forked from deepinsight/insightface
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.py
354 lines (334 loc) · 13.1 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
# pylint: skip-file
import mxnet as mx
import numpy as np
import sys, os
import random
import math
import scipy.misc
import cv2
import logging
import sklearn
import datetime
import img_helper
from mxnet.io import DataIter
from mxnet import ndarray as nd
from mxnet import io
from mxnet import recordio
from PIL import Image
from config import config
from skimage import transform as tf
class FaceSegIter(DataIter):
def __init__(self,
batch_size,
per_batch_size=0,
path_imgrec=None,
aug_level=0,
force_mirror=False,
exf=1,
use_coherent=0,
args=None,
data_name="data",
label_name="softmax_label"):
self.aug_level = aug_level
self.force_mirror = force_mirror
self.use_coherent = use_coherent
self.exf = exf
self.batch_size = batch_size
self.per_batch_size = per_batch_size
self.data_name = data_name
self.label_name = label_name
assert path_imgrec
logging.info('loading recordio %s...', path_imgrec)
path_imgidx = path_imgrec[0:-4] + ".idx"
self.imgrec = mx.recordio.MXIndexedRecordIO(path_imgidx, path_imgrec,
'r') # pylint: disable=redefined-variable-type
self.oseq = list(self.imgrec.keys)
print('train size', len(self.oseq))
self.cur = 0
self.reset()
self.data_shape = (3, config.input_img_size, config.input_img_size)
self.num_classes = config.num_classes
self.input_img_size = config.input_img_size
#self.label_classes = self.num_classes
if config.losstype == 'heatmap':
if aug_level > 0:
self.output_label_size = config.output_label_size
self.label_shape = (self.num_classes, self.output_label_size,
self.output_label_size)
else:
self.output_label_size = self.input_img_size
#self.label_shape = (self.num_classes, 2)
self.label_shape = (self.num_classes, self.output_label_size,
self.output_label_size)
else:
if aug_level > 0:
self.output_label_size = config.output_label_size
self.label_shape = (self.num_classes, 2)
else:
self.output_label_size = self.input_img_size
#self.label_shape = (self.num_classes, 2)
self.label_shape = (self.num_classes, 2)
self.provide_data = [(data_name, (batch_size, ) + self.data_shape)]
self.provide_label = [(label_name, (batch_size, ) + self.label_shape)]
self.img_num = 0
self.invalid_num = 0
self.mode = 1
self.vis = 0
self.stats = [0, 0]
self.flip_order = [
16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 26, 25,
24, 23, 22, 21, 20, 19, 18, 17, 27, 28, 29, 30, 35, 34, 33, 32, 31,
45, 44, 43, 42, 47, 46, 39, 38, 37, 36, 41, 40, 54, 53, 52, 51, 50,
49, 48, 59, 58, 57, 56, 55, 64, 63, 62, 61, 60, 67, 66, 65
]
#self.mirror_set = [
# (22,23),
# (21,24),
# (20,25),
# (19,26),
# (18,27),
# (40,43),
# (39,44),
# (38,45),
# (37,46),
# (42,47),
# (41,48),
# (33,35),
# (32,36),
# (51,53),
# (50,54),
# (62,64),
# (61,65),
# (49,55),
# (49,55),
# (68,66),
# (60,56),
# (59,57),
# (1,17),
# (2,16),
# (3,15),
# (4,14),
# (5,13),
# (6,12),
# (7,11),
# (8,10),
# ]
def get_data_shape(self):
return self.data_shape
#def get_label_shape(self):
# return self.label_shape
def get_shape_dict(self):
D = {}
for (k, v) in self.provide_data:
D[k] = v
for (k, v) in self.provide_label:
D[k] = v
return D
def get_label_names(self):
D = []
for (k, v) in self.provide_label:
D.append(k)
return D
def reset(self):
#print('reset')
if self.aug_level == 0:
self.seq = self.oseq
else:
self.seq = []
for _ in range(self.exf):
_seq = self.oseq[:]
random.shuffle(_seq)
self.seq += _seq
print('train size after reset', len(self.seq))
self.cur = 0
def next_sample(self):
"""Helper function for reading in next sample."""
