From 07839de87b7607e458f86b36034d66413506d34c Mon Sep 17 00:00:00 2001
From: Joe Davison <josephddavison@gmail.com>
Date: Sat, 19 Sep 2020 23:04:43 -0400
Subject: [PATCH] Add Polyglot-NER Dataset (#641)

* add polyglot-ner

* style

* update field names

* update dataset infos

* style

* style again...

* fix dummy data
---
 datasets/polyglot_ner/dataset_infos.json      |   1 +
 .../dummy/ar/1.0.0/dummy_data.zip             | Bin 0 -> 1809 bytes
 .../dummy/bg/1.0.0/dummy_data.zip             | Bin 0 -> 1857 bytes
 .../dummy/ca/1.0.0/dummy_data.zip             | Bin 0 -> 1605 bytes
 .../dummy/combined/1.0.0/dummy_data.zip       | Bin 0 -> 56567 bytes
 .../dummy/cs/1.0.0/dummy_data.zip             | Bin 0 -> 1742 bytes
 .../dummy/da/1.0.0/dummy_data.zip             | Bin 0 -> 1674 bytes
 .../dummy/de/1.0.0/dummy_data.zip             | Bin 0 -> 1712 bytes
 .../dummy/el/1.0.0/dummy_data.zip             | Bin 0 -> 1931 bytes
 .../dummy/en/1.0.0/dummy_data.zip             | Bin 0 -> 1657 bytes
 .../dummy/es/1.0.0/dummy_data.zip             | Bin 0 -> 1582 bytes
 .../dummy/et/1.0.0/dummy_data.zip             | Bin 0 -> 1776 bytes
 .../dummy/fa/1.0.0/dummy_data.zip             | Bin 0 -> 1653 bytes
 .../dummy/fi/1.0.0/dummy_data.zip             | Bin 0 -> 1858 bytes
 .../dummy/fr/1.0.0/dummy_data.zip             | Bin 0 -> 1667 bytes
 .../dummy/he/1.0.0/dummy_data.zip             | Bin 0 -> 1724 bytes
 .../dummy/hi/1.0.0/dummy_data.zip             | Bin 0 -> 1809 bytes
 .../dummy/hr/1.0.0/dummy_data.zip             | Bin 0 -> 1680 bytes
 .../dummy/hu/1.0.0/dummy_data.zip             | Bin 0 -> 1814 bytes
 .../dummy/id/1.0.0/dummy_data.zip             | Bin 0 -> 1695 bytes
 .../dummy/it/1.0.0/dummy_data.zip             | Bin 0 -> 1620 bytes
 .../dummy/ja/1.0.0/dummy_data.zip             | Bin 0 -> 1806 bytes
 .../dummy/ko/1.0.0/dummy_data.zip             | Bin 0 -> 1896 bytes
 .../dummy/lt/1.0.0/dummy_data.zip             | Bin 0 -> 1714 bytes
 .../dummy/lv/1.0.0/dummy_data.zip             | Bin 0 -> 1756 bytes
 .../dummy/ms/1.0.0/dummy_data.zip             | Bin 0 -> 1679 bytes
 .../dummy/nl/1.0.0/dummy_data.zip             | Bin 0 -> 1671 bytes
 .../dummy/no/1.0.0/dummy_data.zip             | Bin 0 -> 1715 bytes
 .../dummy/pl/1.0.0/dummy_data.zip             | Bin 0 -> 1806 bytes
 .../dummy/pt/1.0.0/dummy_data.zip             | Bin 0 -> 1638 bytes
 .../dummy/ro/1.0.0/dummy_data.zip             | Bin 0 -> 1700 bytes
 .../dummy/ru/1.0.0/dummy_data.zip             | Bin 0 -> 1994 bytes
 .../dummy/sk/1.0.0/dummy_data.zip             | Bin 0 -> 1743 bytes
 .../dummy/sl/1.0.0/dummy_data.zip             | Bin 0 -> 1697 bytes
 .../dummy/sr/1.0.0/dummy_data.zip             | Bin 0 -> 1710 bytes
 .../dummy/sv/1.0.0/dummy_data.zip             | Bin 0 -> 1694 bytes
 .../dummy/th/1.0.0/dummy_data.zip             | Bin 0 -> 2821 bytes
 .../dummy/tl/1.0.0/dummy_data.zip             | Bin 0 -> 1566 bytes
 .../dummy/tr/1.0.0/dummy_data.zip             | Bin 0 -> 1855 bytes
 .../dummy/uk/1.0.0/dummy_data.zip             | Bin 0 -> 1857 bytes
 .../dummy/vi/1.0.0/dummy_data.zip             | Bin 0 -> 1640 bytes
 .../dummy/zh/1.0.0/dummy_data.zip             | Bin 0 -> 1316 bytes
 datasets/polyglot_ner/polyglot_ner.py         | 188 ++++++++++++++++++
 43 files changed, 189 insertions(+)
 create mode 100644 datasets/polyglot_ner/dataset_infos.json
 create mode 100644 datasets/polyglot_ner/dummy/ar/1.0.0/dummy_data.zip
 create mode 100644 datasets/polyglot_ner/dummy/bg/1.0.0/dummy_data.zip
 create mode 100644 datasets/polyglot_ner/dummy/ca/1.0.0/dummy_data.zip
 create mode 100644 datasets/polyglot_ner/dummy/combined/1.0.0/dummy_data.zip
 create mode 100644 datasets/polyglot_ner/dummy/cs/1.0.0/dummy_data.zip
 create mode 100644 datasets/polyglot_ner/dummy/da/1.0.0/dummy_data.zip
 create mode 100644 datasets/polyglot_ner/dummy/de/1.0.0/dummy_data.zip
 create mode 100644 datasets/polyglot_ner/dummy/el/1.0.0/dummy_data.zip
 create mode 100644 datasets/polyglot_ner/dummy/en/1.0.0/dummy_data.zip
 create mode 100644 datasets/polyglot_ner/dummy/es/1.0.0/dummy_data.zip
 create mode 100644 datasets/polyglot_ner/dummy/et/1.0.0/dummy_data.zip
 create mode 100644 datasets/polyglot_ner/dummy/fa/1.0.0/dummy_data.zip
 create mode 100644 datasets/polyglot_ner/dummy/fi/1.0.0/dummy_data.zip
 create mode 100644 datasets/polyglot_ner/dummy/fr/1.0.0/dummy_data.zip
 create mode 100644 datasets/polyglot_ner/dummy/he/1.0.0/dummy_data.zip
 create mode 100644 datasets/polyglot_ner/dummy/hi/1.0.0/dummy_data.zip
 create mode 100644 datasets/polyglot_ner/dummy/hr/1.0.0/dummy_data.zip
 create mode 100644 datasets/polyglot_ner/dummy/hu/1.0.0/dummy_data.zip
 create mode 100644 datasets/polyglot_ner/dummy/id/1.0.0/dummy_data.zip
 create mode 100644 datasets/polyglot_ner/dummy/it/1.0.0/dummy_data.zip
 create mode 100644 datasets/polyglot_ner/dummy/ja/1.0.0/dummy_data.zip
 create mode 100644 datasets/polyglot_ner/dummy/ko/1.0.0/dummy_data.zip
 create mode 100644 datasets/polyglot_ner/dummy/lt/1.0.0/dummy_data.zip
 create mode 100644 datasets/polyglot_ner/dummy/lv/1.0.0/dummy_data.zip
 create mode 100644 datasets/polyglot_ner/dummy/ms/1.0.0/dummy_data.zip
 create mode 100644 datasets/polyglot_ner/dummy/nl/1.0.0/dummy_data.zip
 create mode 100644 datasets/polyglot_ner/dummy/no/1.0.0/dummy_data.zip
 create mode 100644 datasets/polyglot_ner/dummy/pl/1.0.0/dummy_data.zip
 create mode 100644 datasets/polyglot_ner/dummy/pt/1.0.0/dummy_data.zip
 create mode 100644 datasets/polyglot_ner/dummy/ro/1.0.0/dummy_data.zip
 create mode 100644 datasets/polyglot_ner/dummy/ru/1.0.0/dummy_data.zip
 create mode 100644 datasets/polyglot_ner/dummy/sk/1.0.0/dummy_data.zip
 create mode 100644 datasets/polyglot_ner/dummy/sl/1.0.0/dummy_data.zip
 create mode 100644 datasets/polyglot_ner/dummy/sr/1.0.0/dummy_data.zip
 create mode 100644 datasets/polyglot_ner/dummy/sv/1.0.0/dummy_data.zip
 create mode 100644 datasets/polyglot_ner/dummy/th/1.0.0/dummy_data.zip
 create mode 100644 datasets/polyglot_ner/dummy/tl/1.0.0/dummy_data.zip
 create mode 100644 datasets/polyglot_ner/dummy/tr/1.0.0/dummy_data.zip
 create mode 100644 datasets/polyglot_ner/dummy/uk/1.0.0/dummy_data.zip
 create mode 100644 datasets/polyglot_ner/dummy/vi/1.0.0/dummy_data.zip
 create mode 100644 datasets/polyglot_ner/dummy/zh/1.0.0/dummy_data.zip
 create mode 100644 datasets/polyglot_ner/polyglot_ner.py

diff --git a/datasets/polyglot_ner/dataset_infos.json b/datasets/polyglot_ner/dataset_infos.json
new file mode 100644
index 00000000000..19c4c7d7d70
--- /dev/null
+++ b/datasets/polyglot_ner/dataset_infos.json
@@ -0,0 +1 @@
+{"ca": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n         author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n         title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n         journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n         month     = {April},\n         year      = {2015},\n         publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "ca", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 143746026, "num_examples": 372665, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 143746026, "size_in_bytes": 1250764632}, "de": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n         author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n         title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n         journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n         month     = {April},\n         year      = {2015},\n         publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "de", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 156744752, "num_examples": 547578, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 156744752, "size_in_bytes": 1263763358}, "es": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n         author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n         title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n         journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n         month     = {April},\n         year      = {2015},\n         publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "es", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 145387551, "num_examples": 386699, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 145387551, "size_in_bytes": 1252406157}, "fi": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n         author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n         title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n         journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n         month     = {April},\n         year      = {2015},\n         publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "fi", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 95175890, "num_examples": 387465, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 95175890, "size_in_bytes": 1202194496}, "hi": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n         author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n         title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n         journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n         month     = {April},\n         year      = {2015},\n         publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "hi", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 177698330, "num_examples": 401648, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 177698330, "size_in_bytes": 1284716936}, "id": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n         author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n         title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n         journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n         month     = {April},\n         year      = {2015},\n         publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "id", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 152560050, "num_examples": 463862, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 152560050, "size_in_bytes": 1259578656}, "ko": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n         author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n         title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n         journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n         month     = {April},\n         year      = {2015},\n         publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "ko", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 174523416, "num_examples": 560105, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 174523416, "size_in_bytes": 1281542022}, "ms": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n         author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n         title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n         journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n         month     = {April},\n         year      = {2015},\n         publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "ms", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 155268778, "num_examples": 528181, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 155268778, "size_in_bytes": 1262287384}, "pl": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n         author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n         title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n         journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n         month     = {April},\n         year      = {2015},\n         publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "pl", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 159684112, "num_examples": 623267, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 159684112, "size_in_bytes": 1266702718}, "ru": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n         author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n         title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n         journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n         month     = {April},\n         year      = {2015},\n         publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "ru", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 200717423, "num_examples": 551770, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 200717423, "size_in_bytes": 1307736029}, "sr": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n         author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n         title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n         journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n         month     = {April},\n         year      = {2015},\n         publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "sr", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 183437513, "num_examples": 559423, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 183437513, "size_in_bytes": 1290456119}, "tl": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n         author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n         title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n         journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n         month     = {April},\n         year      = {2015},\n         publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "tl", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 47104871, "num_examples": 160750, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 47104871, "size_in_bytes": 1154123477}, "vi": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n         author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n         title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n         journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n         month     = {April},\n         year      = {2015},\n         publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "vi", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 141062258, "num_examples": 351643, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 141062258, "size_in_bytes": 1248080864}, "ar": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n         author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n         title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n         journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n         month     = {April},\n         year      = {2015},\n         publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "ar", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 183551222, "num_examples": 339109, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 183551222, "size_in_bytes": 1290569828}, "cs": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n         author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n         title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n         journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n         month     = {April},\n         year      = {2015},\n         publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "cs", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 156792129, "num_examples": 564462, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 156792129, "size_in_bytes": 1263810735}, "el": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n         author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n         title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n         journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n         month     = {April},\n         year      = {2015},\n         publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "el", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 195456401, "num_examples": 446052, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 195456401, "size_in_bytes": 1302475007}, "et": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n         author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n         title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n         journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n         month     = {April},\n         year      = {2015},\n         publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "et", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 21961619, "num_examples": 87023, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 21961619, "size_in_bytes": 1128980225}, "fr": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n         author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n         title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n         journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n         month     = {April},\n         year      = {2015},\n         publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "fr", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 147560734, "num_examples": 418411, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 147560734, "size_in_bytes": 1254579340}, "hr": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n         author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n         title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n         journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n         month     = {April},\n         year      = {2015},\n         publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "hr", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 154151689, "num_examples": 629667, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 154151689, "size_in_bytes": 1261170295}, "it": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n         author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n         title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n         journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n         month     = {April},\n         year      = {2015},\n         publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "it", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 147520094, "num_examples": 378325, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 147520094, "size_in_bytes": 1254538700}, "lt": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n         author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n         title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n         journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n         month     = {April},\n         year      = {2015},\n         publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "lt", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 165319919, "num_examples": 848018, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 165319919, "size_in_bytes": 1272338525}, "nl": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n         author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n         title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n         journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n         month     = {April},\n         year      = {2015},\n         publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "nl", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 150737871, "num_examples": 520664, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 150737871, "size_in_bytes": 1257756477}, "pt": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n         author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n         title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n         journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n         month     = {April},\n         year      = {2015},\n         publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "pt", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 145627857, "num_examples": 396773, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 145627857, "size_in_bytes": 1252646463}, "sk": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n         author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n         title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n         journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n         month     = {April},\n         year      = {2015},\n         publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "sk", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 134174889, "num_examples": 500135, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 134174889, "size_in_bytes": 1241193495}, "sv": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n         author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n         title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n         journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n         month     = {April},\n         year      = {2015},\n         publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "sv", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 157058369, "num_examples": 634881, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 157058369, "size_in_bytes": 1264076975}, "tr": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n         author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n         title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n         journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n         month     = {April},\n         year      = {2015},\n         publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "tr", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 164456506, "num_examples": 607324, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 164456506, "size_in_bytes": 1271475112}, "zh": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n         author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n         title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n         journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n         month     = {April},\n         year      = {2015},\n         publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "zh", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 165056969, "num_examples": 1570853, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 165056969, "size_in_bytes": 1272075575}, "bg": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n         author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n         title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n         journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n         month     = {April},\n         year      = {2015},\n         publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "bg", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 190509195, "num_examples": 559694, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 190509195, "size_in_bytes": 1297527801}, "da": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n         author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n         title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n         journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n         month     = {April},\n         year      = {2015},\n         publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "da", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 150551293, "num_examples": 546440, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 150551293, "size_in_bytes": 1257569899}, "en": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n         author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n         title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n         journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n         month     = {April},\n         year      = {2015},\n         publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "en", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 145491677, "num_examples": 423982, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 145491677, "size_in_bytes": 1252510283}, "fa": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n         author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n         title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n         journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n         month     = {April},\n         year      = {2015},\n         publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "fa", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 180093656, "num_examples": 492903, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 180093656, "size_in_bytes": 1287112262}, "he": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n         author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n         title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n         journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n         month     = {April},\n         year      = {2015},\n         publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "he", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 177231613, "num_examples": 459933, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 177231613, "size_in_bytes": 1284250219}, "hu": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n         author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n         title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n         journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n         month     = {April},\n         year      = {2015},\n         publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "hu", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 160702240, "num_examples": 590218, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 160702240, "size_in_bytes": 1267720846}, "ja": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n         author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n         title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n         journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n         month     = {April},\n         year      = {2015},\n         publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "ja", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 193679570, "num_examples": 1691018, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 193679570, "size_in_bytes": 1300698176}, "lv": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n         author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n         title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n         journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n         month     = {April},\n         year      = {2015},\n         publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "lv", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 76256241, "num_examples": 331568, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 76256241, "size_in_bytes": 1183274847}, "no": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n         author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n         title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n         journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n         month     = {April},\n         year      = {2015},\n         publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "no", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 152431612, "num_examples": 552176, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 152431612, "size_in_bytes": 1259450218}, "ro": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n         author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n         title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n         journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n         month     = {April},\n         year      = {2015},\n         publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "ro", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 96369897, "num_examples": 285985, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 96369897, "size_in_bytes": 1203388503}, "sl": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n         author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n         title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n         journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n         month     = {April},\n         year      = {2015},\n         publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "sl", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 148140079, "num_examples": 521251, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 148140079, "size_in_bytes": 1255158685}, "th": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n         author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n         title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n         journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n         month     = {April},\n         year      = {2015},\n         publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "th", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 360409343, "num_examples": 217631, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 360409343, "size_in_bytes": 1467427949}, "uk": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n         author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n         title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n         journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n         month     = {April},\n         year      = {2015},\n         publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "uk", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 198251631, "num_examples": 561373, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 198251631, "size_in_bytes": 1305270237}, "combined": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n         author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n         title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n         journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n         month     = {April},\n         year      = {2015},\n         publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "combined", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 6286855097, "num_examples": 21070925, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 6286855097, "size_in_bytes": 7393873703}}
\ No newline at end of file
diff --git a/datasets/polyglot_ner/dummy/ar/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/ar/1.0.0/dummy_data.zip
new file mode 100644
index 0000000000000000000000000000000000000000..f737d63201a6de5a1aef13be20a39d67ab0cea8d
GIT binary patch
literal 1809
zcmWIWW@h1H0D-%$hJj!Pl;CENVMr;>&8>`2Ni0d!4-MgDV0Jp491p^!72FJrEMFNJ
z7+6Gr$^&p3B7tg1VsZ}HwBpo~VlqvX#$#e)5s`-Kwxjx00l%S$0N8pqIo|mq)&Kwn
z1P24i<R3y2J*mtL4DK8Z47x;^oLCfJo|&Dgmz<xMlLHQCkTu(Y7%iN0Lr(_@2MWX<
zo}MsuJ%d){YU$HjI_B#lH!R?a$(Wk`dDan;rT?1zJlhl%{g~Pw^sRsK+kD>TyX9$2
zdXsi;&$suVzc2h)qC}NZeD&u~Z>uB{F7rA|w$9^9k(zX2l9Rb~_U_l~zx92yfAss^
zgAX4P-gB%L|NY+nZT*2qa&;k%lh^s|%xG1#n;rdQvPp>wKl8~4Jhzkon3hSM51G%t
z?#=vVvrcS1liGM^#qB#OJf<zH13gw4rLX(*JT0ZLDri9$pZ~SE_jc{|r;aN+8ZMp3
zwa_YY<*KMt3bxLyTA7#KxbE5<>HqhzU65zK$U-);hd0&;|K@ox!$XKeH`w;<!#e^Q
zCgrn2_v$ce9zO6!S%PB<1GDxKB?aS1uQUUZBB{%7E}k`Q42(Xztx0sj36^ckSKpi~
zmC_l*@b*qj>Jx{MHxGCiW-H~SENi-xo1gt8;@pOmUEkMk*No}Y*{$<sttZd99yf;M
zMwPA4%=YMC?TvKHaMRjva&Lv|9={~x;1)H<4$cGDmhG5i=FA!yqZ7GR_xXpQ3a5y;
ziuHNwmeV($oOx`<)DuQ|!7O_>U3%uwxYGWnny<5c&9Uc#zwg`#oAmwEE{^$gPUj!J
zz1Zhwh4U2OvkNvGFfCbO<Ggd{!QC$BbbU83d$wV^%2O9bC&lE;UnB&sNLemyzHv<I
ziv7YVlilte<5hkAc)8uf54KZ3UoZ{2TC?oLnmMP98m!BG&W0}z{5k7{e0I*2u**E0
z+wV@lEpUx}+nrTs^aCsoUGrvevDB2jb>rR~*PiI7TPzl?dX@k0mI#ls|N0C2r7XiL
zEGBthiTzyMww7-$=kx_m?(f-sH`F;EJ<T|kamUmUo#^FjHcRdO`r6^@oy)SjZyY)}
zcb7uctqHDP|AUM|WDkA#wrb_8PnUG^H!-@^uGp(6R&?n0>8G#0w8yz6WURY=hr_YW
zFS&FDqsOfmk5#Tp)kK_pwQ0(f?dupXw4XY8SNM6sxr6JkzZU-a|JW)8^Eb+-g<Br%
zm7lC7@JL$dci)M4-leZPH?G>XF#qo3(Dg_B8RpuH)tX&SpYH7W{~UYiG3n>tXO>RL
zUVZttjpKv5HF*t3CW)?knJSt->#pY?#)i+5{mHhmOZ`Q)P0gqO+Vhj!;7H+lpRAU)
zuDj|y*TR_G-u#HzIXz?H<7MCFRch=%&A4YD;LXS+$Be5?lz^6w0t{~*K}?hqk`+=y
zqUBnA21+m>8|aE^AX;fjy6Ms=rccLXI=JK{YyoDuiR}D0_$`2zqCi_f#T(W@!c~Ss
rYynm`3`-i_fD}@wqXZJr8(>?|N>p4{va$h9WMBotmq0^>SV24hmsx``

literal 0
HcmV?d00001

diff --git a/datasets/polyglot_ner/dummy/bg/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/bg/1.0.0/dummy_data.zip
new file mode 100644
index 0000000000000000000000000000000000000000..38983ee522c9f8ae127a0ce5e31cb779dd799335
GIT binary patch
literal 1857
zcmWIWW@h1H0D&j1hJj!Pl;CENVMr;>&8>`2Ni0d!4-MgDVD>(p91p^!72FJrEMFNJ
z7+6Gr$^&p3B7tg1VsZ}HwBpo~VlqvX#$#eqI+2DNwxjx00l%S$0N8gnIllTL)&Kwn
z1P24i<nA5D*QYWwFywGDFz6Cta#DJHd1iK|UUGh3P7XMnLDuXCVzh9c8g|<6c7Q<a
z;q(n!LQglY2)Mpww^zs?$I!3#Iql(_8@)EHisD+et4wINMcuzcd+V<lr$4*J*Xk<H
zxwF4=u4S>_yL0aAO1W#6uPa;WAG51)&r7SECwj%A+r;mDGJJQorboJ1#<ZwA?cWvA
ze}}eh@VLvBws!XGO-E&|j(vJ@mvdkFku67hMQgThia505a60F89(#9_!l+$N(>AnC
zXL_h^pxM;V#3uVEB<qFL-n%O=TY9gE)$4Z4o}iWP;kkN=@Y=Kff5T^;6g;%-8HYfM
zMfaV>d0Tg=@$rBAKA&m9#p9xvQ^e={mOn1qsW$zOrCoT^U*?5eCk1Zjt~d}s^Wn5Z
zExIiE)fcvZs|a|Q#<X1U;LHuz)FPfTEGc*zU@>9#A(pvc1Q(b_OpmH@deVJiD$hKB
z-LoB*OJALM74*c}`{CMSM<b%w#TETH=pPp18F$TOsmqaq&;vfJUKCGT@I^n~_QSL5
z$HOiZFNl2kWO+`ij;Z8gCA)7Xzq`8sGky~NJUxy_r24E*YeSuqeg0CvCD(*{Tr-Tj
zD-$|qiA31n4{Q6QGUrv__Fs{6xcUC^-1kiQ+qA>ZYwE1<<}><Rg<5Sc%+|bZTjIHZ
z?Qqh`Lx)bLXl{M^Z~E5dt&t}KGY{*8m|QRM4x7-HtnAq)Zz+_?b~tL|O4Y0z$%oV5
zI7^sVE)jWpF#Kd#i}K+|ZqrH@W!iM~e9_BhJ?hU9?_xAN<mw{tS&jW|Mf~^V<ccO#
z_m?lLX*ww_TO`}1pzr8!5Zv)#eb2K=mlv*bT6Xq^>oz9$KRt}b3LROM8`3Pp5)?y(
zMRH$FQ(1K-v8wnOAD>sTz9Ns_#jT}(qr}7f&R8nuw{<pL>Nqv?%6F$ozPs-tItp|b
zY)TedSpP{pDcdzMPPO!*2=mjN@UM41Cv3So@qmhtL)X8#GlD`aln=?P#tVpkm60<4
z;I&3zf#S?->-;SnJ_}ylfB4|39}n^@53Z7X7d5lgpV8+Sv-(ZvFZ*i#9pOIX<C2-U
z-Z`yl)7{UV%VqwEe!a<IByHMMx}mhz+iK-3)BQD_=lg6P_wq)Fn{;|6I{29Atgz#H
zcl$%ahFJN&{(rTR^L_rCb~a|{EDUFO={w=6)9Fyl<w2Zc0{dsk&I~Lw(siz$)U)hw
zobHm}49mn%Bs%Q;(>tGg!xFAtq2K=>>G8a?>Iu7T#-U`7*yN7W^HyEEXi@R^@NzH9
z+c`Bg^_zC;ZTzFIyvb;3jpu*;0B=SnIc8jCs06e$6<~Pl2x6j?sH~6@6)l(JGf;v7
z*+5rR1JO!X(oL5}F?~87)4?SzVGA(JS!CzG!EXVy)CJlCDh{y*60R~AVhgZ(Vp!7X
k2BeTe9VL)}-T>QzRs!R)l9df;A_FTBz62WT#0ug801DlZz5oCK

literal 0
HcmV?d00001

diff --git a/datasets/polyglot_ner/dummy/ca/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/ca/1.0.0/dummy_data.zip
new file mode 100644
index 0000000000000000000000000000000000000000..098c5e7c07d32bbdab6e629a0b421de279774edf
GIT binary patch
literal 1605
zcmWIWW@h1H0D-x!hJj!Pl;CENVMr;>&8>`2Ni0d!4-MgDU_N;&IsOz7msW5yFtU7Q
zWME(s0V)r`X@~@>A&JR3VAG0IONz-fQ5uhl$;3KSxgFK73iu601i+%R$???}u?7Gr
zAUGI6CeP&bHJ{1Ez)-}>z@STn$;pZF<(b);ddc~DIXU2P23aHZAq730b3@MNi5T+O
zZPyQ)ptU7dQR7j_RJjKX9rM{wq-^e9s&dcjWJdMt#b4a2Uo5pPP}gsJo01mYc{t@!
zVN(6SKb3Ve46f{M)^Fe6Fg;gt5394@Cc(mzfA8hr3rQb;<SPEHZS$^p%eYO(Gh@C>
zoJ#n6Zzo$n=k<h&|4s83u2Eq9xM#{^ZG(F^d*sZko<tm65+k3nEq2?UeUF}ha9S``
zL+-Kh$?B3R3+%pa{yJ+Dx5CSlxjpO6g${h)<am_j$V;CBLvNnCeL_)}xMw|-aW0SG
ziT0T=af{fE%r#0J3Iz;1AK9u;^qB7I)s$f?c5lw7$qH)>n}QUl&Yz<<{r4u;ZMzBz
zrf{FVGB4{@#?S1aWh)=wZ0gkTd?HkM=nBV#8yi{N)y%Igy|vWn$m!jhPlF5-O>Wxu
zTQmKty3g$I+4uXZPlNELr_#DptlxaP6W_gMmQ-n^LfQNoC*RJCxOU{1^y3tz!$*(p
zezKOIC*zp|Q(M(?&%P;zoJ-5sp8VPt`99)xZPMP(a}%1%7KxU9`W3l#K^Gr$;;XCX
zfBBwt?YYm*-=><L$Uo6w-K)nbYkkkC9qcJIu{(Q(#d)`-Am5XJ_pL5-<Xjf=nG;&B
z7G-6`-1y$HsqyTQk3}0RZVNvZyLDvswZ<(=k4@(D3W{ORopMm><oxB5;g&VUvo#d!
z-A>pFUqATT^^~vuqs+&XXDsD;Y@);Uh55YN!GIj;oyJoa`gwb9d*K(Da_FFsr~S;g
zHVdA!l`*b}o*!v@>q*sKH8z{h=H_qbGyn0%h#Y!bbErsv$KHP@Rpz%=-EQ6zXm*?P
z;K`(&FU(uhL{A-m!=cu-f3~36$5#vf>r8PGcMss2d9eB0;hDdxB44e|ShT@uN}Xut
zffEO|?hq_BGoA6>O+>3z?jLi2HzSiAGp=$(0$QR7FuZjHF;PktR!FIWQKH~BP=W#3
zKvz@)(MlN7O_xS7eL5b~!KDph3oy$XWaq!ZZvnLA0onp860immu5t%r3$Tc0SkmYQ
jq>w@#C6IvL0Na9A3gNPnl?`Yj11k`|1RCnb0^$JxKD-<1

