-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathModel.py
301 lines (267 loc) · 13.9 KB
/
Model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import tensorflow as tf
import numpy as np
from tensorflow.contrib import rnn
from TFrecorde import read_tfrecord, NUM_EXAMPLES_PER_EPOCH, RATIO
import os
import cv2
import json
import time
class CRNN(object):
def __init__(self, batch_size, init_learning_rate, dataset_path, epochs,
early_stopping_step, model_dir, checkpoint_dir):
self.batch_size = batch_size
self.dataset_path = dataset_path
self.epochs = epochs
# # early stop
# self.early_stopping_step = early_stopping_step
# self.should_early_stop = False
# self.step = 0
#
self.model_dir = model_dir
self.checkpoint_dir = checkpoint_dir
if not os.path.exists(self.model_dir):
os.makedirs(self.model_dir)
if not os.path.exists(self.checkpoint_dir):
os.makedirs(self.checkpoint_dir)
self.char_map_dict = json.load(open('./map.json', 'r'))
self.num_classes = len(self.char_map_dict.keys()) + 1
# 设置placeholder
self.input_images = tf.placeholder(tf.float32, shape=[self.batch_size, 32, None, 3], name='input_images')
self.input_labels = tf.sparse_placeholder(tf.int32, name='input_labels')
self.input_sequence_lengths = tf.placeholder(tf.int32, shape=[self.batch_size], name='input_sequence_length')
# network
self.ouputs = self.build_network(self.input_images,
self.input_sequence_lengths)
# learning_rate
self.global_step = tf.train.create_global_step()
self.learning_rate = tf.train.exponential_decay(learning_rate=init_learning_rate, global_step=self.global_step,
decay_rate=0.8, decay_steps=1000, staircase=True)
tf.summary.scalar('learning_rate', self.learning_rate)
# computer the CTC(Connectionist Temporal Classification) Loss
self.loss = tf.reduce_mean(tf.nn.ctc_loss(labels=self.input_labels, inputs=self.ouputs,
sequence_length=self.input_sequence_lengths,
ignore_longer_outputs_than_inputs=True))
tf.summary.scalar('ctc_loss', self.loss)
# optimizer
self.optimizer = tf.train.AdadeltaOptimizer(self.learning_rate).minimize(self.loss, self.global_step)
#
self.decoded, self.log_prob = tf.nn.ctc_beam_search_decoder(self.ouputs, self.input_sequence_lengths,
merge_repeated=False)
# tf.edit_distance()计算序列之间的编辑距离
self.sequence_distance = tf.reduce_mean(tf.edit_distance(tf.cast(self.decoded[0], tf.int32), self.input_labels))
tf.summary.scalar('seq_distance', self.sequence_distance)
# summary
self.summary_op = tf.summary.merge_all()
def build_network(self, input, input_sequence_lengths):
cnn_output = self.CNN_VGG(input)
sequence_out = self.map_to_sequence(cnn_output)
net_out = self.RNN(sequence_out, input_sequence_lengths)
return net_out
def CNN_VGG(self, inputs):
''' CNN extract feature from each input image, 网络架构选择的是VGG(CRNN)
@param inputs: the input image
@return: feature maps
'''
with tf.variable_scope('VGG_CNN'):
conv1 = tf.layers.conv2d(inputs=inputs, filters=64, kernel_size=(3, 3),
padding='SAME', activation=tf.nn.relu, name='conv_1')
pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=(2, 2), strides=2, name='pool_1')
#
conv2 = tf.layers.conv2d(inputs=pool1, filters=128, kernel_size=(3, 3),
padding='SAME', activation=tf.nn.relu, name='conv_2')
pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=(2, 2), strides=2, name='pool_2')
#
conv3 = tf.layers.conv2d(inputs=pool2, filters=256, kernel_size=(3, 3),
