-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathnsga2.py
252 lines (191 loc) · 8.02 KB
/
nsga2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import numpy as np
from copy import deepcopy
from itertools import chain
class NSGA2:
"""A class to implement the NSGA-II multi-objective optimization algorithm"""
def __init__(self, max_iter = 100, pop_size = 100, p_crossover = 0.7, alpha = 0, p_mutation = 0.2, mu = 0.02, verbose = True):
"""Constructor for the NSGA-II object"""
self.max_iter = max_iter
self.pop_size = pop_size
self.p_crossover = p_crossover
self.alpha = alpha
self.p_mutation = p_mutation
self.mu = mu
self.verbose = verbose
def run(self, problem):
"""Runs the NSGA-II algorithm on a given problem."""
# Extract Problem Info
cost_function = problem['cost_function']
n_var = problem['n_var']
var_size = (n_var,) #np.array([1, n_var])
var_min = problem['var_min']
var_max = problem['var_max']
# Number of offsprings/parents (multiple of 2)
n_crossover = 2*int(self.p_crossover * self.pop_size / 2)
# Number of Mutatnts
n_mutation = int(self.p_mutation * self.pop_size)
# Mutation Step Size
sigma = 0.1 * (var_max - var_min)
# Empty Individual
empty_individual = {
'position': None,
'cost': None,
'rank': None,
'crowding_distance': None,
}
# Initialize Population
pop = [deepcopy(empty_individual) for _ in range(self.pop_size)]
for i in range(self.pop_size):
pop[i]['position'] = np.random.uniform(var_min, var_max, var_size)
pop[i]['cost'] = cost_function(pop[i]['position'])
# Non-dominated Sorting
pop, F = self.non_dominated_sorting(pop)
# Calculate Crowding Distance
pop = self.calc_crowding_distance(pop, F)
# Sort Population
pop, F = self.sort_population(pop)
# Main Loop
for it in range(self.max_iter):
# Crossover
popc = [[deepcopy(empty_individual), deepcopy(empty_individual)] for _ in range(n_crossover//2)]
for k in range(n_crossover//2):
parents = np.random.choice(range(self.pop_size), size = 2, replace = False)
p1 = pop[parents[0]]
p2 = pop[parents[1]]
popc[k][0]['position'], popc[k][1]['position'] = self.crossover(p1['position'], p2['position'])
popc[k][0]['cost'] = cost_function(popc[k][0]['position'])
popc[k][1]['cost'] = cost_function(popc[k][1]['position'])
# Flatten Offsprings List
popc = list(chain(*popc))
# Mutation
popm = [deepcopy(empty_individual) for _ in range(n_mutation)]
for k in range(n_mutation):
p = pop[np.random.randint(self.pop_size)]
popm[k]['position'] = self.mutate(p['position'], sigma)
popm[k]['cost'] = cost_function(popm[k]['position'])
# Create Merged Population
pop = pop + popc + popm
# Non-dominated Sorting
pop, F = self.non_dominated_sorting(pop)
# Calculate Crowding Distance
pop = self.calc_crowding_distance(pop, F)
# Sort Population
pop, F = self.sort_population(pop)
# Truncate Extra Members
pop, F = self.truncate_population(pop, F)
# Show Iteration Information
if self.verbose:
print(f'Iteration {it + 1}: Number of Pareto Members = {len(F[0])}')
# Pareto Front Population
pareto_pop = [pop[i] for i in F[0]]
return {
'pop': pop,
'F': F,
'pareto_pop': pareto_pop,
}
def dominates(self, p, q):
"""Checks if p dominates q"""
return all(p['cost'] <= q['cost']) and any(p['cost'] < q['cost'])
def non_dominated_sorting(self, pop):
"""Perform Non-dominated Sorting on a Population"""
pop_size = len(pop)
# Initialize Domination Stats
domination_set = [[] for _ in range(pop_size)]
dominated_count = [0 for _ in range(pop_size)]
# Initialize Pareto Fronts
F = [[]]
# Find the first Pareto Front
for i in range(pop_size):
for j in range(i+1, pop_size):
# Check if i dominates j
if self.dominates(pop[i], pop[j]):
domination_set[i].append(j)
dominated_count[j] += 1
# Check if j dominates i
elif self.dominates(pop[j], pop[i]):
domination_set[j].append(i)
dominated_count[i] += 1
# If i is not dominated at all
if dominated_count[i] == 0:
pop[i]['rank'] = 0
F[0].append(i)
# Pareto Counter
k = 0
while True:
# Initialize the next Pareto front
Q = []
# Find the members of the next Pareto front
for i in F[k]:
for j in domination_set[i]:
dominated_count[j] -= 1
if dominated_count[j] == 0:
pop[j]['rank'] = k + 1
Q.append(j)
# Check if the next Pareto front is empty
if not Q:
break
# Append the next Pareto front
F.append(Q)
# Increment the Pareto counter
k += 1
return pop, F
def calc_crowding_distance(self, pop, F):
"""Calculate the crowding distance for a given population"""
# Number of Pareto fronts (ranks)
parto_count = len(F)
# Number of Objective Functions
n_obj = len(pop[0]['cost'])
# Iterate over Pareto fronts
for k in range(parto_count):
costs = np.array([pop[i]['cost'] for i in F[k]])
n = len(F[k])
d = np.zeros((n, n_obj))
# Iterate over objectives
for j in range(n_obj):
idx = np.argsort(costs[:, j])
d[idx[0], j] = np.inf
d[idx[-1], j] = np.inf
for i in range(1, n-1):
d[idx[i], j] = costs[idx[i+1], j] - costs[idx[i-1], j]
d[idx[i], j] /= costs[idx[-1], j] - costs[idx[0], j]
# Calculate Crowding Distance
for i in range(n):
pop[F[k][i]]['crowding_distance'] = sum(d[i, :])
return pop
def sort_population(self, pop):
"""Sorts a population based on rank (in asceding order) and crowding distance (in descending order)"""
pop = sorted(pop, key = lambda x: (x['rank'], -x['crowding_distance']))
max_rank = pop[-1]['rank']
F = []
for r in range(max_rank + 1):
F.append([i for i in range(len(pop)) if pop[i]['rank'] == r])
return pop, F
def truncate_population(self, pop, F, pop_size = None):
"""Truncates a population to a given size"""
if pop_size is None:
pop_size = self.pop_size
if len(pop) <= pop_size:
return pop, F
# Truncate the population
pop = pop[:pop_size]
# Remove the extra members from the Pareto fronts
for k in range(len(F)):
F[k] = [i for i in F[k] if i < pop_size]
return pop, F
def crossover(self, x1, x2):
"""Performs crossover between two parents"""
r_min = -self.alpha
r_max = 1 + self.alpha
r = np.random.uniform(r_min, r_max, x1.shape)
y1 = r*x1 + (1-r)*x2
y2 = r*x2 + (1-r)*x1
return y1, y2
def mutate(self, x, sigma):
"""Performs mutation on an individual"""
n_var = x.size
n_mu = np.ceil(self.mu*n_var)
y = x.copy()
J = np.random.choice(range(n_var), int(n_mu), replace=False)
for j in J:
y[j] += sigma*np.random.randn()
return y