From 07839de87b7607e458f86b36034d66413506d34c Mon Sep 17 00:00:00 2001 From: Joe Davison <josephddavison@gmail.com> Date: Sat, 19 Sep 2020 23:04:43 -0400 Subject: [PATCH] Add Polyglot-NER Dataset (#641) * add polyglot-ner * style * update field names * update dataset infos * style * style again... * fix dummy data --- datasets/polyglot_ner/dataset_infos.json | 1 + .../dummy/ar/1.0.0/dummy_data.zip | Bin 0 -> 1809 bytes .../dummy/bg/1.0.0/dummy_data.zip | Bin 0 -> 1857 bytes .../dummy/ca/1.0.0/dummy_data.zip | Bin 0 -> 1605 bytes .../dummy/combined/1.0.0/dummy_data.zip | Bin 0 -> 56567 bytes .../dummy/cs/1.0.0/dummy_data.zip | Bin 0 -> 1742 bytes .../dummy/da/1.0.0/dummy_data.zip | Bin 0 -> 1674 bytes .../dummy/de/1.0.0/dummy_data.zip | Bin 0 -> 1712 bytes .../dummy/el/1.0.0/dummy_data.zip | Bin 0 -> 1931 bytes .../dummy/en/1.0.0/dummy_data.zip | Bin 0 -> 1657 bytes .../dummy/es/1.0.0/dummy_data.zip | Bin 0 -> 1582 bytes .../dummy/et/1.0.0/dummy_data.zip | Bin 0 -> 1776 bytes .../dummy/fa/1.0.0/dummy_data.zip | Bin 0 -> 1653 bytes .../dummy/fi/1.0.0/dummy_data.zip | Bin 0 -> 1858 bytes .../dummy/fr/1.0.0/dummy_data.zip | Bin 0 -> 1667 bytes .../dummy/he/1.0.0/dummy_data.zip | Bin 0 -> 1724 bytes .../dummy/hi/1.0.0/dummy_data.zip | Bin 0 -> 1809 bytes .../dummy/hr/1.0.0/dummy_data.zip | Bin 0 -> 1680 bytes .../dummy/hu/1.0.0/dummy_data.zip | Bin 0 -> 1814 bytes .../dummy/id/1.0.0/dummy_data.zip | Bin 0 -> 1695 bytes .../dummy/it/1.0.0/dummy_data.zip | Bin 0 -> 1620 bytes .../dummy/ja/1.0.0/dummy_data.zip | Bin 0 -> 1806 bytes .../dummy/ko/1.0.0/dummy_data.zip | Bin 0 -> 1896 bytes .../dummy/lt/1.0.0/dummy_data.zip | Bin 0 -> 1714 bytes .../dummy/lv/1.0.0/dummy_data.zip | Bin 0 -> 1756 bytes .../dummy/ms/1.0.0/dummy_data.zip | Bin 0 -> 1679 bytes .../dummy/nl/1.0.0/dummy_data.zip | Bin 0 -> 1671 bytes .../dummy/no/1.0.0/dummy_data.zip | Bin 0 -> 1715 bytes .../dummy/pl/1.0.0/dummy_data.zip | Bin 0 -> 1806 bytes .../dummy/pt/1.0.0/dummy_data.zip | Bin 0 -> 1638 bytes .../dummy/ro/1.0.0/dummy_data.zip | Bin 0 -> 1700 bytes .../dummy/ru/1.0.0/dummy_data.zip | Bin 0 -> 1994 bytes .../dummy/sk/1.0.0/dummy_data.zip | Bin 0 -> 1743 bytes .../dummy/sl/1.0.0/dummy_data.zip | Bin 0 -> 1697 bytes .../dummy/sr/1.0.0/dummy_data.zip | Bin 0 -> 1710 bytes .../dummy/sv/1.0.0/dummy_data.zip | Bin 0 -> 1694 bytes .../dummy/th/1.0.0/dummy_data.zip | Bin 0 -> 2821 bytes .../dummy/tl/1.0.0/dummy_data.zip | Bin 0 -> 1566 bytes .../dummy/tr/1.0.0/dummy_data.zip | Bin 0 -> 1855 bytes .../dummy/uk/1.0.0/dummy_data.zip | Bin 0 -> 1857 bytes .../dummy/vi/1.0.0/dummy_data.zip | Bin 0 -> 1640 bytes .../dummy/zh/1.0.0/dummy_data.zip | Bin 0 -> 1316 bytes datasets/polyglot_ner/polyglot_ner.py | 188 ++++++++++++++++++ 43 files changed, 189 insertions(+) create mode 100644 datasets/polyglot_ner/dataset_infos.json create mode 100644 datasets/polyglot_ner/dummy/ar/1.0.0/dummy_data.zip create mode 100644 datasets/polyglot_ner/dummy/bg/1.0.0/dummy_data.zip create mode 100644 datasets/polyglot_ner/dummy/ca/1.0.0/dummy_data.zip create mode 100644 datasets/polyglot_ner/dummy/combined/1.0.0/dummy_data.zip create mode 100644 datasets/polyglot_ner/dummy/cs/1.0.0/dummy_data.zip create mode 100644 datasets/polyglot_ner/dummy/da/1.0.0/dummy_data.zip create mode 100644 datasets/polyglot_ner/dummy/de/1.0.0/dummy_data.zip create mode 100644 datasets/polyglot_ner/dummy/el/1.0.0/dummy_data.zip create mode 100644 datasets/polyglot_ner/dummy/en/1.0.0/dummy_data.zip create mode 100644 datasets/polyglot_ner/dummy/es/1.0.0/dummy_data.zip create mode 100644 datasets/polyglot_ner/dummy/et/1.0.0/dummy_data.zip create mode 100644 datasets/polyglot_ner/dummy/fa/1.0.0/dummy_data.zip create mode 100644 datasets/polyglot_ner/dummy/fi/1.0.0/dummy_data.zip create mode 100644 datasets/polyglot_ner/dummy/fr/1.0.0/dummy_data.zip create mode 100644 datasets/polyglot_ner/dummy/he/1.0.0/dummy_data.zip create mode 100644 datasets/polyglot_ner/dummy/hi/1.0.0/dummy_data.zip create mode 100644 datasets/polyglot_ner/dummy/hr/1.0.0/dummy_data.zip create mode 100644 datasets/polyglot_ner/dummy/hu/1.0.0/dummy_data.zip create mode 100644 datasets/polyglot_ner/dummy/id/1.0.0/dummy_data.zip create mode 100644 datasets/polyglot_ner/dummy/it/1.0.0/dummy_data.zip create mode 100644 datasets/polyglot_ner/dummy/ja/1.0.0/dummy_data.zip create mode 100644 datasets/polyglot_ner/dummy/ko/1.0.0/dummy_data.zip create mode 100644 datasets/polyglot_ner/dummy/lt/1.0.0/dummy_data.zip create mode 100644 