literal 0
HcmV?d00001

diff --git a/datasets/polyglot_ner/dummy/combined/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/combined/1.0.0/dummy_data.zip
new file mode 100644
index 0000000000000000000000000000000000000000..63cd4618866666f3f4701a33e0fd5b7255f4fc92
GIT binary patch
literal 56567
zcmbTe19YC*8@C&qjcwa@W7|e!Ta9hAjnUY)&BnIVuuak=C;4XP>;JSfoinFv?XIk@
zu4_O0UGMMO_eLH$Nnj8tfY(34Aq?{W=Z8Q4f(F0_Fmkf8a?>@^chsj-R)PcomYFcr
zm3?VWuFwF0AUA*j03gUO|6T6?Ldt%Ep#Q%i`i7SOhvs1H=<o+I@rCx<{*n0eV`2S<
z=wSKdF<&3`|1%W-_t5|M2k;N%*AD{X|9pxb@Z!WbKmY(!pa1|g{~yQ>mbxxx7G|`D
zHrAGw|Mzp|yE6KD0Ln^S_Q(P-k!@rQ3E5CmsrJKcoe7b4h$)1VXCZY39vX^|(5zcP
z?ZDVRAuEtAXq&`hN2z@vkLTX*?s4~+{naf!{#U{Vhd{*FZL}q|SG%`KKsXth9a<;t
zhJ!r)K5b=qBX>akVmhR<G9Nz<+7h3FZoMhI3nsiulsdVjIw3%>cf!JD7-6>`mV*_s
z+G|unj(UuUlN4pNHScuS79-b`P<O%JKfI8%#|@G*iBE3rEefXN4*cBJcRbSfPQ7ov
zqu??B`H_jdht8bBtsFg0(LvWt$lBnG+|ornWP-Me($)Pp*Jiu9<b1TRowZY$eCzF!
z&(}r;msQnvX9nuW?1E8!%PR4}^$iCCCKG#PXe-6KxrM|2yrHu~N#7<VbX$Yrz%sR}
zgR@j;bhMf%gPdJROJHJ!$jmV!svX+g^juZ}bWlp{dC#`#s|S2DE|<kLJ&Js<-9*?n
zpn{)$OAx~*rM@UEh71^eST!m&N^#x;t(TxgmTVl<mcz6N!5L2mQl-T-Esu-xwN~Q5
zCfEaX*Gxr&YObXf#8*7W0T0b4QRy8Ih^l?ik6N)kag3OZ1zy(!za$R2w0w)Lo!uNS
zqCdBddD15`>6nDie!0TUYl$TuBs#4k499qM=_~w&CYtRz0Jk@`-B@)P(Z!{Uk(!)3
zu(U3}b;RqO-0|RzaNA53m7hL`tblx^JqAa&Lgg^b9CCxDMc?OHdf3U{f-$`<rIod#
z$|(8~ZoT?euCyuQWH5)VvCo0m8z^T`UWOLl<wRgp%&hywPAi`FK^Ub<GO|y*q_;FP
ze7+SiwX+rvo&iCiMWOq<C5y?=PLMO_3=*-{Sx1f+A4v3)LJ__W*{nlUD?z7*`+f9>
z5U8=v5l_k^G31KzbkmO`Z;B%YA<IXl88b6fLDKZbU1R#XaqwgeT{`U&JKv6Sm~G5$
zWs?oh{ZW$DZ4s&r8()IqWGX@tx)i9U1X;3%Zbhl?h{Tlr%cv!(VGhj`&=0wU{3Ms(
zs=(q870A74;I;ju3Vw$ERs|MxKUDA=@*gUACA)z+pArEB04)5Q3jQQJSp2Ml*KYn+
z1#NLN^a$m2vOrQk#Mpe<+)vTzTzh&4#+qGWR%Nk9u;Rkv0(&}u6O&qYC`zfDm>hK7
z@s%w}z{u4kr_T-RN6fW}jvGC@U5n&wRNtfQIN(KYk{wGsDb}fbP`{=+LcQ165Jh&a
z&=S(rVzq3Etki(BCu)(t*2Zc={_uUhi^V;En}*tW^Wc7wj7<7Hv^v3@<5vy#JA&`@
z65PBfV2s5mO*f4NR}b;eEK!{~YRi7pBk3@2aLUO`a*#1TC0cTE2Gwb8n0zfWl|ZBA
z_!g<Tb4hQ~5EE)9Xu&>ege%}$av8_H(tq=C#rB35bJ&f@MYs1%BUsm!@@<)xspJYR
zWEf_~Y;iYM+r6%oH8gn8Sm}ZOC!>!pZ*A$XWK4uS-d4>Auht#0O1LuYT;lSrs^$~0
zAwQlTDq35a64}#bjq;aZtI1*(Dv(TbH+$2nrXs_-7Ja!UW{U}^2dKzlG1xFZVar^H
zl-`U~dH5FK)Hp44C#inZ7~_#^qyl5Skmx*EP^)Jb=qz&6>AI+`8g{(R8@H0{8Nv{m
zo<CV7pD<y`n2G2X8Vw;SjuN-`9gzhp4yEa!yldc_g#s9u0WaCer^OqEE>(DUJ_XUo
zCH&b4=(9>$Qc}`z2ryy_l1zZlw(K}aPB6$jry`EBmpwzS_o|G0<Z<bqt~TGlRP2z>
zyXWvr+PlKktGG|hE&2#7B#q8`7`Z$6c<Beo^f+5#oMB4rDk1ieY$l_TkVOZKl#VuL
z8k?pXOnfca+SoaPOb(&|j5p%^sEBREMZ}v5%bm2^*Y14XtioO%HN}Z~I3Tj*&o(h0
zD?c2P(D1l}zp32FEFJLWdUvR6@h*HyqqMG59>EwH{eYDnU3exqf3qXpf-&+Umb^*-
z6r-yh&Wh%w{qt%dxeLt%ic0s4vG&58xveaV`n$ZD$cJ~>p5NB2oXe(>>*4rlh%LK&
znh*+>6fa5Og7(nfJOFac3yo?N#U++r4JwVziGHGnJRlM?4X~#VneD88^zXFl<%Dtd
z)FF2W{ayuunoF6q!_qgO!!mp;rbr*geGmLY9AW=K9JYVf5Q;Ckdu{(Hj-R2w6UPhm
zhd6#i{zDwE<fv7q4+byd;0ODC4e=M*_LmyswVS^c$B;F$I0Da%t^sjnK<Wh}Tm2#k
z^Q8~9-AK7aa&FS70xhL+W(?>SFuU7#l)(mHO_xUq-R|%~N+#@TsvIV!%f4{5i;aVE
zcjbsB*g(IVjh!8kkATNbEXIs3A1XeUiuH7a-<+<JeWz56we}LKR`1{Hh9lL_mG7!o
z(lcypCTkahV9_3Lw-;WDu`z((mwK3ty%69E?E!aB=G@iiW>l8M4w_Fj@ZhMK5=kzG
z>`cl%B6VJhfzRmVojWRy0u}O>N;Ib-yTbCAgRVY=R<5seNSny1X(Mh7HrD=>M1IVO
zWZy}K6h|%kCW2`HzJD?+Q&s@Y^Wi%B^Lm(>+37Xzx#MMWuiH=~=X4#K9KQJ7#)(^+
zzf~N<>}kCE2j0~+DP7o(Ju{a;Suvbk!?%qkk0Egw3eXe!9^35BurhaI+x2W+a4qn*
z<7LOa0778o&UjGTcDD>LbA7u*4dn5e?Lgsgw9G4UZ}kGi3ZXJgE}w9G$bI10W#c5v
z(n_uc!8P{=M~~ASO1DO-92T;_=TvR?=&H+p4VZ^zpiH5?ca({wRImcES^s3<!Ne@+
zGee`Sga!BhV{uA3xPoL<(DsMLLq?3|u>%->EWWLsGa|*JOx9Kmb`cv;*PXW{eV(8g
zvh$#@N$*p+F%=nxeH)6>Zk**X&iHD2luMNj_lN75ff6-=+U25<lW$x^n^#O##{znn
ziQdNn*1CmraB%CnH?Em<te+=2z{9876^c~u_&-lYW;z$k=Wv?E$v@!UHzB)YSr8^?
z=sRP6gQAkaaA+#qz^k5oum8cyL2?6B8EuIsphe;2$~26BZWL+r$ukq?SV{o>c_y1a
z5?WgRnONDmA27`zH!{5m@rZWr9z1hcd1XN$M-tM$XxSV`T(>TO0yuN928L?c;rOny
z<;bDWGlV4Ds5=6Tp?+ixltylYai29dcd$1&p^oe*jPGj;@#Ac>PSr^5`K}rJv?I-&
z#jYUou{CavlmUO5wg>=={+ZOdFgto(ejH#u+rX`>u1gbBsjSln3Ut6W9DEWX*w$%Q
zg!D8E0%LAoUbX6d_gnLO_>|h7K(|gj@!=Vkkiw?ri@s9aMdubO)Yj_@-Q|f-1ogT+
zT-t4RB&2*Gu)GWV_T}yW<DKyT;2mePKMEG*m)O3xfAr4J(BFCI1^UA~zajtOomX<C
zaa(`u%i5*pUkaAL$j)Xz7c8&c{Ec_Cm6pws1kl@M)`a9B;!JaUm*0k<FDrQYo|2AH
zFA7PS5P7Kkxf1vZxDyCVX_$wibLZioX<ZxSoHN*Ly-!&sZd=G)%zVD~dj2X)HLX}t
zsS0z$?3+(_tqyUVEsvxYaSwAI`-J2?CE_a57F($)9l<HghIV48_7&87HLy@^o(YY}
z=M+79rvpzUQxQN{cJmS9gSP&x%YATm6hoXmG$nq{`gC5$DaW1RAZ?24Nt}*hqM&S3
z<!AOR&O$_QCybFtsD4Cu5msea3Cp*g?O8+F{`xBC(wse=?eci~X6)JglDTWK7HH;&
z4o{1mkt6I^AVOpXOV`smm`Hr+AgsW_5VIpbb1+^D!j2zXt+I%sp-dfcdd)}Tr_Yf!
zJZ`oGc5dw%fyveFF%+xMpsh2J8L;(hldHth2%75SLfA;aqDi<zbvW)iOnM&*MQF@~
zhSEQr!^CwzZ39c<b-Ra0m~NFF61UH1Ux|1+zQvjk1B2|OT*?ZbAAAe1wTe9ty@^l6
zqd)CnRJVIrVVS5SNjL~qyAXjSrz<u}XT^V?;4W}M`S}vg-MzgX>KeOEw5mOa5<xRP
zpJ(*jkeg^e7*_Y<w6t+qg~zTv2U)v@hnOxF4l#eEX_?;}*g5-_CWZIV?C;%UcbMkD
zAQ^S<(IkZ97<YXN3ErO1c$R)SV5LeZs3arIil!bRA>2fLa`KFR<3wnpCM~ve?ABU?
z3qc#73d?_P&%`zUXg3;4O+z%9Fv_6lCRM;IBzLxc*WbHOI0kHT?{ar<E4-%Fiu0l7
zsVgG>#3ZtKHN$i{Rl;iDch|$Ur@?F%T<u73`{pu2)+=5oh`ZpBL|Z|{Io*r#s8_=4
zY$=2fSj1tIQ3X{8qMMLj=501P=<WO-0H}?`($ULGbcZ1Xi8O6w5VOUE_r&B~-}8@3
zBH}+J+QIpcM6138LhW~n{u%naM880PB>FexKN9^)UWRHmyL?GB#J^M$e~}%We@^sk
zH|oC*z)DHmdYK-^+ghd?P}^4@UK?+oRkNY)FvbZyi)cyy=ABqI*E#nPiaVgLC9!cK
z#U!|R{af$vV&2ocjjFEp9p5lZLl>MAKZEgDeV@fOg-oXzJ7$xSG5Z!(FisUwOF7!g
z@+BL5f7gZaiGLf=F+7b|!InE0DCoh}&RYQboA-)a;(?;&5`qKJey2?r+YGIHNqQLo
zmlAVD79{XnsV--Aa5|6)Q|fZ3bpAj}+izqMxI{z|E#&MO8b+81SH22?p<$Cu;0I>S
zt<MfET3(vvseAk3R~QcskkX9W`H?-;O&x|JALFujACJiopx57Ql8?B1nh*`D6TVwP
zr$8AN$w6pE$mc!_7p=(cng!=-OdYDOsa(8|ie@|b1hFD@nr?@;FR^6zj?sqctg7cQ
zyMu+@3NNrC-&C5|y0|*)<Xgrx_K6J4Y~wrH&TlBLEVeBqMIeCjT(!3`b~s(eWpP+v
zTNjPZ+@~Y}i-pSlT#*@j=h=|^TxlZd*k!)Mghv8v%8W%nkbWzLzt4&?<m^PlfjFE-
zpye<djuT=OVy16ejhK-B)NK)tu|d$AmxYMV>MR7u%AEFGSR({LqQX<hm~h&ixvD~N
zd3gHx*=V`03{a9~@54NX?)PJaHZq6IfXznPg2Q1%&<wX#F#*9P{_8HY>8}ajiA#xL
z42!9mit3zzs^JnxdtmCemWRp8uIszSZUk<`xKsGSs3Iw$P~AR>FWZXo++Cz9ai6i0
z%A#$BIaDTvTxeHsuwAue-(M@xWNxw-<=qgDsp3;vZUG9lBAFe)J~OokuBUns3m6Ou
zon6DbOY5odCFe(G&+|eqNrNLkg-V%CY*S;75(CH_%N&g!@<+HEl4catnA7f|fzoDv
z*C<DG{QNwenWZv8*+~}LInAa7PqI!j5!TJ^7qSd8A4DO8h`?jzm>vDrt?U?+DDIX)
z1z`k95i|SIQI~Og@{-gSoGUN>P`uhVV1SR<JPzGK^E>zt4@CY4511PN;epo(Y5W?a
ze}?|f1251Y9(X1HO+a7Ce|X^aaRZ;GaS>it6c6CPUs3!;HZ}g)1Fv0Z{yKm}<uU6S
zegxiz=q}J0g;^E9B>PeXG&#9GXxk7ufvk{EenNQN)+c$A5m+q*Pi|lz{Jn76?@R`q
z<>8fLw^tVz@9y@}t90G>6`vg}T6wy+>6)%tjH+C!sXY%Z)OXYh<OXg1B``oNbcYx(
zBij|;2a*kRT$P0w=-x#}8#i4$d`!t5e2z)>XAUGe8u$7X)hlf|oq|{ovjvGe74G_0
zD1TyhEwc5^3CT4EPgkR&*%6U?sh(%PC`r7lo__dDeM8LQp;)AmQjzj}m*A(W@Kp?L
zQ$4seCZ>cfSKzL0kh;!*v0)G@PN?jDcd|eY;GyG-D*OyN1b}mF`x08B0!{wC`n7iM
zMX*Z_e3z%RWl=fI_gv{2TaVV4cQc1*)H)k(1(U-!VJzXP>uXo5US+;{>RHWi2BR{t
zZ~F#QuAXR}gg7jSsoWU8yd8}Ns`e^v<djxI1=XHocBbhTDM=xhu_#Wq4#F2ox>6u9
zrk}T{c9M3U!-+%mb&e34Y<e>&tK+)~@1}4-yZKq7CSOcH5>eh_C$;DOxH$)v_GtBZ
z!YvQ62ROK_@O1Z%hI(9#hLb8Q#67bLX+(r4M-d;<ra6&3h2}`{XJc%Q@f>CArZov4
z*(YZ;Djrirm18t>1EHd2xNn5B#0Jq5;M7PyX#^-}YL-B~0>sSCFq}h(g5>!Z9%rmD
zj1PP_nu+aKemmUn22z8HAfn&vdj;%&^9*}ti~ss=UzbcF!>3PQ?0EYc_=&Ez&nDqU
zfy6@0J)MF9%frkNB+J+t1xF0hJ5p-o!+xwzTs+nGv*40DeN)o?@F8ujP`84<g1l)d
zR`FV#`zo@ylM<!+GY_l~50*U|Lwr2x<bi|Cy|ufrNORcfF7<8@u)hOU=ixSAM`Y>a
zd;qBK;bl1&PvRWo*N3tU>XU6I?0$lWBx@i@hh}k0M$j-P4i?LR(N7snr*7Y}v=1QC
zz0bvC7E|o71qg~!$)+`La0<U(*&dtAl%n>6d_ci3)^vN{Q#t+q0~ju0RPj=0=|*;~
z^&Rw&Ku7%tOIZDRAo3b8tzSd-&(Pml;syG{60hXHiSG|fygshDZ1vFgOSRzlFV(_d
zWGjcCE%Dlg_OAnQQkJw{p@-3CBRe!uAQrBHs5YMz_Rlh%#0SqB2%|YR6ncXs1vdwM
zZQzw>^e(L)I+`NXofr>~M|Y_0!P`FUol^J*iVfr3J{txKIg@>}UP^T8Fel{C*(n5z
zgx1lwpe?v674OE4wkhPMlnGt3fVQC~4B{H9_Sp~AWrt{I<5O5$jQk@LK#`J}bQT?F
z>p)bwu(C|`-rd&P=<CFHf>|_I9k>U-%TWVZRbj?&G2z;p9F5wFnfHRrNaG-*QcF{1
zrENInC!#Agx@ND?Y6WXnI9D>=Mh#phTfR!i<eW{c3mVT8J+@p*=@r>|yA+|V{jT8c
z0GybqI4NEeb~2eHn{(}4wKmocz#cd^8Q#SB#Fut9q|W?#7t%8`f|9k5b*a^oT0^&`
zK8<oxC<6wQ3Ik=&U3qKl)1ReJ_CvlC=gu8pjmRcbJ&GBAikkNcbB~(CspL~BwyTvb
zYPp0K7X;V3HuvZ1{w7-K$0`i#ZdZ>OBVSyfS7}a{(~WtmA8BIg23(}Hsyxe+Oc|`l
zX#d8Zol2Z-@fac!8D5j2&FYI}T5#U}*BaGlXzqy}=2$5rO0ya;+O0`zUu`7<L>mff
z>Nl-{mI#1wEHa{NoW?@Ruodh@5;e-(*RI+5D```Hm-;vwNfMON>yzRBMvi3+wHcO=
z&yR3<jV0JX`$Zx)#*$jP{B|ptm4g7KRV-Mw>qi@c8BvawsQz;@N(7o9QgA4=SPe)w
zpP;QZD5w|rfZM5M?ySE0Nrhc13CvgO)<$NPyio+Ln%Tg`6B0;qoeZyGyWv8IRQ$vx
zEQt(qm&Z~h6AD%IE{{^lCV9^Hv$cA*itS?ATjrs1dkCfcYcf7j;R)-ch!t$fH064%
zE&;GN0LuJ}Iq!f1AwOv67&I()2xS8J-1(E0pS_2__x^sv#EZGEO6g|io}@o}>zFgI
zL^hkA^KzsD?3jL$_|?e=?^fnXIWD6E?O^>!Mx*~j@QwaFTYb&U-{j_>p}!0M3-m|u
ze?$JGJa~QF3!?$9wU^*;{ma7tFS3#T&%uA~M(1yWuQc?sOhDin_&B8q+!&b2?CUV*
zmuIQ~Zl`%Ip=_A8M{0|h^<DN7w&{3)lPO_mZ_=N<oawyHZ71LN)|6-Y)`ozz^8>QX
z)&v`KVrAi%hq(^r4d)yu(XYo;A2iBkCd}}x)<S)(lvvm?-4w}iXEbIy^gLkMuN=8%
z*2L*0fTF#9#1I;>>=b>#1TQHOq9(qLeK4)KjM}cx$nRC81>6^tizZ*IAXXkA<&yT|
zg`;(15ekDW2BnX^9KEP%C78EA7m|+0_N~OUA%MUPrC~*RJJTT{CDBsP%P%#I9+=k+
zL1dnP)2kQH_{opj3yGczTt_FPf|QpbGzOi#LSM=<Jcctp0kIGeweW_N4A~Ii)YzyS
zQ!92^(~|FtSrl?WI81LCPuZv&g>7j_HUToGxzeD~DYELvA(KK42zi3a_gRptov^&w
zJzOa9@L`2~G6(QUly4WA(R5L<n>NU?6jk*o=fl*#;nX;H$gP^g`(A2&8Ych9uZR-%
z4zb)sZ%|l0Iy1h{o*@Y^mMj*^euQ+>C^1=?w5E>xYX@?&b`>Mh{DF6PE4X|53jMuw
zPsu>uG31>r4_|l|2;DeFVFLqBhI}A(?l^6Meh+JrSb-iM1ef|v;Z;YdDriFef;zi&
zKo~Fe1WqLbWf3RE(3qAGNjO?!dYA_m)HkY4PTr@?Z3zEWQN(NXN+r`e?v-{L_uj`%
zSGKew_OK@4`A-KT^Al&ci?$U&i`f|Z_CyI1r`!}zJ|e1T2N!$AgLZU;Yy6lwai*k4
zWvO5{VD#_eT}hBF5kWOZ#K=JwB_Y7!qJ?JHD$zX=!fiUE3cMFeiybMr6j1Q+xzru%
zFhh0WZNm4H2bU*1Y|D$d6oKu`{Hh-<#I`~Ep9>kX1?uF})j}_=an5kq3LUoctQIK-
z6!)R~HBJ;joyq*~BsNsuk)7WJKFYy(XBa#mIX0P>i}3g0<d4>L{D^1Ff5^PG%^ynw
z-Iut$wtw90`x*MX%)dZ?Wd1kgKQjMH)+vs=1Akc((EQ6}{}<WX=I6}6cBA*}0A4ox
zUbhCkWZI2D!}JA$vlk7MOD$%wruEP5rANY?Am1(u`8>+pR^yRZHtY_FDAdo~cGc1%
zJGr_Rh4=8HaFr2Yip4*e>HAU>3;Pd3e<E^tM?HOBCEs3(KRr3gmj0eSS9j9rNKevP
zwm<GPi&#_QZCOTd=^?dRFNm9$$3nbz9cnzKor5cw?A6z6X*9hCmUVnp<8yRJrE*2Y
zrP<Ve%!(-t$$itWI9{r}fK9|r?tnN8l};OXU#4A1!PX~w-KvN^?7K0jMpI4rABCeJ
zvaxKj;2%r?F0#IeFA@zi^DFTd6I((C_a_asv0WGgQ$#Ddh>U;JhK1an>}-&ma_sle
z>E0N$7L;$rm(ikBemleL#bZ6DXjOX|pZ-8Mqo~msP-JOFJV<zw2LtrjO_`koRki4|
zEEvFT2#~>vg2_?J0y;o{(CZ6Wg-|YZN(Mi|V)q5fnQ`l3PLCT}02x?Vb3g!h+gG#h
ziZY2&rz@)GLQc*LdJeEaOfVK1A%o!ETs&r=9()H;@3snQVMJ%EvV0Zo#Qv3hSk2vH
z>HfZzr_O@_G>Xt3s6Z9eIK~PH9gN|O#wP3{a&Q|mMY3K3o>|aR;0~xzJIYYk0VBI-
zoeSq#FoY?|u>3eoB(vp4it3CBByvH*ti6o=IPM2fMac3Ac=h^ru!>+#Bs_&i-4(M0
z)#Kvo46GhOevpY>OTT6Nc8Z4jIvRnY92N!V)qa8<Lxpl{J8B6O>54~cJj=@nMJM$E
zFF1^rHH3E95HYdlRE-j06}lzL4xvj%akBgfD^{-O1@HzDxc$OCpqzqPP*q`)n?14a
z>TEVLC=lrOSavE>&bL>0b8-z#L?><}?i|m|D#DN*Ps*x3V#0m>#HQ1eq4PVP$rZo`
zXEf^Nz?;ho4Uylefr<r<y(B~X0@piv>GBk^Fm?PYT;d;Yb|p>vNlOXY-Q}+q_E4R(
ziZ#VO$ai7}8ExLA=r9^1RXjfk?FB)RTo=XwKRtMGLY=ovOK24IU3^Y?`k(!RpL6`X
zs|)6T76h-k(*HGE|7@J!$>9b1Lk_Rxze(*Y`G*`77jC>>Parw|MGk+F&3`EfUb`^(
zbpVmdt1=n_2<=IQ#r0Fy&1h|A2GeYEhL~|+%S#1^nJpy{*vN8sh!@~Im$^Ck8i>ev
zCJQ|Kt-|k2x+Yo8+`Bl|#}_j*Q_s`8jBKRpIT)~@ZgV(sgy@4iCJ;RXu9uqH>4>WN
z8#Dq=nRbu1S%DB#@rUv6@f+M0!D9_<EoeyJn@gab(4v0E2^?JJVBQLA#m2o1HsW14
zolFC?{(2VX=m;Vhuh^RRh4fviBBTEjs1w{}+<3E7yyko)l)-!BNWmBuxp!H}V$CqK
zu!D@}?=iiEJ>e-?rBHSKAG|Ja_$j_!3}?k>EjzoLgaffTMa{SD<YYiBT_*tAnLEJU
z)q#b;hz0W|r?K*^obr|1JFn_@Z|>%YE`GHUq9ZFTq#$YUkY^CxnXj$!w@%gy#}3v8
zz5}3?#KlC>ULvdx$aUa5T*y*n$j2NIX#k@Vj)9apM<*uzNGf{#&ij1fJXYJ~YIGa}
zqTFu*V9H1iJoeiIbqG+%aEw-Q{};Z;=U{N7h%l2`7Mn1*GNuVB**5fdoZ+>;mj1)O
zpNMj^R6;7O<0Q0fDZZLh6`j@WM;4$}*fS4nB`kIT=P<lE0Q0wqL2bmJR!MT)bW&em
zk2xL>(zVev|JDO5yp<T25!@ScXX{P;o#0$8vM5=1yBeWVqgJ+J38ZR78u{vBMKqOl
zFyUr*wO~vjR13szS~5mce*h&S#(3Vve;5=RJon3ZCL;3~j1Y~C)7Np05)5n5>gLag
zz4c=ReWYvEY=m}8LmFG(kDGZ3D8b-`Cr%xvNEDoah5-XVnLkzKF~RMA;lU0K;G^;0
zP!OI^sWn8HmGLg4Kd@(GhDtLIo4(z0dKh{iqG`=0a6z4I5~0vTi5e@B8`$Pd+>UBS
zKK34xZel_h6_GZe<0)%?x?xc8+xGcVswYnYj+^9?d{{|naq=m^m0{q;T|k?4Awr0d
zrrihqqIBhco)Nl1CsYfAg)5!ssgpYYo3T)r8XIy2QqrA|ys4UL!X_WxtP4J1Wr&)j
zbDi506IgTEMY+zxjLYQ`axgD>n7IKNEWbgA(xN<~QjoNZKRa}irw5rXnd?UByR+l3
zA`TprYN-Ao$t0qC$w=a~6=MFS5ocCx{Js-o-Grit59$=vibt^Hf9_+({)eK(_|KaU
zuaPzUHMT#z^E32!-g$xk@XjmwZ-nr}JFnzf!*cia7w?2Y{(hhGFS7A3Hy>WRF#2@>
zfhy9HSn|l)$8_?Q3N=NJ>doYVe)-q%YT5aE78H(C+6Hg<@DV|@mC#VO7~{W4kq!~d
z?BlI`O?E#U@L-w}j7=H!I$w=;m}s&o5*^2z>clHQDOHdV8Xl7GhgbZ5CH-D1)aFPi
z9BO?p-(x*r-7`xGtuUb^o^ST6lg76h*U67ZX;-l9j?6GYk{TN}{7o1LmHF?E67Io_
zL+qu1q4CwbHNoMr6TB}Nh)<cHn|5)(D){aKQE<w9=>IYov23XES?x(mD*apOG!2Tz
z6bz(uBW5FI6413Rb(em_rOEy-rFM@Z_{)KrmZB%Nv}q$uVgltE_P+nX4J=^D#aE}i
zIpI~NlZ`ZcA-tE3ppQI}ciILl%JW*C5RK5@mfpzGXFi<(yoz}zN%wA1xWuMdqIf;A
zsUFq2;UDVce8ctMUu}VIgQ_(b`Nt|Y-mNFv^b9DaFvCy*f3t-bLzt5Z0I}!CasY{j
z25jxLS<TNT$qxaCk}6H$FRHo?S=LgJ;K&H#dG40LWsLXTNz+GzCRE-=5u{)ZmRM<;
zgbe-?4mtej@p!Y{)qsb0%Xfa7wtL$3G$Fh0(t&OyW*F5fI*LxAIALx_wnD#Pf4YXw
z?yR>Zl=_A=A96;rY1}v>cH`~+B-F-d!1H1ydL%Q7JKyORRRJ3>@kcpn8R_BnSP05(
zdgGqGX}OJJz-ubGM6Llu8aT@CscQWOUvmo90^8ZJh~NcG!Xz=#nOTrEFw&_`;i!Oe
zMl5O6DvM$8=GZ#<$#;Q0kbe7f@WiU{7W!IZ{MO<hHM{A18Vmfps@%-lIV@AU-qE%l
zspgiI9F*c(tC|c5&*IeAZ!#m|;v`d+ViE6x7=EZEd;`pdO*a!0Q39g0LU_49{gDXL
zBtpfW2z}ziZmjw^)H?^o#(lp{8KY&^&jjqPvcingTHrWHO=0s4!Mm=*+sUfspp~J$
zu6`39JCiY~={=vnZ}vLr$xG7aQb%lX1F;k*IncpS!r0Wq09xXbT7F_d9jxgKt4LCU
zD9hBsU+U<z#i`RuAN1*|&Q@9Wu0nG)@-T|T`6A>uS$s=pt9hbGAS`~oG`Dx_d|Cy<
zT06_32$J|YIp9$)XsoD-U?)R8oiL6~P&+oVk&#gQixl+yJ|kLpYJ22%;3bk*Z44HP
zfE30_`$V!!ai0`DgyUYoF4VZ;NcZ<5tvQ)v9eQ01gmKw3C6U3&^paUz@G9Dol#f9a
z#F=|7BWplscQGs$1VTsDD`>^^jqaykyCXTE&Ur|aBx$kcVu>}qPGd@gN*7aPd>W}#
z)wcO;SW4al{_s=We~_N#pNF)s!uzfCeun-|dN0r)()$hhk7DbUe6T$UL;oT@_kSt2
z{vuoca!C8yjq$J2^ZIMsb>M&!a2fy*s@7EXF`J)HY-$3Kz5Zyjy405!>}b`}-j_pQ
z&cVkztn|d=Cbqh8sNi)2mJ|;UkEJlWTxR@>Wg|%|CRDF{q=wGED|IMJVP>YYIqVGY
zXUluD;Lo5R;#KETb;ixpo{An=E32+fYi&MTY#?M3e`DARemcgDelp11x)VpiQkVNE
zrH6+)nc!FPx#X~V>y&)?q}QELc(=Xyk<?<3wWStJssIp(!Mlm(hWes5X2PW1A$6bY
z&H!J$HWePS0?qy;M3N`jVi&Ks3b(LlG8ZUx{lRE~lrn0@1}VmzvvV(N;OJB{pQEbJ
z<}8}jbpqbyELG55r@7h^tAqjT2>o#q$YTakbBs1B)SSezodDdhT|0&%;;>Tw39P5?
zY%4;+-`WR=C*@X~o}0D{LA_ZRt4Dg+0+|j(81ot$usDbiBv?*zE}C*Ce|muWg0dY=
zpTNC+2pZE(m%D$WBx~n0Kras(N|Tu?U^8KXg|i)syzYex3lvJ>VV0*U8ikeLj=)_T
zoz=AV7vwnEU5|yEK^afSTo$azUHqpkF2EF&u0Bd|g?=kI4THQDX^%22s3aoHFgXg^
zF^oo2Jaazs*%i}+!^-^GtJo%+&~8?F8SJ`L-E~8)TFuJd?Jf~|hTxRXq_{+&n@&8!
zHby#CbH<k?n7-)oMAK#t)MbfQxH!Sw>wA856`=1WoBAUt2cwzaFe`t#)DzqR0X4s2
zG)$iO$g91FuvfDkBCt7<NWVVX5ElnaT0rUly!tH2hP->s-y~RH$_CcH)M9*}@DcM7
zJ2^a5A|;LU+Ovr=?i64kxgeF0y7G`nfD`p-VW5thKMrCd$w~6jC#dA4-J?XDPrGdj
z@EgCJc!y<1W(9YBwYELKKmjVD^XUcHjrH-=Qmu6i=<t_{`5V)vn<rQP>84?O-C~&R
zl=T86Ct9?s3fCp4I=eNn;u~~$$eNw20Utbn>i3u^yUTauC1A$wJH)*AmuDsA<pxA-
z#nkzsbdmxx*&oV2Z%qJgk-tY)nbg}0S1WI0Ic*ap>U1eF2$%&iW)-|0(*0qP`2S!L
zGsi#nb6x}ZHzE9I=<h7@0{vl;-;n>X$m`>pB6&I&z3kx*{mUNiUt}}KpZ9ZKyLtCF
z7EzLnnx#k3men;vFAfBOp;GAqNCW+d8nK|7apWi-g>%B*a}CK3Cb?iA*p7Zv<$)QX
zmZuOpa^rTsc)oGcV=iMbRFnD!78zJS?0evMSM?F$QvV(Li!@J=L76#8y?DJegEZp_
z2;A92{PcL}^uU~f%HTAV{*;}zq_h~O`QBz`hnyS|QmHZ@vRN(7Y4(M4f}13rc8?|N
zp;%SC>w(Tp^U#6srPh{V=$7yx4e@n8y|*flUtRalJpy=-z3<?ew-)zq20oX#qK$eG
zqjXfe0lUpTv6Ae2fHSqAX&jU6vV(xuk1|o`E%e0{zdNWUD=7~lLkFYO-%t?nIG&=~
z%cVw_V8?5}I{qTWrAfcL0G0_*LukJx8LbYcmQ`-Fa}O3FbHYFGf$*@SkkjjNFI5G(
zrCVCYVX`L{NHx2ZLKr`XvBesB$(+A1puVps5Wr5XXOIKLuOI5YK~bj*C$R*4)z3Bg
zsl03s6{E2#$Q_&iSZ<QBpxrBRR3n%L@EOMqZml-*6Mrxe4zsjpoXAx`RKinHU%4yz
zB0ex1!I{%+?{t)B&X@ABa=7&cI5kkZ%!q}VstYF~aVV$aDWl%%D?yY4=~Sp#M5+hB
zZW&*<8boZe&*KtD_;ND`$v|sgWP5{+Lamw`EXPS!Y6V3Pz9CQaaRi=Ra-^q^Q5cxj
zX2sTV@?{8q{uHFEZSzC|1n1DwBfD8bB7bLQ(2yH<Dt8Q((#vy<o2FK1|Bb}3H&&72
z+{%ys1mb9@=s6`I?~QpwP{Bf%KYxl$lICe?AqFOtqCx+1V6L3<5ud1Nzu+5*i;mg#
z9O#{=tY!*_DNS-($QBuRk$NFrI<*xA6&d^Mfk$fK_v3|Z97{8YG<t03^#O`)^D_{J
zqA{%j72f}I^)lf<q}TAz4VTw1{@;B0f28+k=<m||0{xNR-;n=E?<+YKQkpIGCB63l
zlHR|_hQDmMymn*yYkIAe#;lPUV0ato6k;fAwF$_#loD|_075>34;s~k=M%4S4w-r!
z=U$6=9OU!ZlF<d78kuN@_84v18N7e`?&h6BKilF@7u?~KY=zMZDnwh2Xy^EJj(7eB
zYhX(l?KY^US(ihnnkiN5EBdhB<609~G~~RV>$Bg->{5Kti`Il~D*Cm>2wXPz9ks4J
zEj-hD?fTaCt^F^8S&8Jh+e||qjtN=3w>39u)zJ8dLsk(LY;QWRss;K$dJm;+86;u6
z+uvwRL#J(G3%RJlXiCMz)}k($l@dbW+X6Ig@sP!eB@0XVnew2nWn9MNmooS%5F~!g
zpiO?L2CZ+lwM~E?oBd#ZWO`?zP*A+R=od;ZzVpVedln*Qp$bHllx;45DW9=-q=jNv
zfkB^nktdo9=>BB^Dk~oK@L9?Ssd^WSCV}hZaz!`1HVxBB9pCw5%FyWtwYlDVtZgI0
zp1%H;oicbB(>;EmAooJ?s02I6e3!DJn;`XbwPP=Xw$SkyKj$12=gWKbx~wobVEv=d
zY>#j|VXf=X@IfT+^x<Ra%a68=%A`k0yCUqEdB<i!gjzTd;dY+ZIcFd&XWmF<D7%nq
za54h>o(uT-j`d#HSGg`D?V>LAmdyFq=J&_LNhoN6TP1X14t*@dQ04G+NGB(FFEYr3
zG~abBJS@$(Wwsrkk`J@ZObvAnJVDweXNlFsl$b3eDPDgdBX88*B_+<6ddi)(59SP5
zr1?>uXKBa1jTDSK)ZhPh!t4oF3%UE$v)i7ovF&My_+y~^vVW~S>oR25kU`S{Tc8Qb
z@W2TKX;?=(BJ0Ib)-!d&TQpHQsMIe1+n&^WclDz()0|4d1aB0x&cV*QMnor8mXxm|
z$drM&PyZ9w#Qzf4KW|Eyy?oPO+dm$j{0#kVT>tl`#Ba!d#PyXd=gJ{U_)@aN|4Yek
z_$S%$mzxr=-I)J604t>~>zB!v$E71L5ukX>XG4V?NI<^?)ox>t_^iKbI~04s(P0bt
zAQW1eZl^I=`CROjBpq*4G9{J0MeKTG(7FHh^z^n03A)nbYH><%>nmuKBAJ9)GP}np
zl~`g!<oSH#(tzFf=h!AiXk&|v$GcnqCr=a&4P!KRzD{{LJ<`@er7}B-?UQR*Z~tN9
zot`>R_6xWXB<vbDQipjLk&T>!l%99j;kLNEAN|Jp*}jK2;KvJ*!F~q+p5Zfg&(-3>
z_?{(~I%5c$iA2gc6(ZLhK7nXM?pwp$W0<|N{o7%uHH8GlT3+2GG(F`{4{)kz8^bh$
z;8t?=ivs2J!lXTuH^+=gKE(b3H=jjjDV3cT-&(>+=zFcWzD;*kFdcWm!tV(U#^$y=
ze*b`v4N6IAf^R#8m>#hTt#`6Vx<yaFA_*;jf|<t3%!%6lc~4?CDYe11pRs$gLUH)B
z30&A_l8I}<UBi?q>Ub(vC{Lj_%Zliyw_wH^h&P*sQg_57ZfEIIEVa+L1Hs9nD;P_;
zFf3nz8A^bhj=3a}sX(Ma)0xrAR<szbu=A^-3<;;+n(E(MH}=!6Rqc#mGQ(to)vTJ=
zjKP9MVvh`=pJ3Jo5A2{8pw?ECKP2WuSVr+f;(#6_<{%|!1c-Y<(Q92Xk_p3ov~QTv
z?nE2DR8O1ILz7uR78mZ|2wgQ-J2MhTEejDFMlfG@`OwU0%$W~FSlk5yffV0YUF$Xf
zsq8@_uZd-%2p&nmxR7b1i4YBaa}Rx~qK-NjATd`%$CSEuix+?Vu#w)=UA(ijcM?b)
zq+MTs%S<>ZdHT$V{p*fMsthXSmoT+Gao$4^L5N4~v>B9aG~dVp+OkeLhZM*gN#JqG
zxna>m$;CLPh|%0(^Qp$ubo-oE$8NSLBUi7`aB`snVM+NK7f-9hL<w}IjXBfS@3Vdv
zm=?96*s0)~O{1~9!4@B##BvP2i-sR{P5P&JT4x22DkJqqS3`_sr+<KfRUU5BD`s6M
z(U>R-Yn3v8{4~4w>HK<jNds)}Eg3(Te9;v6!7+J`$h4>PE!vM6Iq5%m!`|tSBHiL8
za<A<lz40^jciwn`{+Q-}L;k}XuVkwNXeC?_0Dz!>+28z&Z141Qk^b6^<*x(CR2g~w
z%`R?_b`WBIZwSk9B0;T~2+z&Yt|cD)+Bbak@X@f<`t*AQG}J97@EJa-AFO33a$88+
zvyRZdy&)tlDFN>Sh09GH9v+Su4H?FCIg)6wZKC>KCAm6@Ld8Y1?vj7rJUUio+jQOt
zrQ_f#^(C`0`~2R}TA5SpexUxl&n}D(2U_9N0=(@3fE^TD9)<o1Tn1?pl-c1C9)W23
zyNlFmM32FbBbBz$>$w%@lY8*mLFiLXAp4<wpL$wktxqJrH;(pMSgL%>V~-YNevCxW
zPGO`j-<Y{y@<x;p@IzuFi$XuGkzmehaIvnXoeD8uAV|LVeIHRq0S9N`#WOo{pVHZ;
zTE7zMDZ8&7D9F?S{}Cf?;mXS28|<y(rbd?XHFABVvUPXfx8sr$tZ$zHiQW{8`vl<7
z_MxPakXOvEGhkT+zyU*s9j_Vi0E^ABBG()aXQsD+WHeEv`#3Obp&GvhD~eX5hC%z%
zG!7e=)Xff$qqfd``-V-#iW977=~j7h;5td@<lF-_`>7y@qJ~zz2Cx9R!zdvrT>6IS
z{Z1Uj;5m^tTDx&V>G{?`ezQEr;2UiIbfKiNDUEdKZy7x$WbS2^gh%oOP<CNS(F?d@
zwfi5-Pfpg%o8EDkE0|2v-lRUXTk$404>TLDTglmK=Mx5pMu<#wMD%IN`YZ;ND4fh8
z3&6Lc8zn{g%c%v02t+30i(}H`yulvZ#3gPHn%qr}&YLXf8fth$px&+1YzDzAupR}3
zdSYa172H<Nk%;q&^i94_02VImLY4$c0wyrDzTBacSAbNTi?G-DNE<ee6*iEgX7?C1
zzfwZK4AdkKWXHsAz*7QfYdpO}!3Ab3Lad0>8GKf8R?sv5A>Y&~a<HUWGpyc&Eq02e
zNd4Vas+a(PW|UeWUo4RD9Km@CEqOmbb-WK0@T17g&fr@@Q4*c?N(d77=$u3sD~IDW
zOvI^7Gv_*%cL<33jFJjVy#b|6T}UTvDRzcH4J2GVh2~N%%x#Hh18KWf9Q1q4<Jb|)
zNa>WpIaz+<4sY{F=CJn8sB4}x>Aa{d5Q+Dn&{#q><`FN7YwPRVyjb9(MT|2i1?zUv
z0D@Y^u@<EWJo*`7uBdq>23zh7*NS+CZe41E7WmFbBzujchIN95!5+9LQNgDfty23|
z%%QegfY!tv_%sx;HxZ5k5ozDU`QOl3P`uY=mTwa}z{uTL(n#b>B3b&5#EZwyZ8>QW
zNDb0IV!FX9sDK6P?maGD#IX;B=QM_Y<D;0+WA1Vu?eX=(%jNv3hp*}4tfCEEx^?dm
zj!in&afl;Tb2A!xz#2oN<2oRwE>6}i#{3F(&OWZYz}%jIU^apdt!TDRTekVK!J=>U
zTK5w&(G00ghd1Zqna%${XFC3QCiD-=`Df_wocRL%kIuZF1B$SJSsFF`%hKpCvg0pj
zLjN#;{FkK>5(5G+86A)qs61_F6%?N^IZZ7fNW)_9P1M}`OWEArUal`e+>lJ$H`cSz
z;0e9Az1tJ(o=n@CTG|zCo!c(B-q*uZAVjb!oo1{C{RzG*p}{yChzo}pk8`@UNc#Ze
z{NSOR?v6V7Tqui=_i$e!f>hR(lIf{5tXR&q5YFTx3U}T7mr<aB40gjL@ZTniI3rOB
z_?#^6OMQ2Q=V6Cvou~w}<RR_hUjw^}VBrTD01VmGrc~)eT>_#ps*gF$72?=r6xD^#
z%I@e(T8&2cwC+D~pId?FXS-ApId=1Q_v>;7C-SoEe^AomdAS?~qE_z=Nus6io*y2M
zFMbcaZ%0l`m8@P1Jgh|5NHHWEp@+B&E07;ySjTH9?ICSZ023*_+^%+V+y;|Pp*c_>
zL}WtJ1bFQuQcJv~d@AVHEi3_!!PIYVYYVFnZM~ixGFk4FMMVY;238C|6>rUAy3A19
zm5^(1=GkcswRHDs_pW4q!pyyw95(d8zC4+7n@}Y*{Dww6mvE*Xka<8Iwa}@rC162Z
z4f(@|H+P>q0Uz6B7vX8d(ZWm1>TcIi3o#+Xz@l6gWUz8}Y|mQZRvgcSz?iz<13d>E
zJcD|%SlnLrB{;$;0buwg({|bwd~NsPnR57~krj{%#lz8Xa*W@`@r?sIC~TxYPw_6H
zwsxtEdY!^wKw65`R(BmK+r2oaFbt1y7RYrp;pqJXgonz0=*Fm%fLtFWb)BS_MlWMN
zl8j)Fpf=;8FX6dHkE{(+;+|3l&M5;H9|f;1(bL_HhtuUzEjQ1?$0{I9txRrh`J2gc
zHTFpglbWahxgDPTUuu^>FN|5eO#83xA8VJNp})(a{r_GV`wjVz+U1ozD7>ln?InlM
z|FY)!i){bPg|XLetbZMVwo;ol76Z(O?Sa8r0vgO(!0LXPm~09K_F}FX&ihd%KJZ8M
zvZ*nTulSm{_;mX4-lYn&hZ&CSI256H&%8$;sNGli2(VY9ND(e&$+nzM2+O0|wWUR2
z)#o~VoT0Bp*&5<i-}%a}T_vBMSR*NgQCsOgHGJ#5KghWNxihL>KEaC@mao2(66)!2
z!3gAQ@`|^V6afORPze1bpo8q*#|Oh;k?A50C0=u&A9<G~(OP*IXQb(mzIdPr`g~-`
z*cuPmkBm;g-i1<$Xs*yA{c*NCFe7%lMOsL{o}=ZUhCpq2O@=S?{m%N+%X=Z-f$y^T
z)c8K);k&}d+Pjv8=b7u-rH*C<@^RppCs!rQPK>wcws8w7GdYxv+&FfzpG%=QXv`c>
z&8D8#kg(4}RU?ASY8)MLUL#~y1fCiZEbs}eh85XuQX4Nea+rm7$Qg9vadLyf!@pU?
zF}>-pIb@!pQlayH_<p-KB$tFjX+SF+LLvq)mGmLOY;1}rtjF?83?^v>z-l}JF9pB0
zRsAJ|j$RxJ2<)c<u(E+sUyb|I^%I`BLy*bhSvwLjbWkuJib}P}^jUEd<fG=qP|w&p
z$@zJg=H=3T+GVD7%(x>-*AJF>w|%l23XY6Yf;Wj$F_W>WZJisP9a}I<D%%>YPy;YE
z2!T;D6z1%BlR|VA%w_sfc0-qS!Rx8qMnm;1`wUHUJ%URf14M+K$zIloZ3N5nbiK0(
zW(3gi5U6w<={_XQS*;s`jWj-@_4RVY4t+!$5i8`eve;-&&$GGA8zja%WJ0ar>S(y1
zDdCSevFdpf_oVW=0+H8g$|k|X=n?L4v#;OdQ^I73tCU~28bN(ICTz6~Tbo{Tv$KzP
z9k)CjivSwH6Hh=ojG=Rrd=3px-wQRDuBQu96wm)~i9JSsnI|vM5`@rb2dwst>sUlc
zUI?Dlmln+L7y!8YMQu7s9jwMr3)Fi;tlCzP*3Q$jD7X$CD981?fCf?uedEMek>~%p
zsgd#@Y+(E6af8iEkY3wA+TdsC?`-e_{V^;5hWv*OUdbk$C}YhpHdy?ZS@|!r?Jvg-
zuie=GI)KbSXJxjRS=s7yElT#vCpmdJiLAs%S!c2#{ED_4Sta)^0$1NKVDtPBK4c4Q
zo8l=L6-Y1tSgAAN>fLd75{|M|_LXek-%v9bzRURVaL$pQdnaE+XRlE(dPiFxCi+(7
z`|{?wUIjT;RtJm@%-vV144jKJ%*BEbrg!9T^(cr-d-an$x?B&{r6<wiQ7PW8eh`Fe
zq&P|(kgMTNjRIdzE6V$xaAF_-d^ZL7?EU_3_!y+Pt)Oq|-SbqKXfXJ*$_jsPK}%>}
zA|>jo*Wep;-upe~(p%fPRT0$|IYE_icFFlkFSMGIDAh7M?=sFn4B?P1pabm?4%LG)
zs!!P>v3sO_AgrIhV6J+eT{!eh%xi0t=~+NE8)qm8i33>(Fc(s$z9|>h-HgaR#^6>c
zb^cP-QbTcI7N7V*C8iDYdJ<oi*qwv9aSKSf0nRp6F8hSZk&k9*&LEJ$r%)QCAcc8s
z_KQIbWVbQn8j5~sp^zD@ni5po&Ux>kz_Ir7W8CUx2R@3<C_X;$fxAgbxRXXxSq!c-
z$yQDaA{AH*$@*&PWF;~8D&FmGWIz_I1D6~5(+rgceYFy!de~YSi(uDTJ@fKAA31{c
zNtmP@;3_-)sPv*^{WeGqO8<E|;);-WDwoJCYA(m}F2l<dbcXAzeQ$<B2DtKsO{x+I
zP9tu2%h~#%r1DZ6OLm(*a|L-7RuppMM?CGM;95o_;%6E#VowR@7yRCL;$7{euqJDV
z9@z<`=IpOVV_LTRa5dwmClxle$KWaO$z*?qg0fEzwe<Ey2j5Ks5#2?kJm0Z}lXkH|
zZq14o{^W~6*Xf7q-QQ&=+@AnZpErCOGDa-FAqqQ3!@kT1ThAz7@s1w{^C91zDgLDl
z$<!P4xh8G85C)o{UPGweWK%GRWNFoU?!x;~5dR##-`)6hH~nL0;x!6?6NgvmkJL3m
z&#nr-q|WJO4}ttQZ<l+4x|{yIb?{2J`!#UNisJT5{K(qr9(k1E?8-3`1{H16i50|H
zNCje22K0lyVUfP{8b%0lC{Zy&YO6G5_JP+AIU26n>#OhG&*2T+brT9j_c7{i36eYV
zM(I651|DImmlEQ*u%=j}c{4v66Z+3uAWaADG{`n$arIu_z`OPC0b^j&bHfd7Bz*aH
zg%#8pce$<@YLvQz#@@FU!ml<WE@LIK&miu7S~bngaIpH8<vz9be88hk<lP=JJu1N3
z_8bm@*X_<Vk(g!IMdsz;Zo){_cO6&bnqtkgkk7D6hge3f1c@xM!KS(X+3&#*X&3PM
z3+%!xEJDEmMdCj@u}|#tvp)hTW))hA;kNp>iztFqlv1AMYG-^z(8wkptr(o@kT5}U
z$E5{CNMX(YMrdRsJeUTA$i=6@GTW%D2um*-dG-OFB+*-rmYlaz?HFiSvXk2aW$Vxd
z4pHzcm-G@1G0)~+6xSd@6N$xbDFJv%?yy>J_nB#Cn9k1F;AY&L7Swagp;o|PKo#<4
zv*NN?6ktwT)}3xUkGCudp<sDmDyFSP#%XeJm^G=bR{VjPbW@R4#lgngVYgXTID$dl
zs5+4D+BkRW<$$}EhVnRX@s~i%P3__7LU0k@rtX|@o+@Vre-PMk#?2;)U|d-mHsteD
zJ9dCYu+d>oqVXu5lB5vF+;RwX`|{mGPUFDc<4FSWOdb~D!l(bihqt;r<Fl5;F45c4
zqHyM#9^(YaPv(5Hy?tu3O(&uIFRyX9V+F*Hyb$^#x-<U2zZ#wTA0{%VKi|@3|MHc5
zZT~ot{S5uxMD_yxF_Ha-{70l-$vag{nu#x4`J@oPzjF8&+3A<JwEaUjR>~vRGja&p
zWY4|;#lq5Ni2*c%mI%VDRVO*6lnY7*>7pMMgg?E(E{0G}AbDeN6-?@kE&1r@@!pqi
zGb7dGG_NwmaAGu*gUP|<Y<aaUGaB!9?ekjeLV5b2v(<!@l-Ba6^zPBI$kX(}0AvN^
zP2aDRc_s$%6se2+;{lgu;H3H2C8x`=O?7}$4oGu4Ry-9Ia&~Yt5rViBeYbD9UFr6)
zbYuWXeXLY)+IzcTF5pI2oHqz7f#rF9tF6mH#pffk4So103B%<;n8@AhdrS+(s2Lp0
z-=_i%xVuC6@nsTxkX2<}lK##$V9QGGRPPTwK+b;vZQz}fFc8a-qhbpkid9U&M+(9G
zm8^p(v7M)203cd4VYL(T4ZULgmBar-**Qk%oqcaVwr$&u(b%@x*lBDxwrv|t)7ZAn
z#<rTId6H-5w>oS3pU#>W=j~_TXRZ6XzWZoz3Uw5?B?DpmfN>5+%w&u)<LHX23KmJ1
zds9dWkxQ0=UO){Ff96YNW5oUm(xqk1A>WJmY)Y{Y>5EJ?dA+OSOLMowO%Fh90sBCR
zD@K<^=R}Syfv}yj8N@2ERkWS15hez(QOZxO=k6QO3<iLuTJ#%)&X7KE{g=lQOddOv
zDh{zM&g!AK)ZAcv8kOv0iL^DMx5#DLmUswj&-NxL6v8-peKg1d)d&$z(|Jh}Pz$4T
zyG>hkBLiPDhlk8`&RW)2*Vm1ljJ_sU8m!}7i&N-pG94&Jnv`$I*>L$-t&@^;$3UEs
zG1e${7R*L|nvz%&X<jY9pP(0iR;RL+8@0!j;3j4jiN2QO%?=!sKRlOVSo7o($~37Y
z^)uL|_9|VIgIZS;zyCUd*BZrK^^VOix;udc{qnW8On!n9iY;|b9!g`E#D(h9aF>VF
zgoHX`Izk(Fyr~v~SW#6ai!9csp+$^EQm^+_5JM*zGG#PHa1!5+uEV!Fb_lS?B0qhN
zg&$-LFd{SLADF=9`DC|^jWHcds)^K{nwJ30NF>%9QVKE9<HPLmsD@+qWNlPrQ9V<H
z<lW*R=7yIPr@iDz;zT(FN~|)WU#CVy7S{L?LRk!5a&cwcbCx_r`Bca`<xGnJxr1Zg
zyjEBdJos^NdP_ytU#d}um$CX|SOV0h5P7ri^rQG`IPsIj>(f%X+D0`-x|RK%*?UQy
znmT<6a&ugEzT<bCt<{OvD<}3sXsXs&qjTQ<=YCB$fx3&~9fC<MSR`q6DwVsgA#>@(
z=ThC>-?FexY$Fc*sDsk%%Z_HM9>nOjdlDoe5V$Ud@%H|5#V7SYSe3oqAKz$)H=FvM
zRs9|MJF9wy{<Nw$^8cs*T3q)Jt9m2Hz7Pxoy;>FQzf^JfAKBjS?<v4r2&Z2skfF3H
zgUpZ8mN<Vdf=tp}VA>plUi|Leq^Tc0!$b~l?JD7Lc48TtQUh}zbdT6J>|8yc!Hdp^
z-H7*lBeG~DlVY{kBM)h3T<eRoybd4S+^n12jNOd!y`b%L$1fUh?D)Nb`Wxx4G2lI?
zdvQXO4bm8<fy*Zqxfz3^IfeI>(CLKXZ)R|^Z6M6hqZf*{klsUo|BT1qHLyE2g1DP;
zz>%yA*cSsn`TA^P?mZwczy$EXL03Y5lNbO=jsRQ^p<(z1YX=a*q`cNJ6ky9)a-UBz
z`nT_PLP@<hrEDrKw(HpNE%H|)t5^vXmm)Zw<J=Z=7lmo}YXkcz9Z!CINqr!MG{8Lz
z&WL3M5S8CT5d^te!Bs%G^J11iWlASE(*e(e_nWt=GvkYOizDo!_%Ric%=zPyPF7^I
z*LyCc1GhvPb2X`K+NSg0WwCM+ia8f&stj{Ntl%u%S)RqT)#a7Dh;8==OdwluE}=(<
zJ-#a}E1gZo08aJ;5qTD6ui!h$3Un0@TVfFv@*~1Oi0vZI0?ac@u2Q92@zV@n3z4Oi
zkkXFH3W@6;GuZFAyFl&ep@ReFn1BOTA*ZeJDJ}zRZ#(bCUhd=JvIN+~>xey0%Jw2e
zU2(Tu11B0^Dj%Hh!2^FJd~YKx_+^8Q-$>=-7fmf@&7o!@hgOLKjZqGJ7RvSO3#z~?
zh1Y6m64pskM+%gSaJZZ67L&VWXFZV?6!x7=z46iNQ-0l<pA?~dXO);gi_+YMXf|_6
zSUPpM(I{fB<i;@D&vnwec28-`kbjMtL~6@--gNCk@us?BRje!r_8y4b6JSlZVS*RC
zX!bD_N(DRaF|qP5cmiFHZKPfr{UpJezNv1A&0zzaaS7stGCVt5&#uU~ZPFyui=kT>
zV?)s1QChBWEJxNx2_)q**DzIJCz#Z(+WVq>V=`(VbAi+t@92`rN1QrTkCGyAfHYI2
zp&3q1O@WwcKHJN#;pDfNc|@>(BOI_-k82b#C%q_0TmItwU1B2Xh3#kVp7tMn;lrQ4
