holding text files, typically GPT output
PATH_TO_STATS_FILES = PATH_TO_FOLDER + '/stats' # folder holding stats files, eg, proportion of nodes in giant component
DEFAULT_TEMPERATURE = 0.8
SHOW_PLOTS = False
# os.system('source ~/.bash-profile')
# api_key = os.getenv("OPENAI_API_KEY")
with open('api-key.txt', 'r') as f:
lines = f.readlines()
openai_key = lines[0].strip()
assert len(openai_key) >= 10
llama_key = lines[1].strip()
assert len(llama_key) >= 10
##########################################
# functions to draw and save networks
##########################################
def draw_and_save_network_plot(G, save_prefix):
"""
Draw network, save figure.
"""
nx.draw_networkx(G, pos=nx.spring_layout(G, seed=0, k=2*1/np.sqrt(len(G.nodes()))))
plt.axis("off") # turn off axis
axis = plt.gca()
axis.set_xlim([1.1*x for x in axis.get_xlim()]) # add padding so that node labels aren't cut off
axis.set_ylim([1.1*y for y in axis.get_ylim()])
plt.tight_layout()
fig_path = os.path.join(plotting.PATH_TO_SAVED_PLOTS, f'{save_prefix}.png')
print('Saving network drawing in ', fig_path)
plt.savefig(fig_path)
plt.close()
def draw_and_save_network_plot_no_labels(G, save_prefix):
"""
Draw network, save figure.
"""
# draw network without node labels
# set small node size
# set small line width
nx.draw_networkx(G, pos=nx.spring_layout(G, seed=0, k=2*1/np.sqrt(len(G.nodes()))), with_labels=False, node_size=15, width=0.1)
plt.axis("off")
fig_path = os.path.join(plotting.PATH_TO_SAVED_PLOTS, f'{save_prefix}.png')
plt.savefig(fig_path)
plt.close()
def save_network(G, save_prefix):
"""
Save network as adjlist.
"""
graph_path = os.path.join(PATH_TO_TEXT_FILES, f'{save_prefix}.adj')
print('Saving adjlist in ', graph_path)
nx.write_adjlist(G, graph_path)
def get_node_from_string(s):
"""
If it is a persona of the form "<name> - <description>", get name; else, assume to be name.
Replace spaces in name with hyphens, so that we can save to and read from nx adjlist.
"""
if ' - ' in s: # seems to be persona
s = s.split(' - ', 1)[0]
node = s.replace(' ', '-')
return node
def prop_nodes_in_giant_component(G):
"""
Get proportion of nodes in largest conneced component.
"""
largest_cc = max(nx.connected_components(G.to_undirected()), key=len)
return len(largest_cc) / len(G.nodes())
def shuffle_dict(dict):
keys = list(dict.keys())
random.shuffle(keys)
shuffled_dict = {}
for item in keys:
shuffled_dict[item] = dict[item]
return shuffled_dict
def combine_plots(folders, plot_names):
for j, plot_name in enumerate(plot_names):
fig, axs = plt.subplots(2, 2, figsize=(15, 10))
for i, folder in enumerate(folders):
img_path = os.path.join(folder, plot_name)
img = Image.open(img_path)
pairs = [(0, 0), (0, 1), (1, 0), (1, 1)]
axs[pairs[i]].imshow(img)
axs[pairs[i]].axis('off')
plt.tight_layout()
# save combined plot
fig_path = os.path.join(os.path.join(plotting.PATH_TO_SAVED_PLOTS), f'{plot_name}_combined_plot.png')
# save plot
print('Saving combined plot in ', fig_path)
plt.savefig(fig_path)
# close figure
plt.close()
def load_and_draw_network(path_prefix, nr_networks):
nr_edges = []
for i in range(nr_networks):
G = nx.read_adjlist(f'{path_prefix}-{i}.adj')
nr_edges.append(len(G.edges()))
network_name = path_prefix.split('/')[1]
# make os path
if not os.path.exists(os.path.join(plotting.PATH_TO_SAVED_PLOTS, f'{network_name}/drawn')):
os.makedirs(os.path.join(plotting.PATH_TO_SAVED_PLOTS, f'{network_name}/drawn/'))
draw_and_save_network_plot_no_labels(G, f'{network_name}/drawn/{i}')
plotting.plot_nr_edges(nr_edges, f'{network_name}')
def draw_list_of_networks(list_of_G, network_name):
nr_edges = []
for i in range(len(list_of_G)):
G = list_of_G[i]
nr_edges.append(len(G.edges()))
# make os path
if not os.path.exists(os.path.join(plotting.PATH_TO_SAVED_PLOTS, f'{network_name}/drawn')):
os.makedirs(os.path.join(plotting.PATH_TO_SAVED_PLOTS, f'{network_name}/drawn/'))
draw_and_save_network_plot_no_labels(G, f'{network_name}/drawn/{i}')
plotting.plot_nr_edges(nr_edges, f'{network_name}')
##########################################
# functions to interact with LLMs
##########################################
def get_llm_response(model, messages, savename=None, temp=DEFAULT_TEMPERATURE, verbose=False):
"""
Call OpenAI API, check for finish reason; if all looks good, return response.
