-
Notifications
You must be signed in to change notification settings - Fork 70
/
Copy pathplot_benchmark_results.py
executable file
·136 lines (114 loc) · 4.38 KB
/
plot_benchmark_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
#!/usr/bin/env python3
import re
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sn
import pandas as pd
from pathlib import Path
# this makes all plots look nicer, and high dpi
# sn.set_theme(style="whitegrid", font_scale=1.0, rc={"figure.dpi": 200})
# set a nicer font
# plt.rcParams["font.family"] = "serif"
# To set some sane defaults
matplotlib.style.use("fivethirtyeight")
matplotlib.style.use("seaborn-v0_8-talk")
matplotlib.rcParams["font.family"] = "monospace"
matplotlib.rcParams["figure.dpi"] = 200
plt.rcParams["savefig.facecolor"] = "white"
# sn.set_context("talk")
KERNEL_NAMES = {
0: "cuBLAS",
1: "Naive",
2: "GMEM Coalescing",
3: "SMEM Caching",
4: "1D Blocktiling",
5: "2D Blocktiling",
6: "Vectorized Mem Access",
7: "Avoid Bank Conflicts (Linearize)",
8: "Avoid Bank Conflicts (Offset)",
9: "Autotuning",
10: "Warptiling",
11: "Double Buffering",
}
def parse_file(file):
"""
The data we want to parse has this format:
Average elapsed time: (0.005661) s, performance: (24277.4) GFLOPS. size: (4096).
"""
with open(file, "r") as f:
lines = [line.strip() for line in f.readlines()]
data = {"size": [], "gflops": []}
pattern = "Average elapsed time: \((.*?)\) s, performance: \((.*?)\) GFLOPS. size: \((.*?)\)."
for line in lines:
if r := re.match(pattern, line):
data["size"].append(int(r.group(3)))
data["gflops"].append(float(r.group(2)))
return data
def plot(df: pd.DataFrame):
"""
The dataframe has 3 columns: kernel, size, gflops
We want to plot the gflops for each kernel, for each size as a single seaborn multi-line plot.
"""
save_dir = Path.cwd()
plt.figure(figsize=(18, 10))
colors = sn.color_palette("husl", len(df["kernel"].unique()))
sn.lineplot(data=df, x="size", y="gflops", hue="kernel", palette=colors)
# also plot points, but without legend
sn.scatterplot(data=df, x="size", y="gflops", hue="kernel", palette=colors, legend=False)
# set ticks at actual sizes
plt.xticks(df["size"].unique())
# rotate xticks, and align them
plt.xticks(rotation=45, ha="right", rotation_mode="anchor")
# add small lines at the xticks
# display the kernel names right next to the corresponding line
for i, kernel in enumerate(df["kernel"].unique()):
# right align the text
plt.text(
df[df["kernel"] == i]["size"].iloc[-1],
df[df["kernel"] == i]["gflops"].iloc[-1] + 300,
f"{i}:{KERNEL_NAMES[i]}",
color=colors[i],
horizontalalignment="left",
weight="medium",
)
# turn of the legend
plt.gca().get_legend().remove()
plt.title("Performance of different kernels")
plt.xlabel("Matrix size (square, one side)")
plt.ylabel("GFLOPs/s")
plt.tight_layout()
plt.savefig(save_dir / "benchmark_results.png")
if __name__ == "__main__":
results_dir = Path("benchmark_results")
assert results_dir.is_dir()
data = []
for filename in results_dir.glob("*.txt"):
# filenames have the format: <kernel_nr>_output.txt
if not filename.stem.split("_")[0].isdigit() and "_output" not in filename.stem:
continue
results_dict = parse_file(filename)
kernel_nr = int(filename.stem.split("_")[0])
for size, gflops in zip(results_dict["size"], results_dict["gflops"]):
data.append({"kernel": kernel_nr, "size": size, "gflops": gflops})
df = pd.DataFrame(data)
plot(df)
df = df[df["size"] == 4096].sort_values(by="gflops", ascending=True)[["kernel", "gflops"]]
df["kernel"] = df["kernel"].map({k: f"{k}: {v}" for k, v in KERNEL_NAMES.items()})
df["relperf"] = df["gflops"] / df[df["kernel"] == "0: cuBLAS"]["gflops"].iloc[0]
df["relperf"] = df["relperf"].apply(lambda x: f"{x*100:.1f}%")
df.columns = ["Kernel", "GFLOPs/s", "Performance relative to cuBLAS"]
# update the README.md with the new results
with open("README.md", "r") as f:
readme = f.read()
# delete old results
readme = re.sub(
r"<!-- benchmark_results -->.*<!-- benchmark_results -->",
"<!-- benchmark_results -->\n{}\n<!-- benchmark_results -->".format(
df.to_markdown(index=False)
),
readme,
flags=re.DOTALL,
)
# input new results
with open("README.md", "w") as f:
f.write(readme)