z@FpqeUuE^r(BJvOEA*!?{D%C8FTDNSdnC1RqgP)L{g)Kxf8-Cp_`+KlmtQCFn!+d`
z%OhxaC+Q_r0Z^%zVGmQ$uvMy8XG3Y3CRkjh_MjB}@RJb_BqWpp3fzdS+J9uroL+S{
z2BM2?{A$B1o7JY;_W{F=QP=(I^27~8ZyHt*GawVn5G!^fR)7uLqWP%mHu9GD+vDlR
z`MKU1L>c<y8SjaA$2UALCEvJ8sYcTPLY_3u`#5F?5_sUj4VYzvCl)8HaiuKq%HyoU
z)PXM}M!qY>%PWR3ET78c#flkCDxda@4Q<^NUhmt;&gq=-1bGkj6Y{?+$b`z_{7_P=
zF+{*E2ufu(EdsUrz9;I(W)LDw7D^5n+U7zz@*~VfvKSHsts?j6<_dx-vvaC)D-9rJ
zcgHa?21GmnFm(?R0h79fF$0Pn*7Wh@D2uPW=4ibiYW4s~eNowB29{xn7Qo4hmeDq!
z((wiiKpK&yVWHoOm5s%=+E}$=(_O_^O07tmW}52?ahS1i5dZ^Uk}tcgE%dVy>LR8h
zRPD@b#iT7V`b>(S$oPXHJLU=-Vp#=2)wO8UztHZTE4T=#>9|x`lXE2145suYCk!xJ
zD}uDvPVMsfmhdi;Nel9N^z9)&t}Lj;-VHTDWTg+=^e*Q~ExHKCOOIxMW&p}BelOVA
z*x4*JMl1cfaJM>%WJiclfY4z28UtYlizCN>p$}_@Hzz($WUUXD^k}PyXY-sp;c9|K
zVb-H?pget;(TB@fYE(5({vmY$-@<Z6Wf}(Z>uS<6!W?-0O6dr_9DCQCB!CbHCFat?
zTDow!=1v`ZPU)e|k0lfsV%e&Rb}SAR7xq}m8SN|kzzVnw$fRrm(KB%AYA^oYVZa2y
zh6E)V&7$(pSgkile6uUlxXlY)of%C88cWf_5-$pjO1NF;x1}YAms2!0wSXd?#jS*B
zc3sQEJBQanIwE?emCGv-{DCqCj>UjtOZ!_SvsfN#gNL>8@n0(eCxV6sSCRKVj&)Ye
zA0a=y^pz5@9TT(I)@`)n$5A1C!$x|H9MFX=I1H&NZOXA(-BPaVkp;-$Me}5xHc1i`
ze;EUJ?8DxZ94UylD4Sk>&%fbSZtc?(i&}bMgldwyD*goMbA=gYz^z>%i%QMHmh`>l
z0h*!5c3jH*Q()*SIn102kjU}9T4R!F&Q{?aK8XkKW%3&DPnSsl57uM)r}ez4_Ww}s
zKSO_KJ+IK8*7F<kAJ+5sbKAsZxwl_8Br5)88}NT*(_gITEsX20*5mlP4fy(soQGa^
z3TS!aq~2gYN4TaEHntMODbJuc$0#h2q%2uCJLzUZbRg_{yJcQ%2#x`UODs1(YP%ob
z%tD|CWHhb0xBv5J*_M{QnueCP_v51YE+w$CkyPf=D3C4^YFJ%EVd22Coi61$G0*uG
ziHU1<cJ*E$=z}*vHaYy0(bCsMXd4o?m#s(PdpBO9R_FsYE?ov@0@aqyAtI47>z59K
zQBbX<_|7k-D>egt5j9a0%qk8&@1m;qp&;gZ7?@g6-DrD8blFjdWc&lW+Yo)<tL$gn
z)<V|%)*^^c&~l`PgR|-z#)acoC+6XlhL5E+<SBHH$;k_vo9BTsMJM2XWT}M@s$lW9
zg$Wtr!N!6b@klTL_D{itS2KPFQ`WY)+S>fC7Uktp|Ex9By%rnzp6@b<dkSS5DpWjH
zDJ%&}6C5WFiQqOES#OmE!^Du8BdJyN1P1gvh<m{-4`;6aj2SP!%NE1f1I<1$9_2b_
zAy6c=8RYfGAQnYRV*I@iYu-isJ`Oc$J?^&kfw~j661XH3V!9m?G+v<4m+J~})wH_J
z?pbAP*-<mbeD0C?{7w6V>J(%GZodkI%Z{Z5yyvgR9tXHCbWH$Xw;N8FALNoFCiOF^
zkQ!UTy@Dclha8j+72ien+?rTNjMm_`F=XDKSlNS@e|g@y?b`cTgdD7s=1i>#pFrt7
zNZM4o=}_&`o3el8<skt3i7i76K0Qc}DZ&se=+MpfG$pd3rLj4g2UKOyMu!)a?4+^%
z@F{re13ktpl11(pohpY}hQ9R;st`3D;faMP(K8nh{|nG-Z}!Q0EZtoYt**@k>f*v}
zx<mNHs`vKk5?4MO(#o4Fne*Ypl#2VP2`&rGuk8ugzfT+`mPc>A$jbDau$o1g^Ab*#
zPufbCDJX*h%EeNT`GLJ-N6>Dqe+oF)r4HREQd%PO+#{sat~BQ0QoG@ARaf2GoF$Qo
zL~*?M%M<a8|DyaquQIv4iso(n<G#t?p}$rBU#~L#hWv-}-^iX`IPm7LNk{U(90!{I
zNjClED$`pS_g^RAsnlG#!irGwSr-Xd<|DqX-;p(Lx37K1!T`&Pz3OMABoxZ%79bUE
zo(~^7S|w2F!l5k@8;Eb)J&dmzj)@RRc!b8b(wX93q*W4lew@3_Zg-+JItMN6w5cpK
ze!l_IJ*3bxZI#Br+lpB08N1req-hj#x!08@Z6oupf7lLJsYY{sF=;6qPD`T>=iQw3
zuoV1=d<nc_@FikMZ()b<xQ<aq#aD}8d&pls++J-EJn4}GW7hSnJltm%1=|qWZE(zc
z$GyDF({qJ>vv$Zfm{MbU*I?Yy4{d|3+{LS&0>>Vwb89vTT6t6Z+n2lFA>A=@X}lT}
z!)3L3AVEBKKnc&S!j3)SC10LumWcKA64BUUKsP|P7lI^|c7w8Kr@3t4S**R9ACKGQ
z+<>ZbFA=Uf^vdVbSxkz`l@mf^Oaom2?ZKp-x2aIgl}(vUxS!p30t!!XmT@tP`ZA+D
z7}{0&)7$l}D1cRhG@ys@1!8243Xa7H7&JZ);;S?JLP;z^nH}x$l0}gfO@glvj-7gh
ze->@!z+c2st48jm1xX(3=PsI)BmDLtiOnn8ti$d=1|LZa<euh{gs+y%hX*wUdNQ6x
z7Do_1xgOoCIwy#<2vR*Z$%d5#J<@_{=FIoR@BzA1J!(%@jBqq{DQ1?h(7q>|(jvZM
z7AYF!J0q5jeU<PN*HRup;DCC~!b&hAiRDv1GC$=*MM+D=!(0VixlASxyjI@(=A%nd
z)t$C754Hl;IPP#;E!|)hP5rBA9O3x5e413b9UV_vE67W<cNtM>qihKYFLB$FXHYgf
zLtBHN3ec<!j3pAl0sXgKrUu1KN_<EeO;~B73&n|90<K#zH&)23sXi-+5agvJb`o6-
zYVY($*abZ=z;yura9Y)RTu$aqBK1vVAC?$GtE9lB(m<M%r4#n}gx1XL*Ip8M%AAy%
zsE7z9iNk~K7J8SV)L@eSvaK=~b#+70WOPzoK&kIA*Qulzl&DroM@NrFYVSpljk>T2
z9i<_Sq7egm)-w8xcjuX;gv4Mo>5N4WWbi&qafY<$g6nRZfiSqOq}=?nzcJ4@9d@%g
zMeaL(5R|7Ab~{__qsnM}l$7q;)2$&T97k0~;0)insb2*u3^Pqp4S*({`6gypfI3qN
zF#~HE{m&#J`#<=P^`F;*-lXgKt9<_%`aA!5h5pPu-pC&RH~A0$dHcEZke7hVubId5
zzhoZ&BU}G+E$AO6psi%}mU%p{t{8NHIq=J6FZ(<%E$KtEmJ2uG@kL^4#z?uvrUNu~
zTYvG7z^{)x2{KB}9qca>UG1LTB7$wa7oj=CVt27z0NFNzR*Ma*MfIFskbzb%X#R5l
zxUV&+FUKpihnxoMFc#3IvU8`nF&RSq;ORrMj*3G8CixJPwU-y9`{VF&Yn2GSsPju4
zqY!^LuwDg5Q8=zIFUS0s4Wq5>N!o!d0)~b-4c{fWVr~AldLAViejG^H&e*Kpal*ZK
z0~VlQ3hzI#ZX_P}@R2-@h9<>!<TbfF!ugla+cyUWa;$XMk6^$=sT5Bm*!g;Ah#FH!
zNFqmsT1RL&-bCv1j1OjXf6Kj(ZuTYNVv$b;)|o)xuuP*5GdTsXO?CEhWw^SE?tnFC
z?TRES(kX4#t*jeA!sL=P;)Uu&STDD>dALc<f*;1#(QTD)fOi8y!L~9Z@fL$60Yfjr
z{5*$;(yS84o9Jwns_~=rlH+^v=sux7zys&GtB|#b2c5(?c5ag$-K>c@%T1<d=^%uY
z4>3pJKA<b{k-DfefTj8g+8Bd#9E1x^bh(-@GqW;~<q#$*3G(;B-jrJ(Ay3}yh4J*q
zaT|!wsZsGTFj+dlt;6=U?v#zBE5hwxLK8&ak85shky&DNh-d5<X22d(IMS#!;3ynu
z_UBEgN6+l>e2=A{VfULmp7u?S3fcd(@wG`;BUFbghS4H0Q9*JlT#7E;`v{q-Z-o+Y
z=$st0YS`539&vaQoJSdX7Jgn4r0@K?TD^SU!t<*Pd3#mda=mc#w=gKW!c_jbM&QKu
zAwlxc!jZnrq3_#wrTU>a#dxUS*^}No29*0DG7O~RXw30#1#|@<a5lsBB<()Uxr;<p
z`OIcG<xR;N3REN~y`bm-Mk%EfjFk8K=<!XY)YDwCHC793YsT|ts+GGTV<3C1KJ2FV
zR+<=pg4h9naNuxnv#y)__7}nD{0G77oBXl+>GdkfxABh&$KRp96Z|Xmr{I4>{zLF@
z<gf;&`L}}_%YV5${Xeq4$=`QB-@<tRI)Mb0VVULEgPLxWYAU3inqs;6x@HNbCw}D{
zUdtfW&%P4Xr5aGBO-@K@>|Q^*TD@nOOm>&x0)){a8>3t^IPB?8$3!a~p*@N!ol0c2
znrvGRI4!s7>{08{S1#Y3j(UV++vBj<g&F^tLH*HHUoEx@Wn7VVRNITo*>}0W3fbn|
zQ`ZxL>hYykt*f}(1acmRSCrXSqe&pKIxq=nlbnIlFA4|@_esfoAFFk>WST>=Seq_P
z#3Gu?L`=LaAGu;w_E|M`5V5Op7XrbMJ!~b<`bz^D9Q^HF7EtzNKkBq0dX}{FmR%!R
z(h~=ds{S)@4%8sRvQ=@1Zpvn2*C$#K8~2H?w=Qy<#y~}gohj9GWNJGA`5$-W*rU_B
zKr*fovsu)VG&}^h!zL17GG%E;gE<Ng2M!gs1tm8t`g+wgD|PJdJ7rar#C7JF3xs+;
zDtAbg?%OA3U(@SypYP81t4!Eus~>C^SsKx>VCE6=+%i9ghP?n@qFyEGz@WH~(ggT;
z5%Jm-$mGu<g$tW9g}Lelr=qCwuB!w-k)$6+e*LbV4h{DMW?fwG*{^{|A|X}Pe}w)E
zQo#F(G|FXe2k~sMZvDZou0cb}F9$!8z7z$h56YW$(<m{|J4mWT2O1EI2jX)enSpg{
z)Rd5#FBo*291CJFbL6A!bgB-jd?N1tCX(ooYxX`k{F=@Jv{x2FSBNo9X*O3f)i)~8
z4t@;}&o0_M%DK?PZx9>T4mXs5o?n(hF?gdYd^dJFr&OSDbV0ZtNc1TjkclAJ+_l=6
zLq(5J2^q!eFp;Em=7XDk9~_*7Jv|`|-Q*X?XAN`}nGp^`o4^pCso<fMnL7b>xYbj&
z;E%M~wFXEz-k0e57Q!ENNF6s(fOjlaZ&t4K>Skj)NTm2ee`F*pD6tcF;gjkjpx)qM
zv7JklBV-e%%vH*A_*@}Qws&_9-EUZPbe7_sYNR;I0!sA(lP?Nhw|V^NfgX_(GW$>^
zXzW+JdKFTH^Mrb{2*HTW;^$cH=qbrrlFHKV5i%b6ek%f24V^he`~#m9GfgoM)amlM
zUbQxUWYiB&^(?6umJnZ4njBSt1L^1;fnjBiA_Yh^g!W|I6nQ5`T0!^N@WN*u+Wbd=
zLiB+Te2q^LS<uz_P)*8rFFoPnE2Z1u+@@UyV%i45!<nUXlk6_f-9-`{%a$G<-nET%
zHBaQkwTuNG;xB)(s@(rzRi=M7((rjz`P=wMtNJ_icUJWZ{b^OdA^%}jZ)5{f(9pLH
zS=!g`ioa_D_&>7gFO4+b!ub9=fdrM+*G3vBZIw}*5vZl`8x_|w#liH|vkM^0B2z2-
z%FRfrNcreZDiVD8Cex&SBq&oPa;d5*q8B61yCY*HsE569Tqa}bS!YiXIR=7Ef+;z#
zW#7RA1Ic(9uUEHqVIq=E_d~ruI)r-{j?}<a-_Ge+awoZaWct|#E;r@`5CR!lU)Dbl
zo+RECjePQ7*TdbqTp1dV;&;A%53_yK$?RWRpVNgOX5KcbPbMdGzo2j_Xql2(OR5sZ
zLh0X7@?8}~pvSA8&OX!(D6=MXXr_ZYn6uYgbvwSEYuCm@z7=v(&#WYs6Z*Z5-jNj@
z3B*DsN4hEAy1pKla|urpUw|4AKcc_{OUF<m%*RydWyKH#%Egi;Imj&9q68-O&ir8%
z0@hCpy5UIsYb~Vo-$P~blkdaReD?gJ<{m6ms9VTJTfcV(nHPLui!yLYsy6S8W!*Mp
zFnjHrv;4*F^KGBxzJ-JkW|$+0o}y#5KfXwLk<1NFTDJ<*icWiisXp}slYlZM4;)*&
zW2oMT0{Qj8fSW#<T3xOMuJbv!bWa=;Iu762z(SfhyDtYH1MX2nxl-?d06A`MWN$p7
z&#f<Orqq<RI!qvE5g6(9efpx0kt@r1KeJ16-ia03^Rf0E5WpC!chu{PSAV><A&W4+
zi3zZzUtFvbD_@_bYPM0$2#JY>O1$0R8)f!^t{A&$$C=~AE?X8%))c^*7ez!b+oo?3
zzHNL$y8HGNdpLs0*=9RP4Y&L)A~)4MoNV%7cvRKY!IZHcEC2zdFJY45^j#U!b3({e
zk#mBitZWtFK`p%(7ECmRz1GKv@>POqueJGesgseA@bmLVyL0Jrs#~)ihsU+GsTIsY
zhhXX>G{}8Hig@ej`7nU&#7F?YvV5i!ih2@DxkiV;grlj*?{0UpdM`M!p362|4X8r3
zifPt3AWjrjRfC_DbF=8iJ-$W{x}d>qS`S`wy6Q>~(M{OZ(wwD0(fZwrTc;2C>!DsC
ztT;Rv$<+rSdt!@$YV~*W$a{zrJqt-n0q_KI$9BBjku<^udWG&sL;C_pCE_B>7DhiQ
z62hb@Y2q<+!t^^IM&M~-9Z};F@nnI2zl6#pQrVBd7YvNd=Qyw4G@0Gu<`fK`fIkv~
zjIx9t;C9S?`AgHmy#HW5hJRN2_j^_C+xSQ8`8)J?*7FMeX+6Io|6x6E<e;XHXdtiF
zgZVGpGXEnR{!;1xEsX!K6EJ#xnfkgc;%3vW1zdeiyq9s}SP$yStfK3eQzA_@gK5BP
zwG4Pp@SSj-4%x2b(_Zp*8DncR0Jzk0%^of;VrJ%#x4q6`6-1YdHcf>zq1K2`B(B{2
zG0n>sgmn4&-2?4#VA|8QVS?&tzsQD*1U&5!bNe58#NEF3^x7G1HqLTklsRY|ipZ^~
zYYD`+VE{|Z-uaBm8IaiBB!Qkb<J`ey1)m<4Awui`%I6CTiOuHjRrGny_o<}~Qwlde
zF`H^8ggseAnR8HPCsOeJ<dtvcq^re>?|fr{AxA6-WH|8(P}p7il^b`~ROzA?D}5yz
zM-X}|KwNFHyp4k9QvUqu$-J%xerNVgE+AJD%1BU^H_1Aw=`IrwS6p$E>d|RV0lU?0
z8p<kD(?E`uAjrioSglmKF@BCDLu?Yj3KDJvukO@sW-kDkh&;P378|9ccWpy^EME<<
zCR-IKR|rrudU^tQ7S=Ho_5z>*1-ZxB=(r_0Z_O2dyy0*jE80}K0W(%sRFovq3F{yR
z#t=KdV2!6Ppxw=Pp8H*4aeS#_cUsixddt&MI8A&0Z+e^jxD30gS~J8CGPN-jBc*5c
zD$ilVk|keA0#eEg==0~*QU=V{$=N9(UOT5gP4t-_#?4xC-}^<%Vz}mHL$NLMjA?78
zq!j*$s-9>&HJ-$)%?A@eZjv*v8)&6}KSa1&C4pWj6HlDOoqUepV+&<OsCP0jn4%en
z3;<mDT9P~7uRHn4ahJ%SkP@ww*nNqqG*wk*37gh73e@dz37OHs4Z42b1Xf~CsK9E=
zsl$*+)ksKAe~7YX?V@D1>16V&ZhQ0fgUI35GrF-bA|F{9oso!OFN_*$lGCza3=QO$
z0Dq++9kZe)p(@QlOef@R?ZIi~PaaX4=V%VndHu%PHzYt`m(zFstMEpRf}_d^*4y_g
z?ZM?C%K4I5={sHBf>8s*yxm3`QTLZh84lD(%)W6Jf3o&Z&2V6v*ulxdv6j1)DH)ba
zIc?Hg31K0?g!%E8GE@2g!5J+6e82JORa9@|AD!Xv(BC=3EA*!`{D%C8GrW<F2ve<E
zUY$YjUv7{5k8JVF`;E6Sfxk|`QF+xGOBJDwRW?>a9`$1>^Su15mXbs~`5>|q^rFV6
zUZ|OJ_2bo(CUtOwin#79U@DdMg2v?(&ma%`U5svFQvdN3Cf@ZC52k2LxsQY0c#dG;
zRptd3`$W6T(Qy#-FYg~JyNa>yJ=lslsi|=`(_&%Csb$dgZybfy$5LACmgx3UD4tTT
zZdNPte>f{Xh``OEKAjIBk9v&<M&89gC(rRX+sQK!!cBm)Hr5ll;VTlz@_sYedQs-1
zal&UycL%TXc2%U_!$$1E#3|_zWB2uB=2J+ubBv!X*QATs6{rApPITE(lA8q2>I;b{
z9mr_BDUvIj^vU6^OWleWTqkPS`rwYfwzO5Fdt(6o4N>T3Z#;7nKlh0#3p)5aAvw^k
zvxgUg2^yATD^>WxaG};3&eQFouymdRXGx^+V~tbza!m92QepI$7-*>d{MjHNafz5I
zh(MQRKypaDW+z}$a1Mc`9#Nkj{^M*u@-@?E7KIV@#~(<9dP3P#<S#n$0q?EXbkFZg
z5a`LLE0U(}_fc=0utTJ>2Way^5PmEysSpxW;cK8hq@%%IHIr$R?9@&G1z4#8H;?vh
zZNfIu?m6{r>WP|SC){yR)cbra&~z9gX0mPTEMVe7yMiH$^xQDpRV`}96<L*6o>95D
zpxKol_@QL~HUHv9LU#gGRyyH%;KV!OS<79V94%Wo;(n)mAxgG_`Xjs`)hsZ$CFPSD
zhpvi=_Uk=I$|UXzFkI{rWNq}rujc6Y%Zi_s!LcYGgxGsc0<AsEZg=OGoOC~4H>PV3
zZuZ1eUlH(X4~Vd9Qlfq`)Mz2tn{G2udy0z0Q3;evTE*(R3u-B?6a5@chpvWRd4n-x
z7{FYnv_M|Pv^@NwD%~;Rsw+2aq~6Lvx)P5>q*x{iTe2?->#F8fU_Uz!r@Yf0_vY}r
zb!KB>Y}G1l7Y`iLg9FUS6A;C<S!<xDu7<XSOYJ&>TsHG)1^;m6CEoyk?ZDXKTc9TR
zP7^fGp&=0DP44q35G^C3$tZ0|0D!3WkL77)u>MLy3}mTjw2GS)WO<iI1sysm4($ey
zZ!j0pv1lUL_W0%Uygluri5Sp~ig4BqUu>Zzaaj*xFL<4y3(e6Ei{-tWsQ2oszAx0g
zXKrf0ou4|Ds2cP93MPWAH2<u?-&v37fcoGR%4LBdgsC#N#?ft$Zx!8QT#xB4xtBJN
znDAk&<Y^6nIU>#Q=w%eTUQv7=nN`&q+pkYt^*}jwQb!amSc1F}t?m~0=WcDme{eM8
zKbKhnuV(Nz{?XC?4*i{@y+VIF+Hc5zINBRIo#Ko>@zv45|HaY%M>hUtne`Ut|8z9T
zFkE329TTrWYEax=5xIVCkxK$%<77UxQ@BQ!>AkrvW@Se#Hxr`ZY%X*^>VW2tn4dr(
zInyL>Jzrw>(hu9h{lZQwD}RhVK9-&dCr!FT_zV_sy&gS-d_&Swm0!b?t4vQX2ZK-x
zJI&x%1J=#SJ+mh}?1XV%KE~~9Sa$0s?WoPE>;hZr>xf4h(06qEp7K6&hm#Zhl*9Ep
zz0~W`{F)feq|rkh75SPDWJ=W=+x#83{RUtu4JpT+H`#omMMrJE3XX}7@qT~x^5Hl8
zMm&Yv)ZRxsX<lizN1MX0)6}jH8-k6VuuA5IAGXj2#;2(PTNm0<Hb$@efAk;R0Pz%c
zHZ$LibhJ|lJ+)^3$o#S5{q^O8Z`&g((Svh4F3}5}^$XJV^79>SlNL4uiSqak+PU$I
zg5LV6E{;#{!|JW>V&O~b5f}>krd-SDH*ukED4(98E}`3s`8}nlkr+52P4$E_QFJ2a
z@=Ey-A_F*n=VAmE%tV?ma;jwox0zrcLU%_E&;o-GL=X=X)qoA6SDZAlakCqb2%8t~
zghXa!`uVzadW;lT>ktHDBU~@ME|54(*i7_KqN4&)RdG9Lg>u?NnT6QO^hJU@DTG@v
zn-2{qUEIoV(k(Fg#rm`&2Jd?25|*AWSE5aVl~ZTxqwvJ_Wrk-2%F(;LT*FIqwOB4l
z=W8^>W?P6;XY(h_fQZxtY3$J_j%&O4L_D2`S!1IWXluf^-bZ}`b1x;Pw2BXx=4Diu
z@^3(qPYhkFkD!ejOe-Bk0j&-cHr%yW3&ibTP0P)4T9(PH*S5c~<Ul;lOiv%!LYf-~
z*3oX{LcgP5j#1P!FO%J#<I9LPGKgP6a5t}zVns*S(kgt0u$$A-i9R+_nlP|;w{$*g
zRTu&_H36cFi?%mEF&{ouboDSCp4C1nKAK~_ob4x9`7+Wn?~3+WE5p2%z_nZ98xEM?
zR~}Flfy>+=`W39&_v1j^cd69I)>U<hiP}7M3q-v~q<*$ZoWzm^>QTV?G7cZ6qYaH0
zFm;BX0T&t@YUd7EF|!qSXURU$DO0B1e?)j6U})*=7>=@!1wZ3_lU?XqZX^}o_bwM!
zArdb6XlKo+AXl?RXTY0p7@DTbo+GZtPx&jiBNg5>o_&2O^J3;_b0dbV)*pGyWx$}q
z_G@vt`u5(;gREV-;8C_FFcCSZRL&DUm^p47N}t5Ydc6PgUas&zc$JyqAG_B<uTp;-
z|L9eJhyKp1UZFp|>Nn&+yy}e%9Dr7I^?F>T^e^kO|B=lM|Gs<u7AE-D2^c92zx7sn
zZ^BDlgeDeNC_HJ;23c>0Z5Xo+zMr6PPbwLR2V1YZPPpTl&#{nb8j1rKl<Gp@?9_hV
z1DFN<zPB*O4)sWowtMmW?g!hg2YN@RHSKBqu_mM!s}snq$-p(jkz&I4u;$oYX&7aE
zdF-|&F7zC?A(_2ilC;E693N7wM7amExFonqHJQh2twF{`--qeWsXm}PJ=Q4=#B`jQ
zx|sDDX3z}C34XIREspJs2KsL8lG{b=_Dz7WI(<QYAKMN9UKk!5)_NPm#3gini3|#R
zVnU3GCV&;?ep4;498v0tMAw>(_5<X4Ws{mI{#^_JAj)%FyE$D{0HZ3$pzo|C&~-Ls
z+J41`9fhLc1j(Ec?#}1hS?Wqb%FJp*E9Fx4O&SCIfC%{5X3oPUb!kr)0>v){6td~>
z!PBtI98*(7vdk^s8HvU@S=M$I!imosjID)GQsYg(mT$1)DY?<WtR^PqAT};k=T=^Z
znDAE!cnb2mW_BvYjIezyU2RPKB+YrSAD>%Nd45IM0ro|z>5943jes&ny}vM{(G+O;
zBoA_oe*N6dn70i#X%Px9+);E@NEH#p%e{PETbS)ioIK}yMzjI<ZVj`>7X>b}aF&y~
z?eSB5mHx^=+JF-p4nX}REWz_jcIC4lyp17g#nlZ}n+yG}Yh;M#X7SQ`c&TPXz58|X
z?}CwJ`X$R6KQCV7E3h~j_Ja#if0_eCt`3gXl|A6d#LuUVHv&9@)v5g;XoENepyr+3
z$~+r|dKamqgKM(HWT1n)zwouTt3G!zM;lidEEGQOSt)G<UsB3xESA=Ek^|wBtp9?I
z6nz$jfW|}er|YXep}N8Ixsp%HtxJ-Pm=03p!D5%OFtr=sL-)u7mMZhdv*_seTHx4p
z*=3wem<qTj$^dDWU7hCh(YKnXV?YdXF$&;W?hplYu>135=6Kc~r!|R=I~?Z4ijw9^
z7U6j@XGdcFn2S`<tPVGgnLoAW>puOZblBfD`@4sB#(&<Jd(%+JuR8jf3H=@VJ0p07
z{xpI&^8caGH}X#-Fl4X8n13~bfqyx-{vX-+mm70$AwqwhfV9#dP1a247-^%?%)awa
zX){8EqQsGj?E%$|UQk4n2E-N)Ryyy4hL$si<pwdhRmH}i40gqu%5QIN#U*0ESDN&Z
z=F>JAwjejJVGPZrVwIob5Am)$4txg1L%L}OfZGO0;~5TY5<s`ZdWkXtRtTcB1-ck`
zhn0yPk_baslH=N1W)%q>nrsGz9c-{>qV4=#nUdYQV>9=%{f;^oK`M?*=Zjv&-UF=n
zHWx!JELMFbhd?{_I7rtRMX1{}FDXcg@rigxF1ym2R7oO|{$?{k1(QOj`PL3aU;ah4
z9E+7j0&D|?eL#J$|IUqHH<yTyL7;O{k*FVtL@!h?Q$H>LLOe})G@k2CE0dXkJ@Le&
z2@?9PW9rFzRZ9Wo*9<|KVkNxD&H#9E$&T=%lCov)Z`7s}xwiCP+u10&GnkT9!i*^n
zqYl79OIL>WFQVlIH<hDe1brMNWe_?Sdv&1CHh6SINixM=L*qG|Y2YmELcM9xGgDXn
z_(BkR@y&NxE^g1ckW0Xyb&_f=#DJ_vjP^36xZ+vqagTh|v=p1~i%aF48sx#4i{>27
zNXM*?D!!Mg_(e(Rcdu)CVQF6HHzOu|&B1&=<w^62+g2?si}rG9M!mWnE+6F7#@u80
z4q{#+)|Qb~B7cu--#c?QaOa&CGq;tu73UjOwGn-E>3{jCtuUnS`ej^GDZs)^*adbs
z2r0JZD&rfro{7l<Zz`eB%$J3aDN8ZqM8p1RVVZ$tTU}M^-n9xfG(P1~=2h=Qv_g+u
z(%4-Ub{y9l>=s*BqPWGArhr$eaPhJbPMG~uInjkIcXZSh4@ftP4%K_HfOLzOOaWPr
zvl5}Uha@)vuj*Umos;W)JzTXaK7bwY2^*8>om-W7my#!8*FCX9Rt^v3T8ONs+nOP7
zb7h4wZz3{-)v6rD-`OBd^S<tlFVwWeMU@`o1TL#aoqm4#smr4O@YOf^vrgcfPW}(A
z{4?}-Vt<AH6#H+;e~A6<=el7*G5NiUJ>y@*{y(zOFLeUn!i4`Sc5Njt8x($+%0ZhD
zIXg-|hiIXg2|}XiV$=7Z+ajV|Eq4(QE^R8MVt}UPYrSEjOq@?ydymJ4Z}-lwTwpIo
z=aJL;*Ncq~fp4}u^wdqy^npMl_i!)Cxi)Ni_}Fb?aPPP|8}SF>X6^cc4Y2M)O4k)H
zR&)Gi=KSGF0bm$(+s7#$SMO;6E4(`pii*LJ9a3pVCZ$0$fTZ4We#}S$?qmfCXKt$l
zF-PD?kKJ7a?wzUk#~(VQjf(q%j@CgHi`n#mMvmhKrZJZ<V6YV!PsQea*&q-%6o8E<
zbIc`P9$U=RAcS2giVuu(hCLC2f_a#2(U}RAAV~=1msxRkb#HkT(X|_0gWMpfhxd*K
zHYG9gn&@MGUq_5;B60YmT{;UFjde>tlj1e*;|K#SXHK;5-o*}|@*rmpe?P(DVH_LA
z(<eJxP2Ed0|M&=k8qh&_Cr<IEGIf&u);!S*oq(8S1fUWQ3;Vh%z2&X}r%EE6Q`^M>
zU8INfnxKHbBt7tJI0ak#K}ax$&v!PBs?Cen8tz*~<_!^s9z*rf@mvp*#yIABjw2uh
z#*TINaz7@U3ok^ucmhgIb2gpS6A~v%L-GA*P>HW)3}|Ois^eK4yu3U)j2S-5?6c}b
zxqDF~CYgik!Ng&Rtoh>x`!~)ow<nqw)*?NJJ3Bggk=Zp%^eUO_q!@)%tySH-gNGvV
z`p(f^#y5s3F3Kj3h;5lVdbwRx;@Fy;_iJye5`JIL3S@v<5^IekpOYAtwBJZnmSW>k
zyU=d-V<0>e5!&iAk&_%$H4SxIzzby1szn7~q4?U!SeMplyQQm1{hS+6{H>+-zGEx&
zTASF;+=Tq)FMFZI|3#O7R<8(q{Y$@%f6T`J4*jhz|60A`H{?Hb`9=;;CN2|t-8l&U
zmu%eVPqNW3)hph@{2#hBQf{@L;X|mjf302ts2$0NBwql5g!4&JCYK)t`F(AF^BVU_
zRDs+DTwVP9IY18Qq*@DvY}ZKn892qU_W0?O2h(~udbg)wBGHn=we=MI9g3^AkqH5T
zatr<(po{pTaxK<?V<XO>Q?v)e#4x|!DxUrj;zOCymsFRlPg#So%$||l%%+2bwpeo!
zZkLg|-*yRk(Wvb7sp0M-r3VpnwA}NJbsj}3+XJ}3b2v4$R;6}b_U;2Md%HeQ8l-(j
zJ|o}TlXZP~-l1+cAzyY`lT61sVD$lEG3`;y(RWZ*1-i-b>*qXz%oQmRsdS;|fyq^-
zg|d>Fuw|51qK@H3#*iL>OXEYA?tZi+T~q)H;?AE0e6}Cnt{8TuBWs!e0<P)Xbg3Og
z<rB(%c{)X^u+#rE0-Q?;HPfp=Kvz}vxxs;NCJMxKCsCJFA7wChkcvfJ0E-oklv?Bq
zR`s!05pqr7qzId3p!8B)DKJ9eN6QijIziwawQr^cXsO_ECBV`JsW8z*@8qg$Nbczc
ziIO#gV_=?aj?^AXV4BIKvbKuA5=gjn{g*Gms3H*IJ5MNlm+w{Al6EJysc?g&;}*Ue
zf|i3am9xxav2q;BDIO2ZK32259{-9%C|GU`0kNa)#8_z<?pC4>`x&ri=nTv~Y8o9;
z9}T(**Fs^G2&f`DB#XInxY772?5dfzwO2TpC4)%4lfb&14SiII(6KM>DEBYV!h)}c
zjn)gafyIUxp`J2s!1V%=@%AaCJnftd(2Du6W1gnctGmq+q%fGMNh8|b_sv>@Cg|)v
z6I2uEM<gvp9-iPsV3>9<1(jUGM;|Tf$EdCS;O@X0$f?DvNu7S!3?Tuer@`I_C9uKz
zHfnr@N>p^S1Iy7*k_bC|kB+)Aqzq!!2v`!PNd5?%Fc!;pJn_<6QlWj#q3$BfEQCt$
zFP*yeBPYX!Mbb(Ft#C}3#MATHBjg%(i&|O`AQ<7|mrSO+E&2<rzM2#TnHVY2AsS^L
za0r$Zd~fl@%;&HGsz3|gj}W6upuoI$p3v`413eN=7`Dk7CSJS?ZczX7{!nOlq?Z50
zzgxWAc!*}Nq_Q2Mj<c?uWHjEF^WiV){ohUCcj>*6^&ji}H&Ol{!u<Kg|2y=z&SL$S
zFaB@HKb-~B24rRQ^@|_)Z(saB$wt<HU+2GtiTKqTm6bZ}W?s)<oq7F%15y$RVd4|9
zR}-Croa(3PKI*YkMAjl6Ep$391TsCripq>IJo}%}6Ap_n;iV5m(r}BP8Od+XdBpmY
zOH*4ccy(C>%@gY=vF$@Jr)9ZPN=|M`zTB9dl~`(P=5ev|yARU`k#YusrV*ZYib^V=
z)@$=)FlDg!pti4{FFh@;to&GdT77DJZfsn9YEIIpMI_Kr%Fb8VRw^SDOYA-cPv!&r
zI<`9viGGE<imRs?c_3-WbKVT3&GQu73ZvZOM^;Bi=F(?jCnMSaQJZQkb!Y#~3cFMr
z1b+f^5ESV_X8=ABsimxg{aFrLoCqJs!E1klqd~@>62$x34ZhEQvYXW_Rklz?6FeZn
zpp(shKv)+?S7vPK2uG>cv0u9-P7~1S6V#E`_ZaT8cZT3qd6cW_Y9`Xv2Bnl36nyn0
z+EFqaK;o`kTaZaMs}R!4`Osk9yY)%itYZmv)&>RqTA-Iiuw7qJwk8?WL@2b;L_s5L
zSm0FGe4!@kwP7tbmE_}cc<S-7+Fd+)##1QuRbn&QG;R#3Gb$b&FU*=)+TSDERSc>+
zzo#8wo7?K9WNgJ|Se3(Yi2@?)pW-~8q&DWd;j4F@4VLOJV36+WmT;Rkm1C#q+WeXr
zD|Kl-!p5}5=p7L%YNH%&dvYc`bnbRhOW(KPXox1;B9_59^8JE&gD78Bou0sKlkzLo
zq>FJNqKch}1jy;6*bWyl0x%1lK3)hFx_sWZG%0i2z+l8G4vkXKZmfbOOK%$+Lougl
zTo}_xjd^F$UEX3w>3YGB{%Wx^SZF(~uBH*g%=vcnpMiF4riRVU+v{0CXxRhS59Uzu
zg(R~0##$!yy+I;pLR^g!LXkdbq!ZFC=O80(vNvXZma0w?_mJU7R_s7nIk<>VB(hdk
z$8L6mIzq*yPi0R2A+aP;BNaf$^5OC?rE*ICL-Jt!XRZFoS9QFNe@q_!4*i|PU!gyf
z`rnZMkoX%pf`*WE@Kxeb|90%~C)xOyTK#WfqJEt~!fU^t*KWz$T>S&3iw!{(P1Mo3
z<fX8ZjB;5-lzgHxG{dnUia~1!C<CV|$q(F_@@Y7neCfWOGo`y`5zZ>dJ*IIzg<O?v
zD}==<Kv6oDXg;6-XVuBBoT=2_L82ps4t^fTn7i+xNAR^@N!y$ODq-%`h*VoQSSVB=
zmiM(c`dS;xwD>uAMng#TojrT6lp>fgMQsf~9k>*ff6P58^;Obz_@G)T-@saEdGEzK
z97X!J8-x$KmvvggoPlwn+4L=BH$1B}5o8fa6RsDJog7%hcKDK6Jc64kq-zY4`@>C_
zFRHCI?4#HhEiXrEr~*EUa;lT0m2w6fnntFb84PGgpO5O&+{aAT6#6Kx@m3T9DbWtd
zfqc282_GrGnu05EP_PGtZBC6p)9kWn0?#m?vyLRGiO!0Y0~<OFP8}D)ddUEh$#+2>
zD$P0dJW$c#%%sSJHRZZmkB6&$E_JM#Yiq@>Z?K*Njvm*m#>2*NgQSS8G5Ap=EJF&g
z6V9|#RggS|-x?y?6Nn{I&v5pL!Xb~ycV_9=N8#rnNc>|oNJe){u6@skinm)Dhadc#
zKBok(;|VAnjF?Q72}8`+EP!u{ao;h;j^oQ&au6G4s5Y_~wHs>5w`X^tv3iBBhVr1E
ziDjrcmY{PbKEYWa#Hh7bIR^M0LGx!->U}O_Kp0pgJ<MXZOHT`vf%8Jl%>_ttI-o8b
z4Cdv^+kT$A-{(->JtyGBgeVUwfAP?*sg;O_MP97uxf)A%?RcK4O!H`b>3QCPq-Gr-
zSKWl&AF4bsN9C@E0|kGsKWprgnX~NUSLhFBg{|QJv0&<~gfJZtm<>q<fK-%dMGYRD
z9t3V}_g$cbkxJa4mggL=7o13$AVs1Z31+`H{IK^Mbnn&8)z`J-kI%%}U!~#uEbFT#
zmd^krA2fuQ*?1p59x~0fkh@>~rABw@e~`E3pKF8YS7p47f0Xy%p}&*&EA*$le?$I5
z-f!gkQh*V#*R{dFHADX&+47gQ!CRP^UngMox@Je_N2t7@2OJb~(gD>5=?o?4kq`pe
z;cVuJu)#0#Om~pyGgBzc{pgQSq9`{p5e>GEKS=+<cy5nfK6JG?BV&(k{kRSItn0JC
z4y8vvOBQCfJ!yU{khl3x83O8tjhNB)FpE|z+mHmj{DkzDILmiKDpVSA1^2LK3jfb$
zW{hY7;MARCCN4Db)0JvC;jt&Q!G2HIlv&&MVw5dgPjyz_ak&uE-0fP$I~{;F%h<yu
z(aabV$;ms0opG+TPmpBIQo{bF4d+%`wQ+c(^cJeMI7=2BSpoYn_*Qn|Lr+lmI1`&7
zLQoG2d&5SK$Jw98{E*=jIDHizG;1-3*}qbFB={Alm3#{=8bl+oQ;QIm(zb>K+t$y^
z8h4l{muY@3lY%>(ExB5(BVkI84KcG}VA>GDfuvR3W-caDH}UXvH@I(8&<Ra-SAe9a
zx}NCdl%|slz0w7ga2S**P(e1aPfs6_4ZvH+Z#fkYz{_PA>Z5_6>k)2OzhQE&YE?O5
z>BVS<LaFhAOHPuyU*(U5bYE}a7AW|TnckicJO9zO1X=|2Ib@rOB>$5aF|f|}!caYm
z4pl9Go|MGGqim;?jR))MRqfg<#03gw!hY1~POhrzY`+UMWeQuog&(KiuuqTtJIQj^
zIUrC|kr%ML!SfZ-l3NiqrRT^YlF_LZk%gvGa341e1ljOouViZ7Y>2Wq;v@MriRM51
zcgxeOcPzppDCgVqi)TR==$A4*el#bu<{-jiX$@XbO~h1Xos@2N_0SqtBi9UkAFH5t
z8YIv8@r-K1HMscO(yD5$=|`f1m>{5wj+cwm4>o7W-hoHh%Vi&+vT(RzK4B@W&|ydT
zA21z6f~Jcj>O=%%5~KHO02V>(hyT#N_(6`85T9adGyp~js_eIE88wqKY}4Pr`jsmj
zCAO;7ijjR!SB!kqAlm&geG&ui{OX%Lab|9o4dWFj*7rhp1eJz{#v2mYE96=p7rt(+
zgAL5+%{i)wQ#vmMekG;I{=?I6Tp=%i$?nVlgEu(*StT#-RaS4~AHCu4(BFB(EA*!~
z{D%C8H@uPM#nAiIUqAcwSiis6{Xeq9FGcv?!o>eNfiLQ-*2tnLZDg`QNZC(-jkH#?
zX%b4;kW|^EtzuOBz%CI1xa9IB)$i(&r?rRe^eqbRtB!T<ghk$qJGU{dA0IEJ3DJt_
z^&O>LJ!YJxt1BtVPimrS7Z+FMhJ>ya?@I|QqDCmq%)oCEqq<XJ8QwY6w0&g#ngqY*
zQddZ%D{Sx{ztprcH!&2*1D8)J`&(@2A(h64t8#Bu^}4F<Nnc+7dd22lWoX$1pTSM#
zwuSyYOjbyKWatnT)R*v=0;YEla>Cx^7NHs)Ta?T?d>TagfP}PA7r0C!3tCPv#ReG*
zw}|@7b-GSqYEs#iK=Mh39sQkR!h7rub&66`8s>d6RtqTYiP6mO8Zvn1`;nKI&Yw?A
z#5F>r2xUm-MhWks^Q4z&eFnYI*u6j4_ew(?Q!)d$FV%@zW2>WAiY=K4weu`>94y{U
zLkf~n@%ZS;db8Z0l4d#Aa59yRx*u@`XKg6>;bu<>4dX;#5|Te0zFU}Mr5Yu0Zv@lY
z^3;Ye)UUYEE~i!ts`Kb@sfr#<hq+iW(TEj>59>+3qkyqBFLyTAEu4@vOws4@*PUsY
z>Kq=qhxhU9?b4J91*je}?PzX*S$24`A@jB=aAn{_*K^$f_btIrV{9A-z6XFkxnoZI
zgeJeN`>h)hom?LR*UI;M>OD)(1>m4G<2tjE8A(uw9rh8{H+lbzL@`9v6Kj7EYOmR3
z%%~K~?iOHh&&pf09=d2`xvv!Z1h^g{9ju?=DRV|;RgH<v`Bz41vc)h1Fo%tYM7U-k
zW?ye#zR0+fOpb|59%y4Jrl7G7;Py-LZ*-&=eG83-rYV_7;*q?95AI!ps3Fwm-v^D~
z%kE8wjVT1(*d#lxRkLDj^9<?{(#lY)3EJy}(B3tvHV)qNjQ6$Gfz}p9qk@<RR5*)4
zfsPo|j49NEu@C=TNEEj^9MIC}scZ2=X=>Hc{;`u&Qq?~G(~UHm6{6&@GsbJ@BWd8`
z-Sm?W-q1ox7|&QblG>16K!c;w`qh2KxZS}9$L<!ng={TxQ|$?mNjYEPen@>RKi$7j
z2&)Tb+~o8<A*RH%5EvjhT-p`H?;BslU{dL@v<issk1uB>BEeSTG9nePB*_9?bb=uy
zc5&;l%8AU5%m}wRQ#(a=%H}EQ>MubfS}S~l)Pncn-6a1y=4R$Se>A~rFi>8oQV>)B
zSu?>WdTrfzZA&?w%|RqyP%0JteAwP@$~JS@68pm@ds!!squ9HWM+{?c=0la9QW2lA
zkp=<)>44x1?)+QsTw9<Tyfo%&=x_|M+AH79971<jjS*}vILk5dj3nmi6&hA!M+i1t
zao8<aT{2`3*bKN#t_5RReGRGbWd%)$j^t;?JR{|^HZAPt4_Ot}Rtg2gNJJC%3?@!b
zG7jSuE&^n6Et0-u$}i+H^ow`1VdUdkr>DHGx0mXdRxf+oTWPDhcXu?-99sp~X(R<p
z>dTglOn8y(5^dhsH(0(pEcPjsTa127J&9b#2EYmvhUXn{GBqY5IKbm@(WK6V@IjFg
z!B6Eyxr#{54rNGqkt4S_!VRdZ`oa+Gf|v9f`Wj=_?t=yagYB$ZUQcGuXLsA{T!ZUD
zFX?9|KWdAvF0a*j=$(x1u!9<{q6c9p;WEhFSMl7k?ovUAv)Bxrn+7j3CDC_7O}JZg
zLm81>IrX3<7ZwfWC*0WZEUnnl(;OT+D(OTrU7d<40fdb|e%xc{f@`>u8?!rB{&M^A
zZs+QGUFVobUENIhG)>bg`b4EZ#33URm!K=);ky8et)o|LjHM^F`+)`?o64FCH}XgA
z2h@Ft0a8x~iUWzD0U1aO4hniqyXOMao})<sD@Yof8u7;Y)YR$E@9j|=M4*u^Qw2TS
za?iu`9pjRujxt&!0*-H}gVm^;o&f~O9n2n_ZD?21xMTN~kXmdX*Hmu9>pvK{n`9V&
z;%r$O6`b}~$j*E%B(|1Spl&NRVKEYQVG&&0dkH8iK!$aIj2Bg=3YcfD7C%i9^gTDn
zwa0;(V^8YAm7*18le;Sr;t_Kkzs<9yK4Ki_I(wRllCiERY_P7}a(N)!Q#&XP$Q^W7
z$YT9sMo)eEgKfzyS^qQ{AiueoF2hX7BwemYvH}mIQu<6fEKy@WI$@iqANClef!;dF
zNP5`keyOkQ%-%lANJX}{pvGY&EIt;nkmp5HC3yp_wjk9UPT$?rfTv>l3_QR)lbq4R
zXxhWe>7b8L-KNnAE_KGo0#QxVV}J~I@c_|X;!L1u#lE1B-Jx*FE>NzX)>7$~w5uAf
z{J+x9JS>VM3*d;N@x~C1exia3;>oD1h^z;AAn`)QBe)96j9~<n8zG<w1`y*BPLFtC
zP$9;V2p)*UZ?lOfK}AsxT@T!#0R@l5s2j6YUGt^7s;M`_xA=#^AN`y6<5hQcSJ!)m
zwwsfRZ7v*G?X5cIm)~pOL9+>}mc@>}v;TD@$tC%~ipGSSX|sE%Ri>q(Cx<(IGpuft
z`$S!fycu6QsBE35#4T)9a&cm6lFmu9GxLYK!yZn5jQ%{L)bHM))A^B$Gjh*X4L;vS
z+j>#Nv>?}t$`MCxvI`%LT0L;b<@(z_PWimQH8OGfWS<o(|2eiUF{efb{+aKx)Vuys
z_06iY^ts=W=1e#A?+T=&D|LqQYArq}INgxHD*zmsOgHeyUFg!cI2GNByfCm#5vo6O
zsN!7#0R}Bo1ow0>*Zp`tu%Dl8X~i(hqJmzPJA>3(yVos#Yqia@rgqGj*x`!~yjW9~
zJ*_7BfakZ%!g_77f6(Kt<FTTML+)<Qfej}0S6;;wMOYr`^r&;GZ5PW^t0vtvjqrQ9
zaA!%GZq2Trwl63cJ$A^|<yIlNZ)<HvtJRA_dsYXmsr}^5%%wknkl~q?mDuiyW$^|_
z=c9QW?{)5awI<DHbLp&9*N+lsCXGDpH_A)ft-C5?LG`uyKlf`lVv*aa6NAF)9#&dM
zHNLWlToO@dl3!BPU^Q{RXGmjpWnJ5H>-2GdeAcbT_w~lLAFA5lJ6v_}zI)-dnd=%a
zZhGeJxjw7AZCur+(4D$}Iv(j%y7f@%>UGiSp=-YF5chQOxb;aJhW5$5>N<SZM@2U(
zAH17sbNp7f->-!3nt!r#YnV&<`BjsSKObM7RygFui4z67g6|4mR@@ogzR|<!R$r^V
zx2#vj4~`76TkpH0E;!!VCH!O;|BSr!Rr|mDe)x*lC9w@Rw`8@tRN`W8x^$WD+Ld4K
z<&5d~^i1BA$88>U-R8G=UD{7mat0s1V|ONa-igEGHEy4EUol5jl9rR{7rbEBF7**r
z{k|R-`nXJ9`^4AcYv-&<Wx);Bu2s5%<Gw=@BU8us?RwG9@>{P9OUGyy7fl(rq4v5@
zy>^!E0Ns-HY2)|p4a@70GN@XkjqtnaKl$>9`9Hj0TQurf*WX60Ub$CSac75h`MXYu
z@lNksmiPJ5rf@}zQIFpJ+B!Mequ9Q?->02#m0arQ_G#Mluy()S&CEO=|L55y3qHTq
zW!J{j^EP^&$PT!4)50rS+j_n8@+TIiC83omQ=|Tq^xg8}yn7qYTXl(Zk955rpViUk
zWxVy<hIM~VsoQG5t}H6l%i(tR2s7`t;|hKVv`jygQ@EtB@AY2yXZM+~_S^-x4E31~
z-*|?%ep!0CqHsun>QG~@YyN=Ux2yKVdIgofu)Vtbadq2ti;t^v&#s(1E#iay=E2Sb
z$DaDHDrUgiocoq1FD6~kG<@CXi$9WfXK7p<qfgq}nq7GttV_At5L7aAf9JsKVM8b7
z^_@{~ZvS+1V$He6A01lMesAUQ#>)OHt?A{zf3<e|<+P;JqnG*KDN(zIj<Jg`igtDM
zoNHM-=&@bGgvGx_&wAj|<4w@8>6c#gAGfn^U)lC+W_CmGrlD){gq|aQ(M*jo_x8UM
z^WFyS<NDZJW!_`|cDqfSzk5V{Zqf0B{@N0Ye{?b%(Jdjm>zKR8ep>1A<{^3{+QPJV
zOSEAWeI;_Is`e(`rQe&Fn43It#^0*L0s<nv^mi|2CM{<*b&{e7<j;NGnFCH?54g<7
zUpjJ#CKSI#fsT&PB8odMdUXEd_GFHp2^>8H*Ag-O@p*t11E_}qMo1!OTuk}2vs?dP
z(X-ua(((<l-U1yzd;L`OpUgTV356k1Lf9H3h679D{?M$s{iw>j5Q(d2BY->nr{Mvt
zxmPfNniEopIZTOc9sZ;rx>i*v%*{c+0m2~W*s9uw14{<YRijFnB4nUG=jOrYcmQio
zg^ExB0BTN1A?7e;%bk&XmLqc$rK`L==aP+}1S)b)h$JVMO`y4X9mRo#<82@4Pct7j
z#{*b%IWT~l6H<sdOxdg{K6eI<)_g_InRWuhkSO8ob`ZmXeGZzl=^{pkgcEZMVRJly
zH5UZ~s5v2pn8TFncBi$^k-7I2Id{VdN=P`fXpPJXktF9fgXV^I6`S+L+o}=ZW7r%I
zV9mwB0BTN1A?7gUvv*~^&CzImE3N*?N9%1PD8B4=Yr}zU0nN?pAvPDFzj!Z(&G7)%
zTn-GN=7bbt4pZD_AG=tCaxPAhbEfEVs_1Nr!jLEd?5mN;oDfNJZYyYRMlUf^jn|nG
zU<quF2e9U{U;s5Iq!4qM@=Sf+>EFm4S(1|H+*>0kYIgnEaA4a&a}%w_=2qdY&IsTI
zo8tkjxpWvn%?T;Q9HuPIO?ll0jn<)xoNF+GvWndT-Tc7V`P>p4vALD{ob&#F%pHRP
z)SQq)&CRR$H3rX092Mp|*n(k5l$DB{6C%lI{Q}In@_}NcMn9ih4x8fvY|afD1Oliz
zA%&R3lp8*}sJqA<p1lp#->IOR2Xqgy!3c^*F`pA6iMbTe+@)dS!2I>I5+B$c4`9vp
zu?GRvoRC7yValVLs~uFxT$Cc`B8{N<D`q7^Br%r?nlm3M4or(*RY0c$4Q!4Fu;w%{
zfSMChh&fF0wTKSSL05>2ika|PBPd$-6$ZnBrGe&3M~lt*=+ASXz~*=WYp$OI2%zSK
z6k-ljcC?-8umhP3R+x)1g5sk%&k2zv=h8uQF=K(i^z%6_Y>o%8=E`6IH7BGHbC}}3
z#?iGe8m*lbqjiWA7=}dgQOxIrNMbGnG<STw7#WN!W}~F`gU#^()?B*@Ab^?^QiwTB
z2{_o^qc?i?lAyRksEwcmvz4@)9~e6;c|1uRnA8Hi`2g13_{kukS?1Vg;PRR9b|WZU
zYjDGX@g0>}b3v}+z)%-tDd%v{W8l##4`9umg8|f>kV0}!*}hqB&T1MMhD70-IU{pI
zBpI#B7MKJ{9$~MWE=EcXZV>?YhXu^>0M^_M7(mSlDa0J6u&r+8=7!Ax!;mOk<J;y3
z#^&7Y*<z&BN)!PCMdoNsY$H*5OxZAiYby%TNFwmv8`*HC%@v0uHHbujCYwXj)dwEH
zCc<tQKodboA<~qsBIVLv8A0J1M;Z={Zzji@d$B-lPU=^O08Mt3qvm)3Yi`;?5J1fd
zDa4$zbDiAWej_McA3MW=DSLPkBsuxCUn~wx>ga_4xFHsB^5FrjId2$1%?T;QoU*r<
z+}vp+C|sv6!+|MV5XsFYc!|wP4T%t-$!0_}=Xd~Xt{MhVb3zI+r)*6mH#f=~3`3%D
zjfxBh#&=s`M{BGPfYeV<n{4Jn&G7)%TsaJ&=7bbtPTAT;Zq8l}hC$3Jrl&$Axk4zL
zPsnr5#8-?&y&a@U7VhK#j8-1Nnwt*;s5v2pm{T^TkefSd1chr+fpSiWB<A>n`)tlV
z^AnqsYWgEUllA;*&hY@&+*E%MK+Op$#GJCazueqDBPd+0f5U<C^}ktjUj~W;lS+&u
zKrEbdJb*R#3<gkhLJBdbEH*ATH$4apgN#<iBB&5aa*i)w%$oZ!OpKH&BqMWiusI&U
zn)8PN)SQq)%qeRn%gvoLg2Gi!HXImV-jy{sJW^~<svwI1O;(Skqm>7+<`Q54H7BGH
zbIMw>a&z~Lpm3FC4F|@Tkz~!aTq`ywRjNb)T<8(FLhu0A+#(o2%?T;QoU&%6+}trE
zC|m_g!-4U&tXOkL<HY8qx_JnI%gzDjcmQjzRXhlw=7bbt4pZ0)dUA71ji7M#^qL<S
zYwlEnI54Tu7y>j|3XG0c*j&d%5J1fdDbyTWa!hXS6C)^G0W!mZ9ReTJ9!M4kCRJ@h
zfF>(8QFA<i&AB%)fSMChh&fDQ>o>{Gd29m1kSJU=C&Pj9r775)8@B~O>KCMNSsGxp
z@&MLc3Jjp;gcM>9Q`ibSa&z@YP`G+K$ea*KW+i-Jthvk-z#Og{f&fj{452y416XtQ
zFo2p9Qm8q$f{5JQ)KoAGl5=c55yOG;wGvo!Q5j;SRE_}wnk>aY&G7)%+!Yu=%?T;Q
zoU$;3+}yxSFbs*pm1!^>7~U+7mi7PoV$FTLQ;d{$x+4JIC=QHP9>AK@!2oJbNFnAh
zh28TmH}~EyFbs*p?SMBN7~V?zmp1ebYc6b$7%A-oMgY8x7BI&HSaX+P05vD15ObKq
z?g*Bf>%SKaL!xl|gAE79zsS#;dw38);w?=GVBlST9>AJ&JOl!$IU$9Z!xVONliXaY
c5fpB#lPEAVv^H&G5{dqK3^y^^d>H@qKSK9}M*si-