datasets/polyglot_ner/dummy/lv/1.0.0/dummy_data.zip create mode 100644 datasets/polyglot_ner/dummy/ms/1.0.0/dummy_data.zip create mode 100644 datasets/polyglot_ner/dummy/nl/1.0.0/dummy_data.zip create mode 100644 datasets/polyglot_ner/dummy/no/1.0.0/dummy_data.zip create mode 100644 datasets/polyglot_ner/dummy/pl/1.0.0/dummy_data.zip create mode 100644 datasets/polyglot_ner/dummy/pt/1.0.0/dummy_data.zip create mode 100644 datasets/polyglot_ner/dummy/ro/1.0.0/dummy_data.zip create mode 100644 datasets/polyglot_ner/dummy/ru/1.0.0/dummy_data.zip create mode 100644 datasets/polyglot_ner/dummy/sk/1.0.0/dummy_data.zip create mode 100644 datasets/polyglot_ner/dummy/sl/1.0.0/dummy_data.zip create mode 100644 datasets/polyglot_ner/dummy/sr/1.0.0/dummy_data.zip create mode 100644 datasets/polyglot_ner/dummy/sv/1.0.0/dummy_data.zip create mode 100644 datasets/polyglot_ner/dummy/th/1.0.0/dummy_data.zip create mode 100644 datasets/polyglot_ner/dummy/tl/1.0.0/dummy_data.zip create mode 100644 datasets/polyglot_ner/dummy/tr/1.0.0/dummy_data.zip create mode 100644 datasets/polyglot_ner/dummy/uk/1.0.0/dummy_data.zip create mode 100644 datasets/polyglot_ner/dummy/vi/1.0.0/dummy_data.zip create mode 100644 datasets/polyglot_ner/dummy/zh/1.0.0/dummy_data.zip create mode 100644 datasets/polyglot_ner/polyglot_ner.py diff --git a/datasets/polyglot_ner/dataset_infos.json b/datasets/polyglot_ner/dataset_infos.json new file mode 100644 index 00000000000..19c4c7d7d70 --- /dev/null +++ b/datasets/polyglot_ner/dataset_infos.json @@ -0,0 +1 @@ +{"ca": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n month = {April},\n year = {2015},\n publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "ca", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 143746026, "num_examples": 372665, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 143746026, "size_in_bytes": 1250764632}, "de": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n month = {April},\n year = {2015},\n publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "de", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 156744752, "num_examples": 547578, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 156744752, "size_in_bytes": 1263763358}, "es": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n month = {April},\n year = {2015},\n publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "es", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 145387551, "num_examples": 386699, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 145387551, "size_in_bytes": 1252406157}, "fi": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n month = {April},\n year = {2015},\n publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "fi", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 95175890, "num_examples": 387465, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 95175890, "size_in_bytes": 1202194496}, "hi": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n month = {April},\n year = {2015},\n publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "hi", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 177698330, "num_examples": 401648, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 177698330, "size_in_bytes": 1284716936}, "id": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n month = {April},\n year = {2015},\n publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "id", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 152560050, "num_examples": 463862, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 152560050, "size_in_bytes": 1259578656}, "ko": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n month = {April},\n year = {2015},\n publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "ko", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 174523416, "num_examples": 560105, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 174523416, "size_in_bytes": 1281542022}, "ms": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n month = {April},\n year = {2015},\n publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "ms", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 155268778, "num_examples": 528181, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 155268778, "size_in_bytes": 1262287384}, "pl": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n month = {April},\n year = {2015},\n publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "pl", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 159684112, "num_examples": 