-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathanalyze_networks.py
397 lines (343 loc) · 16.6 KB
/
analyze_networks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
from collections import Counter
import networkx as nx
import os
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import json
import seaborn as sns
from scipy.stats import ks_2samp
import time
import plotting
from constants_and_utils import *
from generate_personas import *
def load_list_of_graphs(prefix, start_seed, end_seed, directed=True, include_ts=False):
"""
Load list of graphs from adjlist. By default, assume directed graphs.
"""
list_of_G = []
min_time, max_time = None, None
for s in range(start_seed, end_seed):
fn = os.path.join(PATH_TO_TEXT_FILES, f'{prefix}_{s}.adj')
mod = time.ctime(os.path.getmtime(fn)) # last modified time
if (min_time is None) or (mod < min_time):
min_time = mod
elif (max_time is None) or (mod > max_time):
max_time = mod
if directed:
G = nx.read_adjlist(fn, create_using=nx.DiGraph)
else:
G = nx.read_adjlist(fn)
list_of_G.append(G)
if include_ts:
return list_of_G, min_time, max_time
return list_of_G
def get_edge_proportions(list_of_G):
"""
What proportion of the time does each edge appear?
"""
edge_counts = {}
# initialize all possible edge counts to 0
nodes = list_of_G[0].nodes()
for ni in nodes:
for nj in nodes:
# if ni != nj:
edge_counts[(ni, nj)] = 0
assert len(edge_counts) == (len(nodes) * (len(nodes))) # CHANGE
# add actual edges
for G in list_of_G:
for e in G.edges():
edge_counts[e] = edge_counts[e] + 1
# sort by highest to lowest count
sorted_edges = sorted(edge_counts.keys(), key=lambda x: -edge_counts[x])
sorted_props = [edge_counts[e]/len(list_of_G) for e in sorted_edges]
return sorted_edges, sorted_props
def compute_edge_distance(G1, G2):
"""
Out of all possible edges, how often do G1 and G2 disagree?
Disagree means edge is present in one and missing in the other.
Return the proportion of edges where G1 and G2 disagree.
"""
assert set(G1.nodes()) == set(G2.nodes())
E1 = set(G1.edges())
E2 = set(G2.edges())
distance = len(E1 - E2) # present in G1 but missing in G2
distance += len(E2 - E1) # present in G2 but missing in G1
num_nodes = len(G1.nodes())
num_edges = num_nodes * (num_nodes-1) # total num possible edges
return distance / num_edges
def get_edge_summary(list_of_G, save_name):
"""
Summarize edge-related statistics:
1) num edges per graph,
2) average edge distance between graph pairs,
3) proportion of graphs that each edge appears.
"""
num_edges = [len(G.edges()) for G in list_of_G]
plotting.plot_edges(num_edges, save_name)
all_real_d = []
for i, G1 in enumerate(list_of_G):
if i < (len(list_of_G)-1):
for G2 in list_of_G[i+1:]:
all_real_d.append(compute_edge_distance(G1, G2))
print('Average edge distance between graphs: %.3f' % np.mean(all_real_d))
plotting.plot_edge_dist(all_real_d, save_name)
edges, props = get_edge_proportions(list_of_G)
print('Most common edges:')
for i in range(30):
print('%d. %s -> %s (p=%.3f)' % (i, edges[i][0], edges[i][1], props[i]))
plotting.plot_props(props, edges, save_name)
def compute_exp_cross_from_group_counts(group_counts):
"""
Compute expected proportion of edges that are cross-relations, given
number of nodes that are in each group.
This matches the method below that uses the complete graph.
"""
groups = list(group_counts.keys())
cr_total = 0
for i1, g1 in enumerate(groups[:-1]):
for g2 in groups[i1+1:]:
cr_total += group_counts[g1] * group_counts[g2]
num_nodes = np.sum(list(group_counts.values()))
total_num_edges = num_nodes * (num_nodes-1) / 2
return cr_total / total_num_edges
def compute_cross_proportions(G, personas, demo_keys, ratio=True):
"""
Compute proportion of edges that are cross-relations, per demographic variable.
If ratio is true, divide by expected proportions.