literal 0
HcmV?d00001

diff --git a/datasets/polyglot_ner/dummy/cs/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/cs/1.0.0/dummy_data.zip
new file mode 100644
index 0000000000000000000000000000000000000000..18b5fd847acd07983ac3a56be9baf34439d99018
GIT binary patch
literal 1742
zcmWIWW@h1H0D%RqhJj!Pl;CENVMr;>&8>`2Ni0d!4-MgDU_NsyIUa;dE4UdLS-vtd
zFtCUKl?UK7L;}^2#N-^XX~n4}#blZ&jmN}fVhvSoNA;@$enSxfu=H$leDy`F0RRdJ
z4hE3P0Tq_+O3Vxl{A>&ix<r_qTpVAXnVqSZoS&DI0}f}9HOqh)Eu3>h4(44k5U?%Z
zzho-I%0~?k!Zes16IY8BK6s|`?%2l1oifKuiXSn*=;RL7f3l-J^u5Ph)!Fh7y=Tm{
z*zNJ<!HKeC#_#u5e%mO_y`lQ^&5KTtzO(iPt9xZmx2Qg&?J;$G@B8aJZXGZD^MB&b
zVD8lHIe&kCYyMXw8Woi)Zef2QFd#u~&xw$=g<g-}eBrHYKBe;H@YWiOk9?<vWj0r;
z6<;rRd$4HPjKk?)x(np&<~N;lF#prNU174bI`38XKXV$+{<7X(Zd7l&SZB^jZevxS
z)R`QMv-qbdKM44-{o3EIqR=9jQ>FKUrUY-Xi=QT*5W4C&U%2>#Q@T#<xdGd5I<7Nt
zRXcp)>uaNF4JyqoU$44d(F!fS>5{|el~{YH!ew?vP{z4pX@$d`?J_onuj_v+$gpZ@
zr709#6rA02mpkFjGqpzs26w!<1K&u^GBdFfJ9PD#*Oh5Aw^tl9I&@)u@Tse5d|eNx
zrBy8Zx&2~>*twa~owmzkP4Bp`a$!r268!pbxzA6P)0OXL`<QO|FL%6sy89i;TZ?&2
zzcU-IW-5Jc?Jc6s;=?-IM11X?7{gqdrJJ~tl`gtuB>u|VaZK;t#wVwxOnBz9ZN8he
z`7AG6ugvL_5^toov>$&WwoGixCXL@ymvZFvIdICdz7||0Jbg}!XDydO%x5EYSHAg0
z+b_o+5I^-Pa@NHJalacPp04{XJMU&iyi4&ETifArN+9cg`Mh05sa8vwlvW;O;SipD
zbkmmF>#NrO_FA&j^!y5bVaL?v#t(KXiAy|uCUI;1R-MHRQx`|YW$0{qWT$ZM<qm_I
zD$fIJj$B}hWZ9RP_$br0ZTh8mDHh+KxXttv)B4aA@yyfiC5scs-`H7~MHh-U_8!+;
zdmx~A2Ip6A=5yZHPPxDIzB$Rb=gi_$Sr>P_on5qOPst(kzLbjE&Tb9oWv<?Vo6Bo*
zUrzOs2zhWVW6z%}O&_JQw{*(PWPiBx%*3bd+4D<17A5_0?|yagLi3E8yag?4p~6S{
zH*uU^IC~xsZ|JGL2`kO+t45t)(Y41X>+h;7&sM$va^+SO+cOt+2kXEU7ujFD)>!0r
zsiy3kcz`z}lN>Xy0!;#1v<Wc0bp$a{iZ@nB@rIV=@EIt<fNY>Es)1-l9qFb^qnJJ&
zkLloIkFW)pg&wl=-{7|ZS_A@Z0hLWy0|{3F2(blNS1>GTbOTaIp^g$rKyQF;K`Rb%
VS;-14T^Sfyf$$~J(DN)H9ss)rUZVg2