623267, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 159684112, "size_in_bytes": 1266702718}, "ru": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n month = {April},\n year = {2015},\n publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "ru", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 200717423, "num_examples": 551770, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 200717423, "size_in_bytes": 1307736029}, "sr": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n month = {April},\n year = {2015},\n publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "sr", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 183437513, "num_examples": 559423, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 183437513, "size_in_bytes": 1290456119}, "tl": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n month = {April},\n year = {2015},\n publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "tl", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 47104871, "num_examples": 160750, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 47104871, "size_in_bytes": 1154123477}, "vi": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n month = {April},\n year = {2015},\n publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "vi", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 141062258, "num_examples": 351643, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 141062258, "size_in_bytes": 1248080864}, "ar": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n month = {April},\n year = {2015},\n publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "ar", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 183551222, "num_examples": 339109, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 183551222, "size_in_bytes": 1290569828}, "cs": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n month = {April},\n year = {2015},\n publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "cs", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 156792129, "num_examples": 564462, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 156792129, "size_in_bytes": 1263810735}, "el": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n month = {April},\n year = {2015},\n publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "el", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 195456401, "num_examples": 446052, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 195456401, "size_in_bytes": 1302475007}, "et": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n month = {April},\n year = {2015},\n publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "et", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 21961619, "num_examples": 87023, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 21961619, "size_in_bytes": 1128980225}, "fr": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n month = {April},\n year = {2015},\n publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "fr", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 147560734, "num_examples": 418411, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 147560734, "size_in_bytes": 1254579340}, "hr": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n month = {April},\n year = {2015},\n publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "hr", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 154151689, "num_examples": 629667, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 154151689, "size_in_bytes": 1261170295}, "it": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n month = {April},\n year = {2015},\n publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "it", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 147520094, "num_examples": 378325, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 147520094, "size_in_bytes": 1254538700}, "lt": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n month = {April},\n year = {2015},\n publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "lt", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 165319919, "num_examples": 848018, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 165319919, "size_in_bytes": 1272338525}, "nl": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n month = {April},\n year = {2015},\n publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "nl", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 150737871, "num_examples": 520664, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 