forked from cuishiyao96/eegcned
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
266 lines (221 loc) · 10.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
# encoding = utf-8
import os
import pickle
import torch
import argparse
import random
from torch.nn import functional as F
import numpy as np
from tqdm import tqdm
from egcn_base import EDModel as Model
from logger import Log
from loader import load_sentences, update_tag_scheme
from loader import prepare_dataset
from utils import new_masked_cross_entropy, adjust_learning_rate, get_learning_rate
from utils import test_ner, str2bool
from data_utils import iobes_iob, BatchManager, load_word2vec
def main():
os.environ['PYTHONHASHSEED'] = str(args.seed)
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
train_sentences = load_sentences(args.train_file)
dev_sentences = load_sentences(args.dev_file)
test_sentences = load_sentences(args.test_file)
update_tag_scheme(train_sentences, args.tag_schema)
update_tag_scheme(test_sentences, args.tag_schema)
update_tag_scheme(dev_sentences, args.tag_schema)
with open(args.map_file, 'rb') as f:
char_to_id, id_to_char, tag_to_id, id_to_tag = pickle.load(f)
train_data = prepare_dataset(
train_sentences, char_to_id, tag_to_id
)
dev_data = prepare_dataset(
dev_sentences, char_to_id, tag_to_id
)
test_data = prepare_dataset(
test_sentences, char_to_id, tag_to_id
)
train_manager = BatchManager(train_data, args.batch_size, args.num_steps)
dev_manager = BatchManager(dev_data, 100, args.num_steps)
test_manager = BatchManager(test_data, 100, args.num_steps)
if args.cuda >= 0:
torch.cuda.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
device = torch.device(args.cuda)
else:
device = torch.device('cpu')
print("device: ", device)
if args.train:
train(id_to_char, id_to_tag, train_manager, dev_manager, device)
f1, res_info = eval_model(id_to_char, id_to_tag, test_manager, device, args.log_name)
log_handler.info("\n resinfo {} \v F1: {} ".format(res_info, f1))
def eval_model(id_to_char, id_to_tag, test_manager, device, model_name=None):
print("Eval ......")
if not model_name:
model_name = args.log_name
old_weights = np.random.rand(len(id_to_char), args.word_embed_dim)
pre_word_embed = load_word2vec("100.utf8", id_to_char, args.word_embed_dim, old_weights)
e_model = Model(args, id_to_tag, device, pre_word_embed).to(device)
e_model.load_state_dict(torch.load("./models/" + model_name + ".pkl"))
print("model loaded ...")
e_model.eval()
all_results = []
for batch in test_manager.iter_batch():
strs, lens, chars, segs, subtypes, tags, adj, dep = batch
chars = torch.LongTensor(chars).to(device)
_lens = torch.LongTensor(lens).to(device)
subtypes = torch.LongTensor(subtypes).to(device)
tags = torch.LongTensor(tags).to(device)
adj = torch.FloatTensor(adj).to(device)
dep = torch.LongTensor(dep).to(device)
logits,_ = e_model(chars, _lens, subtypes, adj, dep)
""" Evaluate """
# Decode
batch_paths = []
for index in range(len(logits)):
length = lens[index]
score = logits[index][:length] # [seq, dim]
probs = F.softmax(score, dim=-1) # [seq, dim]
path = torch.argmax(probs, dim=-1) # [seq]
batch_paths.append(path)
for i in range(len(strs)):
result = []
string = strs[i][:lens[i]]
gold = iobes_iob([id_to_tag[int(x)] for x in tags[i][:lens[i]]])
pred = iobes_iob([id_to_tag[int(x)] for x in batch_paths[i][:lens[i]]])
for char, gold, pred in zip(string, gold, pred):
result.append(" ".join([char, gold, pred]))
all_results.append(result)
all_eval_lines = test_ner(all_results, args.result_path, args.log_name)
res_info = all_eval_lines[1].strip()
f1 = float(res_info.split()[-1])
print("eval: f1: {}".format(f1))
return f1, res_info
def train(id_to_char, id_to_tag, train_manager, dev_manager, device):
old_weights = np.random.rand(len(id_to_char), args.word_embed_dim)
pre_word_embed = load_word2vec("100.utf8", id_to_char, args.word_embed_dim, old_weights)
if args.label_weights:
label_weights = torch.ones([len(id_to_tag)]) * args.label_weights
label_weights[0] = 1.0 # none
label_weights = label_weights.to(device)
else:
label_weights = None
model = Model(args, id_to_tag, device, pre_word_embed).to(device)
if args.optimizer == 'Adam':
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
elif args.optimizer == 'SGD':
optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
print("device: ", model.device)
MAX_F1 = 0
for epoch in range(args.epoch):
log_handler.info("Epoch: {} / {} :".format(epoch + 1, args.epoch))
log_handler.info("epoch {}, lr: {} ".format(epoch + 1, get_learning_rate(optimizer)))
loss = train_epoch(model, optimizer, train_manager, label_weights, device)
log_handler.info("epoch {}, loss : {}".format(epoch + 1, loss))
f1, dev_model = dev_epoch(epoch, model, dev_manager, id_to_tag, device)