"""
observed = _compute_cross_proportions(G, personas, demo_keys)
if not ratio:
return observed
complete = nx.complete_graph(G.nodes())
expected = _compute_cross_proportions(complete, personas, demo_keys)
return observed / expected
def _compute_cross_proportions(G, personas, demo_keys):
"""
Helper function to compute the proportion of edges in the graph that are
cross-relations, per demographic variable.
"""
# count cross-relationships in graph
crs = np.zeros(len(demo_keys))
for source, target in G.edges():
demo1 = personas[source]
demo2 = personas[target]
for ind, d in enumerate(demo_keys):
if d == 'age': # take absolute difference for age
diff = abs(int(demo1[d]) - int(demo2[d]))
else:
diff = int(demo1[d] != demo2[d]) # 1 if they are different, 0 otherwise
crs[ind] += diff
# get proportion of edges that are cross-relations or average difference in age
props = crs / len(G.edges())
return props
def compute_same_proportions(G, personas, demo_keys, ratio=True):
"""
Compute proportion of edges that are same-group relations, per demographic variable.
If ratio is true, divide by expected proportions.
"""
observed = _compute_same_proportions(G, personas, demo_keys)
if not ratio:
return observed
complete = nx.complete_graph(G.nodes())
expected = _compute_same_proportions(complete, personas, demo_keys)
return observed / expected
def _compute_same_proportions(G, personas, demo_keys):
"""
Helper function to compute the proportion of edges in the graph that are
same relations, per demographic variable.
"""
# count same-relationships in graph
same_counts = np.zeros(len(demo_keys))
for source, target in G.edges():
demo1 = personas[source]
demo2 = personas[target]
for ind, d in enumerate(demo_keys):
if d == 'age': # check whether age is within 10
same = int(abs(int(demo1[d]) - int(demo2[d])) <= 10)
else:
same = int(demo1[d] == demo2[d])
same_counts[ind] += same
# get proportion of edges that are same relation
props = same_counts / len(G.edges())
return props
def summarize_network_metrics(list_of_G, personas, demo_keys, save_name, demos=True):
if not os.path.exists(os.path.join(PATH_TO_STATS_FILES, f'{save_name}')):
os.makedirs(os.path.join(PATH_TO_STATS_FILES, f'{save_name}'))
### ---------------------------------- homophily ---------------------------------- ###
if demos:
homophily_metrics_df = pd.DataFrame({'graph_nr':[], 'demo':[], '_metric_value':[], 'save_name':[]})
for graph_nr, G in enumerate(list_of_G):
same_homophily = list(compute_same_proportions(G, personas, demo_keys, ratio=True))
same_df = pd.DataFrame({'graph_nr':graph_nr, 'demo':demo_keys, 'metric_name': 'same_ratio',
'_metric_value':same_homophily, 'save_name':[save_name]*len(demo_keys)})
cross_homophily = list(compute_cross_proportions(G, personas, demo_keys, ratio=True))
cross_df = pd.DataFrame({'graph_nr':graph_nr, 'demo':demo_keys, 'metric_name': 'cross_ratio',
'_metric_value':cross_homophily, 'save_name':[save_name]*len(demo_keys)})
# concat with series
homophily_metrics_df = pd.concat([homophily_metrics_df, same_df, cross_df])
# save homophily metrics dataframe in stats
fn = f'{save_name}/homophily.csv'
homophily_metrics_df.to_csv(os.path.join(PATH_TO_STATS_FILES, fn), index=False)
print('Saved homophily metrics to ' + fn)
### ---------------------------------- scalar network metrics ---------------------------------- ###
network_metrics_df = pd.DataFrame({'graph_nr':[], 'metric_name':[], '_metric_value':[], 'save_name':[]})
network_metrics = ['density', 'avg_clustering_coef', 'prop_nodes_lcc', 'radius', 'diameter', 'avg_shortest_path', 'modularity'] # 'assortativity',