150737871, "size_in_bytes": 1257756477}, "pt": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n month = {April},\n year = {2015},\n publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "pt", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 145627857, "num_examples": 396773, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 145627857, "size_in_bytes": 1252646463}, "sk": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n month = {April},\n year = {2015},\n publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "sk", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 134174889, "num_examples": 500135, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 134174889, "size_in_bytes": 1241193495}, "sv": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n month = {April},\n year = {2015},\n publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "sv", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 157058369, "num_examples": 634881, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 157058369, "size_in_bytes": 1264076975}, "tr": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n month = {April},\n year = {2015},\n publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "tr", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 164456506, "num_examples": 607324, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 164456506, "size_in_bytes": 1271475112}, "zh": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n month = {April},\n year = {2015},\n publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "zh", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 165056969, "num_examples": 1570853, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 165056969, "size_in_bytes": 1272075575}, "bg": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n month = {April},\n year = {2015},\n publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "bg", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 190509195, "num_examples": 559694, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 190509195, "size_in_bytes": 1297527801}, "da": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n month = {April},\n year = {2015},\n publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "da", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 150551293, "num_examples": 546440, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 150551293, "size_in_bytes": 1257569899}, "en": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n month = {April},\n year = {2015},\n publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "en", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 145491677, "num_examples": 423982, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 145491677, "size_in_bytes": 1252510283}, "fa": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n month = {April},\n year = {2015},\n publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "fa", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 180093656, "num_examples": 492903, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 180093656, "size_in_bytes": 1287112262}, "he": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n month = {April},\n year = {2015},\n publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "he", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 177231613, "num_examples": 459933, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 177231613, "size_in_bytes": 1284250219}, "hu": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n month = {April},\n year = {2015},\n publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "hu", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 160702240, "num_examples": 590218, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 160702240, "size_in_bytes": 1267720846}, "ja": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n month = {April},\n year = {2015},\n publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "ja", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 193679570, "num_examples": 1691018, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 193679570, "size_in_bytes": 1300698176}, "lv": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n month = {April},\n year = {2015},\n publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "lv", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 76256241, "num_examples": 331568, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 76256241, "size_in_bytes": 