-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathIrisRecognition.py
356 lines (237 loc) · 12.1 KB
/
IrisRecognition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
import cv2
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')
import IrisEnhancement
import IrisFeatureExtraction
import IrisLocalization
import IrisNormalization
import IrisMatching
import IrisPerformanceEvaluation
import pickle
import statistics
def visualize_image(image,title):
cv2.imshow(title, image)
cv2.waitKey(0)
cv2.destroyAllWindows()
def pipeline(image,cropamount):
return 0
def main():
database_dir = "./CASIA Iris Image Database (version 1.0)/"
#ERIC TESTING CODE
#Arrays to gather the featuress, images paths, and collection of images for the train and testing dataset
images_features_train = []
images_path_train = []
images_train = []
images_features_test = []
images_path_test = []
images_test = []
#PORTION TO GET ALL FEATURES FOR THE TRAIN DATA
for i in range(1,109,1):
current_img_path = database_dir + f"{i:03d}" + "/1/"
filenames = os.listdir(current_img_path)
for filename in filenames:
if filename.lower().endswith(('.bmp')):
path = os.path.join(current_img_path,filename)
images_path_train.append(path)
images_train.append(cv2.imread(path))
# print(os.path.join(current_img_path,filename))
boundaries = []
centers = []
# # Localize iris in each image
# for image_file in images_path_train:
# image = cv2.imread(image_file)
# print(image_file)
boundary, center = IrisLocalization.IrisLocalization(images_train)
boundaries.extend(boundary)
centers.extend(center)
# Normalize each localized iris
normalized_images = IrisNormalization.IrisNormalization(boundaries, centers)
# print("the length of the normalized images is : ",len(normalized_images))
# print(len(normalized_images))
output_directory = "./normalized_images_train/"
if not os.path.exists(output_directory):
os.makedirs(output_directory)
# Save each normalized image to the output directory
for idx, normalized_img in enumerate(normalized_images):
output_path = os.path.join(output_directory, f"normalized_{idx//3 +1}_{idx%3 + 1}.png")
if not os.path.exists(output_path):
cv2.imwrite(output_path, normalized_img)
# print(normalized_img.shape)
# print(f"index before crash is {idx+1}")
normalize_image = cv2.imread(output_path)
normalize_image_gray = cv2.cvtColor(normalize_image, cv2.COLOR_BGR2GRAY)
crop_amount = 48
# print(f"image number {idx +1} is ",normalized_img)
enhanced_image = IrisEnhancement.enhacement(normalize_image_gray)
# (x1, y1) is the top-left corner, (x2, y2) is the bottom-right corner
x1, y1, x2, y2 = 0, 0, 512, crop_amount
# Crop the specified region
enhanced_image_crop = enhanced_image[y1:y2, x1:x2]
# visualize_image(enhanced_image_crop,'Histogram Equalized')
feature_vec = IrisFeatureExtraction.feature_extraction(enhanced_image_crop,crop_amount)
images_features_train.append(feature_vec)
print("Number of features vec on image features train array is: ",len(images_features_train))
#PORTION TO GET ALL FEATURES FOR THE TEST DATA
for i in range(1,109,1):
current_img_path = database_dir + f"{i:03d}" + "/2/"
filenames = os.listdir(current_img_path)
for filename in filenames:
if filename.lower().endswith(('.bmp')):
path = os.path.join(current_img_path,filename)
images_path_test.append(path)
images_test.append(cv2.imread(path))
# print(os.path.join(current_img_path,filename))
boundaries = []
centers = []
# # Localize iris in each image
# for image_file in images_path_train:
# image = cv2.imread(image_file)
# print(image_file)
boundary, center = IrisLocalization.IrisLocalization(images_test)
boundaries.extend(boundary)
centers.extend(center)