if self.cur >= len(self.seq):
raise StopIteration
idx = self.seq[self.cur]
self.cur += 1
s = self.imgrec.read_idx(idx)
header, img = recordio.unpack(s)
img = mx.image.imdecode(img).asnumpy()
hlabel = np.array(header.label).reshape((self.num_classes, 2))
if not config.label_xfirst:
hlabel = hlabel[:, ::-1] #convert to X/W first
annot = {'scale': config.base_scale}
#ul = np.array( (50000,50000), dtype=np.int32)
#br = np.array( (0,0), dtype=np.int32)
#for i in range(hlabel.shape[0]):
# h = int(hlabel[i][0])
# w = int(hlabel[i][1])
# key = np.array((h,w))
# ul = np.minimum(key, ul)
# br = np.maximum(key, br)
return img, hlabel, annot
def get_flip(self, data, label):
data_flip = np.zeros_like(data)
label_flip = np.zeros_like(label)
for k in range(data_flip.shape[2]):
data_flip[:, :, k] = np.fliplr(data[:, :, k])
for k in range(label_flip.shape[0]):
label_flip[k, :] = np.fliplr(label[k, :])
#print(label[0,:].shape)
label_flip = label_flip[self.flip_order, :]
return data_flip, label_flip
def get_data(self, data, label, annot):
if self.vis:
self.img_num += 1
#if self.img_num<=self.vis:
# filename = './vis/raw_%d.jpg' % (self.img_num)
# print('save', filename)
# draw = data.copy()
# for i in range(label.shape[0]):
# cv2.circle(draw, (label[i][1], label[i][0]), 1, (0, 0, 255), 2)
# scipy.misc.imsave(filename, draw)
rotate = 0
#scale = 1.0
if 'scale' in annot:
scale = annot['scale']
else:
scale = max(data.shape[0], data.shape[1])
if 'center' in annot:
center = annot['center']
else:
center = np.array((data.shape[1] / 2, data.shape[0] / 2))
max_retry = 3
if self.aug_level == 0: #validation mode
max_retry = 6
retry = 0
found = False
base_scale = scale
while retry < max_retry:
retry += 1
succ = True
_scale = base_scale
if self.aug_level > 0:
rotate = np.random.randint(-40, 40)
scale_config = 0.2
#rotate = 0
#scale_config = 0.0
scale_ratio = min(
1 + scale_config,
max(1 - scale_config,
(np.random.randn() * scale_config) + 1))
_scale = int(base_scale * scale_ratio)
#translate = np.random.randint(-5, 5, size=(2,))
#center += translate
data_out, trans = img_helper.transform(data, center,
self.input_img_size, _scale,
rotate)
#data_out = img_helper.crop2(data, center, _scale, (self.input_img_size, self.input_img_size), rot=rotate)
label_out = np.zeros(self.label_shape, dtype=np.float32)
#print('out shapes', data_out.shape, label_out.shape)
for i in range(label.shape[0]):
pt = label[i].copy()
#pt = pt[::-1]
npt = img_helper.transform_pt(pt, trans)
if npt[0] >= data_out.shape[1] or npt[1] >= data_out.shape[
0] or npt[0] < 0 or npt[1] < 0:
succ = False
#print('err npt', npt)
break
if config.losstype == 'heatmap':
pt_scale = float(
self.output_label_size) / self.input_img_size
npt *= pt_scale
npt = npt.astype(np.int32)
img_helper.gaussian(label_out[i], npt, config.gaussian)
else:
label_out[i] = (npt / self.input_img_size)
#print('before gaussian', label_out[i].shape, pt.shape)
#trans = img_helper.transform(pt, center, _scale, (self.output_label_size, self.output_label_size), rot=rotate)
#print(trans.shape)
#if not img_helper.gaussian(label_out[i], trans, _g):
# succ = False
# break
if not succ:
if self.aug_level == 0:
base_scale += 20
continue
flip_data_out = None
flip_label_out = None
if config.net_coherent:
flip_data_out, flip_label_out = self.get_flip(
data_out, label_out)
elif ((self.aug_level > 0 and np.random.rand() < 0.5)
or self.force_mirror): #flip aug
flip_data_out, flip_label_out = self.get_flip(
data_out, label_out)
data_out, label_out = flip_data_out, flip_label_out
found = True
break
#self.stats[0]+=1
if not found:
#self.stats[1]+=1
#print('find aug error', retry)
#print(self.stats)
#print('!!!ERR')
return None
#print('found with scale', _scale, rotate)
if self.vis > 0 and self.img_num <= self.vis:
print('crop', data.shape, center, _scale, rotate, data_out.shape)
filename = './vis/cropped_%d.jpg' % (self.img_num)
print('save', filename)
draw = data_out.copy()
alabel = label_out.copy()
for i in range(label.shape[0]):
a = cv2.resize(alabel[i],
(self.input_img_size, self.input_img_size))
ind = np.unravel_index(np.argmax(a, axis=None), a.shape)
cv2.circle(draw, (ind[1], ind[0]), 1, (0, 0, 255), 2)
scipy.misc.imsave(filename, draw)
filename = './vis/raw_%d.jpg' % (self.img_num)
scipy.misc.imsave(filename, data)
return data_out, label_out, flip_data_out, flip_label_out
def next(self):
"""Returns the next batch of data."""
#print('next')
batch_size = self.batch_size
batch_data = nd.empty((batch_size, ) + self.data_shape)
batch_label = nd.empty((batch_size, ) + self.label_shape)
i = 0
#self.cutoff = random.randint(800,1280)
try:
while i < batch_size:
#print('N', i)
data, label, annot = self.next_sample()
R = self.get_data(data, label, annot)
if R is None:
continue
data_out, label_out, flip_data_out, flip_label_out = R
if not self.use_coherent:
data = nd.array(data_out)
data = nd.transpose(data, axes=(2, 0, 1))
label = nd.array(label_out)
#print(data.shape, label.shape)
batch_data[i][:] = data
batch_label[i][:] = label
i += 1
else:
data = nd.array(data_out)
data = nd.transpose(data, axes=(2, 0, 1))
label = nd.array(label_out)
data2 = nd.array(flip_data_out)
data2 = nd.transpose(data2, axes=(2, 0, 1))
label2 = nd.array(flip_label_out)
#M = nd.array(M)
#print(data.shape, label.shape)
batch_data[i][:] = data
batch_label[i][:] = label
#i+=1
j = i + self.per_batch_size // 2
batch_data[j][:] = data2
batch_label[j][:] = label2
i += 1
if j % self.per_batch_size == self.per_batch_size - 1:
i = j + 1
except StopIteration:
if i < batch_size:
raise StopIteration
#return {self.data_name : batch_data,
# self.label_name : batch_label}
#print(batch_data.shape, batch_label.shape)
return mx.io.DataBatch([batch_data], [batch_label], batch_size - i)