-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathbent_waveguide.py
400 lines (281 loc) · 12.6 KB
/
bent_waveguide.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
#!/usr/bin/env python
# coding: utf-8
# # Bent waveguides (layout and simulation)
#
# Step by step process:
# 1. Draw a bent waveguide and save it in a .gds file.
# 2. Load the bent waveguide using Meep.
# 3. Setup simulation environment.
# 4. Simulate FDTD and visualize results.
# 5. Compute loss and reflection of the bend.
# In[1]:
# Import meep and mpb (from meep)
import meep as mp
from meep import mpb
# arrays
import numpy as np
# plotting
import matplotlib.pyplot as plt
# Debug info
print("Meep version:", mp.__version__)
# In[2]:
import pya
import numpy as np
def main(args):
SIM_CELL = pya.LayerInfo(0, 0)
Si = pya.LayerInfo(1, 0)
MEEP_SOURCE1 = pya.LayerInfo(10, 0)
MEEP_PORT1 = pya.LayerInfo(20, 0)
MEEP_PORT2 = pya.LayerInfo(21, 0)
# ## Simulation Parameters
# In[3]:
ring_radius = args.radius # um
ring_width = 0.5 # um
pml_width = 1.0 # um
straight_wg_length = pml_width + 0.2 # um
# Simulation resolution
res = 100 # pixels/μm
# ## Step 1. Drawing a bent waveguide and saving into a temporary .gds file
# In[4]:
from zeropdk.layout import layout_arc, layout_waveguide, layout_path, layout_box
from tempfile import NamedTemporaryFile
# Create a temporary filename
temp_file = NamedTemporaryFile(delete=False, suffix='.gds')
filename = temp_file.name
# Instantiate a layout and a top cell
layout = pya.Layout()
layout.dbu = 0.001
TOP = layout.create_cell("TOP")
# Unit vectors
ex = pya.DVector(1, 0)
ey = pya.DVector(0, 1)
# Draw circular bend
layout_arc(TOP, Si, - ring_radius*ey, ring_radius, ring_width, 0, np.pi/2)
# Extend the bend to avoid discontinuities
layout_waveguide(TOP, Si, [0*ex, - straight_wg_length*ex], ring_width)
layout_waveguide(TOP, Si, [-1*ring_radius*ey + ring_radius*ex,
-straight_wg_length * ey - ring_radius*ey + ring_radius*ex], ring_width)
# Add the ports as 0-width paths
port_size = ring_width * 4.0
# Source port
layout_path(TOP, MEEP_SOURCE1, [-port_size/2*ey - 0.2*ex, port_size/2*ey - 0.2*ex], 0)
# Input port (immediately at the start of the bend)
layout_path(TOP, MEEP_PORT1, [-port_size/2*ey, port_size/2*ey], 0)
# Output port (immediately at the end of the bend)
layout_path(TOP, MEEP_PORT2, [-1*ring_radius*ey + ring_radius*ex - port_size/2*ex,
-1*ring_radius*ey + ring_radius*ex + port_size/2*ex], 0)
# Draw simulation region
layout_box(TOP, SIM_CELL,
-1.0*ring_radius*ey - straight_wg_length * (ex + ey), # Bottom left point
1.0*ring_radius*ex + (straight_wg_length + port_size / 2) * (ex + ey), # Top right point
ex)
# Write to file
layout.write(filename)
print(f"Produced file {filename}.")
# ## Step 2. Load gds file into meep
#
# ### Visualization and simulation
#
# If you choose a normal filename (not temporary), you can download the GDSII file from the cluster (see Files in MyAdroit dashboard) to see it with your local Klayout. Otherwise, let's get simulating:
# In[5]:
gdsII_file = filename
CELL_LAYER = 0
SOURCE_LAYER = 10
Si_LAYER = 1
PORT1_LAYER = 20
PORT2_LAYER = 21
t_oxide = 1.0
t_Si = 0.22
t_SiO2 = 0.78
oxide = mp.Medium(epsilon=2.25)
silicon=mp.Medium(epsilon=12)