network_func = [nx.density, nx.average_clustering, prop_nodes_in_giant_component, nx.radius, nx.diameter, nx.average_shortest_path_length, nx.community.modularity]
for graph_nr, G in enumerate(list_of_G):
for metric_name, f in zip(network_metrics, network_func):
if metric_name in ['radius', 'diameter', 'avg_shortest_path']:
# use LCC for connectivity measures
largest_cc = sorted(nx.connected_components(G.to_undirected()), key=len, reverse=True)[0]
_metric_value = f(G.subgraph(largest_cc).to_undirected()) / np.log(len(largest_cc))
elif metric_name == 'modularity':
comms = nx.community.louvain_communities(G.to_undirected()) # get communities with Louvain
_metric_value = f(G.to_undirected(), comms)
else:
_metric_value = f(G.to_undirected())
network_metrics_df = pd.concat([network_metrics_df, pd.DataFrame({'graph_nr':graph_nr,
'metric_name':[metric_name],
'_metric_value':[_metric_value],
'save_name':[save_name]})])
### ---------------------------------- node-level network metrics ---------------------------------- ###
node_metrics = ['degree_centrality', 'betweenness_centrality', 'closeness_centrality']
node_func = [nx.degree_centrality, nx.betweenness_centrality, nx.closeness_centrality]
for graph_nr, G in enumerate(list_of_G):
for metric_name, f in zip(node_metrics, node_func):
metric_dict = f(G.to_undirected())
temp_df = pd.DataFrame(metric_dict.items(), columns=['node', '_metric_value'])
temp_df['graph_nr'] = graph_nr
temp_df['metric_name'] = metric_name
temp_df['save_name'] = save_name
network_metrics_df = pd.concat([network_metrics_df, temp_df])
# save network metrics dataframe in stats
fn = f'{save_name}/network_metrics.csv'
network_metrics_df.to_csv(os.path.join(PATH_TO_STATS_FILES, fn), index=False)
print("Saved network metrics to " + fn)
def compute_pairwise_ratios(G, personas, demo, cutoff=1):
"""
Compute matrix where m[a, b] represents the observed number of edges between
nodes in group a and b divided by expected number of such edges.
"""
vals = [personas[k][demo] for k in personas]
groups = [g for g,c in Counter(vals).most_common() if c >= cutoff]
obs_mat = _compute_pairwise_props(G, personas, demo, groups)
exp_mat = _compute_pairwise_props(nx.complete_graph(G.nodes()), personas, demo, groups)
ratio = obs_mat / exp_mat
return groups, ratio
def _compute_pairwise_props(G, personas, demo, groups):
assert type(groups) == list
mat = np.zeros((len(groups), len(groups)))
for u,v in G.to_undirected().edges():
if (personas[u][demo] in groups) and (personas[v][demo] in groups):
g1 = groups.index(personas[u][demo])
g2 = groups.index(personas[v][demo])
mat[g1][g2] += 1
mat[g2][g1] += 1
return mat / np.sum(mat)
def compute_isolation_index(G, personas):
"""
Compute political isolation index, following Halberstam and Knight (2016).
"""
nodes = list(G.nodes())
A = nx.adjacency_matrix(G, nodelist=nodes).todense()
politics = np.array([personas[n]['political affiliation'] for n in nodes])
assert A.shape == (len(politics), len(politics))
# compute share conservative
num_neighbors_c = A @ (politics == 'Republican').astype(int)
num_neighbors_l = A @ (politics == 'Democrat').astype(int)
share_conservative = num_neighbors_c / (num_neighbors_c + num_neighbors_l)
# compute conservative exposure
degree = np.sum(A, axis=0)
conservative_exposure = (A @ share_conservative) / degree
# compute isolation
avg_exposure_c = np.mean(conservative_exposure[politics == 'Republican'])
avg_exposure_l = np.mean(conservative_exposure[politics == 'Democrat'])
isolation = avg_exposure_c-avg_exposure_l
return isolation, avg_exposure_c, avg_exposure_l
def compute_polarization(G, personas):
"""
Compute polarization, following Garimella and Weber (2017).