1183274847}, "no": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n month = {April},\n year = {2015},\n publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "no", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 152431612, "num_examples": 552176, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 152431612, "size_in_bytes": 1259450218}, "ro": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n month = {April},\n year = {2015},\n publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "ro", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 96369897, "num_examples": 285985, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 96369897, "size_in_bytes": 1203388503}, "sl": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n month = {April},\n year = {2015},\n publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "sl", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 148140079, "num_examples": 521251, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 148140079, "size_in_bytes": 1255158685}, "th": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n month = {April},\n year = {2015},\n publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "th", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 360409343, "num_examples": 217631, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 360409343, "size_in_bytes": 1467427949}, "uk": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n month = {April},\n year = {2015},\n publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "uk", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 198251631, "num_examples": 561373, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 198251631, "size_in_bytes": 1305270237}, "combined": {"description": "Polyglot-NER\nA training dataset automatically generated from Wikipedia and Freebase the task\nof named entity recognition. The dataset contains the basic Wikipedia based\ntraining data for 40 languages we have (with coreference resolution) for the task of\nnamed entity recognition. The details of the procedure of generating them is outlined in\nSection 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data\ncorresponding to a different language. For example, \"es\" includes only spanish examples.\n", "citation": "@article{polyglotner,\n author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven},\n title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition},\n journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}},\n month = {April},\n year = {2015},\n publisher = {SIAM},\n}\n", "homepage": "https://sites.google.com/site/rmyeid/projects/polylgot-ner", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "lang": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polyglot_ner", "config_name": "combined", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 6286855097, "num_examples": 21070925, "dataset_name": "polyglot_ner"}}, "download_checksums": {"http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz": {"num_bytes": 1107018606, "checksum": "1a64a1f61470050870b4429ea7a3e8376f60dc0fa1a587deeb7d2625baa08f69"}}, "download_size": 1107018606, "post_processing_size": null, "dataset_size": 6286855097, "size_in_bytes": 7393873703}} \ No newline at end of file diff --git a/datasets/polyglot_ner/dummy/ar/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/ar/1.0.0/dummy_data.zip new file mode 100644 index 0000000000000000000000000000000000000000..f737d63201a6de5a1aef13be20a39d67ab0cea8d GIT binary patch literal 1809 zcmWIWW@h1H0D-%$hJj!Pl;CENVMr;>&8>`2Ni0d!4-MgDV0Jp491p^!72FJrEMFNJ z7+6Gr$^&p3B7tg1VsZ}HwBpo~VlqvX#$#e)5s`-Kwxjx00l%S$0N8pqIo|mq)&Kwn z1P24i<R3y2J*mtL4DK8Z47x;^oLCfJo|&Dgmz<xMlLHQCkTu(Y7%iN0Lr(_@2MWX< zo}MsuJ%d){YU$HjI_B#lH!R?a$(Wk`dDan;rT?1zJlhl%{g~Pw^sRsK+kD>TyX9$2 zdXsi;&$suVzc2h)qC}NZeD&u~Z>uB{F7rA|w$9^9k(zX2l9Rb~_U_l~zx92yfAss^ zgAX4P-gB%L|NY+nZT*2qa&;k%lh^s|%xG1#n;rdQvPp>wKl8~4Jhzkon3hSM51G%t z?#=vVvrcS1liGM^#qB#OJf<zH13gw4rLX(*JT0ZLDri9$pZ~SE_jc{|r;aN+8ZMp3 zwa_YY<*KMt3bxLyTA7#KxbE5<>HqhzU65zK$U-);hd0&;|K@ox!$XKeH`w;<!#e^Q zCgrn2_v$ce9zO6!S%PB<1GDxKB?aS1uQUUZBB{%7E}k`Q42(Xztx0sj36^ckSKpi~ zmC_l*@b*qj>Jx{MHxGCiW-H~SENi-xo1gt8;@pOmUEkMk*No}Y*{$<sttZd99yf;M zMwPA4%=YMC?TvKHaMRjva&Lv|9={~x;1)H<4$cGDmhG5i=FA!yqZ7GR_xXpQ3a5y; ziuHNwmeV($oOx`<)DuQ|!7O_>U3%uwxYGWnny<5c&9Uc#zwg`#oAmwEE{^$gPUj!J zz1Zhwh4U2OvkNvGFfCbO<Ggd{!QC$BbbU83d$wV^%2O9bC≦UnB&sNLemyzHv<I ziv7YVlilte<5hkAc)8uf54KZ3UoZ{2TC?oLnmMP98m!BG&W0}z{5k7{e0I*2u**E0 z+wV@lEpUx}+nrTs^aCsoUGrvevDB2jb>rR~*PiI7TPzl?dX@k0mI#ls|N0C2r7XiL zEGBthiTzyMww7-$=kx_m?