lcen = 1.55
fcen = 1/lcen
df = 0.2*fcen
nfreq = 25
cell_zmax = 0
cell_zmin = 0
si_zmax = 10
si_zmin = -10
# read cell size, volumes for source region and flux monitors,
# and coupler geometry from GDSII file
# WARNING: Once the file is loaded, the prism contents is cached and cannot be reloaded.
# SOLUTION: Use a different filename or restart the kernel
si_layer = mp.get_GDSII_prisms(silicon, gdsII_file, Si_LAYER, si_zmin, si_zmax)
cell = mp.GDSII_vol(gdsII_file, CELL_LAYER, cell_zmin, cell_zmax)
src_vol = mp.GDSII_vol(gdsII_file, SOURCE_LAYER, si_zmin, si_zmax)
p1 = mp.GDSII_vol(gdsII_file, PORT1_LAYER, si_zmin, si_zmax)
p2 = mp.GDSII_vol(gdsII_file, PORT2_LAYER, si_zmin, si_zmax)
sources = [mp.EigenModeSource(src=mp.GaussianSource(fcen,fwidth=df),
size=src_vol.size,
center=src_vol.center,
eig_band=1,
eig_parity=mp.NO_PARITY,
eig_match_freq=True)]
# Display simulation object
sim = mp.Simulation(resolution=res,
default_material=oxide,
eps_averaging=False,
cell_size=cell.size,
boundary_layers=[mp.PML(pml_width)],
sources=sources,
geometry=si_layer,
geometry_center=cell.center)
# Delete file created in previous cell
import os
temp_file.close()
os.unlink(filename)
# ## Step 3. Setup simulation environment
#
# This will load the python-defined parameters from the previous cell and instantiate a fast, C++ based, simulation environment using meep. It will also compute the eigenmode of the source, in preparation for the FDTD simulation.
# In[6]:
sim.reset_meep()
# Could add monitors at many frequencies by looping over fcen
# Means one FDTD for many results!
mode1 = sim.add_mode_monitor(fcen, df, nfreq, mp.ModeRegion(volume=p1))
mode2 = sim.add_mode_monitor(fcen, df, nfreq, mp.ModeRegion(volume=p2))
# Let's store the frequencies that were generated by this mode monitor
mode1_freqs = np.array(mp.get_eigenmode_freqs(mode1))
mode2_freqs = np.array(mp.get_eigenmode_freqs(mode2))
sim.init_sim()
# ### Verify that the structure makes sense.
#
# Things to check:
# - Are the sources and ports outside the PML?
# - Are dimensions correct?
# - Is the simulation region unnecessarily large?
# In[7]:
# If there is a warning that reads "The specified user volume
# is larger than the simulation domain and has been truncated",
# It has to do with some numerical errors between python and meep.
# Ignore.
# f = plt.figure(dpi=100)
# sim.plot2D(ax=f.gca())
# plt.show()
# Looks pretty good. Simulations at the high enough resolution required to avoid spurious reflections in the bend are very slow! This can be sped up quite a bit by running the code in parallel from the terminal. Later, we will put this notebook's code into a script and run it in parallel.
# ## Step 4. Simulate FDTD and Animate results
#
# More detailed meep documentation available [here](https://meep.readthedocs.io/en/latest/Python_Tutorials/Basics/#transmittance-spectrum-of-a-waveguide-bend).
# In[8]:
# Set to true to compute animation (may take a lot of memory)
compute_animation = False
# In[9]:
# Setup and run the simulation
# The following line defines a stopping condition depending on the square
# of the amplitude of the Ez field at the port 2.
print(f"Stop condition: decay to 0.1% of peak value in the last {2.0/df:.1f} time units.")
stop_condition = mp.stop_when_fields_decayed(2.0/df,mp.Ez,p2.center,1e-3)
if compute_animation:
f = plt.figure(dpi=100)
animate = mp.Animate2D(sim,mp.Ez,f=f,normalize=True)
sim.run(mp.at_every(1,animate), until_after_sources=stop_condition)
plt.close()
# Save video as mp4
animate.to_mp4(10, 'media/bend.mp4')
else:
sim.run(until_after_sources=stop_condition)
# ### Visualize results
#
# Things to check:
# - Was the simulation time long enough for the pulse to travel through port2 in its entirety? Given the automatic stop condition, this should be the case.
# In[10]:
from IPython.display import Video, display
# display(Video('media/bend.mp4'))
# ## Step 5. Compute loss and reflection of the bend
# In[11]:
# Every mode monitor measures the power flowing through it in either the forward or backward direction
eig_mode1 = sim.get_eigenmode_coefficients(mode1, [1], eig_parity=mp.NO_PARITY)
eig_mode2 = sim.get_eigenmode_coefficients(mode2, [1], eig_parity=mp.NO_PARITY)