"""
if 'gpt' in model:
client = OpenAI(api_key=openai_key)
else:
client = OpenAI(api_key=llama_key, base_url = "https://api.llama-api.com")
response = client.chat.completions.create(
model=model,
messages=messages,
temperature=temp)
if savename is not None:
# read json in savename
# if file exists
if os.path.exists(savename):
with open(savename) as f:
data = json.load(f)
else:
data = {"prompt_tokens": 0, "completion_tokens": 0}
data["prompt_tokens"] += response.usage.prompt_tokens
data["completion_tokens"] += response.usage.completion_tokens
# save to savename
with open(savename, 'w') as f:
json.dump(data, f)
response = response.choices[0]
finish_reason = response.finish_reason
if finish_reason != 'stop':
if 'gpt' in model:
raise Exception(f'Finish reason: {finish_reason}\nResponse: {response.message.content}')
else: # for some reason Llama produces max_token a lot even though the full answer is coming out
print(f'Warning: finish reason was {finish_reason}\nResponse: {response.message.content}')
if verbose:
for m in messages:
print(m['role'].upper())
print(m['content'])
print()
print('\nRESPONSE')
print(response.message.content)
return response.message.content
def repeat_prompt_until_parsed(model, system_prompt, user_prompt, parse_method,
parse_args, max_tries=10, temp=DEFAULT_TEMPERATURE, verbose=False):
"""
Helper function to repeat API call and parsing until it works.
Works with any generic parse_method, where 'response' must be one of its args,
and additional parse_args.
"""
messages = []
if system_prompt is not None:
messages.append({"role": "system", "content": system_prompt})
assert user_prompt is not None
messages.append({"role": "user", "content": user_prompt})
num_tries = 1
while num_tries <= max_tries:
try:
response = get_llm_response(model, messages, temp=temp, verbose=verbose)
try:
parse_args['response'] = response
parse_out = parse_method(**parse_args)
return parse_out, response, num_tries
except Exception as e:
print('Failed to parse response:', e)
for m in messages:
print(m['role'].upper())
print(m['content'])
print()
print('\nRESPONSE:')
print(response)
messages.append({"role": "assistant", "content": response})
messages.append({"role": "user", "content": f"Invalid response: {e}!"})
except Exception as e:
print('Failed to get response:', e)
num_tries += 1
time.sleep(1)
raise Exception(f'Exceed max tries of {max_tries}')
def compute_token_cost(savepath, nr_networks, model='gpt-3.5-turbo'):
prompt_tokens = []
completion_tokens = []
for i in range(nr_networks):
with open(f'{savepath}-{i}.json') as f:
data = json.load(f)
prompt_tokens.append(data['prompt_tokens'])
completion_tokens.append(data['completion_tokens'])
# print averages and std
print(f'Files in {savepath}: {nr_networks}')
print(f'Prompt tokens: {np.mean(prompt_tokens)} +- {np.std(prompt_tokens)}')
print(f'Completion tokens: {np.mean(completion_tokens)} +- {np.std(completion_tokens)}')
# pricing
if model == 'gpt-3.5-turbo':
prompt_cost = 0.0005/1000
completion_cost = 0.0015/1000
costs = [prompt_cost*pt + completion_cost*ct for pt, ct in zip(prompt_tokens, completion_tokens)]
print(f'Cost in dollars: {np.mean(costs)} +- {np.std(costs)}')
else:
print("Model cost unknown")
if __name__ == '__main__':
compute_token_cost('costs/cost_all-at-once-for_us_50-gpt-3.5-turbo', 15)
compute_token_cost('costs/cost_llm-as-agent-for_us_50-gpt-3.5-turbo', 15)
compute_token_cost('costs/cost_one-by-one-for_us_50-gpt-3.5-turbo', 15)
combine_plots(['plots/all-at-once-for_us_50-gpt-3.5-turbo', 'plots/llm-as-agent-for_us_50-gpt-3.5-turbo', 'plots/one-by-one-for_us_50-gpt-3.5-turbo', 'plots/real'],
['betweenness_centrality_hist.png', 'degree_centrality_hist.png', 'closeness_centrality_hist.png'])
load_and_draw_network('text-files/all-at-once-for_us_50-gpt-3.5-turbo', 15)
load_and_draw_network('text-files/llm-as-agent-for_us_50-gpt-3.5-turbo', 15)
load_and_draw_network('text-files/one-by-one-for_us_50-gpt-3.5-turbo', 15)