literal 0
HcmV?d00001

diff --git a/datasets/polyglot_ner/dummy/da/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/da/1.0.0/dummy_data.zip
new file mode 100644
index 0000000000000000000000000000000000000000..c6447888c91c7e3943c9a4ce6a01498d65489f06
GIT binary patch
literal 1674
zcmWIWW@h1H0D<YPhJj!Pl;CENVMr;>&8>`2Ni0d!4-MgDVBU8sIetG7msW5yFtU7Q
zWME(s0V)r`X@~@>A&JR3VAG0IONtRDf=ngaL}@%GrXV>Juc6ZIsD4$zZzv)Frk+iX
zufB-YxuAgHU;vr?G3B`RJthW*N30ACx<r_qk{Dl}nVqSZoS&DI0}f}9HPe9@EmTTF
zPUhV<5U@Qy|6(xnj@G#*jm2l1mShC67e;^a3QeB%Oszn0!5{xmygOeXw=$mc<k^L0
zjdjNF_f|ex+W0NQ_V%}YMYRL-MEo9|H#eEOVflyO*Y<}#C|gwO{{6M~yr^}4=QHJV
z?{zlhhL~DNRR*ieU5>iEKcSk};&X}h<$In6UQGRU4ITnJqzi)^*qlCT3G|)+aduwD
z`cHk2x6N64Bv_B}xko_1#=Z3_p~uy%eQWLb^h!;gyEs>}8ch6j=Huo)ir0(YJNr(S
zY1|-{ugD?QscR<ca(Ta(kJs*Pb`CzLBwCjo;!w_7`t?Y{WTRD0I<>+E+U#+0bJnZb
z8Fo&P&{&`7lhZxHYW5Vt<&0v>zpAN=Bs08CO*teLGx2tGj{S$sK9QDgo+DkhYtK|_
z7Od%5s3;<p6>=iwtw{L%lWEJNI06+n)Gy!+Kfr6Z@UXS$Wd5$@_I@w;r)jy|G!c&%
zliB$|LpnG-LF;-~#1GlcW%~o}X7M+Eidl6^W4=SMXji)6y0nB7u95w7Cm$^`oW?j&
zeIi%UX|;zbQ>TZjZQg40eZR=`*o{WY*I(3i?_sZ+eaGOJ@8Q+Qm%Qfu>2GV_y?{mk
zoaFNDhO%=4TXhzn(_5B!*ldNzvIKb!>&UOmKkx4hXPvU`Mx=#rOP8I_dD#tyS}UwH
zPo9l&R_zv_I=ib{n(K%5Lo2&~b02dw-*p%KBC#PPW2?=beY#ag{ywZQpS8lGYbW#d
zRWIDGpMUr5X2E)<n+qiqi<GB$y|vN&*WecZ?#0JvD^C>aE8TODS~Mv`?bX_uY+u<7
z(kEA_isT5gMxFN1V7ckd!Oqw3eC6H-i5h|K`~!W<>TaxAS)yqjBr3099a+3psxzKH
zzx(<06SptyFIcz2I+(dIvuV@cY>&sR$Nn!jT<EwpaCSuJr##trvgXT+A1%qfsd+s3
zIrp)sH$kjr>dimB9)zW<zyI3$H-M*ZPSXEZB|Ed$xj7t`U3zBo{s3=ACOKwYg^>ib
zSQ21(>j+|^6iuv<q6sa#;4@Hy0og!TR0Gk9Dbh`sMlpRl9@D`^7GVo83oK;kzrk+-
zwD<zr0xDOq1`@8q3t|hfoM%|l=mw;aLLDWLfZhPxf>xB_vXYezXd(kE5WWN&+RXyu
F0RV8yEL#8o

literal 0
HcmV?d00001

diff --git a/datasets/polyglot_ner/dummy/de/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/de/1.0.0/dummy_data.zip
new file mode 100644
index 0000000000000000000000000000000000000000..f33eba17294e72e8c701ac4a7e98e21296893f40
GIT binary patch
literal 1712
zcmWIWW@h1H0D)(%hJj!Pl;CENVMr;>&8>`2Ni0d!4-MgDU=BE)91p^!72FJrEMFNJ
z7+6Gr$^&p3B7tg1VsZ}HwBpo~VlqvX#$#eiDv^eow4?e}0l%S$062U$IllTL)&Kwn
z1P24i<n~<!Vl2!I43caN47x;^oRS(}o|&Dgmz<xMlLHQCkTpku7%iMrLk{NMHsG-}
zkKe?2cfy*8+cJ~QUT#y%ov`ip%)X514juMQG0Aps<;!HtUYUQHGW-9Mc%w<1<}z4E
zEXw@(@#DlR*WWy;`@kFIetY@D43}uGd&+OUK36qMX05*A67T3(-Bu*Svwu!3Px}_#
zt^Pf3t$&^>+cv+hnfy)Twb9eFyVK@Z82P>2d8&8O+AVw9<ns;KW-oZUS=6d^+TmSZ
z;<K-mA2814pVK|pO}T{Cp^=qS+Pu1M`R03#fA;K?^pTx1ZGqO6PKz0Cp;jmTp7uH0
zT>RWP?_y>4oyO}sm!?=wV&UvjzQff0ea`19+xeGP-Hb8QUngeSF20vx@}?Dm`9aaQ
zmRx`L_IiAj{J{lZ7cp8-7dg|uzFy_NYQ{5TJL}0Sc7?xww{WRN?zh<@ca3+QSeWa~
z^6?qlCZ9EF@(aBUCQWC!BP82vAAjlFyrT?kZh;nsQs$c8^_zC=pX9KSIof<Zt92*S
zZt*!&+2>2W;gY_=n5>~*^ZxAl9CiDRpB<;9oL+1uc4<wriPZf5es86>W+x>iPFXlQ
zZ>)`HEc*J(?#DA%PkEme)w-gWx8=M$%NJej_$c9_qpZQRSut0XfBJ2jsBvc1`)y%=
zyH9(s+^W(#bInryCD$Wnp2)nfZlTF>!7KjHg<~17CST35{n6CtFHyO00hjr0yK}M8
zGiNUQ*T3PyzISOC<u)y0a}wSakhSH+UVWQWiqF=2i7)e;qP);{#s~Q$g<PqM32#rF
zoEbe?n1Oj+@G9#mO^0XvDSf8Ytf(orO1b)$@v2$jez&A`3;S8CUfmKlDyib$c0HZf
z>$%I)+{a}HQk23|T>_F$X>Pptapl!rZ!d0--@p6IPq$Z(|B9!%3OcB*)=PDBKFSjz
zI=$?+^F$rat*y-=r{Xe~?{Zlm-6mNk{3Q0|<<ORz{^$>4CBBP~r^S9%VcLFs&a>wA
za%WRJ`d2I5-~W7FF?%4#8i(m-`UfkkIz-#L>#NS}6n$}PmBGu%GntR9R<z_b&zf6e
zeBr6ge3`s}Z+<IJ2h4o8E8$M3se&ZWKgIxWMkYCCTt$`ywD1yOc<Tsaq7-1PkOB-X
zQ{gjEf&tk;S5yPh3NzA8mqsytIv&%(1sh=tFpD*0=fA;k0kn_<+5#$lum%#YA`W5;
qur^>=(&z@HkU||LkbvF*+k#f$;j)qySbj1vuma&rprIRCKs*4@cuA}P

literal 0
HcmV?d00001

diff --git a/datasets/polyglot_ner/dummy/el/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/el/1.0.0/dummy_data.zip
new file mode 100644
index 0000000000000000000000000000000000000000..4fa891f0c5c3a26b861789a17e39f51c7a87bb0f
GIT binary patch
literal 1931
zcmWIWW@h1H0D)PphJj!Pl;CENVMr;>&8>`2Ni0d!4-MgDU_NpxIsPaRmsW5yFtU7Q
zWME(s0V)r`X@~@>A&JR3VAG0IONtRDf=ngaL}@%Grsfc7sA4;+Uls5hiU@$YXOrVC
z&SP~hC?Gf(Kqg;FURQOWnSr5;lYv2(2$NHD;>$C$Gxd`5^Kx>);S927J`kgYN^6*}
zw{)OL>}&nN4MCe%ltk{*Xl+{hg+F59(u8cyl8doPLiP%REU_WtqK}LwfACQ|sp9us
z{?7O5Rqu{h8((yqIO9z1`@8+c=Xd6>a6c!1@qqlgH*12toKKw$JjNgV=d*9UPiOus
z=Wee1&z4r-Um97nAVhrml+}~%uY50!`f<79!u(gWKJ!|XnDDfDM?J`Q*eNNnVQKoS
zDZkiKJBoamxfLQ0MYHqEOsV^5sPfk2|IVj!--8;TGHF`*%{%ttTF>p|sH+kGe0*mA
zSaV5NH0mM`XW0&^9a__vz7*&jOx*q{?fFx!*u%l>hQXCF!8J0z89R8UPSJWN^St@^
zS6;@BkKap|Tywo^{N}-|B4_#d==1Y!dw<3znTB4EIl!@lyDq0rr2k#R0S3F^C2ywv
zs_c_f$&hxJKRj_}^`^z$^R@;wb|=<<e#H8iHDcF_=83^Oe%_y&fB1OF3=<x0<{t(8
z9s<|=T3Cu4q>EYlxf%By$iKUEq3Y5Ob}pYaQyf-o{MK<hCdkWjPMhujLtb)5lN+DR
zN)+c-3Vkf<q-oafb!X=V&h`)8oTvU)|NZ*-;C6ZWZ}#us&U*Ux;J@?!_sjQ7q<AFv
z?QuUNp&5KWt5E%p!HuG~_arRJ5*|6v6jEEtdD(mCxzwJC4_tm-;CgVC@%_pW1K~`~
zpN*Gxhdbuidj1XY_47ToZz6}*V}sPg&n^W#SjqTBJ7B8yaY0=^twR?#C2nub(llFE
zaHXrK{f3m%G!OU7S6J?`sa-ta+SjtqNZMCyWA-WbT@$wkUPx~}%-Qt(8ox?7e|BPw
zheMv{{OCglhj%P%KDe<mbDw3-jDzWVdtZewUc36m8o9jiwBxQ<WVda5Xd);lJ6&sy
zw8~SK<aryEgqW>m^e<27S<Mo1N9oh^OY@aE(|W>+lqJs3dpa@l99MdA@Q&wA5B*YZ
zn_X43*yHbN<Qu~-E4;Jox?%g%ic^oLhp%JZ(0Qby>3sE*3lnC}K794h!y}~$f!=zH
zb$TAyFqy8LR;<sX#go5{hcQP^EoYUf*on<YyVg$&;aEF2M&Z`}0|l~MV`iUdIJ{|L
z*zLNF;uR^?DZR2EoSQDJ{H9+J{U%t^)${eOYtO!wz1_%Sw&jXtFw4}d(_8)qw4GhC
zQ}M~1$k|Gh%$;H<_U<rJiv8fjef_zS_@SBmdLOrb60Y4cL0Z+(NAk_S^V7>$9`!Nc
zD0$ZMl<Qpb=|g{3#9Z@x9cK_PDR9pJU5ML>3$s^Wkz?PecY4PBHcgee&vu`_$Mo*!
z1k-Fq=T|y+#8(>ZsCxVTP_HG|dt0?>-g?s4CaOf&zMZh9ZOzRYehoXc!y_Ks=bNss
zXAJOWWRhdXRT@h`%VhzEw~intO4-Z`DVx#C3w#DjFd!S~ifSNQIZe9h(kP}+$74FU
z%qDCBW{HjL{5SY5fR^7tTR;UX)<D8ldP8ghR&)$Y8r^^tQmCT@63`o9ThPjKTvoEO
R0Zn9J1;Up=Lwi_3JOE*7xrzV)

literal 0
HcmV?d00001

diff --git a/datasets/polyglot_ner/dummy/en/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/en/1.0.0/dummy_data.zip
new file mode 100644
index 0000000000000000000000000000000000000000..5fcc8fd47a38c0ebbec546224ad313d7207c7e0b
GIT binary patch
literal 1657
zcmWIWW@h1H0D+V?!$2?tN^mpCFr<{`=2ph1B$g!VhlX%6Fx#9-jtAk=3T_5QmamKq
z3@jo*<pDSikw7&hF*yfpT5)PgF_|Vx<1sNck4QtU+EM+gfZtF=0GvOY9A9%0YXE=(
zf`b8MvSdEXowG~~3~j6o47x;^oSGM3o|&Dgmz<xMlLHQCkTn;87%iMbLk<>QG2pQ+
zw{K={ojFaBXUa6`yVJ_r%eGzCD@d@==-VXt`o_Vs8*Rpac-{TZ82oL1tFL(4^OoG4
z6MZ_ip6^owA6~1O)U58SoqeP3P<H!u<+u>@7aS(D=T~ZaUwrKS|7+&^l{vA|i>=KZ
zt555<t6H_Q&Q^SP(A_&obX%;Wgz;R9Bcl87f4KGM=AAqLZvDCYXW!qQJ8%BkJv~WR
zP$4R0!IGdSA*&TVrX7CAKEr`+`?+VAImJKA-jz*=?tAH7WcOh=Q>@*eNqc!h_cW<(
z(Nn89mR;oMeY_x6>)foTFW%=$uZm@nzaV*%Rp@8j3H~;rJ*y8`{0-ptRFan|se5t3
za))2DCQJR7D*j`|7Z01&&GKIs7R}x|HTj@<@d?*>nRvf*w_eMH94$Q_yJvDVV_6H=
z>zH2?ZQmQFu&-aNc{eg5-FHLsDoqIuhixjc{eBOaJS(jqb575{%i$Zkgq!W~vu)F#
zn4O!tB`<lYV+`vjCEi0@MIK)?h;Y-06?13p%{S!>zt_lhQ9qV9`(a4n<b`(I<fZmk
z)EqfKQ!^=S(meC1uPNGd*ZwU1n7PYzzl~tg+LPhsHo7OwuRT7jX|z|`;BJ6KML(0;
z@k>^3E^4P)e|6Yad9}mm_)-JkLx;VpE@uQ-XdHUDecB|SPkCp|jqe%N_jbAGhfXMb
z``-1`hpLa8^pD*rO%e0o<1yFj%&(6o50sXKN9rqNKGfW<b+IC?O)#v;&5PyTMUSV}
z$^y)$d`WVhTH=9=AI<j3Ds1ZzTyGh*iuJJ6(px$8`S~dxWfNq1GWw#fm%Bf+Ut#3C
z&AFgCV$u~Uv8Q`0GkQ;(EGfFandxc%rPEni`?s00=vuVie|b$*-o<Oa!?`^dlImId
zu5?zWPVEv(jGCjUb9<q%&_j!z^Edl!nC@BQ=O`R}K;X{Hk5i^8<%LE{@2=u{Eh?!$
z%VfqsuUlRleOmQQ6F<oZcr!A|G2<$GB%q~`0K;2H5EG>&Vuh4MXt@KQff5YJ2D+je
zh*m0*Zn`vz>C^F;4lbbxTYy<UAv^yKehZ+b70?z?F@iOaaFtaMTY$wn!;(ffAcYj_
fD1ij@2G|y~k_(rWtZYCN8CZevCD70+77z~r)g2#=

literal 0
HcmV?d00001

diff --git a/datasets/polyglot_ner/dummy/es/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/es/1.0.0/dummy_data.zip
new file mode 100644
index 0000000000000000000000000000000000000000..0d0a424e2a630ad4c1b42d7d29e160ab9d294574
GIT binary patch
literal 1582
zcmWIWW@h1H0D<H-!$2?tN^mpCFr<{`=2ph1B$g!VhlX%6Fk78TjtAk=3T_5QmamKq
z3@jo*<pDSikw7&hF*yfpT5)PgF_|Vx<1sOnSVJw_QT?ib-%vyVoIRTyUvm*_0DuC5
zg8^i6l@yn86B7f&Tvi4KT_Q|QEsihG%+AzH&d<xq0f#fln)5)67S6FD*7+iiJnK&8
zcLo$`I+RRsnRr1_X~K#Oo6Y-r`zv#v3BLT4zs_eO)1|;o^*sIQ<?qanzBzaL+w=FI
zD|kPiy)Hca`27{Bub96+Igk*U@ji)(wePv?Cw1!w`9~Zq@+ZoEx3$_Sf0FNN(Q)Qv
zsqdYu?gxLoyRg~sS~I^Y1CK%c{_`5Y@BYwXTw8xYVEGDm;gVT8XD<4(&Smm3v?`c8
zo%x^{OOMIEEi73AmUAXOyUBd?%C=_tQ}1>ACvO!OJD@d5a@S8Wb(t!*sB24{k{`EC
z(K4_9w8Lrgsa9z@zc<#NYbLEQ-r*v>%w3*Y<h}HTP7%ph3$hQ+<C^NN$ka4%?fcI^
za$ffydNyIB@DAq$IYS-ZnbZ2dC>1O@c3@)oH07S(MRQE8b@KKsF%JGB`}>T6uGPW`
zjn6+mbqGCawb1dn!mC%4%_aV{6zN9Ce-dk+(yOqM^(23pmFKS2kt#3tE_VMI*E;dG
z0Mkm#?BXr!6K)?mQMOJ==3U{<6Y)Yn=WJ|mJvKdo{R>}EVev^$HiOOI^LK{tzWF7p
z`tkCt9la?vr?yR)V*S%QO(rX$^bCtaTIrVJfPWWvFZ<|jZP&UgW8uTH$f?sVtm=|)
zz9Opp#V=X+ipYj3rX_WCwU%iHoBdvx#r0R$X$wxzVol(gEa7&qS+=8j=M|Iv(=wKA
z68hUyURqYCR<zseXh>Gv%+${H_tyWYX73WRZ@i}WY0A#-;G6!_&Uie|D6OmdxK5@p
z{loFthvAC9?$2*C;JW3pce465uhZVe52l6snA=5sjNRR2p!nX+<?*rf0PmCG8C_*J
z<k}2kHi@#|(b&GzXv^%Kg^%N-wf`<^UGZqorXL3$cYTRfF3L(*|IZlU&B!FjjH|$q
zfEFDB3~wDlOqAk-6;gblC24#HN-!WB=!$9}T2Vr}>Cz~sPsd|AxL6@<0cN3s?EE+Q
zEr1p=KwCh0A8R1tDqtYC0Lx;AC5>)C3Mtf40tx61uq|lC4K6EL*?=Z8uma&rprQIK
GARYkaItQZw

literal 0
HcmV?d00001

diff --git a/datasets/polyglot_ner/dummy/et/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/et/1.0.0/dummy_data.zip
new file mode 100644
index 0000000000000000000000000000000000000000..87703bac018fc2ea2639b9f34cab6797d7ccb7eb
GIT binary patch
literal 1776
zcmWIWW@h1H0D<H-!$2?tN^mpCFr<{`=2ph1B$g!VhlX%6Fk78TjtAk=3T_5QmamKq
z3@jo*<pDSikw7&hF*yfpT5)PgF_|Vx<1sO{gh)dz+fn_hfZtF=0GvCU9A9%0YXE=(
zf`b8Ma?cFq)h^5o3>|C?47x;^oLUlJo|&Dgmz<xMlLHQCkTvIl7%iMrL-*!gaS&Kn
ztk2}Z7~AI{6u6W_NTwy&Z;_*ju+669yYJb)?Oz)3k#EbC>mL{vT3w9T!{LAE%$oP?
z8gF9Hzxz{Te7{HhaINz+rCTLm@-Fdz7paU*O;=C|-6MaEvBL9a=q9NXr8{L#mQAQJ
zxNzDr;jUcLDZ!tsQ@75l_}nu8B(F(rpRGy8$&-ar*Ltfy^~FDWrf4swRg|R7_r1^e
zq~OAs>LqD$zungDZ?$G$XcZN6*XLQq^B-+FM-Oejm^^#4@O$;=&;2WZ{(Y*wKVAKH
z#XaviGB3><SWGjHL@Z1y2@PlZI=AV#)oad0ZcE+PRp{ICEDF`-%JsWYXyhBBJ<(oR
z!uJH<YzJ}Q!@qM>Zw4{7+b+4t__z4<leMQS_0;xU-^w1{xa(7FyH-P&?WcE_RD+%#
z|8s_UktWxbqd^LK>sN2yQQ~l=pC#kzw0PAdk&}~7YMDklNtubMYP)Tf+VG}sx$wre
zi*DvQZN9fAuVNNhR*<ujL(iG{X~d(9rDC(#`BpOfE}g|QLCG*+!$y@K`p!x-qB|z?
z{K<bE@pC25ZZ)6zkC(GeRk2;veETDtR<9uc!M7TXw||7+oBr&=6D`?x-^n+&r?9SJ
zHC|(SUCPYzRY35Y6IXw4Fg3mt=gAS2^WYSdh1k=Hxlt+4)`^~ON;aDtcjDUb=+xKR
zuTNIFZsL+y=@c$lGQ*?NvP!2Z=vhR@zWr-UGH0;(7<x&4y4v+Ss5h>7#ep@=YvxPw
zZ{VGf(3a0D&2dKiQrZsLIu^hBhGm-X4qj`GnV9%AYj)Vt_$QX_K_{n0>$o32_9)Lw
zr~SQ+G1o5E0-=~-JG+io%sl(+g2EQ1{BDTR{@wrhMaSW`jhvTme!duYoOiB^lhB`&
zM}LN}o!quhTRv!=sCeefoU<+70#6-&m&Q+2HSpLVAmx=I)GT1dlYP6$Zi;V=PuH>C
zUDa;4O%+3IK9wC#>buzE>Nb02TdqvHvFDs67QF#Go-N<AM}WhKZ_2Io%ZIa%FU{Sa
zzPvp>HAGJ^b-_zZ=aox;?WvVqVwugfR;=SiuZPxD4apzn7m|+8W_|5G^>qHi)5<r$
zckGDVYV*qF*_lm_Z<`N$u1Pzk^L*vH{Q_I8wyaS(JEhU;Cv$)|Ba<96t|CtYTKEYt
zymbUIQ3^m-NCAkJDe)O7!GLU_E2@ELg(2ytOQV=R9gpeYf|0NVn8hNp^WWgN09r@_
zZ2^^DSOW=H5ecycSeq~`X><cpNTH4rNI-9ZZ9ywAaaqX<EPojoSb^{*(9n-8ARYj#
C?Od|}

literal 0
HcmV?d00001

diff --git a/datasets/polyglot_ner/dummy/fa/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/fa/1.0.0/dummy_data.zip
new file mode 100644
index 0000000000000000000000000000000000000000..3ff9d973acb3d574cf755646353eefd444f0d312
GIT binary patch
literal 1653
zcmWIWW@h1H0D-hN!$2?tN^mpCFr<{`=2ph1B$g!VhlX%6Fx#I=jtAk=3T_5QmamKq
z3@jo*<pDSikw7&hF*yfpT5)PgF_|Vx<1sOfSZ7+dqxw|=zoCc#xO6r-zUCs<000F9
z2Ls6DUL8f%lS~W@{p<`3x<r_qmKa~2nVqSZoS&DI0}f}9HJ5=HEu5!@dgt9X5Qw!t
zeqz<l9qk&sv?nZ5U&ZTf6fj>&)4|<O=k%n+6|9?1XtrHir~b0qc!`c>S)<;g55{vU
z=PO<fo&0;Y^`FkqE1v{)PY&YJEL|D>Q-pc`7XLf%!!~{A6c^|^x%s@rwI4_H1saR*
z%zk)<X{E{0sJ@8%$v2h-DF-$dr*7ZWWqfmU$CW6TaKmDYqdviGt{R&*I_k0ea5Yc-
zp{o6P`sJRJ5vv?d-0NC%^y7U#jX6)MI2y$3@@7xHmYlXM^YS;&!~ABxN}S7CcFES+
z6$P;Ec+zt#bBaJ!2503&q3WMs4>gJw=JEda*cww;s?D|3L1T^9+v#`K8072hG=6$T
zg1fY#Akx?Njd7kvl1Sy0Tn(q06H0{J92TvbTA;B#gFVPn!=knO;idC`b)K0<GhZ?J
zV0LDDg!@&uHOwg`CojEO&Rgflq!xIH^Hs>TvLipWbY!l~3}oB2s50+-PsHX`r5ms9
z+bg|oN8UB&3Fi|w$Vp37accB!O#Zjr)lZe-X^-*K^-E`5lHc3uexyyxYn#FQ-y)WQ
zf)4L<nvQ8Sl{hQ^JKOFT|2Sa(^9C*Z!@e?(?2nSHyktw?vhwkG_^nSjn7DmD!=vEI
zza%~0Oj%>PP;kc;tq1dsVs~s(e{%IHx71OW&!-l1{Z;nUw!Fo?$g71fTVP_u{`IA;
zO|Q8f=dVlHyxKtE#7)&#^G%B8%<lH%s}o$bh+$^gOYLPRJM66&Klyv@#|z8wXCD;o
zB{|k~uK8aRzj2e-6kg$*+w4A{n^Sq<@0E44Yj*xW^7kpHw%Pgf;SYIVoLcuXOVoB7
zA1nLcZSQv;^1GIE%rWSAhZ*l$+kZDQ%0mP$x3(?d)M5}?J}p<9y<<*0dtT8mr<F!p
zp2?f+KFA$qR|-{_>2+9$=f%;US4SUlAN~CG^Y(jh3jQiD*zU`JEN9#L3%B1hc>j!Y
zy=`v)v*4BSwLR+9pTz^b8JXmmag{p~&=N?1;jJTxiBbx&LP{aDoPp0k2?k^XT~Q50
zE0IVyT^hyo>3B>BmrjH&z$}}Po&N^E1<;ZTXbY$a!5T=o$|;B~z#^StNuwK(LJD=1
eKmvLLYztbch097-HlT?NtU&k@XlNM=hz9_Q2_{GY

literal 0
HcmV?d00001

diff --git a/datasets/polyglot_ner/dummy/fi/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/fi/1.0.0/dummy_data.zip
new file mode 100644
index 0000000000000000000000000000000000000000..d6d6cce761fc90f3f703223693f3a562da4bb0c7
GIT binary patch
literal 1858
zcmWIWW@h1H0D%{+hJj!Pl;CENVMr;>&8>`2Ni0d!4-MgDU=BH*91p^!72FJrEMFNJ
z7+6Gr$^&p3B7tg1VsZ}HwBpo~VlqvX#$#eyCXt4kwWIn~0l%S$062a&IllTL)&Kwn
z1P24i<T)De^`|j2FtD>TFz6Cta$075d1iK|UUGh3P7XMnLDrlEVzh8B4fXDpbrp$A
zuWQq0m3`(Ga6H!SlY(;E3<t4yd^=4qKfm_aB(zkjDqX2#fwg#(cI)l}$rct)tJ&V)
zYX47sKIhfGo~G`1>(>1{_xty%_pZ|~R&z9*Tx#v#r^WI}C?-7co?O7XIdj&qaYS^#
zo9h_C9KUeU`(m|M2YJeGzmYw*<95|y)dQOrt~<nb>)3%QLMM_+tA5S2>3eEr#s1E+
z^2?l6b-%N|D2t`<tnm~T{-VcnDZE}f%h0y?0pltiRm<=7YS*V_AK0`cOeVb{?Zxp8
zw_iOf-YFOKZPwA>MZWgF=D+ioZNIEt`SXGE&RX7(tYwLh#ZH{Rtj)Oh#(t3pXTKc(
zcl_m7CcEVacbj}ab6~%Q%b&gT{>}S$r+)kY#KwKUMU{S*@0V5jub1~<=*#WD-*tDz
zNE@hxo_{L#A?<%q!u@ygG7U$6-u)JTbJ_n{uh~Sz9|r6>`^eMfFjvEoQ-@r>t-by{
z<j<Ljd`!`iQ&+o-E19fW7uczk%;#9XLLf|Xn$FgM@YPGd&0|aKdUiHhtgYjvo8YTy
z5zNUG?vzDK%P!dYT5<P{?=Egv{Ej;uiaU}Te0Ph0)1=<Yk98k~EYr=?lip6~Zxaod
zJ)rBdaG$%0i}~s#w~m7vu6rbRze>4SQMKmloNP%)k7F^tC%+%LHuct@Pj@DycZANm
zvaMgvGs*At6{j`ghw3VORxOG#{iu3<V|4e`J<7ALF1e7&q!i(-Q!IYr&89;RZnfp7
z%_dC<(%sne*rvaQt$LNRX6}?8UwflSpXMDRfz!I~ZR^$TKRJ8VNfFi!ZLTTLiX+-&
zkKdiWXnxskzs1{Pi$CUA3ci~+XU>VoLf6hS$Hnfn7XPk)dtz{O)@uJJ*Bs_fNKKw{
zN1!@ut&f?wcudT)zZ^x^;^HQ}Ne{V@TwI+~{(5iFDb|d1CcViMinHEkoqiQuS(9@5
zYV6w;udkVXx_VqaZ0ngl*DJ*~$IQ*zt5A73=#dOt({?*n5vNa!+V$^9ZL&GfWcz)V
zc3R&0Ez_pO+HJX^bo8}qQ{i+gW$&et{me`JN)j(mNJ+aP8F%_G<Bgp=HeGvZCb=N^
z*;Tbfy->~BKMDkFT2pe$OM66KNbz4O|GHpV<(gEVDaQ;K@dowr&3OIvUh2|C(R<=f
z)H|H!);UycIeBAK=yuyuExF5b#oJby+?=;LE7f5B-hYctRx`7@7T=pJn^atHa?<S3
zBKH2mbe`UYqFUt_jz})7vJ7eQP&-l&Ed3an<d|_4q7u;JRDj{FBZ!Goq_RSaRJ3f4
z&p-(VWCLAM4MZzmNjF^@#q{ZTOa~XWge|}<Xpx=&2EPT+Vi#x&s650PNVp1Jh%LbS
oiD5~j8<0W@b(BB?dIM|=S`m!PN>(<Yi43ej_!4NSGb@M(00LT{SpWb4

literal 0
HcmV?d00001

diff --git a/datasets/polyglot_ner/dummy/fr/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/fr/1.0.0/dummy_data.zip
new file mode 100644
index 0000000000000000000000000000000000000000..4783f21d4ffab8411f3d57af953c1dc75054e63a
GIT binary patch
literal 1667
zcmWIWW@h1H0D+`7!$2?tN^mpCFr<{`=2ph1B$g!VhlX%6Fk75SjtAk=3T_5QmamKq
z3@jo*<pDSikw7&hF*yfpT5)PgF_|Vx<1sO<h)6>%+EM+gfZtF=0GvLX9A9%0YXE=(
zf`b8Ma*D+kiR(-Z3@2C_7<7p+IjtzZJTp5}FF8LiCkGtPAZyM7F<LnLhIr@QG2n?!
z*E7<cAeQ;d@lvc2N0-QCHIL^^Th4yen4sD^Y1zqj<u6#f));j!YB#7_KWWO_lZPf{
z1U`BEc=9v}{&nfcRF~-PO4%d4`<}$9E3>55ypum=f4}s^W>z_&ue%xeo-oX|JKeU+
zNxVqve}6i2P`hR!)5jBrQuCxcr|~GRTv)kxb#5PX*NjXq>5k-k>9OU1*Uen8_i6sM
z|4$6HCkgmWwvOAHu=e>+-ufrj2Ag=Lwym>t+An>c<<L2euByxSsw^wh-g+KbWD#=D
zXXP}Zq=&m1)*1&L%zFG(<Jgjq8v;yov#0Xz&?s)*cC`8F*QUePZVkz8<;$15H?epf
z<vMD7T-Wi&6rG+4a+P2A8fQ8cD_{7XE+qb~bk^JZ>-Q|x+&<UYZ$*e)-@#UXPwxXg
z%U7<xZTm<&<HDjs{kkU$L>66<^j`03G_&Mv33L0c&nd<K-PbJry6&up!ZAyg)f{mj
zpKoFPn=hxQG~I7S-Kp~nt!A^ETDTmYJ>klw&&TCmI1;Ap{yx8=>hB`XTg;o|rf<sj
zV9Gm_`h1>`^%OIG+1CvbF~PfktXLILwj+?uWcjtyOx1IFuh;%s9oE$Em2~)iOr2Ep
zmnFLer*2;;`S+dO?1srt!k4X{P*<^A^z*mVYff6lN<KIE#getsW8d8QD+7PX79YLx
z{>1nC*%PllUi^4+WB>XG6JCF6{`5OG=u~9o*7MOJt=XBb6}->dg(mI!Jok}wLVEfQ
z`&o(&SGL|Ln0agBd8O0Mv%90))E*yNA6dUCXroTUn*OZyHk~nDuPbI-R0cgQy|<(2
z=H5H~ww}{3G2hjam76c{)}(osmAFgJ)40gsm#PnzzluC6#T38dRtBT#oB7kYo}BW2
z$oP5Np1|@MTN-OBW7a0Jy>xI*Q%U%cyRv?j`gG|nf6O@7oj$QB+wJb0!c5^O*7Lhf
z9txVUZ3=rm<$J!+W%~o^oHsV^ncTnXjZE9^@cwt3{|9(8GRZOHDupDV<&glxTSpKR
zrA%Ullu2m$1fPKt49Et$q8f-+K9O#^G>Yld@t6)Ss|Z_wSyCZ8{|$Z%pyd|O7EpnL
xHIQ(XS`b@+1w6x&MmHdZ6zV8}1oQ^j7PK-9mzAt+Koc2Qf$$~J&=wXD4*+_8Kg<9C

