-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlifft.h
227 lines (191 loc) · 10.1 KB
/
lifft.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
#pragma once
#include <stdint.h>
#include <stddef.h>
#ifndef LIFFT_NO_STDLIB
#include <math.h>
#include <assert.h>
#endif
#ifndef LIFFT_FLOAT_TYPE
#define LIFFT_FLOAT_TYPE double
#endif
typedef LIFFT_FLOAT_TYPE lifft_float_t;
#define _LIFFT_PI ((lifft_float_t)3.14159265358979323846)
#define _LIFFT_SQRT_2 ((lifft_float_t)1.4142135623730951)
#if defined(LIFFT_STD_COMPLEX)
#include <complex.h>
typedef complex LIFFT_FLOAT_TYPE lifft_complex_t;
static inline lifft_complex_t lifft_complex(lifft_float_t re, lifft_float_t im){return re + im*I;}
static inline lifft_complex_t lifft_cadd(lifft_complex_t x, lifft_complex_t y){return x + y;}
static inline lifft_complex_t lifft_csub(lifft_complex_t x, lifft_complex_t y){return x - y;}
static inline lifft_complex_t lifft_cmul(lifft_complex_t x, lifft_complex_t y){return x*y;}
static inline lifft_complex_t lifft_cdiv(lifft_complex_t x, lifft_complex_t y){return x/y;}
static inline lifft_complex_t lifft_conj(lifft_complex_t x){return conj(x);}
static inline lifft_float_t lifft_cabs(lifft_complex_t x){return cabs(x);}
static inline lifft_float_t lifft_creal(lifft_complex_t x){return creal(x);}
static inline lifft_float_t lifft_cimag(lifft_complex_t x){return cimag(x);}
static inline lifft_complex_t lifft_cispi(lifft_complex_t x){return cexp((_LIFFT_PI*I)*x);}
#elif !defined(LIFFT_COMPLEX_TYPE)
typedef struct {lifft_float_t re, im;} lifft_complex_t;
static inline lifft_complex_t lifft_complex(lifft_float_t re, lifft_float_t im){lifft_complex_t res = {re, im}; return res;}
static inline lifft_complex_t lifft_cadd(lifft_complex_t x, lifft_complex_t y){return lifft_complex(x.re + y.re, x.im + y.im);}
static inline lifft_complex_t lifft_csub(lifft_complex_t x, lifft_complex_t y){return lifft_complex(x.re - y.re, x.im - y.im);}
static inline lifft_complex_t lifft_cmul(lifft_complex_t x, lifft_complex_t y){return lifft_complex(x.re*y.re - x.im*y.im, x.re*y.im + x.im*y.re);}
static inline lifft_complex_t lifft_cdiv(lifft_complex_t x, lifft_complex_t y){return lifft_complex((x.re*y.re + x.im*y.im)/(y.re*y.re + y.im*y.im), (x.im*y.re - x.re*y.im)/(y.re*y.re + y.im*y.im));}
static inline lifft_complex_t lifft_conj(lifft_complex_t x){return lifft_complex(x.re, -x.im);}
static inline lifft_float_t lifft_cabs(lifft_complex_t x){return (lifft_float_t)sqrt(x.re*x.re + x.im*x.im);}
static inline lifft_float_t lifft_creal(lifft_complex_t x){return x.re;}
static inline lifft_float_t lifft_cimag(lifft_complex_t x){return x.im;}
static inline lifft_complex_t lifft_cispi(lifft_float_t x){return lifft_complex((lifft_float_t)cos(_LIFFT_PI*x), (lifft_float_t)sin(_LIFFT_PI*x));}
#endif
// Compute the forward FFT on complex valued data.
// The length of 'x_in', 'x_out', and 'scratch' must be 'n', which must be a power of two.
void lifft_forward_complex(lifft_complex_t x_in[], size_t stride_in, lifft_complex_t x_out[], size_t stride_out, lifft_complex_t scratch[], size_t n);
// Compute the inverse FFT on complex valued data.
// The length of 'x_in', 'x_out', and 'scratch' must be 'n', which must be a power of two.
void lifft_inverse_complex(lifft_complex_t x_in[], size_t stride_in, lifft_complex_t x_out[], size_t stride_out, lifft_complex_t scratch[], size_t n);
// Compute the forward FFT on re valued data.
// 'x_in' must be length 'n'.
// 'x_out' must be length 'n/2 + 1'.
// 'scratch' must be length 'n/2'.
// 'n' must be a power of two.
void lifft_forward_real(lifft_float_t x_in[], size_t stride_in, lifft_complex_t x_out[], size_t stride_out, lifft_complex_t scratch[], size_t n);
// Compute the inverse FFT on re valued data.
// 'x_in' must be length 'n/2 + 1'.
