-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils.py
313 lines (238 loc) · 11.4 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
from __future__ import division
import scipy.misc
import numpy as np
import cv2
import scipy as sp
import os
from sklearn.datasets import make_swiss_roll
from scipy.optimize import minimize
def create_circle_data(numPoints,noise_std,mapMat,r = 1):
numCircle = r.shape[0]
for k in range(0,numCircle):
angles_use = np.random.uniform(0,2*np.pi,numPoints)
x = np.expand_dims(r[k]*np.cos(angles_use),axis = 1)
y = np.expand_dims(r[k]*np.sin(angles_use),axis = 1)
if k == 0:
samples_orig = np.concatenate((x,y),axis=1)
labels = np.ones((numPoints))*k
else:
samples_orig = np.concatenate((samples_orig,np.concatenate((x,y),axis=1)),axis=0)
labels = np.concatenate((labels,np.ones((numPoints))*k),axis=0)
samples = np.transpose(np.matmul(mapMat,np.transpose(samples_orig)))
samples = samples + np.random.randn(samples.shape[0],samples.shape[1])*noise_std
randIdx = np.random.permutation(numPoints*numCircle)
samples = samples[randIdx,:]
samples_orig = samples_orig[randIdx,:]
labels = labels[randIdx]
return samples, samples_orig,labels
def create_anchors_circle(numPoints,noise_std,mapMat,r = 1,rand_flag= 0):
numCircle = r.shape[0]
for k in range(0,numCircle):
if rand_flag == 0:
angles_use = np.arange(0,360,360/numPoints)*np.pi/180.0
else:
angles_use = np.random.uniform(0,2*np.pi,numPoints)
x = np.expand_dims(r[k]*np.cos(angles_use),axis = 1)
y = np.expand_dims(r[k]*np.sin(angles_use),axis = 1)
if k == 0:
samples_orig = np.concatenate((x,y),axis=1)
else:
samples_orig = np.concatenate((samples_orig,np.concatenate((x,y),axis=1)),axis=0)
samples = np.transpose(np.matmul(mapMat,np.transpose(samples_orig)))
samples = samples + np.random.randn(samples.shape[0],samples.shape[1])*noise_std
return samples, samples_orig
def create_sphere_data(numPoints,noise_std,mapMat,r = 1):
numCircle = r.shape[0]
for k in range(0,numCircle):
theta_use = np.random.uniform(0,2*np.pi,numPoints)
phi_use = np.random.uniform(0,2*np.pi,numPoints)
x = np.expand_dims(r[k]*np.sin(theta_use)*np.cos(phi_use),axis = 1)
y = np.expand_dims(r[k]*np.sin(theta_use)*np.sin(phi_use),axis = 1)
z = np.expand_dims(r[k]*np.cos(theta_use),axis=1)
if k == 0:
samples_orig = np.concatenate((x,y,z),axis=1)
labels = np.ones((numPoints))*k
else:
samples_orig = np.concatenate((samples_orig,np.concatenate((x,y,z),axis=1)),axis=0)
labels = np.concatenate((labels,np.ones((numPoints))*k),axis=0)
samples = np.transpose(np.matmul(mapMat,np.transpose(samples_orig)))
samples = samples + np.random.randn(samples.shape[0],samples.shape[1])*noise_std
randIdx = np.random.permutation(numPoints*numCircle)
samples = samples[randIdx,:]
samples_orig = samples_orig[randIdx,:]
labels = labels[randIdx]
return samples, samples_orig,labels
def create_anchors_sphere(numPoints,noise_std,mapMat,r = 1):
numCircle = r.shape[0]
for k in range(0,numCircle):
theta_use = np.random.uniform(0,2*np.pi,numPoints)
phi_use = np.random.uniform(0,2*np.pi,numPoints)
x = np.expand_dims(r[k]*np.sin(theta_use)*np.cos(phi_use),axis = 1)
y = np.expand_dims(r[k]*np.sin(theta_use)*np.sin(phi_use),axis = 1)
z = np.expand_dims(r[k]*np.cos(theta_use),axis=1)
if k == 0:
samples_orig = np.concatenate((x,y,z),axis=1)