padding='SAME', activation=tf.nn.relu, name='conv_3')
pool3 = tf.layers.max_pooling2d(inputs=conv3, pool_size=(2, 1), strides=(2, 1), name='pool_3')
#
conv4 = tf.layers.conv2d(inputs=pool3, filters=256, kernel_size=(3, 3),
padding='SAME', activation=tf.nn.relu, name='conv_4')
bn1 = tf.layers.batch_normalization(conv4, training=True, name='bn1')
conv5 = tf.layers.conv2d(inputs=bn1, filters=512, kernel_size=(3, 3),
padding='SAME', activation=tf.nn.relu, name='conv_5')
bn2 = tf.layers.batch_normalization(conv5, training=True, name='bn_2')
pool4 = tf.layers.max_pooling2d(inputs=bn2, pool_size=(2, 1), strides=(2, 1), name='pool_5')
#
conv7 = tf.layers.conv2d(inputs=pool4, filters=512, kernel_size=(2, 1),
padding='VALID', activation=tf.nn.relu, name='conv_6')
# print('conv_7', conv7.shape)
return conv7
def map_to_sequence(self, input_tensor):
return tf.squeeze(input_tensor, axis=1)
def RNN(self, input, seq_len):
with tf.variable_scope('BiLSTM_1'):
lstm_fw_cell_1 = rnn.BasicLSTMCell(256)
lstm_bw_cell_1 = rnn.BasicLSTMCell(256)
inter_output, _ = tf.nn.bidirectional_dynamic_rnn(lstm_fw_cell_1,
lstm_bw_cell_1,
input, seq_len,
dtype=tf.float32)
inter_output = tf.concat(inter_output, 2)
with tf.variable_scope('BiLSTM_2'):
lstm_fw_cell_2 = rnn.BasicLSTMCell(256)
lstm_bw_cell_2 = rnn.BasicLSTMCell(256)
outputs, _ = tf.nn.bidirectional_dynamic_rnn(lstm_fw_cell_2,
lstm_bw_cell_2,
inter_output, seq_len,
dtype=tf.float32)
rnn_output = tf.concat(outputs, 2)
rnn_reshaped = tf.reshape(rnn_output, shape=[-1, 512])
# doing the affine projection
softmax_w = tf.Variable(tf.truncated_normal(shape=[512, self.num_classes], stddev=0.01), name='weight_w')
logits = tf.matmul(rnn_reshaped, softmax_w)
logits = tf.reshape(logits, shape=[self.batch_size, -1, self.num_classes])
# final layer, the output of BLSTM
net_out = tf.transpose(logits, (1, 0, 2), name='transpose_time_major')
return net_out
def sparse_matrix_to_list(self, sparse_matrix):
indices = sparse_matrix.indices
values = sparse_matrix.values
dense_shape = sparse_matrix.dense_shape
dense_matrix = len(self.char_map_dict.keys()) * np.ones(dense_shape, dtype=np.int32)
for i, indice in enumerate(indices):
dense_matrix[indice[0], indice[1]] = values[i]
string_list = []
for row in dense_matrix:
string = []
for val in row:
string.append(self.int_to_string(val))
string_list.append("".join(s for s in string if s != '*'))
return string_list
def int_to_string(self, value):
for key in self.char_map_dict.keys():
if self.char_map_dict[key] == int(value):
return str(key)
elif len(self.char_map_dict.keys()) == int(value):
return ""
def train(self):
image, label, seq_len_batch = read_tfrecord(self.dataset_path, self.batch_size)
saver = tf.train.Saver()
# checkpoint
train_start_time = time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime(time.time()))
model_name = 'crnn_ctc_ocr_{:s}.ckpt'.format(str(train_start_time))
model_save_path = os.path.join(self.checkpoint_dir, model_name)
#
with tf.Session() as session:
# log
summary_writer = tf.summary.FileWriter(self.model_dir, session.graph)
session.run(tf.global_variables_initializer())
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=session, coord=coord)
print('start training')
for index in range(self.epochs):
#
batch_image, batch_label, batch_seq_length = session.run(
[image, label, seq_len_batch])