literal 0
HcmV?d00001

diff --git a/datasets/polyglot_ner/dummy/he/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/he/1.0.0/dummy_data.zip
new file mode 100644
index 0000000000000000000000000000000000000000..e02482ea05029c74eefb18333451ec22160e84c7
GIT binary patch
literal 1724
zcmWIWW@h1H0D-BkhJj!Pl;CENVMr;>&8>`2Ni0d!4-MgDVBU2qIUa;dE4UdLS-vtd
zFtCUKl?UK7L;}^2#N-^XX~n4}#blZ&jmN}{R3Z(PY)AF00)9gg0Wk4wa{K}y#u5Oa
zfZ$*NncVvClAHiD1H*521_oUsOwLG+FVD=*)Jx9K%gF(UGsv1rnAS`UJ)3vgLBMW%
z|3TIXL07_>rWLIb5Dy4A%3aVA;JBb;Rg<&)p}aRsynCc~EB>owo7Y?`yYFY(@v=bv
zkcp4)-n{wq=d;-x<Ex$r|1ZwoV|(ba{?0F^DI3c->D0W;j(ifaEZ{^zvzH`GcKk`B
zPrdts>RZ*1@Bh5EBPsr8Z-45}FU9j`EI#pn!t`d7R@GPMYFG6g@y)q3LvS0<BTl)C
z-4!m*OV3}q*SkmPjp`Rk+k-oTGhZo3u1Tm_>aIGuA|bK+^0w_0UcU6`O$k{Mdi|i&
zs*T-uC1W!Z_+}X!PkB_qeDDy<)&nhPPqAoQaV<PnrQRCFeDd|jjS6!D1Q_1S6s^`%
zUKZ`}Y}>tkHaFQmSt^wOn|0egK&sw)_MAt5^FIB&{8C&e?m^|U3#YzznRd^-fA90%
z+O>^KA{XouI?*>r=G)N|Gd};*D|NQaR?)6B{NQqCBGabYH9M?)L&R8PubGtT9&%ef
zL&Gn7<@CHZ1?Op>gH%%uu4iv5^)0(5J4vvytjGDnPN5V2ag7i8D}!F>J-q6*d8tQY
zuV7&IlbMI>&t+L^$DY}AZpt@Xm1=f&f7eTgo<v1Xnh;eQZpQJ;BuuTRr^a%Hz4F5>
z<v`8o(<`s0%0!)86q>j5o>znazp@Bz+YG_5*Wy`8&MR*7{ZP81lGJ~mT}QZKmZGS5
zL=MvtM-`J@JXR+KoivtytbS+4WAxkpYxLB8pPQc8q#vKzwt}O-KC!mt`Hz~e|K^jw
zr$3KZ51P|(G|}Vr<1ftr^tT+%pYk<GHQS?Vwx*$Ub!IZlg48lmSr5*-UZ2zRo==RM
zG+F!cf2Uhj20N$yI`vX-i}RtN#Gt^8HPS2ZO{%&p;#nG^75U$m*V$IONZfGpWVH(~
ziv51&Rk^zD>U#TB=V=>rbFub;myhlD_pbSSy@fUY<)?Mlwo|VeegD07j?SCM#xlng
ze^1L};w;|fnPbG-RcdLP({g6j9OJi@KNiHk;Fw+a-gCmu8HF;AiYvv`FGYWqUH<)Z
z!Rsu)HDX6t=7}n-jIOLdyx~&)JT^I{zLmEQta-3-OWsfJ0B=SnIc8kNmjtvR6JU7j
z2x6iXW~`9H3?m=oHc)~A*+5rR1JMdL(oL5}F?~87)4_!tVGA&eIArI)!EXVyzysO>
zDv7WL60YJ7VhgZlU|7=V2BeTe9VL)}-T>QzR`}tvl9df;A_FTBz62V&mj%QF0D%Ts
AuK)l5

literal 0
HcmV?d00001

diff --git a/datasets/polyglot_ner/dummy/hi/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/hi/1.0.0/dummy_data.zip
new file mode 100644
index 0000000000000000000000000000000000000000..d1c34008005f3705f41d6fe7787c0aa38fe78418
GIT binary patch
literal 1809
zcmWIWW@h1H0D-5ihJj!Pl;CENVMr;>&8>`2Ni0d!4-MgDVD>$o9PbCjr4`%^j4WRn
z85meZfXV}K8X|#eNMdph*tFu*l4693AXAApQ5uhl8JR>HYSfPER|WirA_CyR+2r`@
zi&&it3J4AckjcratX-+h3=F!!fYl|!<c!St^33c^z2yA7oE&gCgRD6S#Au;1HSBJd
zu%pPnb^Q-}MOX1ZSo_6qMTh=|t2bC~yIs2TB6PRVETJXhyTZI2mZV=+J*FaZNhM%b
z_)PbYXUd<QIj17}>L{Oe`nfst-~Z`dnCxuqJagggt!vra+SKfgzTABh&(k|2<3(3}
zK}k>jvNId`HhjAlmt#A<x@KNeVcYGU3tJVLQu97-`+M^3wC~H$v^3vOkbV5=&Z+bL
zj^*EMc%FPcXwtlD+rmTg-C6rCCaDGZ{kReI$vJ1{yiKZM{id4DJ68S*XK^}Gw@t6O
zE0by7#;#LW4rq5+9jy<4GG&|fv;3OCy_^>lGFQ&B;<kxPc%7@K!f|7s<(v$;`$-Ab
z<ty!`JG4eHISM*mFg<W;8c)G2?%Tng0-85h-U{HHue*Gzapb`zr$rRZT5iPm2)($s
zM^*n<m%sdsA3d`ho;USh`<Wf4y+`fr-d_jXvz8{B_a|3O-;i~1lG&3KgUlx`s<*dR
zZT@!5`$e{wi)42xOG0qzhGu!UHOu|J%FI3-W_%}Z|I~~m?VrX@p_+Dl=KD*#5)zjN
z-fwIDddzQAy!8$157(;Z)XJpmSvFp6Tc$I)XzR;@)*qr>*0a7dF<O58>i@Nt`$OKR
zjh7-qV-BQqUKKFXPii<e;f?UR)%Ke$ysf@_EGu>}JMvP2CnfU0wj|FD1>f@3degp6
zY|YWXd2_wTn)_F^cISuB?VLD?YudL54rfgoxYwThxL@X)mGtV{&NHH&WUjjlim!g6
zzsL34&ObumAN`s1>Wrk-zQU8*e77I<E}E6qqjvG->9gS(B^gHB*jfcxj!nI2@Xm0x
z(BG+@mzI}L_4fB)&-ikaew`H01digEf}d;dDqOC+cm0FU+cTX#A3p3X`rvzB>s#j2
zlHd34UAiNAvZO=%wHW6MXN@U&6RvkNEST2E(6oAq@mq~;Dmei=OWLNszSQ@t>brl!
zf0;?OxAU!ch`MYFo}DMdQl_zf{mGWlMf3H}*KD6~vO<jKVcyA4R+aI-r}QoqZPIx^
zlS{Yhn`hpfQ_TsY9|i7|{7enl)+$^p?ZFyz{GeT6ji=II7jGX1yLQ`22mXIo*~!;d
z*Y#oocO!HEG+AN)WfT4cEAq?^iIy|5;yGUas#h*X>b174lHGjvU!S<<DTTf0m3MCI
zTVnZP!^8BePi?K7J1+3QcH!*L;XYwoy68VsfHxzP95b#mQ36^z3NXBN1Tj%cNLEM*
ziI!{e87RSkY@jQufoP>A>84Agm_8kk>EM!+umzaqCbIM2;I{x;iUMr`6>nGr30D~k
ru?1M&Ff3_w15!w#juJ>fZ-8w<D^YP-$;t*ak%1KmUjhvkVg>O45XXZ|

literal 0
HcmV?d00001

diff --git a/datasets/polyglot_ner/dummy/hr/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/hr/1.0.0/dummy_data.zip
new file mode 100644
index 0000000000000000000000000000000000000000..48244b8b4ef054ab5f96c4b5b03cabe48188a587
GIT binary patch
literal 1680
zcmWIWW@h1H0D%XshJj!Pl;CENVMr;>&8>`2Ni0d!4-MgDV0Jm391p^!72FJrEMFNJ
z7+6Gr$^&p3B7tg1VsZ}HwBpo~VlqvX#$#ee5s`-KwWIn~0l%S$0N8#uIllTL)&Kwn
z1P24i<b59gwojNC7}l~fFz6Ctaz;^nd1iK|UUGh3P7XMnLDuX9Vzh8B4LO^4+knST
z-~STR?F(<WC0}3Yx^W%vq;(Qyi<6HoOzmz{Sv@0u!St^e+)s3Wd9vra$0<Go9&3+9
zOZuN2m(R?0I>K^x_U@y{H*faev*-E79eeiKoOhS6Sjp?(r<LU^!dc-JA$90fcMr4w
z!HP8tC;nZscG|RiTZ*>Tv524i%9Ov*@!|yEFG^w$yb3?<ecki?Yn^+p_=$}bhmtd$
zHstK?bnElG|Ea{epKGtGeEI)Xck)jh>)qIY!6dBYh++Tw7hD|Iju;s45v|faawgtF
z^psz7+u?nJjW%H~78Gvc+}5~B!1IEx<*Xidv!s;CJ@Ol-EtXl;b8hyI#X$$p1q3>0
zWi4hio-kFmz;qLT`&!fbLY~f3cG6N@XKJP<GdIta<c~=E%N81&{rU03UlILvHQWBi
zTseGiQk#v#r*_**BA2<kJST;8Pv?qemzgZ2@U25Q;jXDfdWwnV^u6wHd04-++uq1r
zEOTw!dlR`ShYBUqYQ&1CO%eGr@kX0l*KU@_lV?b2%$zpmM}yhokNaQ9Xsd3MeUkSw
zvP?RJ-J45rPLU9|T${_*FKgMuXK#6U_-bgL|Jh8VCAMd-FL_w}a>Gnv1>2^z0-p}t
zx*_*>ds@v)*$TZ~4BMaVcx&=AU`Fr7q<LCGJNL5Jwf8+cRTA<l*s$-&xAeT;vm0gi
z8O;0fHn*64&DOt9za4sBuw1w!Zg#nLH2+l1`je`=Ry{1)P;qqTi`R8EPP{GVb3ORy
zv?mz%rm(fYsw#Xpvv0?qox5k)v4)+@kF#f0d%JW0t3Mr=67?mn3S}?a8n?dWs==}Q
z541WX;#@D>=y!i#QPcd9^-I0Q#cfjY&sbs(J)Ek&V%ZbDSNzk~+Z507`rPoqH}v71
zdDnYRYX-j%omz2Y_pcun7QZgMp0;Mfga7`1$J5O+`?Ks7FRi&)=({>7l#MZ9lJ>bK
zHbV=6*uC5Sw0?-!?s}mVa!alDxuRz5x-?7ch_8-&Bf}p*ysF~YCsO*6J;0lhNsbv;
zkt6{voCFx&I)a!e1r#f!fI`bO_zaX_KsL}7)j+huigeSZQB0qX$8>PPMc4w&Vhh>%
zZ}3|HEyRGffJzsvfrP6FgV+Kr?HQIdx&bMqP)7+Qpf|v_pcQDitYl>an#jNkgfD@H
IPGkY`09mU=8~^|S

literal 0
HcmV?d00001

diff --git a/datasets/polyglot_ner/dummy/hu/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/hu/1.0.0/dummy_data.zip
new file mode 100644
index 0000000000000000000000000000000000000000..ca6ad9c2f7dfff852b0a3ec50e6659ee48529364
GIT binary patch
literal 1814
zcmWIWW@h1H0D*_ChJj!Pl;CENVMr;>&8>`2Ni0d!4-MgDV0Js59PbXqr4`%^j4WRn
z85meZfXV}K8X|#eNMdph*tFu*l4693AXAApQ5uhl8Kp!Ts^5<4R|WirA_8F7+2r`@
zi&&it3J4Ackjb@mGW=Q03=A{a7#MVkFgc?%zC1HKQ!hC`FDC~a&LC@c12I~t)Q0R{
zcgIX%?dEtPX1@aY!lu`GvWFXs=iWGBdZ##iv(R)A%?W#$!eZ?b6A$e564mSB&Jo<9
z{B3_t+82X2N&+f&F6SQ4F`oS2H*BiizYkScpBxn1S>Ar*>AtWVJAZv;ihre%kg?ZS
zLhf<zy(8y7Kbxns)1~4^yszp$wfb#8pY()n5Uc#3zGwC6*|W8K>>pmO$#E_a{=|GI
zd28>fgd0y4-)u4R3u}yVj6KyH*;5>Gl70GbONpzM+XMMFn+6qj`afZp{89RR@w|5*
zf{thI=iJA$Doww#L-uUqzLR@xSKO_2dQ<c6+P!>%n8lY~Jo)tO7iYD^BAvRO(|Y`4
z?KoL#p0X-_$nAbpGsXM=pN+Sa6B4G0S@5tvV0m(*-7Dl-`+}>Nt@HU!^Xhj0ezPy2
zifR3#PXeD0B&@kM$25KUn$W3T6EoT>7>n6_%b#e8W`$-Lr`!Ime%iY1t;}s%iRH)U
z_175e4|kliKPgv(IjlX3`;@%XME}&KZ#)zXqBftDk2GoI^18*9`TD87TEE)zi|qGL
zo_kl*v)O&GrTk5qhz-IAby;SdJ8rxDT7crCpWf2;?z`hGO4RuKbeXDW*G!j>SmYqb
zb&2)u`T1&-6?!h-pKvt%nzPVNmJR1FnoCXRKC?$Mv)tj2K_d66$o}X49*SpY-I{pS
zVOjB!1)AAY)?O8w!1BvTD!+KW>mTb|iy7KZL~gusr$bOB=g$&hN6nvWSMFK+^V(Xz
zHGcE#_+u8^?0)^pJ^bmu)ivfz!zbJJ6vo7NgheNPo*?5oW%3f8SpiSuYISotKZzO6
z?Vo+teCpKylb?9M=gNP2>hZ~zrDD0sX<k#=8JnL}TsrBIzOq5pDBVnF!ZJ@~)7CG0
zB_G^T%hTE%<fgEAj^IJ1k0)cF9_=k^|9gY)0OP;1yD`6S&#<4a+BnVPwAU%IbsCad
zQ9{@J^;~OO#CDrB?O)mU&Sd(mX~BYA-ZFO5RbAibhU`e6^Z!ZMwf@gvHFl-GU9nU%
zspQ(hkc9SW5$p8y^u<(*>-42XZ#?AgkMb3Xn#lQn&)L6n-)pCb2pQyGESJ(}O17CF
zd_{HnN9*rT3=})|tz47!>G;mYjdOS(u9z9{OTL|}woH1z`J~@rXQ%Z0#NYe#Ek%>h
za{b)4D-Itrn%0W)nCL9u$PlfU^-%IqYozf?WdpO-`T^dIOmfV)3PuTN5h=j%))B-+
zDJEGV#UxtR#b=-d1G0gxs0N}HnWUR8jbi$AJf?$-Pr?>p7M{q?e}mrwXi*BZ1ysgi
x4J2FzDa00Fox`xC(G5r;g*r+g0lfjX1+7@cWhE=HlxARH1;Up=L&aG^JOIUydQboW

literal 0
HcmV?d00001

diff --git a/datasets/polyglot_ner/dummy/id/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/id/1.0.0/dummy_data.zip
new file mode 100644
index 0000000000000000000000000000000000000000..5d6358ca1232060b5284d18ab6937aecae96f769
GIT binary patch
literal 1695
zcmWIWW@h1H0D+gShJj!Pl;CENVMr;>&8>`2Ni0d!4-MgDU=BN-91p^!72FJrEMFNJ
z7+6Gr$^&p3B7tg1VsZ}HwBpo~VlqvX#$#e;3Xz7Ix1;)10l%S$062LzIlks1)&Kwn
z1P24iWad_}<)4`t7(&<>7<7p+IWr}`JTp5}FF8LiCkGtPAZtzmF<LmMhMdm3W58pR
zZm+yt%%gjm>&0So&TW~}DHETtznGd-tm@q+$Ga{5zT(r`C6+g)Wpv5#wa=<hC@<Up
z;Rxe=ZkwaaCKidlcGf+7^VhS)!pA@LOUv%XUY0+%OXz>@Th93x+wLizS)pjdn<Z^M
zTVl1tVvE9+75bLnI_Dj&^VU`VW0^QJ*WLEyd}}XT)o7FRoAOxByW4cfUkm>!UiN!S
z$cc#u-e*)~9!r_4b0Wa`QDMf4Ne3q|{mQFYbV#@Ak(1(vIX41dNEb2iyYfr(<~@-}
zujsmeON~qV!UYdwomMlE9}goIuMzb5qY|H|rklulf8DN#4EgU985l+W?%SWG*WYRs
zZh5ltsyEY@1)Q^AtbI_V5$t?H<yxxj)6JW%YOizFoVOt*H*{6xL!D&#)?WTeyRBZ`
ziuA2DRS4d?RKtIc4f|~A)upp$y3NnZHcWM&T$Z!x;4(hXtI6l?b!uwMUA`4HHP>$C
z*C@#i%Bq&iY0DyQLvM3jXbx)q(_Z(*q->RBZ{hD%cXv)}@wIySV#=bG>ppx|JixZq
zXV+(wRaFX_6C;l=o4YfE>Gs>joaglKf2c~c-zPi$CYM}Ksry}*a6y*3>NWRcUClpx
zsxSOCcS5r5vyCQETZ61KdraS6dvgAreAw}IZMv;*bu1Z^rb{`0_+%0K{-6EM&e<zA
z>{$Qs#_`H~YJyprQ+yNTW@Vl_`eMrz!ww<8<KC-xZoc_(Nswt-%5ioV?Urkd!W%j!
z#rwasoF~6TcS<VbYu>m`iO%_grx+sY7wk2;+AsROFD_0t{g!cZoa~Dm+czEBw&>=<
zSXo!LF8;}XLuQ|m_x33}H%T|+qNPBKfAfueAN~0nPEkK+w0!w|%w@~T57$<<gzmlN
zy;HKpN4>-2(<Giv4}Nt$S8u(wZpr!idiu}z@R`S3_?4v_FSWg}no;L=W!d#5;*WP<
zp2(6SE3uT{^t+(*Lh0j+{jS;F`+YfD>CJ(X>mJLeUt4*T-(K?SnMqA1%frNSUp-7S
zY1z9Z{tt72HzSiAGp-U!0$NrHFuZjHF;U7ZR!Dh;mWS{eD8Ybipew3@Xk{1arc0xk
zJ{^zg;Bt(x1(>B6vh&~Iw*XqE0c`;lHdq4*SBVC(1z7kqENOHDQb?hW5=cOAfNeo5
X-*8#U3M?)e7+8VuCD70XEFc~L=u1Aj

literal 0
HcmV?d00001

diff --git a/datasets/polyglot_ner/dummy/it/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/it/1.0.0/dummy_data.zip
new file mode 100644
index 0000000000000000000000000000000000000000..20e368a827cb601302c92d7e53817f79a30edd57
GIT binary patch
literal 1620
zcmWIWW@h1H0D(EJhJj!Pl;CENVMr;>&8>`2Ni0d!4-MgDU_O2-IsOC?msW5yFtU7Q
zWME(s0V)r`X@~@>A&JR3VAG0IONtRDf=ngaL}@%GW|k0Xs8TzsUls5hiU@!OXOrWr
zFJg5rC?Gf(KqhAh*OaYbVqiGQ%D|vYgvpsD@#UG>nR?0jc{w@Ya0Xek5Qx!2r8dO7
z?}~vytbcrp#L89{9__Hh46|70i}l<HpYy83vrqPo#o;fU7Hr-(idy$ceBD?r)e^BJ
zsPpvK%J(<lKX`LE%P;BV=9xmgBFu?he_H=kM4onC)BMEX<E$E%6Momc6DB9jN}82=
zo<r`+ONH5!xo5X7I=-QOmgun=PxelmHNp7$kzFRmix#P>`K)bFzY-ID$>PR)#jn%i
z_Eq1?J2^32{>$+LbF(^+|5=ll(<PC^&$4~;)`lbB!v21*c>cb+#qM?8Pkxg}H=lhy
zesy()_?c=I(fyk$nJcgTGgEzD&2GF~JnFUTQwtW>ZD)*imfScxVP*P@E$XY+b*M|Q
zX(c`ga;$!RQTy3q9SJWB`F)>Xe{i;rHh6l2Z7#!RrJ_gP{gG@D3)ZDP`Nh`b_r~FR
zwZQKuL5q%5|MJ<$`6zzPTFbO&9<AC}Zp~1dd`<F^S??#4r8ka8K2LCLu~11!TEyg#
z*je{Lb89@G*DdDH$E+``TDSI^nB<O)ZB;T3uLCX^E!$T+^-NT|DdT_HO1^trdRIBL
zGs&9x)=YBy+|oDY--@H_D%fu-Fq<pBE4^~$QeVxY59`jZ<GX)@FM?HnZqJR&8$XsR
zdvcYoyqI!i(`P5q7rryOCJJi*ZaU=GSh-nHM*ZqJuU85ImtRb0y7$5VNP9|W?yl`Q
z=Tz@(adLn0L*)EX%horaEN9O?tC^I!Wx>R)R`zq8uC8i}kInz5%EVW^`>_AR)vAF%
zGn2M2p7b{0HP?(Iwy))8MJzA+p_+VTVzB1>+$MuJ9IsBU_&=j%iBQ(|wq-XCHapDl
zn-=|c&2mX8uHd9&w_6tngub$OcR%JN<n?j?mHUghpZr^}OSAZ5w1yt%Za;pvZO-xf
z5qE;Z{EEID|Et4Xe{Q+C<*myvbra0rZ)*wOd;Ky;vipQRE$i!;1H2iT<d|_4D-zHG
zMu6e1BZ!Go$gn~R8MK6t&p-(VWCLAM4MZz&NH<*?#q{ZTOa~V}ge|}<dXSy}2EPT+
zf(U2}sD!{8NVtk2h%LYpn_)?#8<0W@b(BB?dIM|=TA_r?N>(<Yi43ej_!4MnC<}-O
E0Q~7K761SM

literal 0
HcmV?d00001

diff --git a/datasets/polyglot_ner/dummy/ja/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/ja/1.0.0/dummy_data.zip
new file mode 100644
index 0000000000000000000000000000000000000000..b26ef66177745811adc72182fd37edd11be850fe
GIT binary patch
literal 1806
zcmWIWW@h1H0D+mUhJj!Pl;CENVMr;>&8>`2Ni0d!4-MgDU_NvzIUa;dE4UdLS-vtd
zFtCUKl?UK7L;}^2#N-^XX~n4}#blZ&jmN|+Vx1}5j_Owh{DvX|VAk2>`09&T0{|2d
z91I|ngKvDTO=4zXuw-Lk&?Um;ti<^8%<N3P<ovvx9B?>;teFGEXyM!&de<+?QDEP+
z<tw*c{IW}YZ)VaZ^MGWjNo==oEqgh4_i7Fqk$|6qAK7g`EncJ$B`6}FcEk4h9@q4=
zgBQ#)s}5S;KX-HP+?nrZA56*j*=A`d&Gl`Om8`Qt`~LHSH7#Fm?cArYyvbpERLfiA
zr>`EHF$sh#oKpCuu)Xpo`^2PzY+bebEHCjldSX{)TTk4!G<npuM@H^bdy3tSw-;tH
z=6!$HRZ_y@G&y+Bk`HR>Yl4lMZ?Ts0eVTM`SLx*F>%Ck_^{Ks16HEir7l?T5;<>_m
z!svayRIO_bzm}PgSbX#E+D~5{G=F?NwP5ms+htX0-Av}Ceb;wCSu}^^)|V-ag;~XX
zKew`V@OZS_O`m0Ed*`kFx}vhXiH9COUD|o`d%m;2`ts$Ps{8f_8oEEZzGZWB-t?Gm
znf6%bpA1^wa#EtPx0E)uEH1Wxd1FDa;ZmvNZrj<kT_<q*y_Zl?o3G~nI=$}wjrS8{
z%RiqvC&{s{=?25almPaLKYr_UFm;@o5VP{w2m8PO+u2iky3($g=6CU}H9qg-zgHsN
zs(VXgPV=e8RmzJOgmtXXo8%Q!p!q#Zd&RrW&wH1NuP-t=6*J}Le&$7nLNC~wvnPn{
zP`DH}t>j^8<o){-UY~1=&yUXfahTWj(bP$E+K+VnET~iYqxe3ecg6Jh$D0H;L~Ze3
ze~V?~X<w1gzwfxuG&?cn>(jf-&N_C+uoPbMo)DdQT(oCG>h<#GQ>@(Vi$9#3D`;|-
z$642}^!vG})slIvn|56lJhJVq;!(AGo6MC8Z=H;K^yl?1J4G!ve%JGFi!Z7Ml`@@T
zY+aT0Z{reUzNa5-Wjb5zb?Y7kxn7^KC0XE#U)@@R7e(eKT(eTUE`57c`uk*kM|7UK
z<42u^X+1%QwZtZREpFXgrm{~gQ{!wsr~di#u400EE&Km1xPEE-38x>A-`|>9W4lbY
z()(6m*Xqud)88_DPHz49vt@7Ia)A!#=)!r4D`tltvpubUqEsw9>Bi@{{}<nEZT@<;
zvwU;DMv$7?llgWtqi4CM&9BT`Hcxtvd)jR4_eCm-dDew}6<2u91uRywG`UrsS;>@i
zTS$T{M(dS!kaywacP~o=4OlL%zII6T=+8ojjVi5YeYS6!=WXm3|H(+T^ifCFhaIw4
zJkI?(AbCGc^RPYFTd`bQr~SZ^jFCx>8CQWQ0WBH@7~VR9m?*^~E2MZt%d+?klwd$M
z&=u7{w4#!9)1^^NpN_|LaIs0)0?a}a+4*nqTL3LWfwq9kHmre!s{n=A0<3EomNdEn
jDWp(G2_&F5z_y?jr?{+S1(wbX46H!-5@;wtD~JaGsYHI#

literal 0
HcmV?d00001

diff --git a/datasets/polyglot_ner/dummy/ko/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/ko/1.0.0/dummy_data.zip
new file mode 100644
index 0000000000000000000000000000000000000000..ee6b19ef44147b9112154ceabd01cd4421452e47
GIT binary patch
literal 1896
zcmWIWW@h1H0D<SNhJj!Pl;CENVMr;>&8>`2Ni0d!4-MgDU=BK+91p^!72FJrEMFNJ
z7+6Gr$^&p3B7tg1VsZ}HwBpo~VlqvX#$#f3K9Po+wxjx00l%S$062O!IllTL)&Kwn
z1P24i<W$93xqFxy7!ueS7<7p+IXgeTJTp5}FF8LiCkGtPAZv~RF<Lm6hThGS3K!UC
z=0C|RP_$r`$@RdiF(F=4)K3bBaNmq-Im&fqP2`)qZ+AtqC$F7+cs{dM*!`tDZ_li4
zuPJ^eaoAP0`TR^{`}=2Vj3-D26r4OPSIWk|K5Oa67fR1=PngVc{lCr6b%$0+{irct
zVWq7t^KkYgUUh9hv81o1u94?v?kT#Z_k5<tpP8S(-d!jEuRQpt8{ak2KOasApRGIJ
z*7tqN-x=5J%8LRG6!|W&o9*1DR3#s*;BWsZ`SJfy2c0r`^EuV*>+36nwVz819+8w;
zdBDS>vDU;PXjW0_l#6Sk^?IK<tz|8rR`E0>;3E6{W1Uk}Pt4u<b$P(*iwz6yx6FDx
z#reL{j>n1B;`eSn-WdNinfsBT%h%`U=UtRv^v8HUcgHV9b*69SHFW~%Vp64hwR&Ej
zUKVpt=FhiRuD*+dtXB59{@z&Db9>_M54V<0*gBD$>&23*?M$9t6EAVJRorG&=ak!B
z#;nS2>2&Led&3dOHwzrp?`8Zo4LTF~`=5|vg3E$S>i^@WwA$p|i~sOrrGUQr<+al<
z{dghzwM@FxXTb^G#Vi8<Zrln}R9G(`CH8ZU7~kjJYOyL$H(g+A&5dB*efHSnhrGLV
zpO+nZnBblvJ@vb##<qrnrO_p)l#L7b9b9T`E%up5t*`b$=CknSyJg+(28Lb<`}k4k
zS>TC(A;sI5eEjMae}UECck160Z|kT2jj8rj7hB-k`{U`F8~y%kwF~&2wXQO==V<=P
zw2Ti+k5v^a(wuI)mQ7arjBu>@tL<6hKW+za4rQ0p{OMwGG`%gacJ;Ss*Kd`@7kt?{
zC-&sSBU7|LE7-@LaI=Wk6m3a~+N1FN^1kGVKmC0&VQoIs?@Ar|-o9tm7Wd6Pdg2k{
z>%K~yNoh4%9dbi`z47hSiR<T-PW^mnQTLf`xyiok<W$^N_)VAgKGrYwdE+;y7YioK
ztT|XM`}NhAy;mOGICnR9_A@zl&KgU$)LKT7%H1(1j%?YeyT>}>ORu{Byw`W+U)}k?
zB$@x-%e0b5ZPDyccX8XjN@3#sy6Ep&CS4=J^s~C1tqkt5|88FnWjnr3Q9{^fg4o)x
zGlc^yeh0<r`B=v8sCmTmal#}qH|b*eHG%d=_PbA$;5G{8%iFQFklS0<>=o}v`*QAO
zSz@nN1lI4;e!gY>uNxa}Om^-6cKy;jul46@x3jqkhg|;~<altKV2S9@vM%dv0T;=z
zbN4I{7t7~P*ps$RvfBIk?CXM46VI*ubC1EKcXrC_|7W?k1$$l>HVe;_ZaU@}{xWpd
z#W;7d4lnhcVq3n+26!_v$uZ+9Y9*kBt^mVZM-UUG;AMpryl901J_98fkPUQ2H4v>3
zCf#&t6w{~UF&$hW6Se@eI7W8<8~heP3umA$pi&cSAmJ*SA+`W(F@`0LZa@kt)KLNn
c=nb$fXazMcD_PlqCNi)B;Y*;QnXDil02OSiWB>pF

literal 0
HcmV?d00001

diff --git a/datasets/polyglot_ner/dummy/lt/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/lt/1.0.0/dummy_data.zip
new file mode 100644
index 0000000000000000000000000000000000000000..fcf695065f8e185e1a092785c7a0c96807574ff1
GIT binary patch
literal 1714
zcmWIWW@h1H0D<&2!$2?tN^mpCFr<{`=2ph1B$g!VhlX%6Fgu<}j&}m$(h6<{MwYLP
z3=AwHK;;2A4Us@KBr!P$Y+7+@Nio7ikf}tQD2>O&oDw1pwQWcBs{(#Q5dm=ZY;t_f
zMXb&R1q25J$mDIS7|yUUGcY`2Wnj=H!sMKi`0~u`Ougj%yqp|xID@RY2E=Hgk{e>3
zFYG9=?xQ~ANtd!X)>xK<T?$9MTv(o3?Y8XAmtS5xrzFrJGiceOf@Xo0!2uU8Okle&
ze^Ng&?b>sTz^=Qy=gxg@e*eur=J$s-H^*t#EHRxgxu95e$t0%wtf#95L?7gPq&_)q
z8nf5@lox;C1>eV>roU3OM0Gras=Ie<G;hw#G!koN*FJbIy+UWo<#iD<J(J$*b~OF@
zqB;Lbv4`fK$A7lu)=yr<;cL4;X2sJ3jQO{vPp_O{B5`5HjHf9FCs*qJ;Z)o0<J!Dx
z$A{dQO_Sx$>Su><lDU;_IluJ<k9=-X&#6CLKV&XEWO3p8dE@!%)Y3N#TFx~I^G~&E
z3@(Y@Bzf9myGG5_rWLbSKI&S2QcR&JqSw_YHjk6-Nz&r^=S!}u`|bX_+K2De)s>%b
zZc#CwF{v{%-@y2Rn+&IJ@Dr02N|EU`wbjW#_65at&8iOK)YtlQ;h>eTUO?C9ct)?1
zlU_^1gwu=X%sJ!VDtBLg&pXdnxkU!2j_Gjd9dX?s`PI05{ob&*rbi`qbBSzh;F~es
z=f_>gNu1U9ci1{DO`JDp{}SHo1(hqg-B|y2J~38V(o(0)9QSKkSAxcY@R(-1nbVfN
zUQjmk!Oy%6cVjnw7QCThqIg_%!a?ix8x}Nu6bscTl)Lfo-6QFDubU65Exd2ZAv#O=
zhV)_fCBb4d_6kP(UQ_3oA+8-P>~d+Q?C%H3&gSxyKKpH|%2!(OU`n53w9@s>&4&Z^
zBM;o<6$o8Y=;%40b7|5l<KG2YYI&AQQl@)5ZiG*h3^%*zySuU`=5&O5beqkjpon+v
zfmQ|YwJub4tax<mZuq8*0;Q!B+nGKd`2X=;V*Y#K`nK27w^t`}&6ly|X^{%LqbJ?l
z{L=VkAL|@X!MNTINoDb)QH;yElY0Kee*C8{G<C|%jMNisimahc4|Dpj%sicc{P^AN
z);%JV*6+<VvUncvq5d#=LiO)C7bW;Ue0~(DJa5tbe521+Qooi}3xw_1vGc16?`Ppn
zb`=hXrCvUeobd3PR_{B#IswO!kiO%u-aWGJ{LdWV&B!FjjH}R+fEHf@3~wDlOq3#w
z6;gzuWh;CJN-!WB=!$9}T5(3Y>Cz~sPsd|AxM(A60cOF5?EE+QEr1qtKwCiN57t1!
uRmeeX0oDf$OB&sP6jG?81QO62U|Z0NJX}_?vH?wGU<JaLKtngPfOr5!Y(g*q

literal 0
HcmV?d00001

diff --git a/datasets/polyglot_ner/dummy/lv/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/lv/1.0.0/dummy_data.zip
new file mode 100644
index 0000000000000000000000000000000000000000..0202c746d12e6b361762a6169dffb7a78ea976b4
GIT binary patch
literal 1756
zcmWIWW@h1H0D;-9hJj!Pl;CENVMr;>&8>`2Ni0d!4-MgDU_N>(IUa;dE4UdLS-vtd
zFtCUKl?UK7L;}^2#N-^XX~n4}#blZ&jmN~CG9nFCY)AF00)9gg0Wj}ua(vx6tN{QD
z2o462$uAyX;4xrkV5nkaV9+JP<eakj^33c^z2yA7oE&gCgRGek#AxAM8|s~R$ABl+
z{P+tk#!C#0Tw5~2|1NZ}_qceT(PG=H3!Bz7+OfU5n^V+i>3FTUA+KxAo9eF<H!VN8
zjJsd6Q%zo8-gJ5YI=^!ta(1Zhk>WZM*c%o1yh5i_bot!5Wm&wJ?XKqh%51;NI&X6L
zwV83}vS$5T@!M>}#?NoJ<X_ExATU?uhvB34f3M~G|0T_R^wU#RIx=9sPlCMIg(*$z
zudaT%>Csz_+i#9kDY-t~xAL!A_A|5HTiAS-F)|s}?bQ9M^Kr|B^J)8vXFj+7nWW&k
zWhOu8dhwz+9p1Lnv!BWz*(kUC@P)-po%esI+)&f%yPPjPA<OE(vjxXry^UUKx$$WJ
zyMDEb^Ze!SW;#{H?b?(hz1mRvmBil*Ox2eKqtEK~b!MrS>{Db<-WNMTv*+c8z<+Fq
zx4wJS6V#m7z+^k)TdaYN-a&!LU9QrHeNSbJ=(D&=ec@(Y*`~zO9^iegU+ePHOUHFS
zYV8wGRIJ)}l3S`W-saf()eD|nWjJChF1j-_oN<@Zvh1=#(ZKkRVWwQ7%U>?2$q?7f
zZF=JPbFY5xrPvQ5ll-4n-}rjMucl<NsdVpCg?|gI8E1$dJgUVWbS#%IDrw0b-|Dr}
zT+@`Lx&k!y&Pwjckk7K$xN;}s#mfy#uY8`kGr#kYS)iZH)|v75lVi3-Z#eS!pqqhV
z`;4n<a>}d^OKn~AQ{pyWOZ~K3s!?LH@}<mTowZYQ<z(A!?muhNU(Z_az4KU))`@--
zA(PM#pAwv&u&`!*HA<d-e!gAoGl6HDA9pxDJU!Lm{+aEQCh@8*(`x>I_rH_5$kW#j
zJDs+zF=yL%Yj^6eDf6ZN%1rO>^qMit>PyW|tx0bgj!$1UQ%PsTOJzqZu~#>aZ`E;_
z#BqLFsrTQ8w$*R;Rj>B6kKKEb@rOfz=l+~IbJyE!+Z0>m;J8dosqF1Xwy$}wFW%ac
zH-YukhxOOLX59MvufpNd&QnG4D|r^qxW7!eR8M^4`ifhnTMO^8t^6v%&$;=@=i?3X
z%{ui`qEB!CJhz%Hb>9;eyI-H)tzNe-N!fg*&eBeOZ%4m{^VVK{be`#vM!iVbg@k9_
z5$pDvzTNAje4u=FQp**VR5Pb<C*uRW8JXmmaTRY8(1K2Y;jJTxiBj0HLJB*y42aJ_
z2?k^XT~Q50EBHt^T^hyo>3B>B7lMQ>z$^lho&N^E1<(Q!XbY&M!Wu}pibIGkz?y?$
mNuwK(LJD=1KmvLLYztc9h|5Y=U|Gw+zzT#ffrj2?0r3EdqHQw(