else:
samples_orig = np.concatenate((samples_orig,np.concatenate((x,y,z),axis=1)),axis=0)
samples = np.transpose(np.matmul(mapMat,np.transpose(samples_orig)))
samples = samples + np.random.randn(samples.shape[0],samples.shape[1])*noise_std
return samples, samples_orig
def create_swissRoll_data(numPoints,noise_std,mapMat):
samples_orig, _ = make_swiss_roll(numPoints, noise_std)
samples = np.transpose(np.matmul(mapMat,np.transpose(samples_orig))) + noise_std
#samples = np.log(1+np.exp(samples))
randIdx = np.random.permutation(numPoints)
samples = samples[randIdx,:]/20.0
samples_orig = samples_orig[randIdx,:]/20.0
labels = np.zeros((numPoints))
return samples, samples_orig,labels
def create_swissRoll_2D_data(numPoints,tStd,noise_std,mapMat):
tt = (3*np.pi/2)*(1+tStd*np.random.uniform(0.0,1.0,numPoints))
x = np.expand_dims(np.multiply(tt,np.cos(tt)),axis = 1)
y = np.expand_dims(np.multiply(tt,np.sin(tt)),axis = 1)
samples_orig = np.concatenate((x,y),axis=1)
samples = np.transpose(np.matmul(mapMat,np.transpose(samples_orig)))
samples = samples + np.random.randn(samples.shape[0],samples.shape[1])*noise_std
#samples = np.log(1+np.exp(samples))
randIdx = np.random.permutation(numPoints)
samples = samples[randIdx,:]/10.0
samples_orig = samples_orig[randIdx,:]/10.0
labels = np.zeros((numPoints))
return samples, samples_orig,labels
def create_anchors_swissRoll_2D(numPoints,tStd,noise_std,mapMat,rand_flag = 0):
if rand_flag == 0:
tt = (3*np.pi/2)*(1+tStd*np.linspace(0.1,0.9,numPoints))
else:
tt = (3*np.pi/2)*(1+tStd*np.random.uniform(0.0,1.0,numPoints))
x = np.expand_dims(np.multiply(tt,np.cos(tt)),axis = 1)
y = np.expand_dims(np.multiply(tt,np.sin(tt)),axis = 1)
samples_orig = np.concatenate((x,y),axis=1)
samples = np.transpose(np.matmul(mapMat,np.transpose(samples_orig)))
samples = samples + np.random.randn(samples.shape[0],samples.shape[1])*noise_std
#samples = np.log(1+np.exp(samples))
randIdx = np.random.permutation(numPoints)
samples = samples[randIdx,:]/10.0
samples_orig = samples_orig[randIdx,:]/10.0
labels = np.zeros((numPoints))
return samples, samples_orig,labels
def load_mnist(data_type,y_dim=10):
data_dir = os.path.join("/storage/home/hcoda1/6/mnorko3/p-crozell3-0/rich_project_pf1/", 'mnist')
print(os.path.join(data_dir,'train-images-idx3-ubyte'))
fd = open(os.path.join(data_dir,'train-images.idx3-ubyte'))
loaded = np.fromfile(file=fd,dtype=np.uint8)
trX = loaded[16:].reshape((60000,28,28,1)).astype(np.float)
fd = open(os.path.join(data_dir,'train-labels.idx1-ubyte'))
loaded = np.fromfile(file=fd,dtype=np.uint8)
trY = loaded[8:].reshape((60000)).astype(np.float)
fd = open(os.path.join(data_dir,'t10k-images.idx3-ubyte'))
loaded = np.fromfile(file=fd,dtype=np.uint8)
teX = loaded[16:].reshape((10000,28,28,1)).astype(np.float)
fd = open(os.path.join(data_dir,'t10k-labels.idx1-ubyte'))
loaded = np.fromfile(file=fd,dtype=np.uint8)
teY = loaded[8:].reshape((10000)).astype(np.float)
trY = np.asarray(trY)
teY = np.asarray(teY)
if data_type == "train":
X = trX[0:50000,:,:,:]
y = trY[0:50000].astype(np.int)
elif data_type == "test":
X = teX
y = teY.astype(np.int)
elif data_type == "val":
X = trX[50000:60000,:,:,:]
y = trY[50000:60000].astype(np.int)
seed = 547
np.random.seed(seed)
np.random.shuffle(X)
