forked from radfordneal/LDPC-codes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmod2sparse-test-out
431 lines (365 loc) · 3.25 KB
/
mod2sparse-test-out
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
PART 1:
Matrix m1:
0: 0
1: 1
2: 2 3
3: 3
4: 4
5: 5
6: 6
7: 7
8: 8
9: 9
10: 10 38
11: 11
12: 12
13: 13
14: 14
15: 15
16: 16
17: 17
18: 18
19: 19
20: 20
21: 21
22: 22
23: 23
24: 24
25: 25
26: 26
27: 27
28: 28
29: 29
30: 30
31: 31
32: 32
33: 33
34: 4 34
Matrix m2, as read from file. Should be same as m1 above.
0: 0
1: 1
2: 2 3
3: 3
4: 4
5: 5
6: 6
7: 7
8: 8
9: 9
10: 10 38
11: 11
12: 12
13: 13
14: 14
15: 15
16: 16
17: 17
18: 18
19: 19
20: 20
21: 21
22: 22
23: 23
24: 24
25: 25
26: 26
27: 27
28: 28
29: 29
30: 30
31: 31
32: 32
33: 33
34: 4 34
Test of equality of m1 & m2 (should be 1): 1
Matrix m3, copied from m1 above.
0: 0
1: 1
2: 2 3
3: 3
4: 4
5: 5
6: 6
7: 7
8: 8
9: 9
10: 10 38
11: 11
12: 12
13: 13
14: 14
15: 15
16: 16
17: 17
18: 18
19: 19
20: 20
21: 21
22: 22
23: 23
24: 24
25: 25
26: 26
27: 27
28: 28
29: 29
30: 30
31: 31
32: 32
33: 33
34: 4 34
Test of equality of m1 & m3 (should be 1): 1
Matrix m3 again, should now be all zeros.
0:
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
Test of equality of m1 & m3 (should be 0): 0
PART 2:
Transpose of m1.
0: 0
1: 1
2: 2
3: 2 3
4: 4 34
5: 5
6: 6
7: 7
8: 8
9: 9
10: 10
11: 11
12: 12
13: 13
14: 14
15: 15
16: 16
17: 17
18: 18
19: 19
20: 20
21: 21
22: 22
23: 23
24: 24
25: 25
26: 26
27: 27
28: 28
29: 29
30: 30
31: 31
32: 32
33: 33
34: 34
35:
36:
37:
38: 10
39:
Matrix m1 after adding rows 2 and 12 and 3 to 10.
0: 0
1: 1
2: 2 3
3: 3
4: 4
5: 5
6: 6
7: 7
8: 8
9: 9
10: 2 10 12 38
11: 11
12: 12
13: 13
14: 14
15: 15
16: 16
17: 17
18: 18
19: 19
20: 20
21: 21
22: 22
23: 23
24: 24
25: 25
26: 26
27: 27
28: 28
29: 29
30: 30
31: 31
32: 32
33: 33
34: 4 34
Matrix m1 after further adding column 34 to 0.
0: 0
1: 1
2: 2 3
3: 3
4: 4
5: 5
6: 6
7: 7
8: 8
9: 9
10: 2 10 12 38
11: 11
12: 12
13: 13
14: 14
15: 15
16: 16
17: 17
18: 18
19: 19
20: 20
21: 21
22: 22
23: 23
24: 24
25: 25
26: 26
27: 27
28: 28
29: 29
30: 30
31: 31
32: 32
33: 33
34: 0 4 34
PART 3:
Matrix s0.
0:
1: 3 4
2: 0
3: 1
4:
Matrix s1.
0:
1: 3 5
2:
3: 0 1 6
4:
Matrix s2.
0: 0
1: 1
2:
3:
4:
5: 1 2 3
6:
Maxtrix s1 times unpacked vector ( 1 0 0 1 0 1 0 ).
( 0 0 0 1 0 )
Sum of s0 and s1.
0:
1: 4 5
2: 0
3: 0 6
4:
Product of s1 and s2.
0:
1: 1 2 3
2:
3: 0 1
4:
Tried to find (1,2), actually found: (1,2)
Above matrix with (1,2) cleared.
0:
1: 1 3
2:
3: 0 1
4:
Tried to find (1,1), actually found: (1,1)
Matrix with (1,1) cleared as well.
0:
1: 3
2:
3: 0 1
4:
PART 4:
Matrix s1.
0: 3 5
1: 1 6
2: 0
3: 1 2
4: 0 2
5: 6
LU decomposition (returned value was 0).
L=
0: 3
1: 1
2: 0
3: 1 2
4: 0 2 4
5:
U=
0: 0
1: 1 6
2: 2 6
3: 3
4: 6
cols: 0 1 2 3 6 5 4
rows: 2 1 3 0 4 5
Product of L and U.
0: 3
1: 1 6
2: 0
3: 1 2
4: 0 2
5:
Solution of Ly=x with x from ( 0 1 1 0 1 0 ) according to rows selected.
1 1 1 0 1
Returned value from forward_sub was 1
Solution of Uz=y.
1 0 0 0 0 0 1
Returned value from backward_sub was 1
PART 5:
Matrix m1:
0: 3
1: 1
2: 2
3: 0
Matrix m2, copyrows of m1 in order 3,1,2,0 (should be identity)
0: 0
1: 1
2: 2
3: 3
Matrix m3, copycols of m1 in order 3,1,2,0 (should be identity)
0: 0
1: 1
2: 2
3: 3
DONE WITH TESTS.