forked from PaddlePaddle/PaddleSeg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathseaformer_seg.py
155 lines (130 loc) · 5.46 KB
/
seaformer_seg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# copyright (c) 2023 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddleseg.cvlibs import manager
from paddleseg.models import layers
from paddleseg.utils import utils
@manager.MODELS.add_component
class SeaFormerSeg(nn.Layer):
"""
The SeaFormer implementation based on PaddlePaddle.
The original article refers to
Qiang Wang, et, al. "SEAFORMER: SQUEEZE-ENHANCED AXIAL TRANSFORMER FOR MOBILE SEMANTIC SEGMENTATION"
(https://arxiv.org/pdf/2301.13156.pdf).
Args:
backbone (Paddle.nn.Layer): Backbone network, currently support SeaFormer.
in_index (list, optional): Two values in the tuple indicate the indices of output of backbone. Defaulte: [0, 1, 2]
head_channels (int, optional): Number of channels of segmentation head. Default: 160.
embed_dims (list, optional): The size of embedding dimensions. Default: [128, 160].
num_classes (int, optional): The unique number of target classes. Default: 150.
is_dw (bool, optional): An argument of using head_channels as group of Conv2D. Default: True.
align_corners (bool, optional): An argument of F.interpolate. It should be set to False when the feature size is even,
e.g. 1024x512, otherwise it is True, e.g. 769x769. Default: False.
input_transform (str, optional): An argument of data format backbone's output. Default: 'multiple_select'.
pretrained (str, optional): The path or url of pretrained model. Default: None.
"""
def __init__(self,
backbone,
in_index=[0, 1, 2],
head_channels=160,
embed_dims=[128, 160],
num_classes=150,
is_dw=True,
dropout_ratio=0.1,
align_corners=False,
input_transform='multiple_select',
pretrained=None):
super().__init__()
self.head_channels = head_channels
self.backbone = backbone
in_channels = backbone.feat_channels
self.in_index = in_index
self.input_transform = input_transform
self.align_corners = align_corners
self.embed_dims = embed_dims
self.pretrained = pretrained
self.linear_fuse = layers.ConvBNReLU(
self.head_channels,
self.head_channels,
1,
stride=1,
groups=self.head_channels if is_dw else 1,
bias_attr=False)
if dropout_ratio > 0:
self.dropout = nn.Dropout2D(dropout_ratio)
self.cls_seg = nn.Conv2D(self.head_channels, num_classes, kernel_size=1)
for i in range(len(embed_dims)):
fuse = FusionBlock(
in_channels[0] if i == 0 else embed_dims[i - 1],
in_channels[i + 1],
embed_dim=embed_dims[i])
setattr(self, f"fuse{i + 1}", fuse)
self.init_weight()
def forward(self, inputs):
B, C, H, W = inputs.shape
inputs = self.backbone(inputs)
if self.input_transform == 'resize_concat':
inputs = [inputs[i] for i in self.in_index]
upsampled_inputs = [
F.interpolate(
x,
size=inputs[0].shape[2:],
mode='bilinear',
align_corners=self.align_corners) for x in inputs
]
xx = paddle.concat(upsampled_inputs, axis=1)
elif self.input_transform == 'multiple_select':
xx = [inputs[i] for i in self.in_index]
else:
xx = inputs[self.in_index]
x_detail = xx[0]
for i in range(len(self.embed_dims)):
fuse = getattr(self, f"fuse{i + 1}")
x_detail = fuse(x_detail, xx[i + 1])
feat = self.linear_fuse(x_detail)
if self.dropout is not None:
feat = self.dropout(feat)
x = self.cls_seg(feat)
x = [
F.interpolate(
x,
size=[H, W],
mode='bilinear',
align_corners=self.align_corners)
]
return x
def init_weight(self):
if self.pretrained is not None:
utils.load_entire_model(self, self.pretrained)
class FusionBlock(nn.Layer):
def __init__(self, inp: int, oup: int, embed_dim: int):
super().__init__()
self.local_embedding = layers.ConvBN(
inp, embed_dim, kernel_size=1, bias_attr=False)
self.global_act = layers.ConvBN(
oup, embed_dim, kernel_size=1, bias_attr=False)
self.act = nn.Hardsigmoid()
def forward(self, x_l, x_g):
B, C, H, W = x_l.shape
local_feat = self.local_embedding(x_l)
global_act = self.global_act(x_g)
sig_act = F.interpolate(
self.act(global_act),
size=[H, W],
mode='bilinear',
align_corners=False)
out = local_feat * sig_act
return out