np.random.seed(seed)
np.random.shuffle(y)
y_orig = y
y_vec = np.zeros((len(y), y_dim), dtype=np.float)
for i, label in enumerate(y):
y_vec[i,y[i]] = 1.0
return X/255.,y_vec,y_orig
def load_mnist_classSelect(data_type,class_use,newClass):
X,Y_vec, Y = load_mnist(data_type)
class_idx_total = np.zeros((0,0))
Y_use = Y
count_y = 0
for k in class_use:
class_idx = np.where(Y[:]==k)[0]
Y_use[class_idx] = newClass[count_y]
class_idx_total = np.append(class_idx_total,class_idx)
count_y = count_y +1
class_idx_total = np.sort(class_idx_total).astype(int)
X = X[class_idx_total,:,:,:]
Y = Y_use[class_idx_total]
Y_out = Y_vec[class_idx_total,:]
return X,Y_out
def select_mnist_anchors(data_X,data_y,num_anchor):
data_shape = data_X.shape
anchor_images = np.zeros((num_anchor*10,)+data_shape[1:])
anchor_labels = np.zeros((num_anchor*10,10))
for k in range(0,10):
idxClass = np.where(data_y[:,k] == 1)[0]
numEx = len(idxClass)
idxChoice = idxClass[np.random.randint(low = 0, high = numEx,size=num_anchor)]
anchor_images[k*num_anchor:(k+1)*num_anchor,:,:,:] = data_X[idxChoice,:,:,:]
anchor_labels[k*num_anchor:(k+1)*num_anchor,:] = data_y[idxChoice,:]
return anchor_images,anchor_labels
def transform_image(input_data,labels,class_transform,input_size,maxAng,numCopy):
batch_size = input_data.shape[0]
input_h = input_size
input_w = input_size
c_dim = input_data.shape[3]
imgOut = np.zeros((batch_size*numCopy,input_h,input_w,c_dim))
angOut = np.zeros((batch_size*numCopy))
counter = 0
for k in range(0,batch_size):
for m in range(0,numCopy):
imgTemp = np.pad(input_data[k,:,:,0],((2,2),(2,2)),'constant',constant_values=((0, 0),(0, 0)))
classUse = np.where(labels[k,:] != 0)[0]
img_h = imgTemp.shape[0]
img_w = imgTemp.shape[1]
class_check = np.in1d(classUse,class_transform)
if class_check:
angle_use = np.random.rand(1)*maxAng
else:
angle_use = 0
angOut[counter] = angle_use
M = cv2.getRotationMatrix2D((img_h/2,img_w/2),angle_use,1)
imgOut[counter,:,:,:] = np.expand_dims(cv2.warpAffine(imgTemp,M,(img_h,img_w)),axis=2)
counter += 1
return imgOut,angOut
def transform_image_specificAng(input_data,input_size,angUse):
batch_size = input_data.shape[0]
input_h = input_size
input_w = input_size
c_dim = input_data.shape[3]
imgOut = np.zeros((batch_size*len(angUse),input_h,input_w,c_dim))
angOut = np.zeros((batch_size*len(angUse)))
counter = 0
for k in range(0,batch_size):
for ang_idx in angUse:
imgTemp = np.pad(input_data[k,:,:,0],((2,2),(2,2)),'constant',constant_values=((0, 0),(0, 0)))
img_h = imgTemp.shape[0]
img_w = imgTemp.shape[1]
angle_use = ang_idx
angOut[counter] = angle_use
M = cv2.getRotationMatrix2D((img_h/2,img_w/2),angle_use,1)
imgOut[counter,:,:,:] = np.expand_dims(cv2.warpAffine(imgTemp,M,(img_h,img_w)),axis=3)
counter += 1
return imgOut,angOut
def save_images(images, size, image_path):
return imsave(inverse_transform(images), size, image_path)
def inverse_transform(images):
#return images
#return np.add(images,1.)
return (images+1.)/2.
def imsave(images, size, path):
return sp.misc.imsave(path, merge(images, size))
def merge(images, size):
h, w = images.shape[1], images.shape[2]
img = np.zeros((h * size[0], w * size[1], 3))
for idx, image in enumerate(images):
i = idx % size[1]
j = idx // size[1]
img[j*h:j*h+h, i*w:i*w+w, :] = image
return img