(f-sH`F;EJ<T|kamUmUo#^FjHcRdO`r6^@oy)SjZyY)} zcb7uctqHDP|AUM|WDkA#wrb_8PnUG^H!-@^uGp(6R&?n0>8G#0w8yz6WURY=hr_YW zFS&FDqsOfmk5#Tp)kK_pwQ0(f?dupXw4XY8SNM6sxr6JkzZU-a|JW)8^Eb+-g<Br% zm7lC7@JL$dci)M4-leZPH?G>XF#qo3(Dg_B8RpuH)tX&SpYH7W{~UYiG3n>tXO>RL zUVZttjpKv5HF*t3CW)?knJSt->#pY?#)i+5{mHhmOZ`Q)P0gqO+Vhj!;7H+lpRAU) zuDj|y*TR_G-u#HzIXz?H<7MCFRch=%&A4YD;LXS+$Be5?lz^6w0t{~*K}?hqk`+=y zqUBnA21+m>8|aE^AX;fjy6Ms=rccLXI=JK{YyoDuiR}D0_$`2zqCi_f#T(W@!c~Ss rYynm`3`-i_fD}@wqXZJr8(>?|N>p4{va$h9WMBotmq0^>SV24hmsx`` literal 0 HcmV?d00001 diff --git a/datasets/polyglot_ner/dummy/bg/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/bg/1.0.0/dummy_data.zip new file mode 100644 index 0000000000000000000000000000000000000000..38983ee522c9f8ae127a0ce5e31cb779dd799335 GIT binary patch literal 1857 zcmWIWW@h1H0D&j1hJj!Pl;CENVMr;>&8>`2Ni0d!4-MgDVD>(p91p^!72FJrEMFNJ z7+6Gr$^&p3B7tg1VsZ}HwBpo~VlqvX#$#eqI+2DNwxjx00l%S$0N8gnIllTL)&Kwn z1P24i<nA5D*QYWwFywGDFz6Cta#DJHd1iK|UUGh3P7XMnLDuXCVzh9c8g|<6c7Q<a z;q(n!LQglY2)Mpww^zs?$I!3#Iql(_8@)EHisD+et4wINMcuzcd+V<lr$4*J*Xk<H zxwF4=u4S>_yL0aAO1W#6uPa;WAG51)&r7SECwj%A+r;mDGJJQorboJ1#<ZwA?cWvA ze}}eh@VLvBws!XGO-E&|j(vJ@mvdkFku67hMQgThia505a60F89(#9_!l+$N(>AnC zXL_h^pxM;V#3uVEB<qFL-n%O=TY9gE)$4Z4o}iWP;kkN=@Y=Kff5T^;6g;%-8HYfM zMfaV>d0Tg=@$rBAKA&m9#p9xvQ^e={mOn1qsW$zOrCoT^U*?5eCk1Zjt~d}s^Wn5Z zExIiE)fcvZs|a|Q#<X1U;LHuz)FPfTEGc*zU@>9#A(pvc1Q(b_OpmH@deVJiD$hKB z-LoB*OJALM74*c}`{CMSM<b%w#TETH=pPp18F$TOsmqaq&;vfJUKCGT@I^n~_QSL5 z$HOiZFNl2kWO+`ij;Z8gCA)7Xzq`8sGky~NJUxy_r24E*YeSuqeg0CvCD(*{Tr-Tj zD-$|qiA31n4{Q6QGUrv__Fs{6xcUC^-1kiQ+qA>ZYwE1<<}><Rg<5Sc%+|bZTjIHZ z?Qqh`Lx)bLXl{M^Z~E5dt&t}KGY{*8m|QRM4x7-HtnAq)Zz+_?b~tL|O4Y0z$%oV5 zI7^sVE)jWpF#Kd#i}K+|ZqrH@W!iM~e9_BhJ?hU9?_xAN<mw{tS&jW|Mf~^V<ccO# z_m?lLX*ww_TO`}1pzr8!5Zv)#eb2K=mlv*bT6Xq^>oz9$KRt}b3LROM8`3Pp5)?y( zMRH$FQ(1K-v8wnOAD>sTz9Ns_#jT}(qr}7f&R8nuw{<pL>Nqv?%6F$ozPs-tItp|b zY)TedSpP{pDcdzMPPO!*2=mjN@UM41Cv3So@qmhtL)X8#GlD`aln=?P#tVpkm60<4 z;I&3zf#S?->-;SnJ_}ylfB4|39}n^@53Z7X7d5lgpV8+Sv-(ZvFZ*i#9pOIX<C2-U z-Z`yl)7{UV%VqwEe!a<IByHMMx}mhz+iK-3)BQD_=lg6P_wq)Fn{;|6I{29Atgz#H zcl$%ahFJN&{(rTR^L_rCb~a|{EDUFO={w=6)9Fyl<w2Zc0{dsk&I~Lw(siz$)U)hw zobHm}49mn%Bs%Q;(>tGg!xFAtq2K=>>G8a?>Iu7T#-U`7*yN7W^HyEEXi@R^@NzH9 z+c`Bg^_zC;ZTzFIyvb;3jpu*;0B=SnIc8jCs06e$6<~Pl2x6j?sH~6@6)l(JGf;v7 z*+5rR1JO!X(oL5}F?~87)4?SzVGA(JS!CzG!EXVy)CJlCDh{y*60R~AVhgZ(Vp!7X k2BeTe9VL)}-T>QzRs!R)l9df;A_FTBz62WT#0ug801DlZz5oCK literal 0 HcmV?d00001 diff --git a/datasets/polyglot_ner/dummy/ca/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/ca/1.0.0/dummy_data.zip new file mode 100644 index 0000000000000000000000000000000000000000..098c5e7c07d32bbdab6e629a0b421de279774edf GIT binary patch literal 1605 zcmWIWW@h1H0D-x!hJj!Pl;CENVMr;>&8>`2Ni0d!4-MgDU_N;&IsOz7msW5yFtU7Q zWME(s0V)r`X@~@>A&JR3VAG0IONz-fQ5uhl$;3KSxgFK73iu601i+%R$???}u?7Gr zAUGI6CeP&bHJ{1Ez)-}>z@STn$;pZF<(b);ddc~DIXU2P23aHZAq730b3@MNi5T+O zZPyQ)ptU7dQR7j_RJjKX9rM{wq-^e9s&dcjWJdMt#b4a2Uo5pPP}gsJo01mYc{t@! zVN(6SKb3Ve46f{M)^Fe6Fg;gt5394@Cc(mzfA8hr3rQb;<SPEHZS$^p%eYO(Gh@C> zoJ#n6Zzo$n=k<h&|4s83u2Eq9xM#{^ZG(F^d*sZko<tm65+k3nEq2?UeUF}ha9S`` zL+-Kh$?B3R3+%pa{yJ+Dx5CSlxjpO6g${h)<am_j$V;CBLvNnCeL_)}xMw|-aW0SG ziT0T=af{fE%r#0J3Iz;1AK9u;^qB7I)s$f?c5lw7$qH)>n}QUl&Yz<<{r4u;ZMzBz zrf{FVGB4{@#?S1aWh)=wZ0gkTd?HkM=nBV#8yi{N)y%Igy|vWn$m!jhPlF5-O>Wxu zTQmKty3g$I+4uXZPlNELr_#DptlxaP6W_gMmQ-n^LfQNoC*RJCxOU{1^y3tz!$*(p zezKOIC*zp|Q(M(?&%P;zoJ-5sp8VPt`99)xZPMP(a}%1%7KxU9`W3l#K^Gr$;;XCX zfBBwt?YYm*-=><L$Uo6w-K)nbYkkkC9qcJIu{(Q(#d)`-Am5XJ_pL5-<Xjf=nG;&B z7G-6`-1y$HsqyTQk3}0RZVNvZyLDvswZ<(=k4@(D3W{ORopMm><oxB5;g&VUvo#d! z-A>pFUqATT^^~vuqs+&XXDsD;Y@);Uh55YN!GIj;oyJoa`gwb9d*K(Da_FFsr~S;g zHVdA!l`*b}o*!v@>q*sKH8z{h=H_qbGyn0%h#Y!bbErsv$KHP@Rpz%=-EQ6zXm*?P z;K`(&FU(uhL{A-m!=cu-f3~36$5#vf>r8PGcMss2d9eB0;hDdxB44e|ShT@uN}Xut zffEO|?hq_BGoA6>O+>3z?jLi2HzSiAGp=$(0$QR7FuZjHF;PktR!FIWQKH~BP=W#3 zKvz@)(MlN7O_xS7eL5b~!KDph3oy$XWaq!ZZvnLA0onp860immu5t%r3$Tc0SkmYQ jq>w@#C6IvL0Na9A3gNPnl?`Yj11k`|1RCnb0^$JxKD-<1 literal 0 HcmV?d00001 diff --git a/datasets/polyglot_ner/dummy/combined/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/combined/1.0.0/dummy_data.zip new file mode 100644 index 0000000000000000000000000000000000000000..63cd4618866666f3f4701a33e0fd5b7255f4fc92 GIT binary patch literal 56567 zcmbTe19YC*8@C&qjcwa@W7|e!Ta9hAjnUY)&BnIVuuak=C;4XP>;JSfoinFv?XIk@ zu4_O0UGMMO_eLH$Nnj8tfY(34Aq?{W=Z8Q4f(F0_Fmkf8a?>@^chsj-R)PcomYFcr zm3?VWuFwF0AUA*j03gUO|6T6?Ldt%Ep#Q%i`i7SOhvs1H=<o+I@rCx<{*n0eV`2S< z=wSKdF<&3`|1%W-_t5|M2k;N%*AD{X|9pxb@Z!WbKmY(!pa1|g{~yQ>mbxxx7G|`D zHrAGw|Mzp|yE6KD0Ln^S_Q(P-k!