# First, we need to figure out which direction the "dominant planewave" k-vector is
# We can pick the first frequency (0) for that, assuming that for all simulated frequencies,
# The dominant k-vector will point in the same direction.
k1 = eig_mode1.kdom[0]
k2 = eig_mode2.kdom[0]
# eig_mode.alpha[0,0,0] corresponds to the forward direction, whereas
# eig_mode.alpha[0,0,1] corresponds to the backward direction
# For port 1, we are interested in the +x direction, so if k1.x is positive, select 0, otherwise 1
idx = (k1.x < 0) * 1
p1_thru_coeff = eig_mode1.alpha[0,:,idx]
p1_reflected_coeff = eig_mode1.alpha[0,:,1-idx]
# For port 2, we are interestred in the -y direction
idx = (k2.y > 0) * 1
p2_thru_coeff = eig_mode2.alpha[0,:,idx]
p2_reflected_coeff = eig_mode2.alpha[0,:,1-idx]
# transmittance
p2_trans = abs(p2_thru_coeff/p1_thru_coeff)**2
p2_reflected = abs(p1_reflected_coeff/p1_thru_coeff)**2
print("----------------------------------")
print(f"Parameters: radius={ring_radius:.1f}")
print(f"Frequencies: {mode1_freqs}")
print(f"Transmitted fraction: {p2_trans}")
print(f"Reflected fraction: {p2_reflected}")
# In[1]:
S21 = p2_thru_coeff/p1_thru_coeff
S11 = p1_reflected_coeff/p1_thru_coeff
S21_mag = np.abs(S21)
S21_phase = np.unwrap(np.angle(S21))
S11_mag = np.abs(S11)
S11_phase = np.unwrap(np.angle(S11))
# In[13]:
# # Plot S21
# f, (ax1, ax2) = plt.subplots(2, 1, sharex=True, figsize=(5, 8))
# ax1.plot(1/mode1_freqs, 10 * np.log10(S21_mag), '.-')
# ax1.set_title("S21")
# ax1.set_xlabel(r"$\lambda$ (um)")
# ax1.set_ylabel("Magnitude (dB)")
# ax1.set_ylim(None, 0)
# ax1.grid()
# ax2.plot(1/mode1_freqs, S21_phase, '.-')
# ax2.set_xlabel(r"$\lambda$ (um)")
# ax2.set_ylabel("Phase (rad)")
# ax2.grid()
# plt.tight_layout()
# # In[14]:
# # Plot S11
# f, (ax1, ax2) = plt.subplots(2, 1, sharex=True, figsize=(5, 8))
# ax1.plot(1/mode1_freqs, 10 * np.log10(S11_mag), '.-')
# ax1.set_title("S11")
# ax1.set_xlabel(r"$\lambda$ (um)")
# ax1.set_ylabel("Magnitude (dB)")
# ax1.set_ylim(None, 0)
# ax1.grid()
# ax2.plot(1/mode1_freqs, S11_phase, '.-')
# ax2.set_xlabel(r"$\lambda$ (um)")
# ax2.set_ylabel("Phase (rad)")
# ax2.grid()
# plt.tight_layout()
# # Milestones
#
# Goal: Compute the transmission profile for bend radii between 1.5um and 10um.
#
# - Q: Is the reflection significant for any radius? What explain the loss?
# - Q: What is the formula total size of the simulation region? How many pixels are there?
# - Q: If each pixel can host 3-dimensional E-field and H-field vectors with 64bit complex float stored in each dimension, how many megabytes of data needs to be stored at each time step? Is it feasible to save all this information throughout the FDTD simulation?
# - Bonus: Collect the simulation runtime for each radius. How does it change with different radii?
# - Bonus: At what resolution does the accuracy of the simulation start degrading? In other words, if halving the resolution only results in a 1% relative difference in the most important target metric, it is still a good resolution.
# In[2]:
#Write to csv file
import csv
with open(f'sparams.r{ring_radius:.1f}um.csv', mode='w') as sparams_file:
sparam_writer = csv.writer(sparams_file, delimiter=',')
sparam_writer.writerow(['f(Hz)','real(S11)','imag(S11)','real(S21)','imag(S21)'])
for i in range(len(mode1_freqs)):
sparam_writer.writerow([mode1_freqs[i] * 3e14,
np.real(S11[i]),np.imag(S11[i]),
np.real(S21[i]),np.imag(S21[i])
])
if __name__ == '__main__':
# Parse arguments
# Documentation for argparse: https://docs.python.org/3/library/argparse.html
import argparse
parser = argparse.ArgumentParser(description='MEEP simulation for bent waveguide.')
parser.add_argument('-r', '--radius', type=float, default=8.0,
help='bend radius')
args = parser.parse_args()
import os
if "SLURM_ARRAY_TASK_ID" in os.environ:
idx = int(os.environ["SLURM_ARRAY_TASK_ID"])
parameters = [7.0, 7.5, 8.0]
args.radius = parameters[idx]
print("Chosen parameters:", args)
main(args)