#
_, loss, lr, seq_distance, decodeds, summary = session.run(
[self.optimizer, self.loss, self.learning_rate,
self.sequence_distance, self.decoded, self.summary_op],
feed_dict={self.input_images: batch_image,
self.input_labels: batch_label,
self.input_sequence_lengths: batch_seq_length})
#
if index % 100 == 0:
preds = self.sparse_matrix_to_list(decodeds[0])
gt_labels = self.sparse_matrix_to_list(batch_label)
accuracy = []
for j, gt_label in enumerate(gt_labels):
pred = preds[j]
#
if index % 2000 == 0:
print('prediction:', pred)
print('grouth_truth_label:', gt_label)
#
total_count = len(gt_label)
correct_count = 0
try:
for i, lab in enumerate(gt_label):
if lab == pred[i]:
correct_count += 1
except IndexError:
continue
finally:
try:
accuracy.append(correct_count / total_count)
except ZeroDivisionError:
if len(pred) == 0:
accuracy.append(1)
else:
accuracy.append(0)
accuracy = np.mean(np.array(accuracy).astype(np.float32), axis=0)
print('epoches:', index, ' loss:', loss, ' seq_distance:', seq_distance,
' learning_rate:', lr, ' accuracy:', accuracy)
summary_writer.add_summary(summary=summary, global_step=index)
if (index + 1) % 5000 == 0:
saver.save(sess=session, save_path=model_save_path, global_step=index)
# #
# if seq_distance == 0:
# self.step += 1
# #
# if self.step >= self.early_stopping_step:
# self.should_early_stop = True
# print('early stopping is trigger at step :', index)
# #
# if self.should_early_stop is True:
# saver.save(sess=session, save_path=model_save_path, global_step=index)
# break
summary_writer.close()
coord.request_stop()
coord.join(threads=threads)
def test(self):
print('testing!')
image, label, seq_len_batch = read_tfrecord(self.dataset_path, self.batch_size, is_train=False)
saver = tf.train.Saver()
saver_path = tf.train.latest_checkpoint(self.checkpoint_dir)
#
test_sample_count = NUM_EXAMPLES_PER_EPOCH - int(RATIO * NUM_EXAMPLES_PER_EPOCH)
step_num = test_sample_count // self.batch_size
print('iteration:', step_num)
sess_config = tf.ConfigProto()
with tf.Session(config=sess_config) as session:
saver.restore(sess=session, save_path=saver_path)
#
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=session, coord=coord)
#
mean_accuracy = []
for index in range(step_num):
batch_image, batch_label, batch_seq_length = session.run([image, label, seq_len_batch])
decodes = session.run(self.decoded, feed_dict={
self.input_images: batch_image,
self.input_labels: batch_label,
self.input_sequence_lengths: batch_seq_length
})
preds = self.sparse_matrix_to_list(decodes[0])
gt_labels = self.sparse_matrix_to_list(batch_label)
#
accuracy = []
for j, gt_label in enumerate(gt_labels):
pred = preds[j]
print('predict label:', pred)
print('grouth_label:', gt_label)
#
total_count = len(gt_label)
# print('total_count:', total_count)
correct_count = 0
try:
for i, lab in enumerate(gt_label):
if lab == pred[i]:
correct_count += 1
except IndexError:
continue
finally:
try:
accuracy.append(correct_count / total_count)
except ZeroDivisionError:
if len(pred) == 0:
accuracy.append(1)
else:
accuracy.append(0)
accuracy = np.mean(np.array(accuracy).astype(np.float32), axis=0)
mean_accuracy.append(accuracy)
print('index:', index, 'test accuracy is:', accuracy)
mean_accuracy = np.mean(np.array(mean_accuracy).astype(np.float32), axis=0)
print('the final mean accuracy:', mean_accuracy)
coord.request_stop()
coord.join(threads=threads)