@rQ3E5CmsrJKcoe7b4h$)1VXCZY39vX^|(5zcP z?ZDVRAuEtAXq&`hN2z@vkLTX*?s4~+{naf!{#U{Vhd{*FZL}q|SG%`KKsXth9a<;t zhJ!r)K5b=qBX>akVmhR<G9Nz<+7h3FZoMhI3nsiulsdVjIw3%>cf!JD7-6>`mV*_s z+G|unj(UuUlN4pNHScuS79-b`P<O%JKfI8%#|@G*iBE3rEefXN4*cBJcRbSfPQ7ov zqu??B`H_jdht8bBtsFg0(LvWt$lBnG+|ornWP-Me($)Pp*Jiu9<b1TRowZY$eCzF! z&(}r;msQnvX9nuW?1E8!%PR4}^$iCCCKG#PXe-6KxrM|2yrHu~N#7<VbX$Yrz%sR} zgR@j;bhMf%gPdJROJHJ!$jmV!svX+g^juZ}bWlp{dC#`#s|S2DE|<kLJ&Js<-9*?n zpn{)$OAx~*rM@UEh71^eST!m&N^#x;t(TxgmTVl<mcz6N!5L2mQl-T-Esu-xwN~Q5 zCfEaX*Gxr&YObXf#8*7W0T0b4QRy8Ih^l?ik6N)kag3OZ1zy(!za$R2w0w)Lo!uNS zqCdBddD15`>6nDie!0TUYl$TuBs#4k499qM=_~w&CYtRz0Jk@`-B@)P(Z!{Uk(!)3 zu(U3}b;RqO-0|RzaNA53m7hL`tblx^JqAa&Lgg^b9CCxDMc?OHdf3U{f-$`<rIod# z$|(8~ZoT?euCyuQWH5)VvCo0m8z^T`UWOLl<wRgp%&hywPAi`FK^Ub<GO|y*q_;FP ze7+SiwX+rvo&iCiMWOq<C5y?=PLMO_3=*-{Sx1f+A4v3)LJ__W*{nlUD?z7*`+f9> z5U8=v5l_k^G31KzbkmO`Z;B%YA<IXl88b6fLDKZbU1R#XaqwgeT{`U&JKv6Sm~G5$ zWs?oh{ZW$DZ4s&r8()IqWGX@tx)i9U1X;3%Zbhl?h{Tlr%cv!(VGhj`&=0wU{3Ms( zs=(q870A74;I;ju3Vw$ERs|MxKUDA=@*gUACA)z+pArEB04)5Q3jQQJSp2Ml*KYn+ z1#NLN^a$m2vOrQk#Mpe<+)vTzTzh&4#+qGWR%Nk9u;Rkv0(&}u6O&qYC`zfDm>hK7 z@s%w}z{u4kr_T-RN6fW}jvGC@U5n&wRNtfQIN(KYk{wGsDb}fbP`{=+LcQ165Jh&a z&=S(rVzq3Etki(BCu)(t*2Zc={_uUhi^V;En}*tW^Wc7wj7<7Hv^v3@<5vy#JA&`@ z65PBfV2s5mO*f4NR}b;eEK!{~YRi7pBk3@2aLUO`a*#1TC0cTE2Gwb8n0zfWl|ZBA z_!g<Tb4hQ~5EE)9Xu&>ege%}$av8_H(tq=C#rB35bJ&f@MYs1%BUsm!@@<)xspJYR zWEf_~Y;iYM+r6%oH8gn8Sm}ZOC!>!pZ*A$XWK4uS-d4>Auht#0O1LuYT;lSrs^$~0 zAwQlTDq35a64}#bjq;aZtI1*(Dv(TbH+$2nrXs_-7Ja!UW{U}^2dKzlG1xFZVar^H zl-`U~dH5FK)Hp44C#inZ7~_#^qyl5Skmx*EP^)Jb=qz&6>AI+`8g{(R8@H0{8Nv{m zo<CV7pD<y`n2G2X8Vw;SjuN-`9gzhp4yEa!yldc_g#s9u0WaCer^OqEE>(DUJ_XUo zCH&b4=(9>$Qc}`z2ryy_l1zZlw(K}aPB6$jry`EBmpwzS_o|G0<Z<bqt~TGlRP2z> zyXWvr+PlKktGG|hE&2#7B#q8`7`Z$6c<Beo^f+5#oMB4rDk1ieY$l_TkVOZKl#VuL z8k?pXOnfca+SoaPOb(&|j5p%^sEBREMZ}v5%bm2^*Y14XtioO%HN}Z~I3Tj*&o(h0 zD?c2P(D1l}zp32FEFJLWdUvR6@h*HyqqMG59>EwH{eYDnU3exqf3qXpf-&+Umb^*- z6r-yh&Wh%w{qt%dxeLt%ic0s4vG&58xveaV`n$ZD$cJ~>p5NB2oXe(>>*4rlh%LK& znh*+>6fa5Og7(nfJOFac3yo?N#U++r4JwVziGHGnJRlM?4X~#VneD88^zXFl<%Dtd z)FF2W{ayuunoF6q!_qgO!!mp;rbr*geGmLY9AW=K9JYVf5Q;Ckdu{(Hj-R2w6UPhm zhd6#i{zDwE<fv7q4+byd;0ODC4e=M*_LmyswVS^c$B;F$I0Da%t^sjnK<Wh}Tm2#k z^Q8~9-AK7aa&FS70xhL+W(?>SFuU7#l)(mHO_xUq-R|%~N+#@TsvIV!%f4{5i;aVE zcjbsB*g(IVjh!8kkATNbEXIs3A1XeUiuH7a-<+<JeWz56we}LKR`1{Hh9lL_mG7!o z(lcypCTkahV9_3Lw-;WDu`z((mwK3ty%69E?E!aB=G@iiW>l8M4w_Fj@ZhMK5=kzG z>`cl%B6VJhfzRmVojWRy0u}O>N;Ib-yTbCAgRVY=R<5seNSny1X(Mh7HrD=>M1IVO zWZy}K6h|%kCW2`HzJD?+Q&s@Y^Wi%B^Lm(>+37Xzx#MMWuiH=~=X4#K9KQJ7#)(^+ zzf~N<>}kCE2j0~+DP7o(Ju{a;Suvbk!?%qkk0Egw3eXe!9^35BurhaI+x2W+a4qn* z<7LOa0778o&UjGTcDD>LbA7u*4dn5e?Lgsgw9G4UZ}kGi3ZXJgE}w9G$bI10W#c5v z(n_uc!8P{=M~~ASO1DO-92T;_=TvR?=&H+p4VZ^zpiH5?ca({wRImcES^s3<!Ne@+ zGee`Sga!BhV{uA3xPoL<(DsMLLq?3|u>%->EWWLsGa|*JOx9Kmb`cv;*PXW{eV(8g zvh$#@N$*p+F%=nxeH)6>Zk**X&iHD2luMNj_lN75ff6-=+U25<lW$x^n^#O##{znn ziQdNn*1CmraB%CnH?Em<te+=2z{9876^c~u_&-lYW;z$k=Wv?E$v@!UHzB)YSr8^? z=sRP6gQAkaaA+#qz^k5oum8cyL2?6B8EuIsphe;2$~26BZWL+r$ukq?SV{o>c_y1a z5?WgRnONDmA27`zH!{5m@rZWr9z1hcd1XN$M-tM$XxSV`T(>TO0yuN928L?c;rOny z<;bDWGlV4Ds5=6Tp?+ixltylYai29dcd$1&p^oe*jPGj;@#Ac>PSr^5`K}rJv?I-& z#jYUou{CavlmUO5wg>=={+ZOdFgto(ejH#u+rX`>u1gbBsjSln3Ut6W9DEWX*w$%Q zg!D8E0%LAoUbX6d_gnLO_>|h7K(|gj@!=Vkkiw?ri@s9aMdubO)Yj_@-Q|f-1ogT+ zT-t4RB&2*Gu)GWV_T}yW<DKyT;2mePKMEG*m)O3xfAr4J(BFCI1^UA~zajtOomX<C zaa(`u%i5*pUkaAL$j)Xz7c8&c{Ec_Cm6pws1kl@M)`a9B;!JaUm*0k<FDrQYo|2AH zFA7PS5P7Kkxf1vZxDyCVX_$wibLZioX<ZxSoHN*Ly-!&sZd=G)%zVD~dj2X)HLX}t zsS0z$?3+(_tqyUVEsvxYaSwAI`-J2?CE_a57F($)9l<HghIV48_7&87HLy@^o(YY} z=M+79rvpzUQxQN{cJmS9gSP&x%YATm6hoXmG$nq{`gC5$DaW1RAZ?24Nt}*hqM&S3 z<!AOR&O$_QCybFtsD4Cu5msea3Cp*g?O8+F{`xBC(wse=?eci~X6)JglDTWK7HH;& z4o{1mkt6I^AVOpXOV`smm`Hr+AgsW_5VIpbb1+^D!j2zXt+I%sp-dfcdd)}Tr_Yf! zJZ`oGc5dw%fyveFF%+xMpsh2J8L;(hldHth2%75SLfA;aqDi<zbvW)iOnM&*MQF@~ zhSEQr!^CwzZ39c<b-Ra0m~NFF61UH1Ux|1+zQvjk1B2|OT*?ZbAAAe1wTe9ty@^l6 zqd)CnRJVIrVVS5SNjL~qyAXjSrz<u}XT^V?;4W}M`S}vg-MzgX>KeOEw5mOa5<xRP zpJ(*jkeg^e7*_Y<w6t+qg~zTv2U)v@hnOxF4l#eEX_?;}*g5-_CWZIV?C;%UcbMkD zAQ^S<(IkZ97<YXN3ErO1c$R)SV5LeZs3arIil!bRA>2fLa`KFR<3wnpCM~ve?ABU? z3qc#73d?_P&%`zUXg3;4O+z%9Fv_6lCRM;IBzLxc*WbHOI0kHT?{ar<E4-%Fiu0l7 zsVgG>#3ZtKHN$i{Rl;iDch|$Ur@?F%T<u73`{pu2)+=5oh`ZpBL|Z|{Io*r#s8_=4 zY$=2fSj1tIQ3X{8qMMLj=501P=<WO-0H}?`($ULGbcZ1Xi8O6w5VOUE_r&B~-}8@3 zBH}+J+QIpcM6138LhW~n{u%naM880PB>FexKN9^)UWRHmyL?GB#J^M$e~}%We@^sk zH|oC*z)DHmdYK-^+ghd?P}^4@UK?+oRkNY)FvbZyi)cyy=ABqI*E#nPiaVgLC9!cK z#U!|R{af$vV&2ocjjFEp9p5lZLl>MAKZEgDeV@fOg-oXzJ7$xSG5Z!