// 'x_out' must be length 'n'.
// 'scratch' must be length 'n/2'.
// 'n' must be a power of two.
void lifft_inverse_real(lifft_complex_t x_in[], size_t stride_in, lifft_float_t x_out[], size_t stride_out, lifft_complex_t scratch[], size_t n);
#define LIFFT_APPLY_2D(func, x_in, x_out, n) { \
typeof(*x_in) _tmp_[n*n]; \
lifft_complex_t _scratch_[n]; \
for(int i = 0; i < n; i++) func( x_in + i*n, 1, _tmp_ + i, n, _scratch_, n); \
for(int i = 0; i < n; i++) func(_tmp_ + i*n, 1, x_out + i, n, _scratch_, n); \
}
#ifdef LIFFT_IMPLEMENTATION
static unsigned _lifft_setup(size_t n, size_t stride_in, size_t stride_out){
unsigned bits = (unsigned)log2(n);
// Check size.
assert(n == 1u << bits && bits <= 18u);
// Check valid strides.
assert(stride_in && stride_out);
return bits;
}
// Reverse bits in an integer of up to 18 bits.
static inline size_t _lifft_rev_bits18(size_t n, unsigned bits){
static const uint8_t REV[] = {
0x00, 0x20, 0x10, 0x30, 0x08, 0x28, 0x18, 0x38, 0x04, 0x24, 0x14, 0x34, 0x0C, 0x2C, 0x1C, 0x3C,
0x02, 0x22, 0x12, 0x32, 0x0A, 0x2A, 0x1A, 0x3A, 0x06, 0x26, 0x16, 0x36, 0x0E, 0x2E, 0x1E, 0x3E,
0x01, 0x21, 0x11, 0x31, 0x09, 0x29, 0x19, 0x39, 0x05, 0x25, 0x15, 0x35, 0x0D, 0x2D, 0x1D, 0x3D,
0x03, 0x23, 0x13, 0x33, 0x0B, 0x2B, 0x1B, 0x3B, 0x07, 0x27, 0x17, 0x37, 0x0F, 0x2F, 0x1F, 0x3F,
};
size_t rev = 0;
rev <<= 6; rev |= REV[n & 0x3F]; n >>= 6;
rev <<= 6; rev |= REV[n & 0x3F]; n >>= 6;
rev <<= 6; rev |= REV[n & 0x3F]; n >>= 6;
return rev >> (18 - bits);
}
// Iteratively apply passes of Cooley-Tukey.
// 'x' must be shuffled into bit reversed index order, the result will be ordered normally.
static void _lifft_process(lifft_complex_t* x, size_t n){
size_t stride = 1;
// Apply a specialized initial pass when n >= 4
if(n >= 4){
for(size_t i = 0; i < n; i += 4){
lifft_complex_t s = x[i + 0], t = x[i + 1], p = x[i + 2], q = x[i + 3];
x[i + 0] = lifft_complex(s.re + t.re + p.re + q.re, s.im + t.im + p.im + q.im);
x[i + 1] = lifft_complex(s.re - t.re + p.im - q.im, s.im - t.im - p.re + q.re);
x[i + 2] = lifft_complex(s.re + t.re - p.re - q.re, s.im + t.im - p.im - q.im);
x[i + 3] = lifft_complex(s.re - t.re - p.im + q.im, s.im - t.im + p.re - q.re);
}
stride *= 4;
}
// Iteratively apply radix-2-2 passes.
while(2*stride < n){
lifft_complex_t wm1 = lifft_cispi(-1.0/(lifft_float_t)stride);
lifft_complex_t wm2 = lifft_cispi(-0.5/(lifft_float_t)stride);
for(size_t i = 0; i < n; i += 4*stride){
lifft_complex_t w1 = lifft_complex(1, 0);
lifft_complex_t w2 = lifft_complex(1, 0);
for(size_t j = 0; j < stride; j++){
size_t idx = i + j;
lifft_complex_t p = x[idx + 0*stride], q = lifft_cmul(x[idx + 1*stride], w1);
lifft_complex_t r = x[idx + 2*stride], s = lifft_cmul(x[idx + 3*stride], w1);
w1 = lifft_cmul(w1, wm1);
lifft_complex_t a = lifft_cadd(p, q);
lifft_complex_t b = lifft_csub(p, q);
lifft_complex_t c = lifft_cmul(lifft_cadd(r, s), w2);
lifft_complex_t d = lifft_cmul(lifft_csub(r, s), lifft_complex(w2.im, -w2.re));
x[idx + 0*stride] = lifft_cadd(a, c);
x[idx + 1*stride] = lifft_cadd(b, d);
x[idx + 2*stride] = lifft_csub(a, c);
x[idx + 3*stride] = lifft_csub(b, d);
w2 = lifft_cmul(w2, wm2);
}
}
stride *= 4;
}
// Apply a final radix-2 pass if needed.