# Normalize each localized iris
normalized_images = IrisNormalization.IrisNormalization(boundaries, centers)
# print("the length of the normalized images is : ",len(normalized_images))
# print(len(normalized_images))
output_directory = "./normalized_images_test/"
if not os.path.exists(output_directory):
os.makedirs(output_directory)
# Save each normalized image to the output directory
for idx, normalized_img in enumerate(normalized_images):
output_path = os.path.join(output_directory, f"normalized_{idx//4 +1}_{idx%4 + 1}.png")
if not os.path.exists(output_path):
cv2.imwrite(output_path, normalized_img)
# print(normalized_img.shape)
# print(f"index before crash is {idx+1}")
normalize_image = cv2.imread(output_path)
normalize_image_gray = cv2.cvtColor(normalize_image, cv2.COLOR_BGR2GRAY)
crop_amount = 48
# print(f"image number {idx +1} is ",normalized_img)
enhanced_image = IrisEnhancement.enhacement(normalize_image_gray)
# (x1, y1) is the top-left corner, (x2, y2) is the bottom-right corner
x1, y1, x2, y2 = 0, 0, 512, crop_amount
# Crop the specified region
enhanced_image_crop = enhanced_image[y1:y2, x1:x2]
# visualize_image(enhanced_image_crop,'Histogram Equalized')
feature_vec = IrisFeatureExtraction.feature_extraction(enhanced_image_crop,crop_amount)
images_features_test.append(feature_vec)
#print(images_features_test[0])
print("Number of features vec on image features test array is: ",len(images_features_test))
#Simran Testing
#setting and initializing the parameters
number_of_classes = 108
images_per_train_class = 3
images_per_test_class = 4
#for correct recognition
crr_d1 = []
crr_d2 = []
crr_d3 = []
dims = []
#for false match calculation
thresholds = [0.446, 0.472, 0.502]
fmr = []
fnmr = []
#creating a table of train labels and indices; an array for test lables
train_labels = np.repeat(np.arange(1,number_of_classes+1),images_per_train_class)
test_labels = np.repeat(np.arange(1,number_of_classes+1),images_per_test_class)
index = np.arange(1,len(images_features_train)+1)
data = {'train_labels': train_labels, 'index': index}
train_label_df = pd.DataFrame(data)
#verification step
assert len(train_labels) == len(images_features_train)
#calculate correct recognition rate and false match rate table for every dimension
for i in range(20,110,10):
#using fisher linear discriminant, reducing the dimensions at k = i
images_features_dr_train, images_features_dr_test = IrisMatching.dimension_reduction(images_features_train, images_features_test, train_labels, k = i)
#estimating class label using nearest centroid method for each distance metric ('l1','l2','cosine')
#Note: Both the approaches were attempted, nearest centroid produced better results than one-on-one distance calc.
d1 = IrisMatching.nearestCentroid(images_features_dr_train,images_features_dr_test ,train_labels, metric = 'l1', score = False)
d2 = IrisMatching.nearestCentroid(images_features_dr_train,images_features_dr_test ,train_labels, metric = 'l2', score = False )
d3 = IrisMatching.nearestCentroid(images_features_dr_train,images_features_dr_test ,train_labels, metric = 'cosine', score = False)
#verification step
assert len(d1) == number_of_classes * images_per_test_class
assert len(d2) == number_of_classes * images_per_test_class
assert len(d3) == number_of_classes * images_per_test_class
#appending the correct recognition rate for each dimension as a list
dims.append(i)
crr_d1.append(IrisPerformanceEvaluation.CRR(test_labels,d1))
crr_d2.append(IrisPerformanceEvaluation.CRR(test_labels,d2))
crr_d3.append(IrisPerformanceEvaluation.CRR(test_labels,d3))
#calculating similarity score for cosine distance