literal 0
HcmV?d00001

diff --git a/datasets/polyglot_ner/dummy/ms/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/ms/1.0.0/dummy_data.zip
new file mode 100644
index 0000000000000000000000000000000000000000..1efbc85b15840884a7787f8b63b5d390b19a0318
GIT binary patch
literal 1679
zcmWIWW@h1H0D)<(hJj!Pl;CENVMr;>&8>`2Ni0d!4-MgDVBT{oIesq?msW5yFtU7Q
zWME(s0V)r`X@~@>A&JR3VAG0IONtRDf=ngaL}@%G<`QeDR6D9)74RF12!P3FljEx|
zVs$PkAUGI6CVTpCI{BE1fuV_wfkBrDlXHvX%QLex^^)`Ra&o}o46<e_5Tk`kX{dMJ
z9Rr?NbM===K`O4BIW}coaBW_YaY2E7!SOEL*U8R8!ajW0xW6RTE=ftBwT-)9v$IM?
zUfwqT<lf(PMP2D3-Sadbq%J<1Z>SlN_B`{5mV{1MsmRrZGZb$s<@JAK-7OckKK)$E
zW6gkzp-SZom>zSTPnxuS<8zA_k^U$3u1ua`wmYS{cM7ZUbmO?2C0Dkxgj-85$Vf>4
zwk1C?Zt?-P>|GmQRJErsieR`KW}>h=&HB-WGkuRHT(9MuGs{w4J7QM2ncnud4$As#
zQodNMkJ-bvE9iYl#$&P8+v>MJ&z7>fGIeX)xh3web8gKz;`YSlR!?kf`ZAZ}d>$E|
zYVtc}rmK6Kmu<PWDOUOk!!vdpb@}t>&VSfvE_`6=^>Vd$nTo6L&EGn6lXuL?Z)+NM
z1o(&^Pr49veC_{(OYT`*y6XGpdB-1>#n)bcKJ7nU`>#jxs=n(DT~&S8WH;D{tt{N)
zzhd_%Zciunm@iq))`xz$Z)h@e<*h2*CO9E*<+ddovh)`nl6srio0e0_ydvao=oQ=P
zTI~r&MM6au+Meb&Uvu<|@JAc&&Hdm#t9{Ay@0-K_bK9JMVlvT3Su1lho8F@fd5y6l
zih}u?IyypoT5|*#`Aq%X?^&ffhw`qsSmCuf^zoO9g-h?uy4dt7Q8sFtmsbD%3*F5r
zC2I}0%*pxt|1aN?9jj%Sp09ArPxX$8cPP9gwc!NAnvJH?TkgMl;54VNBuA|InqP=w
zG>Z?PsGjt8;jgQ>^P)6$Za!n)r{niC_j{91*QXH2>l@;?^e$K}6wJEu@&h?}XU7>8
z7rHl_f3=q23|?jJ>Mg?ZbBXB+zfP_d=}WXi@~2;GyqXueFs$I_S{IX(>xwu+mVQyU
zcXvIXH?8N6jQ6b2ZPEuF*@PHE9d0g4XKLk~7rQ8F`_28%a~T?bHmk3DSI_^e?$1|a
zJE{BOT9uhq(-N<ID_L|sME%O_MYArdFqh2!IQ4sJgZwwYf1#7+>=%D=Kfs%jNsbv;
zi6j9nn*<o%I)a!e<r6EUd_v1J_zaX_KsL}7)j+heigeSZQB0qX$8>PHMc4w&QVZGn
zZ}3|HEyIAefC?9^frP6BgV+Kr>=~9cx&bMqP)7+Qpf|v_pp|F1tYifij|>c~K==}9
J=mZuJ4**u9H1Yrd

literal 0
HcmV?d00001

diff --git a/datasets/polyglot_ner/dummy/nl/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/nl/1.0.0/dummy_data.zip
new file mode 100644
index 0000000000000000000000000000000000000000..01c2f5685ef9c977c9f252f530850a974e90f1cf
GIT binary patch
literal 1671
zcmWIWW@h1H0D(uXhJj!Pl;CENVMr;>&8>`2Ni0d!4-MgDVD>nj9PbIlr4`%^j4WRn
z85meZfXV}K8X|#eNMdph*tFu*l4693AXAApQ5uhlc{xNHYS51AR|WirA_8Fd+2r`@
zi&&it3J4Ackjd9MKQZ2BVqo~o%D|vYgvoh1@#UG>nR?0jc{w@Ya0Xek2Z+%^B{n2C
z@3sNY-@A8`53rRu1}wPU@b}iOByO`cuDj$M`Xr+#`czGt!?5#k-qz+``E8Tmwx`Zo
zbn^Ie_q&I$K33x0`NK`;m6SzA&JC6)soW8hx;Kf|UcTYS9lCV))*ruL#GFhDuy=Vb
zJe#-VT<f8*r{9AgT<lc-S=*p;UsOhe&HLxX`Og=($Nziv`|({R@#P1%PBwCJJj|T1
zR$_UNY@@y9^{o$5A1}D5dt$zV!H&sMjkow##5&&FW*6e;D8tEnaMJvv=M|qDp2%ip
z3$jTxdob<I5eJpuXS=3PI<R<Gbtzx-n(M{8+uAJe9Nu<Df~P-h#btq_#`?MLX&PSM
z!o6L2y-}rK`{M1+pPYO6(V`y{b~mb6n+DEej=LcKAZNCIcltZ_O|!}yDh)n=o^XIS
z%j{5}((<@fd*jz_IsaPH+B?;r>!85>HF^0zzs{P^e_A>&esACo{wfv`>D)|}dJkR|
zHu05`o3F`<><*i3Kdn4>R@A>$pDcf^IQv2|iQ%W!hf0?`w;DaK^U{lU73p0~&occw
zuXfc*j<N=2%eEJcmCCOp-OCwrBHxOgGbo?TQK2(oO+=%KNhnj!DM?io;a?|@&ivNk
zQft59#`!tF&*yV&p4C5vhi85q^WM|No2oT;s@`$kzqM<syUqFN2anZqBo27aeX(pV
z?;DL$oroPWK`*0^FTM~t;mUKnUz7B&STtRGbGdOwf9H#q2iteWM|H(nPc+JIn-=7K
zsmDiePW@|P<70O;8Bcvsmt223Blm~k>5J@kp~6@BuLrXn`|xE$<eKZ*wcGvF_phIP
zdz<U-N8Ma{%Vs%V+sQm_|0!qnu4QMA%{%q$$@f)BU0+woiT<*fZd2O2rb*D?#4MSp
zYYvZF548$d?dCf&{n?*u)o#7(8?MeRTYSks#cAz~>HkII82dwJE<Lm6XhVX-g_+xQ
zKAZ2{;PfPViv7HZHC4hA!Zmk)KAUrNU3yvz$5Zy7C6?9u^0r)iq#xkT$Rx*%t0a<u
zmPrB(ZyiBQlyZp`QZAw86?_ItFd!S~ifSNQ8AZD3(kP}+$74FUydrD?W@&}&{5SY5
zfR<fATR?>h)<D8lazShX7V->B8r^^tQmCT@63`o9ThPieTvoEO0Zn9J1;Up=LpxYN
FJOJTfLOB2c

literal 0
HcmV?d00001

diff --git a/datasets/polyglot_ner/dummy/no/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/no/1.0.0/dummy_data.zip
new file mode 100644
index 0000000000000000000000000000000000000000..4514105ac9acc370332d1c85516300958edcce75
GIT binary patch
literal 1715
zcmWIWW@h1H0D&2;hJj!Pl;CENVMr;>&8>`2Ni0d!4-MgDU_NjvIsPCJmsW5yFtU7Q
zWME(s0V)r`X@~@>A&JR3VAG0IONtRDf=ngaL}@%G=H(M<s7yPmUls5hiU@!iXOrWr
zFJg5rC?Gf(Kqkknob;2OnSnu<4Ty;_IWIrHJTp5}FF8LiCkGtPAZum<F<Pj^hTP7(
zZNO9Ow=adYE77ri;mzdfYqBp(UrKym<a@fSl+)#=bHiW1Z=2*bHf(=-+%0I^<!=YK
z=!uk8RIKPeY$s~HR#D1h^6$*VMjaK`<`dkjl#A1KF1_CvxNnWZr3)9#XV+USj=zxd
zD#5$V|JbCr3sj=LT-MGxvgV~u#1WRt+UgsVW4DS;)+#KnVDta{{fn=7!gka93gM~m
zB}zip1q<G~GV_?!`iqj@&ojQu)`r_L?o`=X#VC7YL+OK`A1;-vvE4s^q;jK5b<rV7
z?K3me9R9lYaV(TBkmmoL#_(~$2hW?zr%W6|>{hDeaJC<tc6_h-$5dv`{*ZFFb3bBv
zIiFrQusz^n$+7CVLk~{mIR)-f@Qcw3b-8R(YnyjAICsmZ$+Lg!Uk;Ai(Xt{ZQ{{xx
zn<YF<e-CLbT*S5UX2Wf#7Mo;-IaZ=lmTOE|j~l!=(#W_`V4d?@b^g<)g&%~=j2`{I
zmSDr}D8lR-ecVy*abxt>&sx)r;tuv5{umHY%YBV;nTOLv5rH|1>DMMpwI=ZIS3dGM
zOl^73fjyyt8}-gV{~Xx0`RC0w&!6Yk#Qk>U7Il8c>bQ~Xoa7xAeV*jYQ4e`<inQ+)
z(VU(zMLx6bR_ha1=Y66l556$6sM%U>^{$;GL-kbPIi6mVoCh<)FQ;*eESqwr$gk*}
z+&tD`&UNScBe(5iTi<RaEFZKZ{!ZqU@YgFh&5=Ir<iK+NX-?DaqJ5g%w{6vRJh{j;
zsO;`B#V5%@>+%Y9yhMH1|J9Mt`P36!8hN~yPjdG?fqlFk9v-`9My+-Y)4!#)-}#e~
zr~1;KTr=zcH`uqk@jYMujA_xbE3DzJs$ZXZ9NM(dT%C)Bd*4J0Z8a;G&p)pPY&TYZ
zQ>j{I`QIeWm2>~U(C`Ki*Q3W&GA>={y#D0C^!3b1?{p*AF+aQ=w7vI_4%14f)LQS(
zqpkN3*y%3`S|AnIw7z`u@2^k2(~haFQL?BC{Cwk?SlNP=(Vo>BPbQo&$`_guXOt?u
z{{L_1XKh@nUzSf`{`b4uitGLEOI}gSj()s4;~#r~HzSiAGp<rg0$P3vFuZjHF;U7e
zR!A9!map&`D8Ybipew3@XyqB{rc0xkJ{^zg;IfUd1(+opvh&~Iw*Xqs0c`;lKv)9_
vS1AXv1y~_4ENOHDQb?hW5=cOAfNeo5^Ke<o3M@hy7+8VuCD70<EFc~L$fHK;

literal 0
HcmV?d00001

diff --git a/datasets/polyglot_ner/dummy/pl/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/pl/1.0.0/dummy_data.zip
new file mode 100644
index 0000000000000000000000000000000000000000..a0af1958d3bf54f269038af2482b44303c4ceca7
GIT binary patch
literal 1806
zcmWIWW@h1H0D(!ZhJj!Pl;CENVMr;>&8>`2Ni0d!4-MgDVBUNxIerTemsW5yFtU7Q
zWME(s0V)r`X@~@>A&JR3VAG0IONtRDf=ngaL}@%G7UU3VsAxN?Uls5hiU@$tv&r$*
z7qL1Q6c8K?Ad~y<8qZ5&W?*n&V_?uF!sLRS`0~u`Ougj%yqp|xID@R|0%EjK2@N@!
zC*mn!dpSNyWkbu%k4EO(ZnBtsYS1Y>z0Pa;;%R4s^t4jvPGEh+Y*G0~^u+eY=<>fD
z@rSxkXc^0F(q3e2{OM@7_{Rq?&Q*o>+~RF*`ugC>6PEdmuXmcJ8kNsmKYxwK;r-oT
z-`-XKqZK?cuhw}}<grJG_|y^?2OiuOl90T2m-;?u4%66k`-)s|O~_B;f9~`9!o-h`
z)}4phtEO8$O|&rz^_FS7J~OG>a`Q#E=_@%8Ok4a)t?bqW{y7KiuDx2>$Ld_?Gc`+B
z{j+rSHSSF>xkI;YEuM9L(dNA>JK9rYS54D+Z6sWDKwWr}j=NBg^7CKEE-aYq?<ijL
z`%C}T`(2rtZ@<XBFZne6Nae{LR+qMl2Pk;{eDJ1nR&(wofh%t(N6xdmd(S7HcmK1@
z@>YKj*~Q5&J68Ygm?Rm*eLk`Ju|*lL-%pRn+sqI0?dC5yxAyfB24^;nGI_4p!f%E=
z*N#3txm{!O+<i>lLNQqz<h~`ecr53dllJMKY=cGvpN0P<@3pg5e{o`ues<!_>siHX
z9-YxHzOnGnqK%Ia$4B~qZ@JEEs5L|HSBYP*R!}ZW{{2-+)y5`H4VQI8L!|lY=dYZx
zjy=e`ukG=?n=g$dcb$E~;~;JS=*c_f;1zSt_DEW|<+D~iaZx>5!z$^2ot1Z5{Y)FF
zV8c_5+gHr`S{5Mr&VKXZ&^4jS&rfYLVVWAvv@f7fWct@~_g!}~!q2uGxvgA3iE&G1
zx22^`Le-9YY5VWLpH|GzKeKST+lD92|1b8=En6A5$SQME;BUEKJ4LFbvz4aLNi384
z!KLjbS-f-Y1NluC>J#VX7JENn4Hdto+p;_8&F73RhihkqAO5SE%k$dDQR4sQg$BLc
zzJdQ$Ld%XZ&PrO`JA0?#E4^#K*yo-Ky>r8HkvC`2irZPTp7C2-G@0j~*vzASyZH6b
z4ZB|zAFb(7U6^vHhs|)?>9ef50S}Cxn@wDN;z;|Ht?IA3?7#0;`Fmwo+{V*e-apN>
zxKyHhE&HjH$m=}0MLtOmvtr#COcUSvymz&b*t&EQ<2Li--zwtEcN(wpFP*0;!MIme
zLDiXe&m}W~*|V}0Q*G?*A~rp*`j+*Jf5w)>t(6DlJx^UW?O49^_Q#`Z<ZhPj))w3I
z<zxKq^Q#oM#oJoP?k!YRvuEM8yYake-9F|3Z$>6LW?TiL1hi-rV0h~YVxkm}tdQan
zEz9CFP=W#3Kvz@)(TYmaO_xS7eL5b~!Nn$F3or{!Waq!ZZvnIj1=<2C+pq=_t^yQd
r3$U(XSkmYQq>w@#C6IvL0Na9AoZ_;Q6<9hmFt7sQOQ50rtRNl$qtbp=

literal 0
HcmV?d00001

diff --git a/datasets/polyglot_ner/dummy/pt/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/pt/1.0.0/dummy_data.zip
new file mode 100644
index 0000000000000000000000000000000000000000..834b764033ac5496da5c6999de117fd918147a4f
GIT binary patch
literal 1638
zcmWIWW@h1H0D&c~hJj!Pl;CENVMr;>&8>`2Ni0d!4-MgDV7`1RIUa;dE4UdLS-vtd
zFtCUKl?UK7L;}^2#N-^XX~n4}#blZ&jmN}-5+V)NXh-#{0)9gg0kGz5a(wkgtN{QD
z2o462$!S)iXLm6%Fx+HiV9+JP<bsm;^33c^z2yA7oE&gCgREHx#Ax9>H{@)du%UpR
zxjvIe?$s@#3-7E72n_IAFm;E2nfghE^?Seihg3aMtZ3|F&RROJLH&mLL(dtK>xF@W
z8{*Da)b0QIrd#yZ+VASmo0Fp#^B+uo`SMzcfz6YpZgJ0cIQ2h?4dm(n=Jx0I!}kg6
zHKZ5p=ZWL_`Q2xZ?8jMBH<xu7r)#(*XsWC^k~n?;!HSoWz8AzNi)p&to#({0L-W<t
z;{ls(X7;h)p0#4hpDAyOCjb9=k@0_B{m)acSyt{{cJx;I|BGGj?d<=<?l>G-w!3r5
zR4uW)wI_rm?0!8nS@W&n+FiHs-2qNv=PbOhU#Jz|{H8B_ZDHM7t5!+Zjz>%{VmmCu
zU#!($wa{(iGqs~EW~)9(-K}}|vG|zR_1IYTglw)|sdIvyJ(;o{O_poT6k6vR|FCEA
zYe}1+HDw<*?%u5VB6IT8d0`XwN`1MY5Ux^XX|m%HQ|NZSf|&se-x!zJ>z=%p)T-F9
z+?Qq943o20J|s=xJd|p5Pc*S}xpO9OL<ra3C-0A(aC{wm`|qT?pY|(=#+^}6V17}R
zwz|7CYUkPsa%HNI7VQ?)X4|cL|L&R#8&quW%71&>+p>VS*t$~V-(~G6gH0hukzM!J
znmQePx6R~sdP9KX{R=$P7BO!uOzfMz;&tL)&M2+s>j5h3JJQ2GiI_%|zYZ)vbz4(E
z`TpIbLMJ<pTQ6}<+c-t>ZO^x->&%aG`7D`Hvij++n#E3bL3e@{Pd;5!=)<@BOwZ)Y
z+a)KyRl0toss4cc=O;7FrpI=^Ds-H===t4#shoWc*1P0pPg}lo-vs#}d%uNOxwwj^
zcjnYJO0Ykj#^U}|Q0x7Z0zTjJe33m1`dwEwO6nhI6019Qu+a6`6pn36PQC3os}lIY
zo%foq#cg}uZAPB!(;Z}`elM*up4`1=?c9VD4PVrDespCzuX9ge%R}>^q+ZiKG5-(B
z2Y53w$uZ+9Xe6LTjsU}3M-UUG*kOefJ7`$}pMeq#$OgKi8i-Z|k#4#)is{qwm<}$E
z2wQ+z7$H0V4SoxtMHA2#P?>=>kZ=`D5L<v{IKz@gHz0)+>L`H(^aj`#v|<XEm8@()
Q6B$^6@FmdDbQTZ~0IpUung9R*

literal 0
HcmV?d00001

diff --git a/datasets/polyglot_ner/dummy/ro/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/ro/1.0.0/dummy_data.zip
new file mode 100644
index 0000000000000000000000000000000000000000..9e0db26097f42ccc02031c6f5e5b319d25013419
GIT binary patch
literal 1700
zcmWIWW@h1H0D;A=hJj!Pl;CENVMr;>&8>`2Ni0d!4-MgDV7_=NIsOt5msW5yFtU7Q
zWME(s0V)r`X@~@>A&JR3VAG0IONtRDf=ngaL}@%G7UdIZsCql9Uls5hiU@#JXOrWr
zFJg5rC?Gf(KqjAXeVFiriGhKeje$Xz2$PHQ<I6L%Gxd`5^Kx>);S927H4vkPN^Hp9
zJZVFod5@2uxT2^lwS{rhF~125HG?cxT3@#Mbtc4~{jbE@i)X99D@4mF=qK{mtqHpF
za!!ebtY)YDf4f)nbgJ&yE6UvMQxo{)ul}g?jncZleX+joyph-TH<WRIaW~&SIXu15
z|K8{6Z{Oqzhji)W#{b*?<G`;Mi$1daOxbk%jr?TSz)e4WoDc6Wmu$7)Svxt$+l`5N
zeNg8r$2gIyqxL+8*>lT%xjZ+&NbLPN&1=twpOaFen<Z|(2xk5ND#vKgWX5A65(f7V
zif$0h3fk>E|H`4(ITJ7K_H_>2X1V*tX2pn8_x$YV)<3!bFL28FboQsF4VxSP$}3dx
zPAsZe+r1<!p>XDzIj#1VvRTtNPWL~5Zg>1%8|P5t;<cy0mK?Nr?;~0qb@}zhD>L72
zR<*dowMmfOKkC&ht1kj`*SEe+QM_UAc(-ds;X|F&n>#EsJNE}99gw%OVdLi)x+$CS
z_1NZ@CYQCt^y_~A`F8JQz%)^<Bt6#-RS$ljY4fIJp1o+>bvWn41Sz%k40k6h+G#q(
z=5G7M5tlGYl!bTIGPbqH&ooB;dVBwk?WC717gk;=RP~TxWwX`X5YapPil?f`t6ft&
zYbI{>zJ9%Y*X=dW^==#Amzwm-yJB9B{I{e2Q9&g}K2Be!`b@Ymapv9w4-V{q#B(d`
zag-U?ah}Zrt$lu)Sr+maob}h6tWE4IJo#yB`~8_VDJQp?J~!NX?Xc6W>f_2v2d3BN
z3GP+AeO>>^6@g4eZhj6ieaqPms=F5Kd2nKfZiD-_Z2_l>k19XtxuY@BUq-z2|CPli
z4^&g1s5|drj}(`?s>T1xN_v~!)Mq|R4z`Ni*Ij#oy~{x0r`*CX^$J=%b3DV=ec6-3
z_2ISBo}8|Gmu^)S7EP`=m-F&$57TjZ&ndz$C+Jst|L<&{{j4*~cbk4&u;<cwpJdKz
zd|DFdxVueYM<H{>f4PzsN*c@AryZTu?oiUg`1C`>rD>6Do10=->&|;@Dsa*(tf^Vi
zzEy&0QN<s}DB&3fJI;T1`wuK%7@6dlaTQY%&;m<<;jJTxiBf2>LJBRkjD*iX2?k^X
zT~Q50E5JxMT^hyo>3B>B7iNSlz%0s;o&N^E1<-;GXbY&s!5T=oiZzHWz#4#INuwK(
iLJD=1KmvLLYztZ;hs#P<V42ClzzT#ffrc(+0r3FyZb-lY

literal 0
HcmV?d00001

diff --git a/datasets/polyglot_ner/dummy/ru/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/ru/1.0.0/dummy_data.zip
new file mode 100644
index 0000000000000000000000000000000000000000..a8f3aa56a3de188ddff995af8813c428a62c731f
GIT binary patch
literal 1994
zcmWIWW@h1H0D(oVhJj!Pl;CENVMr;>&8>`2Ni0d!4-MgDU_O5;IsO6=msW5yFtU7Q
zWME(s0V)r`X@~@>A&JR3VAG0IONtRDf=ngaL}@%G7L^ids9HO!Uls5hiU@!eXOrWr
zFJg5rC?Gf(Kqlud;|`HyVPI(EWMI%G!sMdT`0~u`Ougj%yqp|xID@QN3B+ijGB@mW
zo`|P_P4zw&6^A;GoNi^Om<c^K56>LDWvj47$lidzpLbKD!81i&o!x2ta~fvO%kw|K
zc(>}l1+T<^2q`J8Ud?`xm2dIPQ>RY#oas0vRsPCrd%;faKO4R8UJ%u`*1cc8^!=_g
zXEzq?e7}P$uDHVI!`vMU-~UR^3$=>*b$r{OhNnDnmg39*-QX{H!BEI$zC<(e4c{EK
zX<V5vU&$-F&rbh1^O9ioiTS5D6mZ{Py#D=#XZ*2k5*JHZo_E@>I=tII?~T`=9cPYa
z=Y;)OV$ttm^0!wYc7~D8x(Ank-KrDxa%>VdSMQT}yV=WR!S?dJEqWI_vTi6&|J7LE
zvsROjFR9k{%IRM-4(tuzcBi+-|9NbylktB3`I574e9mpIV{-|97_}hui^#U#(7Z!S
ze!O12TKdN-MrEOuo((OsdPhZPscNjha^FxoyM>RLv+MP}BwJ>WYi1&wU!IyfdpFCR
zotm>7icMm~QeD_q^hfCMh=165j(5_uLl*q95%*2L37Na)TCp9z^)2+~@h{Vy-@LCD
zTljC;BF)Wuk((KpiR@3A($?+!Rk{AjB#smBm1D*CrA}G%{?YNJy8<Oo2+26icAj?j
zV$^KzA9D_`R<BySLFrYXB3EJ8wEi1%9$TKzU-#zCy{w(-HtT}YF6n)p`Fmfk-Sl0@
zcO~D?4Je3Rs?^@u<92?3&(RqFhMO&`gWg;dapd14kut5XIUu5~!?Aa&f~S;$tdPvv
zhjJ>r+Achu-oNC+I_s0$g%l$X#qG-EuyefM$0YV9B_p?e?>ft=va8gDmd3S6%bDF+
z;H5f6ikUkx;ALrTi_hM2*V=QZ_sYoT$}p8gA3Ce!5HjVMAJ+w2&i&_~w)~sIx@WRM
z@v@IndjuxBmA>O&uyR4$e}|X$7vGAsdwcBSP550PGsD|$+t1H4JscUL`yyKHCo;KS
zQ+z)|Pve+_&g2Fz=D%*2pPX<}a#xMJzkx%ws(;bc^4#Lrv!nzs&dn^_YML$}m}ul3
zbn8gV8sme)Z_H;DCNphUwYFWJ<+Iyl@6>n4XFbieG<armPNwI!@NBL2MGKldi(Qte
zUXy<IPG|G~x%#y_*@7z1|B0J+MqL;DxN^(3ZF_4?`TE^b=U#By`c#~uZTC6pn?8!w
z$BcMB>)3gn*!?s4-U{23-^w?)-LQXu+WSaq->JB^Q*6I&E{L&TGRmEK^iCGnquosR
zJd5q4f@K~GylNHHtLJO}s++A@A8!)4*ZGCy;s>{)rrJ+az4b@fPTs;M=R#7e4$HCA
z84t{yf}~li>dyJDuzb!XUwT&IYeVpq!&&9;`>VfytSx{4@38&OkMGv+W%u3l>?NPM
z@5GXmmNTOt_H!T4lZ@K`rDej_N&bZsvObGlE1Gm@Syqvv;*}nK@fBCL#`^F2v_1Ri
znJ@9HM3gV9<?pYvy7?|Yz?+dtju}^BE&(mp1sL8sf|w{pJ1eAUM=Ngd87RSkY@jQu
zfoR1%>84Agm_8kk>EI%tumzX}KC<)Q;I{x;`~z(PmCINI30L6{u?1L9GAwCy15!w#
gjuJ>fZ-8w<s|s*g$;t*ak%1KmUjhw1%?jcH0D)Q6jQ{`u

literal 0
HcmV?d00001

diff --git a/datasets/polyglot_ner/dummy/sk/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/sk/1.0.0/dummy_data.zip
new file mode 100644
index 0000000000000000000000000000000000000000..b2418e0dc20134dbedce7c82c12a21fef8f7f8a0
GIT binary patch
literal 1743
zcmWIWW@h1H0D+0EhJj!Pl;CENVMr;>&8>`2Ni0d!4-MgDVBUBtIUa;dE4UdLS-vtd
zFtCUKl?UK7L;}^2#N-^XX~n4}#blZ&jmN~|Y$6R6X-D;|0)9gg0nmOnIllTL)&Kwn
z1P24i<Vv=(x5~^63^!OA7<7p+xi~w%JTp5}FF8LiCkGtPAZt2-7%iMbL-tO(Y#^{s
z-=E2+K}E)Xq0PVk+1AezUZh4J?8;p`F@@LD)zk4=9OL;5F@>TbGapJ>>K~fCVfQp<
zkxi;^|8Kwl%4Eybk_U&M9=xexuKlO4(30Qn>-3T}2Q=^N92WaNvxKWY>VdmR#rhcM
z=oqt{-Mt&4_==Qw`+kX)-YGKg&;5g@RZAc1>ZCq=@$06#x^F#qq~f)b?@<;%75^A`
z+1QD)8LbrE`E|##&%Y=CH|;yHDB^b0rPH%{gk;xgtX?D{xoT>TwN=~Jm<MU!*JgN$
z>skKjjehdUAZ`1E&P=Cli!&*5juopvO|rRj?CbB(=0bK-rz(}p<Bz<HYLBnba#<Ub
z;eAJsvrB5um6eC2_x_6a$>U~kJG<sZ;;NMS<t_yVpZ(IDt6er;Z@;_sm6=zC;ge5t
z_IJaVDw>P@efu&vFE>NENPoc@ht)C>{!+_>R4>`=s?!UfDZ*Q^;=>me^9e267}hT`
zO?r^}#(eI5PTz;UVZVR0l<v6X{L?$~>y8Q4i&MgQQg2KxJF#p_LSbu}+t&jXH)F%Q
zUO%>*bZ2o*hhgvRr582^PC1`rG*_^)v!BD;Q*_d^KZ2%QlSFsESa<OFkL(~ewj?|C
z)2nWN4LTUkUu7TU{`Z!`l^*VQ8~oMO)Vev?R5VrRGF&aNkQFZF5qa{~t;GM+;gc1=
z!i}D3OqyL&k^kqz`X_4Fs}?zU7gg|V3#&SR?Pi1HjcI4DRHsxGH`FG!_#H0Gm3$}V
z^)y8Au<FC<;;QQXEvMI<*)caYV`kF%@5>%Nc=CpGdYdNW<P@v<!7?e<%62n(ZKmBl
zy07fZt}u&reHX37ULJS5)ogzL+{D0B9aFadeWLI%bccy=%ZD#dPaeGav-@Jynym){
z1yV&MUYJ=(xL$5w`fz`Dwo&iLi5fc--%1|b$Cs=7X5ZDjts3RJ=S9N~T~3X?aV@LB
z-!w9P$>rYP=`uAx?&X%Py(F@Y&t6w0=g{Gu0?Td%e^TXZdnPXQo6+*R^O>j>lcuiu
zd?MuRHTP9IoG+9;GFplZI<6ep^tbsy?hz}Vikdi$;?6%CIm8xgO?zT`^!g&xQ{Oy-
z4Z3W8F$Z`vGRZOHD$yjMWt#xQTSpKRrF>(Bly7Kx4xfP%49Et$q8f-+){$<yG>Yld
z@t6)S_Xt~nS?VD>{|$Z%pk*M?7Es}YHIQ(XfDl`Nl?B6+MmHdZ6zV8}1oQ^j7PRsZ
VmzAt+Koc2Qf$$~J&<iXe9spTpVTAwy

literal 0
HcmV?d00001

diff --git a/datasets/polyglot_ner/dummy/sl/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/sl/1.0.0/dummy_data.zip
new file mode 100644
index 0000000000000000000000000000000000000000..280e3afeff86a6147d3e0a91b58632cf20681112
GIT binary patch
literal 1697
zcmWIWW@h1H0D<aO!$2?tN^mpCFr<{`=2ph1B$g!VhlX%6Fn66wj_(HI(h6<{MwYLP
z3=AwHK;;2A4Us@KBr!P$Y+7+@NimrwO5-uHIEP3>h1*g6s({~6L;$p&O^&a=h&2E}
z0l~olGP#=HQ{^iY1H(mD1_oUsOfJreFVD=*)Jx9K%gF(UGsv1YAVv%4&=Bh)5l5ch
zz3PTj7IOK_EIMU=U`lVH;0&b;?>e?FtBwl(%Wd|EX&<vpL&qJ?-Qo{bJYLN_%JTPp
zT~*bjUsA_5?LOT6*){1UlggL9daJj5e)?@1lkA+i`(xhhOFm(HtYPn3`O`m{j(NnX
z`TNbEf1*I;E$btp<v-h%K2P;|^GW-SqQtgRX*t8w7DcB5c-?ZJ?FbX;``a_g+uf)j
z>p)ekheotlWVy`qmmj^0<k|w#CQsjUWJSBaP3zTzM_->lnjU%d{{Cfum;V22tZ`UB
zOS5vF#H8Tj_)O=#qz?hNK2GMG5*rrs`PYw%U4_@CFBSiOV9Uk1_V@RB|NoM*?9;|g
zh3}FgUt2i!9laeknR(mx7mjJ?pQ(%ASsA~0`Ke~R&MVH-eq8X1-_y>=HaBKd`-1Sx
zaWOl!+RDn+R`X1BR?m{`*;Kr@GNJq~L!9X9BD;5w4K^Kbob&0nM|Aay#xIp_<`1~q
z|2M7{?7HCdA?Rku@sxRYQ`V%+D0{}b%}Yzfd&h~`0IBQ_*>lsG!u6yw)=lbb%nPxU
zQGCW&6+Kg&Yu6S%Cxzhmvh1A;Rl|;)Yw6qaJF)Lh!JCqv3lo{|C$N7~Y5SDpA``oC
z*JQWEYmcSg9Cf=;GEKqa(;XYT9BI!s_e)`}d`7Q6HM)M#?Kl75B6noszSQtjg5~80
zjdV10TGwn{y61H5dySG8Lauu+Z`5u|wDflj>@AYCJQTFy6wfu0?K#;;uU;|Wy>MjN
z*@Q<SckaE~&}VSkCSlti>sc37rn414I(xPC%LCDOT(!yBb?cPbE}ED<S1G+yQ`9E8
zCdAMG-&3`3x|i)6*H74TCHr?xOB?Ho&gV~8-<<xxl=Jd?L$8T>3tp9coTr*FtyAFp
z$^82qn?kr}b~nv$=5XAcx5#ta64hku2{o08lQectQe#nHDyDljGdWB+x=!w%@%INW
z{-tuSxl}&!`aaQ@3sY@!^B3~l%=b2{yvemzM#0PQ&BdNz?lnxCSBrRW*1r?7^_6Od
z#fLLFYRQXq|1kx4Gcw6B<0_*hprw@n!&^rX6Q#srg_Kxmxd@+u5)8-&x}qA0R(g?c
zx-^RE)A5)NF3AX6fLV?qJO2%S3!tSM&=yc}gEf$Fm1z)LfW<$<l14Wmg%s*2fduph
a*cP-B4wsdzY(NtkSb^{*(9lIJARYkI^h(VD