"""
nodes = list(G.nodes())
A = nx.adjacency_matrix(G, nodelist=nodes).todense()
politics = np.array([personas[n]['political affiliation'] for n in nodes])
assert A.shape == (len(politics), len(politics))
alpha = np.ones(len(politics))
beta = np.ones(len(politics))
alpha += A @ (politics == 'Democrat').astype(int)
beta += A @ (politics == 'Republican').astype(int)
lean = alpha / (alpha + beta)
pol = 2 * np.abs(0.5 - lean)
return pol
def plot_expected_vs_observed_age_gaps(list_of_G, personas):
"""
"""
obs_gaps = []
for G in list_of_G:
for (u,v) in G.edges():
gap = np.abs(personas[u]['age'] - personas[v]['age'])
obs_gaps.append(gap)
exp_gaps = []
complete = nx.complete_graph(list_of_G[0].nodes())
for (u,v) in complete.edges():
gap = np.abs(personas[u]['age'] - personas[v]['age'])
exp_gaps.append(gap)
bins = np.arange(0, 101, 5)
plt.figure(figsize=(6,4))
plt.hist(exp_gaps, color='tab:blue', label='expected', density=True, bins=bins)
plt.hist(obs_gaps, color='tab:orange', alpha=0.5, density=True, label='observed', bins=bins)
plt.xlabel('Age gap btwn friends', fontsize=16)
plt.grid(alpha=0.2)
# ymin, ymax = plt.ylim()
# plt.vlines([np.mean(exp_gaps)], ymin, ymax, color='tab:blue', label=f'exp mean={np.mean(exp_gaps):0.3f}')
# plt.vlines([np.mean(obs_gaps)], ymin, ymax, color='tab:orange', label=f'obs mean={np.mean(obs_gaps):0.3f}')
plt.legend()
def compare_network_metrics(network_df, metric_name, save_name):
"""
Get quantitative comparison of real and generated networks.
"""
real_vals = network_df[(network_df.save_name == 'real') & (network_df.metric_name == metric_name)]['_metric_value'].values
gen_vals = network_df[(network_df.save_name == save_name) & (network_df.metric_name == metric_name)]['_metric_value'].values
print(f'Found {len(real_vals)} real and {len(gen_vals)} generated values')
mean_diff = np.abs(np.mean(real_vals)-np.mean(gen_vals))
mean_diff_norm = mean_diff / np.std(real_vals)
res = ks_2samp(real_vals, gen_vals)
return mean_diff, mean_diff_norm, res.statistic, res.pvalue
def parse():
# Create the parser
parser = argparse.ArgumentParser(description='Process command line arguments.')
# Add arguments
parser.add_argument('--persona_fn', type=str, default='us_50_with_names_with_interests.json', help='What is the name of the persona file you want to use?')
parser.add_argument('--network_fn', type=str, help='What is the name of the network file you want to use?')
parser.add_argument('--num_networks', type=int, help='How many networks are there?')
parser.add_argument('--demos_to_include', nargs='+', default=['gender', 'race/ethnicity', 'age', 'religion', 'political affiliation'])
# Parse the arguments
args = parser.parse_args()
# Print the arguments
print("Persona file", args.persona_fn)
print("Network file", args.network_fn)
print("Number of networks", args.num_networks)
return args
def count_communities(list_of_G, save_name):
counts = []
sizes = []
mods = []
for G in list_of_G:
comms = nx.community.louvain_communities(G, seed=42)
counts.append(len(comms))
sizes = sizes + [len(c) for c in comms]
modularity = nx.community.modularity(G, comms)
mods.append(modularity)
plotting.plot_communities(counts, sizes, mods, save_name)
if __name__ == '__main__':
args = parse()
list_of_G = load_list_of_graphs(args.network_fn, 0, args.num_networks)
get_edge_summary(list_of_G, args.network_fn)
fn = os.path.join(PATH_TO_TEXT_FILES, args.persona_fn)
# load from json
with open(fn, 'r') as f:
personas = json.load(f)
summarize_network_metrics(list_of_G, personas, args.demos_to_include, save_name=args.network_fn)
# python analyze_networks.py --persona_fn us_50_with_names_with_interests.json --network_fn llm-as-agent-us-50-gpt-3.5-turbo --num_networks 10
# python analyze_networks.py --persona_fn us_50_with_names_with_interests.json --network_fn llm-as-agent-us-50-gpt-3.5-turbo --num_networks 10