similarity_score = IrisMatching.nearestCentroid(images_features_dr_train,images_features_dr_test ,train_labels, metric = 'cosine', score = True)
#calculating false match and non-match rate for each threshold
df1 = IrisPerformanceEvaluation.false_rate(similarity_score, thresholds[0], test_labels, d3)
df2 = IrisPerformanceEvaluation.false_rate(similarity_score, thresholds[1], test_labels, d3)
df3 = IrisPerformanceEvaluation.false_rate(similarity_score, thresholds[2], test_labels, d3)
false_rate_table = pd.concat([df1,df2,df3])
print(false_rate_table)
#storing correct recognition rate results in crr_df dataframe
crr_data = {'dims':dims,'crr_d1':crr_d1,'crr_d2':crr_d2,'crr_d3':crr_d3}
crr_df = pd.DataFrame(crr_data)
print(crr_df)
#Generates a plot for correct recognition rate
IrisPerformanceEvaluation.make_plot(crr_df)
if __name__ == "__main__":
main()
# # for i in range(1,5,1):
# # new_width = 512 # New width in pixels
# # new_height = 64 # New height in pixels
# # crop_amount = 48
# # image = cv2.imread(f'./testing_pictures/iris_normalized_test{i}.png')
# # # print(image)
# # # Resize the image to a new width and height
# # resized_image = cv2.resize(image,(new_width, new_height))
# # resized_image_gray = cv2.cvtColor(resized_image, cv2.COLOR_BGR2GRAY)
# # print(resized_image_gray.shape)
# # enhanced_image = IrisEnhancement.enhacement(resized_image_gray)
# # # (x1, y1) is the top-left corner, (x2, y2) is the bottom-right corner
# # x1, y1, x2, y2 = 0, 0, 512, crop_amount
# # # Crop the specified region
# # enhanced_image_crop = enhanced_image[y1:y2, x1:x2]
# # visualize_image(enhanced_image_crop,'Histogram Equalized')
# # # feature_vec = IrisFeatureExtraction.feature_extraction(enhanced_image_crop,crop_amount)
# # # images_features.append(feature_vec)
# # # print(f"the len for test image {i} is : ",len(feature_vec))
# # # print("first 10 values : ",feature_vec[0:9])
# # # feature_filtered1,feature_filtered2 = IrisFeatureExtraction.feature_extraction(enhanced_image_crop,crop_amount)
# # # visualize_image(feature_filtered1,'Filter1 image')
# # # visualize_image(feature_filtered2,'Filter2 image')
# # # cv2.imwrite('./output_image_filter1.jpg', feature_filtered1)
# # # cv2.imwrite('./output_image_filter2.jpg', feature_filtered2)
# # # print(f"the final vector with all 4 test image features is: ",len(images_features))
# ## LYLYBELL TESTING
# # def process_dataset(input_directory, output_directory):
# # if not os.path.exists(output_directory):
# # os.makedirs(output_directory)
# # # Using os.walk() to recursively fetch image files from subdirectories
# # image_files_paths = []
# # image_files = []
# # for dirpath, dirnames, filenames in os.walk(input_directory):
# # for filename in [f for f in filenames if f.lower().endswith(('.bmp'))]:
# # image_files_paths.append(os.path.join(dirpath, filename))
# # boundaries = []
# # centers = []
# # # Localize iris in each image
# # for image_file in image_files:
# # image = cv2.imread(image_file)
# # boundary, center = IrisLocalization([image])
# # boundaries.extend(boundary)
# # centers.extend(center)
# # # Normalize each localized iris
# # normalized_images = IrisNormalization(boundaries, centers)
# # # Save each normalized image to the output directory
# # for idx, normalized_img in enumerate(normalized_images):
# # output_path = os.path.join(output_directory, f"normalized_{idx}.png")
# # cv2.imwrite(output_path, normalized_img)
# # # Example usage:
# # input_dir = "CASIA Iris Image Database (version 1.0)"
# # output_dir = "iris_normalized_imgs"
# # process_dataset(input_dir, output_dir)
# # ## END
# if __name__ == "__main__":
# main()