-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
38 lines (32 loc) · 1.39 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
#!/usr/bin/env python
#encoding=utf-8
import os
from argparse import ArgumentParser
import numpy as np
from utils import init_data,ConvModel, ResModel
def main(FLAGS):
train_data, test_data = init_data(FLAGS)
assert FLAGS.model_type in ['conv', 'res']
if FLAGS.model_type == 'conv':
model = ConvModel(train_data, test_data, FLAGS)
elif FLAGS.model_type == 'res':
model = ResModel(train_data, test_data, FLAGS)
model.compile()
model.train()
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--data", type=str, default="/home/v-shliu/code/radioML-modulation_recognition/RML2016.10a_dict.dat")
parser.add_argument("--lr", type=float, default=1e-3)
parser.add_argument("--momentum",type = float, default=0.9)
parser.add_argument("--weight_decay",type=float, default=0.0)
parser.add_argument("--weights",type=str, default=None)
parser.add_argument("--batch",type=int, default=1024)
parser.add_argument("--epochs", type=int, default=100)
parser.add_argument("--phase", type=str, default="test")
parser.add_argument("--optim", type=str, default=None)
parser.add_argument("--confident_penalty", type = bool, default = False)
parser.add_argument("--use_gpu", type = str, default = "0")
parser.add_argument('--model_type', type=str) #conv, res
FLAGS = parser.parse_args()
print FLAGS
main(FLAGS)