literal 0
HcmV?d00001

diff --git a/datasets/polyglot_ner/dummy/sr/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/sr/1.0.0/dummy_data.zip
new file mode 100644
index 0000000000000000000000000000000000000000..09281c7babe3cc54b87470fbe417f687ebd30be6
GIT binary patch
literal 1710
zcmWIWW@h1H0D(KLhJj!Pl;CENVMr;>&8>`2Ni0d!4-MgDV75P<9Pa?cr4`%^j4WRn
z85meZfXV}K8X|#eNMdph*tFu*l4693AXAApQ5uhl#YIFKs@;z2R|WirA_8F3+2r`@
zi&&it3J4Ackjaz&E1YCvW?<lDXJF7J!sOzj`0~u`Ougj%yqp|xID@R&48&-mGB@O|
zpRl9IzG>G#xCyK5UYfDHQ+$P?;l+$5eS-@NWjEbbJiTDrYO#<VCdasscs${~w#^~=
ze_Z0TUYqA<{KZr*dTjb~=I8A9*7t8-wJ%Ams><6{l~$D|U&md%=={f>UyB^;nU3$&
z`y#<#d-<qL*No)Z2A7%FTnx4~YM)@``aDEj&z1k{6`2M39GT)1ZY+N+WW)Vyvz+6h
z6VJ|_5qviHrR9ux#$yxNFSgrFzh=W|&v1eH#LGidkMHteP+922w@@*q=cCyHCV`8A
zF{im0_q?BRtYL-tqhCcX(~o{#WgfPt@V+$vp1{v;ccrFkd~%aHc-}Vq+Q((Hf80Cq
zLgc`oCWq<ASQK@bkK8C1T&=*d?opS3v#l9>7>n)ViMLzk`Oes_$9$drc-Fp16M2ur
zo&wKAnv9pLTx*t7y|{LP#kSfTbC~z^rCIL^dssNf@%wx;D@Bj;74yPQTXEcxx$!;c
z{ltA+7O$!Bcyhe;f^fFgE%6E6zYUkIUUhYb1oMn07Pr6d7Hb{e&Tp&q?7n5{?$V?r
z|8mkH<@t<@GiR(1*Spgc-E*(gU(?GccH;cb$%oG+zc}#yqv(MndVI{57x<XN)O9yD
ztXR#qf8U40(zlP<S?4f3lsho#&GZFzilTR_bMCP#oxio_<n<$R?7tOl@?D*`J}`Go
z4J+6h9b*!GYPV9!UazH5XDy3OHSd4<sMYp4h;gs1SKjpg*Fl;$`D7p7&%XF<_4^}z
z*&4+MjgL;55P7NT@Vu5_uEwh&CY#-LzIR6Nw)V;?J5Z$)EO}?qM3drc2X!kCUyAip
z-#+o8(7q+*4=WFe)N6e<3tqQ|x&B1ob0@Po`NsSnA9pvTxXfaEb0j^tdFdb4+mm)`
z-#XjkWi{tvWQw$9KJ(m9EM+36uU_3|5$y0JeV5-+iTGs`^A+|VShXhTO@P`yO(vg;
zYdbD2Epnc|Km6$b(68xdizj{*+Bv1PVxEKYtW(=WW;(qTy0Sbfx<^}ELvUW!)uR?s
zWlcBdy;gYf)wT8cHrdqHYrZ#~b=Uka|K)XI`hW8PZ$>6LW?Ti91hnW9V0h~YVxkmZ
ztdQahElc4uP=W#3Kvz@)(TXzCO_xS7eL5b~!NnS33or{cWaq!ZZvnK31KI*Ad$0x)
vt^y8X3$QL=SkmYQq>w@#C6IvL0Na9A+~Km4l?`Yj11k`|1RA=Y1;hgYV5v-x

literal 0
HcmV?d00001

diff --git a/datasets/polyglot_ner/dummy/sv/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/sv/1.0.0/dummy_data.zip
new file mode 100644
index 0000000000000000000000000000000000000000..99fbd1f839ab320fee69f1cb95eb5ac9b010761c
GIT binary patch
literal 1694
zcmWIWW@h1H0D&p3hJj!Pl;CENVMr;>&8>`2Ni0d!4-MgDVBUTzIerHamsW5yFtU7Q
zWME(s0V)r`X@~@>A&JR3VAG0IONz-fQ5uhl#brbqD$$PWR|WirA_AcQY;t_{MXUh;
z3J4Ackjb~Xc4dBI0`k}x7<7p+xwtI8JTp5}FF8LiCkGtPAZsQ7F<Ln1hQ#LGHsGnt
z^V`H2+nC57D}UWAdi&Ow6H3_^DBlYFn(nd5`n}Cb(JIFH9F^4NnitqTx4G2)@u<7>
zbVqna(f%J&YdUX~O})xyoBQXATn6WC-LtRF{rob2^esE5-LpmO%pTJZ3)!DPEjRk-
z@R+frdzM{Lfz4v3w%-+nb&lLW>h4rdeG!~<OQ4wP`GNd{=9l%VR?l9`U>#zzegP-5
zi_gKbNOpae^BFqpN@qK?Y8CuY?~zkh?%AzjF()cTO5k&2P-|z`1!MLXnY;G<FWwzf
z8@+Dkv*+EPC4X<{^fiiI+Iv`M=l*23`I8nt{rg(u1^0cShZ?7=YSNTXL@K4<k<b)9
z<+ey*kHAu!cirym7azRBZoOmX$xWL#-2BzoZ~kHx#~q)yvkT>)d)+EbH_A7DxAE}H
zh5Jn{a^+jsFU{~($y>Q;!J8j*F3G&{<GHdUUGKmT(F)Uo-Kr~C7$;kA`8J_Y_F(GT
zNz&i<+)T}^y6DBY(s^A|g^1CS>*gXyD|CDHE&TrQboVkx`<?Cot@dLL|E~po$yNu%
zWjS76640~EJT=ML$l1hT=iQ$3zN-#pcS}A{JhEhgpoCeOGoP8stpCe5J2R+;*={wO
z^7hc&yJ3o-UcUW%HRbl!wT#}T&*oj1jQ{gmV6S@d+?Izs{Fl8vCCECb@~(%Y(=CTD
z2Qx2ypYlg#jS5flN*&`BTT7WX@l8E*m}l#w+o#mme%W@&<E!IW51SbdY}&nATw;~0
zJZ~3x*#7)DGsNbdnVP@&qpso&(>gxJZhBz;dH2F!UxIY!KD1b|<g3!za0Tt0M~u#U
zgfn08{x{y&dVglMieu7A=XYQDt9%o}?58j7U3lG&^Oi5W;J;3v%=3?Rq|T@?_`UXf
zb>^i*PgSzooMoG{^qz^c>dpNVwNAX`>i<)77lfVHI-oxBz$Nn#e%1S`=erKsG<Do&
zx!$JfCn#W>Te7g<rE=|SDdkDu48sIY3kORr{96)lbm_t;wMKU9C6ixzZfa~fZm*Ix
zNuoIV4|{+&Ba<96t^!H|T2u)zymbUIQHm>8NO6Uhh42|D!GLU_E2@ELMHlI&OQV=R
z9gpeYVvMi_n1vX!^WWgN09vF0Z2^@vSOW=Hfd;V!SoSk4X><cpNTH4rNI-9ZZ9yyE
Wa9PO;EG-!rSb^{*(9roTARYh!1wugp

literal 0
HcmV?d00001

diff --git a/datasets/polyglot_ner/dummy/th/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/th/1.0.0/dummy_data.zip
new file mode 100644
index 0000000000000000000000000000000000000000..12059f336990b055d28d30f2c6520307c9c6b56f
GIT binary patch
literal 2821
zcmbW3c{o(>0>@{JHQUX;M2NBPLQP~FjqI{-gVCTd)?rLcs6@7iUt-84Yb0BtEK^yt
zW+_ItbS>ExLy=3rp690ftNXk6oaa67d!FY!pYQvA|2ZEsLlE^L!2acRP0{?@;`@UU
za0K8Ughu1w?yeYDc`Hi>00`QNfbWl>5JmuydL0M=P;=~kZuUzE&q0VQ!uuO7@H{5)
z|0MGNhKTX}n^5iOgJ%``J@nrN40j>mVXywOfc+xq0sCZg7<Y>u9RMKD2LQ<a4Kl_P
zj`c!$$sv4wyuH8mydOi}8$b2@$Zph!{R~F~*p!NmxDBk8MGq3rT7F`XB8t_+q-H@O
z2~h&#=0#<SkJ<a3Is)8Kd7BRxoGDQKQwG=u<?)3DGC@xk=F&2s{_#uJa;BZ7rTHrd
zPN%}chdI|{#|meSpyxOfEC&Wyr;c%kO7Xc<Fy#$?s?}+%V<A=fB5)|;)Y1E%r8&1^
zslo)bEQ#-K#(t2ppTJo)KP(%!@n3AY*E;@Sl2RI5+^dCHFMW@4d&87{JvTA-rPQHE
z@w<7-id$yTaB)<uJ!wi(#aYW<Bo`<wduUZaS%1hen5htvHMDWqZKMhwOlxaIETu9}
zb0@VvgF$E1YpTu}_1Rx&F+mS;G~P;5QLM?*eACK4LSETf^f0iGy&-HO`npSalkuMM
z$Y4bKB`)=F*T80D`UOc9P$Rht=EHBtT?!+6=rwARNpr*N{S3NbDa{BM)9~Y)OJdpB
z@{`KNU7_=knCuCQ%L2qcy^bSEYr^7N9~6gPt4ehVh1SwKPT`$c^W7e-I+aM<MpuQA
zLLMfyXELq6^{~GQWsPgPO_5;ozfgj`0MG9=bWeBFyaFGn>3i1Exyc%VZ+`Az5(_AM
z=}CH8!!&}~_63Lg=HV2yxLt4)bdg2;1f|*z&?bO+k)lGl%4I$RfA``rx40X<06Ow>
z#^&*+RbacZ(zwcbFVSdH0RKGSJM$}9w_t}k7k#c!OJ5qi&3hwV@<knp4qv*#)g+h1
zZdNVfCL|Dcouqn|Rq}3^sSQ%(g7(`k86u1~injy#QXeuvKX@OKx@!_D`l{Q&aL$SE
zTsoI(n?S3P_5>-j;9YDIqfAk6nx^4L)|h58eYvoc_AE{646!+rIXRzZViLSmVT)F3
zz(+UfIcC|GN6)m-J576(A!BCnsgeH9j812`r0CxOEtZox7!%qZlJi}d0^=+5MN&pP
zqUvh#aMV}JzR{q-FV9XI+61OvT{q@JA2#g3@(il&7=sF@GZ$UM8THb5cKDnPofw`|
zwRai2m9-QKyof<8grait)#_6E8vkHOyIalj)yS`8X?E2jt|~@p@?_-VF-cyOPMgpN
z^0e;JmY!iAWowc*Ix49(wM11!l;09^Ud*6WG#fY^%p`m)<RS@uH<6f_74N%jyTl$$
z)GT`5TErzXmcPy5$Qp5aQoOqRqF4Bv`Ce5-TS>lkUh?Bghd&~c#>OMZrmQm6F#4&w
zMj3P~9f1LT{&zaO`CTW~i=Sx*!4!+W@F2rgK3F&1*N^D#tPuhjN5!ma<Zfu>_*0b&
z5>(0<<9TQ+K1NR76%NJOck)A6yt@su(p382%BUiP=+y)an5S@XFnbtt7Rw#T5Yp7m
z-Y9;=!hxQ2dq?Tsd8_3HNB*a-*$>Ll7J0|mM0x`iJc74PFg+3>I^dK#!$`2zuDFT(
zFl8`KyeE5U=`?O*&2A07JM(^uFbbzoWUwcu@;(tn^T>81-b%`XiRxz?!auF^MLHi3
zOqZNex=e1m1wkS}7QOB(Bo>o$5B(#c9+o6AtT1bIVnWPzNkPszwx^h4Ho?TsjU&(+
zP8&BUy}It2yuF)!w@+w0BC5Sn)$!7{7j~KQejL(19=)5ny!f@E;N#jSJ5BjuWB`A3
zEjp>4Ns=WC96Bm^F`JS>(~+%)z&>eTy<^Bd9qXY{pA)OZjyvgc$Z%-b-MsgrnxHpY
zotuEckV@tB@8E(9B>_;RpWlo+gr#QPtUF-A>d}TD<)0sS#+?^5?d-guO9TgW(xUa_
z>zJ%W0iownTc33}{DUstO!mf0htAmxs#%YPXt4V^ZE?=hw~65~5_4yx+e{cxCnV%~
z19tK}o915u&<rxZ<p#BHGBWxrPX%(;=rgi=XXxS^a#rHpf>P3q=CkS(q88SrV{E0L
z>;QDdF<x6(U)fQD#?4tvwmSbWW7Zq-k6jU=9$Cn%C+o;vy8Yo6#5=+=pt0;cJAYU&
zs`JJwDyE`&4R}Te%s0m_c%#?`c+bZ+wO=CobIx5{6Gr94jL{ZOqMl<?<M}oEFT6cR
z8}N0H6MBw(BK9jwDpeK4wO5sRkF>?(ouUa;p)}KasPWYS7rTB}|Dr)~Yd;vMeE|kn
z7`XmQE+_1^g{G2a=0GO1NNp>(a0C7_e>VfdWn8o~Gp@4Ls9IemJi>~tz<+}V87F!?
z0>#X*QqWg)udUvny6i;o=THKu@1_<ajP6+)mOD<SF}_5Oah~&HKey1Db5Hj*PS4C_
zD)(tYAa_WL$01qRBMvZy17bQPIl5FK1utr}aerG2PKc=&Ys>R>QK&#w3J~*YPAh=w
zPYC9|co3r#n}=Mv_Bz#+*Ij|C8&j<aDUq9xGt(*smKkNLDS)-1mu;v!+qF_+N+IVn
z(wgRrEg?Iq@z`$Egw&HtoWrf6MzVA(ofoYw7Uq9uXjti?SZ?j?abL;wj)k|pH3+sF
zxM)K?1X97<9IS({QTE%d)NyuMm>qddZZtClQVD{7<v~2(jp!eMMeY6N0V|^U(~5rj
zQ~wUg1NadLJqY~Ckp6c%{{ed1Z|L7_>Awg3rz`!q{e|BLd^e}PlzpZ7%aVTOO@F5B
pDJCE{Qh#syq4fhL?H%J=%1;*ct4JE!JtBZ+@1EO((lYG7{R>l{X0QMN

literal 0
HcmV?d00001

diff --git a/datasets/polyglot_ner/dummy/tl/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/tl/1.0.0/dummy_data.zip
new file mode 100644
index 0000000000000000000000000000000000000000..3105cc0241ca768cb310054c47b0b6d35c136c47
GIT binary patch
literal 1566
zcmWIWW@h1H0D(oVhJj!Pl;CENVMr;>&8>`2Ni0d!4-MgDU_O5;IsO6=msW5yFtU7Q
zWME(s0V)r`X@~@>A&JR3VAG0IONtRDf=ngaL}@%GmgEp=s9HO!Uls5hiU@!eXOrWr
zFJg5rC?Gf(Kqh~=#?({9#K5qfm4QK*2$M^4;>$C$Gxd`5^Kx>);S9276%eC^%F>Xt
zdBTPQcIx^}9;|_S2R3rqyK3leVPx5U^T^k}YxSS}7e75>{h`f<)A;e%yer)7Q;vK)
z^7#Dy8so>&F|q5-4?HfHtNU{5B8xKbj02fwNynx%hIO{fJ`lX|Qu6P$_$|WE8O}Md
zcRs8tiCbzddh_ouzV94uVfRC(8)!%6n!b+_co)#K{Ap$LZBcHfq^Dh83NBOK%7nEY
z8{XV}?(?UF-`0X-&-o2(Ikswt9qzGx?lE;>InLPeFjgz<sMswg-IQ$;UM_aFd}!nz
z&%a>d{-e|G_Dj^{9eY!C?GC?#`KK_q*OhfuO$W=^m1_%+{SJw-J<zv|C1P6{r)o@M
z)za?C3ZB21pBHNAX-|*b!h9-3e~0Et|DFWFr@W3!dy==>CHq$UW-sIE^}W3>;?3*5
zJPS3Wk1umpPE*~<_@%*Zi^{Fgw@#IZT)o&OjgMs&6!0c;=iQ&)abaEQ0&R6}Hnx@g
z7boYLX52R1a&XGxqRg5Dsa&^yu6p`&_4V_aRYx><J6{y7o38a(DXg>mtFGr_rOW#m
zO^!#3EiXN~yXA&wgvh*kLO-t_VEnt+|0ch#r+D|8wOha46I(9D*~QjZ5#%Sm=t;r5
zJ$!dc-Z`@wAF5~i-}2%=YprSaw@*i>l<<TwNH$H^J5adn`@RO-i^Z#=7PQRdvbEg)
z=C#6J%O959ZC$6gEeZZPWy_XZYjy5xHaq(Im=(m|7hYJka?$cGd8I2%6=$Zrs{hSV
z9rnEQ!I@IWfTNr`TfJ+eju<T!_H#Py6l-*|QR#iuVgG#Lsn0^@$i6j{w%4>PQ2zJx
zYjx?TS6ggsZ_MAwBo#B)CN}Wvg>w-W7c|p0|KkquW@M6M##KN_K#K|ihPRF&CQ5O^
z3Mnqok}y64B^ZzmbVW4~t>_@#bZHdRr{gglT#OL50J9K5cK#du7C?&>pe>-hjx~^Q
u6(|r}fMqYkl14Wmg%s*2fduph*cP<n1(%hqY(NtkSb^{*&`^065Dx&H<^M_m

literal 0
HcmV?d00001

diff --git a/datasets/polyglot_ner/dummy/tr/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/tr/1.0.0/dummy_data.zip
new file mode 100644
index 0000000000000000000000000000000000000000..c2449e7116ecee7aae45a218d6ba34a0ee98d59d
GIT binary patch
literal 1855
zcmWIWW@h1H0D-JF!$2?tN^mpCFr<{`=2ph1B$g!VhlX%6FuR{gj`slK(h6<{MwYLP
z3=AwHK;;2A4Us@KBr!P$Y+7+@NimrwO5-uHq=-mEo!U|Ts({~6L;&1An;c(r5o-W|
z0)m49WOBHZ(%#9;3=E&y7#MVkFu9~CzC1HKQ!hC`FDC~a&LC^<05MuPr-tq=k~SAu
zcl3CHa<<yJ8+tOkx5(a{RhW{g@ssfz%Y>-M&n+w(3?r6)uDG<s<8jy0sEvuGvVHoG
zB!63O+Fiapz|*ndJ;R&x-)nc5%dF*l!GBIoP-aJ-^EIaO>@VT7&RkkoG5hR{uq|d*
zIv0`@idX)Au4<N&5>X<3JGbI_`Y+$OXCl+07A|b(dMmTH#nN&8hRz54q8A=dN$x%8
zH`(2*-M7PdSGH+<rkI4mw6NP3L!T*g8AW*R*rrwb`pHejst@0VD`U%FGi*My`@Mog
zXjJis+c#fxUR9iG`?po>amLTiI&lN;2di%_dl<0uqHq0&lieQ^q8b-Us5RZ{E}6CN
zpygV=bN$OF=hxRvEveYZ)AUZ;wy~o{SAOLMcSAp~-B)ft`sb^<^}5)P^Ch!Gx8Lk9
zb-H>y&w1-7yQ@=n>TKJ#ZOghX`?h?!ao3FdLx}ZtC58Fd6|<VPD~mN6GiJUnYIbxg
z+b)<hZNt>OMf(mJru{tA@cvrgLY7l!oCKKS64zZk|LVaC3*~ovHn_fIe<3;{JGy?#
zS=SZXtM6*;DGJ`U+Ah_zRU$3W;LMa2)3b}h{AQ=DHF&c?@`SvTOWoTH;Z=?coi7!=
zS9HI%Zp+pTo%YJfc1ofrHDor%pNO+ajo$5Q+w%N!@|#RQHT89|jZ^Fv%rD)*GfC@q
zYG!%%wH%kz;+u~MJ>PBmQS_Tpe%AbTH}1|<y!wx?z1dnw=BoTr)tzaKrZ4_|W$Wq+
z*{d&+UCn>}%qeBh>M5T}xqjTAK7DKR|NXIHJ=X<ickT-AjNi5-_tZ7v_?k?%M#rSL
z!c1pMZccKmdfKrsY43&yEyooEn*u7`FE=mbRsGVe`1^hRf7jRj`t_HpO5)A$EHPqD
z;I!Rxq(Els@)bK{l`<~NKJ=HjuRC_ab6UzCo;6WrY+ufuzOhp$*I@aFmF}C>=ia$B
zuOYth+-J25b6?)(oGKi7Yvul|Adhm9MFK^RnpQjh7}ToQt#~N2{ba|9)c338C;si2
zyD-(svSz!Q8teJrMe8PAcwczNcM*TV<x*Ye4N5+51oYqawm&}h;ix&|^Fs>ezZCQr
zXEL3(SzI^c^puWWW{DYh&!o7QSZFlwu5q`F3X*xQ^-`nFKKfgY-=h%8Uxj+!r#`FL
z&U(Gz(u|9&8oKwVsGpy2FKzTH)vZ<_A?JK8M@#0*Hx1V>C0Lo<VQ<O_C~sc5d+V~C
z%rn9<e5^)dZ8f46_cxu*3i<U!KERuiNsbv;2`T|CO9dF-I)a!e<tZzqJVndn_zaX_
zKsL}7)j+hem2}gkQB0qX$8>NxOV|R;QWn|yZ}3|HEpvgkfC@vbfrP8Xh1deDoEVlg
lx&bMqP)7+Qpf|v_pq0P4tYifi=L`(2K==}9r~@mA2LP&EnF#;@

literal 0
HcmV?d00001

diff --git a/datasets/polyglot_ner/dummy/uk/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/uk/1.0.0/dummy_data.zip
new file mode 100644
index 0000000000000000000000000000000000000000..c71ba7692cb839fcfa4f78b9646d776da5709bdc
GIT binary patch
literal 1857
zcmWIWW@h1H0D;@BhJj!Pl;CENVMr;>&8>`2Ni0d!4-MgDV75J-91p^!72FJrEMFNJ
z7+6Gr$^&p3B7tg1VsZ}HwBpo~VlqvX#$#e>Hj##EwWIn~0l%S$0N8LgIllTL)&Kwn
z1P24i<R=@Aqo*=6FsN}bFz6Cta%pyad1iK|UUGh3P7XMnLDp;pVzhA14LzNAIY1y*
z{eL6FN>|^^sV%xrIRdVCH@;c4M(ajM(rownL9VNWWL9#7PEi#q%57IGlkxuBR9)Yw
z|8UOC>bFZabR?fYGuP6%IPKl-yL;#M%YVCf_1>Nv>t>%Q%RTSo6LWjj>_cbH_P(8c
zqD3S~<YD9Y3ro_H_%&zVbU4@YDU)4o>6g`SZ%^F0mC>hI_*z`9?fUfrg?yKLoa8i*
zesi&@(0?W!=f|MdkQ*ku@5n)(k9=qDls!<|z#M4TxG8TPtLOEeg~<&L7nHgKSd2BQ
zwjIt`?xAB?oK-)Q>3CHYN0a?r#d-eWX19F*SRXGi(<t56%zRwK;RSb6-Ha*6CmJpa
zE8y;wUa4rW#$obZeZTV5eYVSvGxWPpxqE<9$RK#~=VFaW5x!f=uEnkAEsZ2+NSsTX
zuy*}gQ}2o&8Ju2jpG;32WsI_HHu)5qCV2dU>aE++ry4&_S)l2WIOnGE#>GePp1*bN
z+v#0Dnao>XFbUpC{j~gpQmJVh??L~$%3-|gbq`kdrYH0EhyF49Q2l`0AenJhjQ#_~
za?S?6<DcGm8P`0$7*;aLv^=s)R@;`%A!?n)xoNr^-M<O1UXUXvaPMz%x`>9W%;IA@
z!cH3mddn^^p6<nU<LtF(yB_PEIk9!#=~J0;@Aurld;flFS?cx~>yq!weDTysiZ*^3
z+?T%QK|sEBL+*W5mBSM`-m4jH3_iH@YG2DGuUl@r@2>c9LErOlq*h_T*<wjATV*r1
z310&27qp!VeD%T4;9jk@%e?e;s!hqywCh&g3*fpR;rV0x8M(dvChHB&n<gBdsv`c$
z;xo&Vsi`7`+8Y;(>^$W4G5pWzLp44ZydnkX2<)?+k`W`|v3&hHQ-7(JQ#U1Us@B=8
z=Q#CN!f&<Caz3v|ufOy>KJZjQ`dnYj_DTFFjapOHQXEfQkhN<mdLk`xd6H_h(BWB&
zr*a!9c^vIr#c|?DgGtHn2${@3d8x~@H(XgRRKKUhqe^c2<k(xKDrK6dSe3&rByEXM
zQtRGXz!B;p?tSyl`P!@MouThs%4fchQ4l_0c|B{BYcPAq?~|7whxs@A?2NNF+ECCv
zmFuC4`tJD4zdhgeDF5-=)0z{oX=j9y-klduum13k+qfmkOFc{0!r_gf)!q%$^6tDX
zb`cBDlRA5?{`iNcU0>VcZ}uE;p1wy)W%ib^b<Zk0ugy{Z;B)x!qxsV5g}pDEwA*JF
zuYP@H{Z9|QCr74wa|l>}a+P}?AK=Z%B*%=a43&VErUDFa9YIW#5|tHFqN3$;d<IG|
zARFk4Y9LzaO1kOND5g)xV>-B`C2Rp^Ig9N4H~1}pmbyS&K*b@}K*Ck#LTmw6PYg>M
k-GCHQsG|fD&>LV|&`MxjR<g1IO=MsN!k0ipomfFU0Aae13IG5A

literal 0
HcmV?d00001

diff --git a/datasets/polyglot_ner/dummy/vi/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/vi/1.0.0/dummy_data.zip
new file mode 100644
index 0000000000000000000000000000000000000000..ba9992bd33b1cb6c1e975d7dc9499a48ea04c661
GIT binary patch
literal 1640
zcmWIWW@h1H0D;M^hJj!Pl;CENVMr;>&8>`2Ni0d!4-MgDVBUHvIer@umsW5yFtU7Q
zWME(s0V)r`X@~@>A&JR3VAG0IONtRDf=ngaL}@%GmSqxYs8~CyUls5hiU@$7v&r$*
z7qL1Q6c8K?Ad`Dj_a58B#K5qbm4QK*2$Rb)<I6L%Gxd`5^Kx>);S92-7l_e9B{t-C
zmawD5KEHd;0UVPu79Y9o(jjp>sJ8K~+F6~O&OT|%)samVicOAHimpCUS)CF#OBCM4
zd`VjL-Z1}B{fxURdvDCWIrsmU+W+7EwJ!y)-w@98)ueH${+CFO*9!xMBYJ-Eyr1|_
zxa^`^h1=eV8=`%CtX$2--y}zTXRW*2x;)~#vAA->TZ#TB`{mu{1~bI_Km5xvFE;T?
z`LFhceTI_)xwRA)-M_SC|69wS$tUz?RJ@rKmps+Uf9Hm)77MJF3)YoNp8m^qOt8w$
zEVRNa$K}Aj1t%9aCx*TEwK{xYU!Z(qro}=B@5T2fW{YRNEdF=Xs`s?TXBKDmWw*Xu
zS|lZGFTrBQ+|F_3bi*~C+8eGV^Y`Q~Q10i-D3(2vb$arp_aaf%UmrO>`Br4atPxox
z8NBHocivnPLz%=a(>HpGEAHGjsl!~AtzXrqGtTno{<I^%m%Hg^I-i_9?>*0?L;oH#
zd&?iH>h8&SwDzUSzUvD=yVaDqNMG+_<2;~sYeD<<6E6HQcV(_~KU7e*O}tc`vi0f9
z^*K}Hyp>LHZMo4S91!nuMnBi#*OV&9k6Kqh@l{pr+sE}qX0Q9keT%dNqGvC)J@eya
zrTbDg=|eX!`KGR2U;VVmQhi@kwMV?PtcpW##@Z$!-fKm>cLvpSThv!gd}4f!jngRp
zm$;YfB%`Md%N1STU#?m6;f0y@lw}*#l@|2toK{tODE6<kreCO3DJ{a+<H_sFJ)7k?
z^d`^bb$DN7Y<=!;;h9byUF8c?&KL$)`Yf|^4tRI}=dmNtmCiD!{VM<YtHAYM%pTc!
zoBti`nfxZLcjetV8MkM8<vwqGT3vB?d*&7Ph*wUJzkcfRubmv%X0z<2YHUzg+3Z@Q
zS4X^R-`(o4XLc)oXcQ(E$8ku>z|Uo&2J5%$&lp(qy>7h<xb^XgVTZ8VtkWl?cBk3B
zNlQQaKfs%jNsbv;Q6m8@bOadQI)a!e1rIBv;6cj__zaX_KsL}7)j+gDh;-AXQB0qX
z$8>OkMA!n%;t1LKZ}3|HEu4V1fJzOlfrP7Qg4hBq#Tk|~x&bMqP)7+Qpf|v_pcPcO
UtYl>an#jNkgfD@HX0m{I0G;hA`Tzg`

literal 0
HcmV?d00001

diff --git a/datasets/polyglot_ner/dummy/zh/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/zh/1.0.0/dummy_data.zip
new file mode 100644
index 0000000000000000000000000000000000000000..5b1b33f077423504e478c5fc588eb8956f7465e9
GIT binary patch
literal 1316
zcmWIWW@h1H0D+sWhJj!Pl;CENVMr;>&8>`2Ni0d!4-MgDV75A)9B&Q8r4`%^j4WRn
z85meZfXV}K8X|#eNMdph*tFu*l4693AX9OgsM(I{ENMI@R%Jj8U3WG)zWO3oLqX2v
zU;r7qll#hDCng4lQWgdV4g7{yWyF_fW@qXp=jY|*fCB<#!+Ib_b9QL3XVEPOk=WVQ
zOSHNzLMM17t>5cAb-jwT@G=jdB!d%2x_TQ8qEZAViS|u!j<~D4wy5>X??q7+3-8~p
zuX@j)R24sEx%+d;Z3T+c_b)kPP~CC-FVCi1QzltUUo`8tn>#;MsrgE_@TImV+x>S)
zTOaxKmA~@HGiFIC0~@}R52k$h@mad<z@$(2gF91ZJ`uM#dauJF;<Tq<uG@1%&$_o8
zFPRv=xa(s2Yv!K!$E)|cr9Trf5M#La_?oO@?YAdils$3|ew_R1#M3FKH~xvMNZq_L
zdRE6(-jJ8lDSH&BnoexbSlqm@p8ciX4F!i~h2873JJ}fBCSNVJIRD(i;x9w+g5|j$
za(kNhxdpRpuF-n8ICjo_fvANlXV#y%xZf*Hv`S8oQDBDI(jQ7G`K~8sF$r4RN10yP
z5g*KJ;NJUgo`mYux&S>5yA2VqnNE2hu*nvE^s<~!(CNFi?=4*w+lSBktWPNJRL%aj
zMv;B>;!_ce553En+ZFfZ?1_hygm#O)&pEk=v7IqYV^`+NwG%~|t@O;E94f4KF`d%M
zw&cV5OL=bRbQj5*MC;_<X=XN#pD7aV$#!lZ?_;wt%XZdE?ft?(_gX#K7QlS)*2yJS
z-xO}KWMvfb>vzZrxXgU=#_Db8g7$fi56a{gs`eP&xpgYpzA55$F|R;=oXIrZ>NOX=
zH9e&s6}MJ?_){Ga^`ff!pBLl1Kwg254aa^r*ljvA=W2}CQ)QPmE4ocKA5NXZxhl*4
z%8{cH{yX1vK37*-@Y9S@ruU=s2lprE{;&slGcw6B<I0f|(7Y+Y@YWH;M9H75ko<|3
zB=H$2!GLU_E2@ELd6lr~m^l^M^yzp^2j^R$1)yAo)%mz`EyMy~F~qQ>@eO_p(DE=Y
U+gRCv#xSq|VI9!e3CtiK0L|{W`Tzg`

literal 0
HcmV?d00001

diff --git a/datasets/polyglot_ner/polyglot_ner.py b/datasets/polyglot_ner/polyglot_ner.py
new file mode 100644
index 00000000000..2ebd02b0e47
--- /dev/null
+++ b/datasets/polyglot_ner/polyglot_ner.py
@@ -0,0 +1,188 @@
+# coding=utf-8
+# Copyright 2020 HuggingFace Datasets Authors.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+# Lint as: python3
+"""The Polyglot-NER Dataset."""
+
+from __future__ import absolute_import, division, print_function
+
+import os
+
+import datasets
+
+
+_CITATION = """\
+@article{polyglotner,
+         author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},
+         title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},
+         journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},
+         month     = {April},
+         year      = {2015},
+         publisher = {SIAM},
+}
+"""
+
+_LANGUAGES = [
+    "ca",
+    "de",
+    "es",
+    "fi",
+    "hi",
+    "id",
+    "ko",
+    "ms",
+    "pl",
+    "ru",
+    "sr",
+    "tl",
+    "vi",
+    "ar",
+    "cs",
+    "el",
+    "et",
+    "fr",
+    "hr",
+    "it",
+    "lt",
+    "nl",
+    "pt",
+    "sk",
+    "sv",
+    "tr",
+    "zh",
+    "bg",
+    "da",
+    "en",
+    "fa",
+    "he",
+    "hu",
+    "ja",
+    "lv",
+    "no",
+    "ro",
+    "sl",
+    "th",
+    "uk",
+]
+
+_LANG_FILEPATHS = {
+    lang: os.path.join(
+        "acl_datasets",
+        lang,
+        "data" if lang != "zh" else "",  # they're all lang/data/lang_wiki.conll except "zh"
+        f"{lang}_wiki.conll",
+    )
+    for lang in _LANGUAGES
+}
+
+_DESCRIPTION = """\
+Polyglot-NER
+A training dataset automatically generated from Wikipedia and Freebase the task
+of named entity recognition. The dataset contains the basic Wikipedia based
+training data for 40 languages we have (with coreference resolution) for the task of
+named entity recognition. The details of the procedure of generating them is outlined in
+Section 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data
+corresponding to a different language. For example, "es" includes only spanish examples.
+"""
+
+_DATA_URL = "http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz"
+_HOMEPAGE_URL = "https://sites.google.com/site/rmyeid/projects/polylgot-ner"
+_VERSION = "1.0.0"
+
+
+class PolyglotNERConfig(datasets.BuilderConfig):
+    def __init__(self, *args, languages=None, **kwargs):
+        super().__init__(*args, version=datasets.Version(_VERSION, ""), **kwargs)
+        self.languages = languages
+
+    @property
+    def filepaths(self):
+        return [_LANG_FILEPATHS[lang] for lang in self.languages]
+
+
+class PolyglotNER(datasets.GeneratorBasedBuilder):
+    """The Polyglot-NER Dataset"""
+
+    BUILDER_CONFIGS = [
+        PolyglotNERConfig(name=lang, languages=[lang], description=f"Polyglot-NER examples in {lang}.")
+        for lang in _LANGUAGES
+    ] + [
+        PolyglotNERConfig(
+            name="combined", languages=_LANGUAGES, description=f"Complete Polyglot-NER dataset with all languages."
+        )
+    ]
+
+    def _info(self):
+        return datasets.DatasetInfo(
+            description=_DESCRIPTION,
+            features=datasets.Features(
+                {
+                    "id": datasets.Value("string"),
+                    "lang": datasets.Value("string"),
+                    "words": datasets.Sequence(datasets.Value("string")),
+                    "ner": datasets.Sequence(datasets.Value("string")),
+                }
+            ),
+            supervised_keys=None,
+            homepage=_HOMEPAGE_URL,
+            citation=_CITATION,
+        )
+
+    def _split_generators(self, dl_manager):
+        """Returns SplitGenerators."""
+        path = dl_manager.download_and_extract(_DATA_URL)
+
+        return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"datapath": path})]
+
+    def _generate_examples(self, datapath):
+        sentence_counter = 0
+        for filepath, lang in zip(self.config.filepaths, self.config.languages):
+            filepath = os.path.join(datapath, filepath)
+            with open(filepath, encoding="utf-8") as f:
+                current_words = []
+                current_ner = []
+                for row in f:
+                    row = row.rstrip()
+                    if row:
+                        token, label = row.split("\t")
+                        current_words.append(token)
+                        current_ner.append(label)
+                    else:
+                        # New sentence
+                        if not current_words:
+                            # Consecutive empty lines will cause empty sentences
+                            continue
+                        assert len(current_words) == len(current_ner), "💔 between len of words & ner"
+                        sentence = (
+                            sentence_counter,
+                            {
+                                "id": str(sentence_counter),
+                                "lang": lang,
+                                "words": current_words,
+                                "ner": current_ner,
+                            },
+                        )
+                        sentence_counter += 1
+                        current_words = []
+                        current_ner = []
+                        yield sentence
+                # Don't forget last sentence in dataset 🧐
+                if current_words:
+                    yield sentence_counter, {
+                        "id": str(sentence_counter),
+                        "lang": lang,
+                        "words": current_words,
+                        "ner": current_ner,
+                    }