if(stride < n){
lifft_complex_t wm = lifft_cispi(-1/(lifft_float_t)stride);
for(size_t i = 0; i < n; i += 2*stride){
lifft_complex_t w = lifft_complex(1, 0);
for(size_t j = 0; j < stride; j++){
lifft_complex_t p = x[i + j + 0*stride], q = lifft_cmul(w, x[i + j + 1*stride]);
x[i + j + 0*stride] = lifft_cadd(p, q);
x[i + j + 1*stride] = lifft_csub(p, q);
w = lifft_cmul(w, wm);
}
}
}
}
void lifft_forward_complex(lifft_complex_t x_in[], size_t stride_in, lifft_complex_t x_out[], size_t stride_out, lifft_complex_t scratch[], size_t n){
unsigned bits = _lifft_setup(n, stride_in, stride_out);
// Copy to scratch[] in shuffled order, apply the FFT, then copy to the output.
for(size_t i = 0; i < n; i++) scratch[_lifft_rev_bits18(i, bits)] = x_in[i*stride_in];
_lifft_process(scratch, n);
if(scratch != x_out) for(size_t i = 0; i < n; i++) x_out[i*stride_out] = scratch[i];
}
void lifft_inverse_complex(lifft_complex_t x_in[], size_t stride_in, lifft_complex_t x_out[], size_t stride_out, lifft_complex_t scratch[], size_t n){
unsigned bits = _lifft_setup(n, stride_in, stride_out);
// Compute iFFT via iFFT(x) = FFT(reverse(x/n))
lifft_complex_t coef = lifft_complex((lifft_float_t)1.0/n, 0);
for(size_t i = 0; i < n; i++) scratch[_lifft_rev_bits18(-i & (n - 1), bits)] = lifft_cmul(x_in[i*stride_in], coef);
_lifft_process(scratch, n);
if(scratch != x_out) for(size_t i = 0; i < n; i++) x_out[i*stride_out] = scratch[i];
}
void lifft_forward_real(lifft_float_t x_in[], size_t stride_in, lifft_complex_t x_out[], size_t stride_out, lifft_complex_t scratch[], size_t n){
unsigned bits = _lifft_setup(n, stride_in, stride_out) - 1;
// Copy as [evens + odds*im]
for(size_t i = 0; i < n/2; i++) scratch[_lifft_rev_bits18(i, bits)] = lifft_complex(x_in[(2*i + 0)*stride_in]/2, x_in[(2*i + 1)*stride_in]/2);
_lifft_process(scratch, n/2);
lifft_complex_t w = lifft_complex(0, -1), wm = lifft_cispi((lifft_float_t)-2.0/n);
for(size_t i = 0; i <= n/4; i++){
// Unpack using even/odd fft symmetry
lifft_complex_t p = scratch[i], q = lifft_conj(scratch[-i&(n/2 - 1)]);
lifft_complex_t xe = lifft_cadd(p, q), xo = lifft_cmul(lifft_csub(p, q), w);
w = lifft_cmul(w, wm);
// Apply final stage of Cooley Tukey
x_out[i*stride_out] = lifft_cadd(xe, xo);
x_out[(n/2 - i)*stride_out] = lifft_conj(lifft_csub(xe, xo));
}
}
void lifft_inverse_real(lifft_complex_t x_in[], size_t stride_in, lifft_float_t x_out[], size_t stride_out, lifft_complex_t scratch[], size_t n){
unsigned bits = _lifft_setup(n, stride_in, stride_out) - 1;
lifft_complex_t w = lifft_complex(0, 1), wm = lifft_cispi((lifft_float_t)2.0/n);
for(size_t i = 0; i <= n/4; i++){
// Calculate evens/odds from re fft symmetry
lifft_complex_t p = x_in[i*stride_in], q = lifft_conj(x_in[(n/2 - i)*stride_in]);
lifft_complex_t xe = lifft_cadd(p, q), xo = lifft_cmul(lifft_csub(p, q), w);
w = lifft_cmul(w, wm);
// Pack using even/odd symetry
scratch[_lifft_rev_bits18(i, bits)] = lifft_conj(lifft_cadd(xe, xo));
scratch[_lifft_rev_bits18(-i & (n/2 - 1), bits)] = lifft_csub(xe, xo);
}
_lifft_process(scratch, n/2);
// Extract evens from re and odd from im
for(size_t i = 0; i < n/2; i++){
x_out[(2*i + 0)*stride_out] = +lifft_creal(scratch[i])/n;
x_out[(2*i + 1)*stride_out] = -lifft_cimag(scratch[i])/n;
}
}
#endif