log_handler.info("epoch {}, f1 : {}".format(epoch + 1, f1))
if f1 > MAX_F1:
MAX_F1 = f1
torch.save(dev_model.state_dict(), "./models/{}.pkl".format(args.log_name))
log_handler.info("epoch {}, MAX_F1: {}\n".format(epoch + 1, MAX_F1))
print()
def dev_epoch(epoch, model, dev_manager, id_to_tag, device):
# dev
model.eval()
all_results = []
for batch in dev_manager.iter_batch():
strs, lens, chars, segs, subtypes, tags, adj, dep = batch
chars = torch.LongTensor(chars).to(device)
_lens = torch.LongTensor(lens).to(device)
subtypes = torch.LongTensor(subtypes).to(device)
tags = torch.LongTensor(tags).to(device)
adj = torch.FloatTensor(adj).to(device)
dep = torch.LongTensor(dep).to(device)
logits,_ = model(chars, _lens, subtypes, adj, dep) # [batch, seq, dim]
""" Evaluate """
# Decode
batch_paths = []
for index in range(len(logits)):
length = lens[index]
score = logits[index][:length] # [seq, dim]
probs = F.softmax(score, dim=-1) # [seq, dim]
path = torch.argmax(probs, dim=-1) # [seq]
batch_paths.append(path)
for i in range(len(strs)):
result = []
string = strs[i][:lens[i]]
gold = iobes_iob([id_to_tag[int(x)] for x in tags[i][:lens[i]]])
pred = iobes_iob([id_to_tag[int(x)] for x in batch_paths[i][:lens[i]]])
for char, gold, pred in zip(string, gold, pred):
result.append(" ".join([char, gold, pred]))
all_results.append(result)
all_eval_lines = test_ner(all_results, args.result_path, args.log_name)
log_handler.info("epoch: {}, info: {}".format(epoch + 1, all_eval_lines[1].strip()))
f1 = float(all_eval_lines[1].strip().split()[-1])
return f1, model
def train_epoch(model, optimizer, train_manager, label_weights, device):
total_loss = 0
model.train()
for i, batch in enumerate(tqdm(train_manager.iter_batch(shuffle=True))):
optimizer.zero_grad()
strs, lens, chars, segs, subtypes, tags, adj, dep = batch
chars = torch.LongTensor(chars).to(device)
lens = torch.LongTensor(lens).to(device)
subtypes = torch.LongTensor(subtypes).to(device)
tags = torch.LongTensor(tags).to(device)
adj = torch.FloatTensor(adj).to(device)
dep = torch.LongTensor(dep).to(device)
# print('dep: ', dep.shape, dep.sum())
logits,_ = model(chars, lens, subtypes, adj, dep)
loss = new_masked_cross_entropy(logits, tags, lens, device, label_weights=label_weights)
total_loss = total_loss + loss.item()
loss.backward()
optimizer.step()
return total_loss / train_manager.num_batch
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='egnn for ed')
parser.add_argument('--train', default=True, type=str2bool)
parser.add_argument('--tag_schema', default="iob", type=str)
parser.add_argument('--batch_size', default=20, type=int)
parser.add_argument('--lr', default=0.1, type=float)
parser.add_argument('--lr_sharp_decay', default=0, type=int)
parser.add_argument('--lr_min', default=0.00001, type=float)
parser.add_argument('--label_weights', default=5, type=int)
parser.add_argument('--optimizer', default='SGD', type=str, help='Adam;SGD')
parser.add_argument('--weight_decay', default=0.00001, type=float)
parser.add_argument('--epoch', default=100, type=int)
parser.add_argument('--cuda', default=0, type=int)
parser.add_argument('--num_steps', default=50, type=int)
parser.add_argument('--word_embed_dim', default=100, type=int)
parser.add_argument('--bio_embed_dim', default=25, type=int)
parser.add_argument('--pos_embed_dim', default=0, type=int)
parser.add_argument('--position_embed_dim', default=0, type=int)
parser.add_argument('--dep_embed_dim', default=25, type=int)
parser.add_argument('--rnn_hidden', default=100, type=int)
parser.add_argument('--rnn_layers', default=1, type=int)
parser.add_argument('--rnn_dropout', default=0.5, type=float)
parser.add_argument('--pooling', default='avg', type=str)
parser.add_argument('--gcn_dim', default=150, type=int)
parser.add_argument('--num_layers', default=2, type=int, help='num of AGGCN layer blocks')
parser.add_argument('--gcn_dropout', default=0.5, type=float)
parser.add_argument('--map_file', default='maps.pkl', type=str)
parser.add_argument('--result_path', default='result', type=str)
parser.add_argument('--emb_file', default='100.utf8', type=str)
parser.add_argument('--train_file', default=os.path.join("data_doc", "train"))
parser.add_argument('--dev_file', default=os.path.join("data_doc", "dev"))
parser.add_argument('--test_file', default=os.path.join("data_doc", "test"))
parser.add_argument('--log_name', default='test', type=str)
parser.add_argument('--seed', default=1023, type=int)
args = parser.parse_args()
log = Log(args.log_name + ".log")
log_handler = log.getLog()
log_handler.info("\nArgs: ")
for arg in vars(args):
log_handler.info("{}: {}".format(arg, getattr(args, arg)))
log_handler.info("\n")
main()