-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path.main.py@neomake_200149_53.py
108 lines (76 loc) · 3.12 KB
/
.main.py@neomake_200149_53.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
st.write("""
# Program Prediksi Peluang Penerimaan Program S2
""")
st.write( """
## Keterangan Data Yang Digunakan
1. GRE Score: Merupakan Score Test Untuk Masuk Program S2 (0 - 340) Bersifat Continous
2. TOEFL Score: Score Kemampuan TOEFL (0 - 120) Bersifat Continous
3. University Rating: Rating Universitas (0 - 5) Bersifat Ordinal
4. Kekuatan Surat Rekomendasi (0 - 5) Bersifat Ordinal
5. GPA Sewaktu Undergraduate (0 - 10) Bersifat Continous
6. Pengalaman Riset (0 : tidak ada, 1 : ada) Bersifat Nominal
7. Peluang Diterima (0 - 1) Merupakan Dependent Variable
""")
st.write("""
## Overview Data
""")
myData = pd.read_csv('data.csv')
st.dataframe(myData)
st.write("""
## Deskripsi Data
""")
st.dataframe(myData.describe())
# Preproccessing Data
# Memisahkan Label Dan Fitur
X = myData.iloc[:, :-1].values
y = myData.iloc[:, -1].values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=69)
# Melakukan Scaling
X_train_ss_scaled = X_train
X_test_ss_scaled = X_test
X_train_mms_scaled = X_train
X_test_mms_scaled = X_test
y_train_ss_scaled = y_train
y_test_ss_scaled = y_test
y_train_mms_scaled = y_train
y_test_mms_scaled = y_test
from sklearn.preprocessing import StandardScaler
ss_train_test = StandardScaler()
X_train_ss_scaled[:, :-1] = ss_train_test.fit_transform(X_train[:, :-1])
X_test_ss_scaled[:, :-1] = ss_train_test.transform(X_test[:, :-1])
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
l_regressor_ss = LinearRegression()
l_regressor_ss.fit(X_train_ss_scaled, y_train)
y_pred_l_reg_ss = l_regressor_ss.predict(X_test_ss_scaled)
st.write("Dengan Menggunakan Multiple Linear Regression Diperoleh Skor Untuk Data Test")
st.write(r2_score(y_test, y_pred_l_reg_ss))
st.write("# Sekarang Silahkan Masukan Skor Test Kamu Untuk Mengetahui Prediksi Peluang Kelulusan S2 Kamu")
form = st.form(key='my-form')
inputGRE = form.text_input("Masukan Score GRE: ")
inputTOEFL = form.st.text_input("Masukan TOEFl Score: ")
inputUnivRating = form.st.text_input("Masukan Rating Universitas: ")
inputSOP = form.text_input("Masukan Kekuatan SOP: ")
inputLOR = form.text_input("Masukan Kekuatan Surat Rekomendasi: ")
inputCGPA = form.text_input("Masukan CGPA Kamu: ")
inputResearch = form.text_input("Masukan 1 Jika ada Pengalaman Riset dan 0 Jika Tidak ada")
#completeData = [[inputGRE, inputTOEFL, inputUnivRating, inputSOP, inputLOR, inputCGPA, inputResearch]]
#scaledData = ss_train_test.fit_transform(completeData)
#st.write(scaledData)
#submit = st.form_submit_button()
#if submit:
# prediction = l_regressor_ss.predict(completeData)
# st.write(prediction)
#form = st.form(key='my_form')
#form.text_input(label='Enter some text')
#submit_button = form.form_submit_button(label='Submit')
name = form.text_input('Enter your name')
submit = form.form_submit_button('Submit')
st.write('Press submit to have your name printed below')
if submit:
st.write(f'hello {inputGRE}')