(FisUwOF7!g z@+BL5f7gZaiGLf=F+7b|!InE0DCoh}&RYQboA-)a;(?;&5`qKJey2?r+YGIHNqQLo zmlAVD79{XnsV--Aa5|6)Q|fZ3bpAj}+izqMxI{z|E#&MO8b+81SH22?p<$Cu;0I>S zt<MfET3(vvseAk3R~QcskkX9W`H?-;O&x|JALFujACJiopx57Ql8?B1nh*`D6TVwP zr$8AN$w6pE$mc!_7p=(cng!=-OdYDOsa(8|ie@|b1hFD@nr?@;FR^6zj?sqctg7cQ zyMu+@3NNrC-&C5|y0|*)<Xgrx_K6J4Y~wrH&TlBLEVeBqMIeCjT(!3`b~s(eWpP+v zTNjPZ+@~Y}i-pSlT#*@j=h=|^TxlZd*k!)Mghv8v%8W%nkbWzLzt4&?<m^PlfjFE- zpye<djuT=OVy16ejhK-B)NK)tu|d$AmxYMV>MR7u%AEFGSR({LqQX<hm~h&ixvD~N zd3gHx*=V`03{a9~@54NX?)PJaHZq6IfXznPg2Q1%&<wX#F#*9P{_8HY>8}ajiA#xL z42!9mit3zzs^JnxdtmCemWRp8uIszSZUk<`xKsGSs3Iw$P~AR>FWZXo++Cz9ai6i0 z%A#$BIaDTvTxeHsuwAue-(M@xWNxw-<=qgDsp3;vZUG9lBAFe)J~OokuBUns3m6Ou zon6DbOY5odCFe(G&+|eqNrNLkg-V%CY*S;75(CH_%N&g!@<+HEl4catnA7f|fzoDv z*C<DG{QNwenWZv8*+~}LInAa7PqI!j5!TJ^7qSd8A4DO8h`?jzm>vDrt?U?+DDIX) z1z`k95i|SIQI~Og@{-gSoGUN>P`uhVV1SR<JPzGK^E>zt4@CY4511PN;epo(Y5W?a ze}?|f1251Y9(X1HO+a7Ce|X^aaRZ;GaS>it6c6CPUs3!;HZ}g)1Fv0Z{yKm}<uU6S zegxiz=q}J0g;^E9B>PeXG	GXxk7ufvk{EenNQN)+c$A5m+q*Pi|lz{Jn76?@R`q z<>8fLw^tVz@9y@}t90G>6`vg}T6wy+>6)%tjH+C!sXY%Z)OXYh<OXg1B``oNbcYx( zBij|;2a*kRT$P0w=-x#}8#i4$d`!t5e2z)>XAUGe8u$7X)hlf|oq|{ovjvGe74G_0 zD1TyhEwc5^3CT4EPgkR&*%6U?sh(%PC`r7lo__dDeM8LQp;)AmQjzj}m*A(W@Kp?L zQ$4seCZ>cfSKzL0kh;!*v0)G@PN?jDcd|eY;GyG-D*OyN1b}mF`x08B0!{wC`n7iM zMX*Z_e3z%RWl=fI_gv{2TaVV4cQc1*)H)k(1(U-!VJzXP>uXo5US+;{>RHWi2BR{t zZ~F#QuAXR}gg7jSsoWU8yd8}Ns`e^v<djxI1=XHocBbhTDM=xhu_#Wq4#F2ox>6u9 zrk}T{c9M3U!-+%mb&e34Y<e>&tK+)~@1}4-yZKq7CSOcH5>eh_C$;DOxH$)v_GtBZ z!YvQ62ROK_@O1Z%hI(9#hLb8Q#67bLX+(r4M-d;<ra6&3h2}`{XJc%Q@f>CArZov4 z*(YZ;Djrirm18t>1EHd2xNn5B#0Jq5;M7PyX#^-}YL-B~0>sSCFq}h(g5>!Z9%rmD zj1PP_nu+aKemmUn22z8HAfn&vdj;%&^9*}ti~ss=UzbcF!>3PQ?0EYc_=&Ez&nDqU zfy6@0J)MF9%frkNB+J+t1xF0hJ5p-o!+xwzTs+nGv*40DeN)o?@F8ujP`84<g1l)d zR`FV#`zo@ylM<!+GY_l~50*U|Lwr2x<bi|Cy|ufrNORcfF7<8@u)hOU=ixSAM`Y>a zd;qBK;bl1&PvRWo*N3tU>XU6I?0$lWBx@i@hh}k0M$j-P4i?LR(N7snr*7Y}v=1QC zz0bvC7E|o71qg~!$)+`La0<U(*&dtAl%n>6d_ci3)^vN{Q#t+q0~ju0RPj=0=|*;~ z^&Rw&Ku7%tOIZDRAo3b8tzSd-&(Pml;syG{60hXHiSG|fygshDZ1vFgOSRzlFV(_d zWGjcCE%Dlg_OAnQQkJw{p@-3CBRe!uAQrBHs5YMz_Rlh%#0SqB2%|YR6ncXs1vdwM zZQzw>^e(L)I+`NXofr>~M|Y_0!P`FUol^J*iVfr3J{txKIg@>}UP^T8Fel{C*(n5z zgx1lwpe?v674OE4wkhPMlnGt3fVQC~4B{H9_Sp~AWrt{I<5O5$jQk@LK#`J}bQT?F z>p)bwu(C|`-rd&P=<CFHf>|_I9k>U-%TWVZRbj?&G2z;p9F5wFnfHRrNaG-*QcF{1 zrENInC!#Agx@ND?Y6WXnI9D>=Mh#phTfR!i<eW{c3mVT8J+@p*=@r>|yA+|V{jT8c z0GybqI4NEeb~2eHn{(}4wKmocz#cd^8Q#SB#Fut9q|W?#7t%8`f|9k5b*a^oT0^&` zK8<oxC<6wQ3Ik=&U3qKl)1ReJ_CvlC=gu8pjmRcbJ&GBAikkNcbB~(CspL~BwyTvb zYPp0K7X;V3HuvZ1{w7-K$0`i#ZdZ>OBVSyfS7}a{(~WtmA8BIg23(}Hsyxe+Oc|`l zX#d8Zol2Z-@fac!8D5j2&FYI}T5#U}*BaGlXzqy}=2$5rO0ya;+O0`zUu`7<L>mff z>Nl-{mI#1wEHa{NoW?@Ruodh@5;e-(*RI+5D```Hm-;vwNfMON>yzRBMvi3+wHcO= z&yR3<jV0JX`$Zx)#*$jP{B|ptm4g7KRV-Mw>qi@c8BvawsQz;@N(7o9QgA4=SPe)w zpP;QZD5w|rfZM5M?ySE0Nrhc13CvgO)<$NPyio+Ln%Tg`6B0;qoeZyGyWv8IRQ$vx zEQt(qm&Z~h6AD%IE{{^lCV9^Hv$cA*itS?ATjrs1dkCfcYcf7j;R)-ch!t$fH064% zE&;GN0LuJ}Iq!f1AwOv67&I()2xS8J-1(E0pS_2__x^sv#EZGEO6g|io}@o}>zFgI zL^hkA^KzsD?3jL$_|?e=?^fnXIWD6E?O^>!Mx*~j@QwaFTYb&U-{j_>p}!0M3-m|u ze?$JGJa~QF3!?$9wU^*;{ma7tFS3#T&%uA~M(1yWuQc?sOhDin_&B8q+!&b2?CUV* zmuIQ~Zl`%Ip=_A8M{0|h^<DN7w&{3)lPO_mZ_=N<oawyHZ71LN)|6-Y)`ozz^8>QX z)&v`KVrAi%hq(^r4d)yu(XYo;A2iBkCd}}x)<S)(lvvm?-4w}iXEbIy^gLkMuN=8% z*2L*0fTF#9#1I;>>=b>#1TQHOq9(qLeK4)KjM}cx$nRC81>6^tizZ*IAXXkA<&yT| zg`;(15ekDW2BnX^9KEP%C78EA7m|+0_N~OUA%MUPrC~*RJJTT{CDBsP%P%#I9+=k+ zL1dnP)2kQH_{opj3yGczTt_FPf|QpbGzOi#LSM=<Jcctp0kIGeweW_N4A~Ii)YzyS zQ!92^(~|FtSrl?WI81LCPuZv&g>7j_HUToGxzeD~DYELvA(KK42zi3a_gRptov^&w zJzOa9@L`2~G6(QUly4WA(R5L<n>NU?6jk*o=fl*#;nX;H$gP^g`(A2&8Ych9uZR-% z4zb)sZ%|l0Iy1h{o*@Y^mMj*^euQ+>C^1=?w5E>xYX@?&b`>Mh{DF6PE4X|53jMuw zPsu>uG31>r4_|l|2;DeFVFLqBhI}A(?l^6Meh+JrSb-iM1ef|v;Z;YdDriFef;zi& zKo~Fe1WqLbWf3RE(3qAGNjO?!dYA_m)HkY4PTr@?Z3zEWQN(NXN+r`e?v-{L_uj`% zSGKew_OK@4`A-KT^Al&ci?$U&i`f|Z_CyI1r`!}zJ|e1T2N!$AgLZU;Yy6lwai*k4 zWvO5{VD#_eT}hBF5kWOZ#K=JwB_Y7!qJ?JHD$zX=!fiUE3cMFeiybMr6j1Q+xzru% zFhh0WZNm4H2bU*1Y|D$d6oKu`{Hh-<#I`~Ep9>kX1?uF})j}_=an5kq3LUoctQIK- z6!)R~HBJ;joyq*~BsNsuk)7WJKFYy(XBa#mIX0P>i}3g0<d4>L{D^1Ff5^PG%^ynw z-Iut$wtw90`x*MX%)dZ?Wd1kgKQjMH)+vs=1Akc((EQ6}{}<WX=I6}6cBA*}0A4ox zUbhCkWZI2D!}JA$vlk7MOD$%wruEP5rANY?Am1(u`8>+pR^yRZHtY_FDAdo~cGc1% zJGr_Rh4=8HaFr2Yip4*e>HAU>3;Pd3e<E^tM?HOBCEs3(KRr3gmj0eSS9j9rNKevP zwm<GPi&#_QZCOTd=^?dRFNm9$$3nbz9cnzKor5cw?A6z6X*9hCmUVnp<8yRJrE*2Y zrP<Ve%!(-t$$itWI9{r}fK9|r?tnN8l};OXU#4A1!PX~w-KvN^?7K0jMpI4rABCeJ zvaxKj;2%r?F0#IeFA@zi^DFTd6I((C_a_asv0WGgQ$#Ddh>U;JhK1an>}-&ma_sle z>E0N$7L;$rm(ikBemleL#bZ6DXjOX|pZ-8Mqo~msP-JOFJV<zw2LtrjO_`koRki4| zEEvFT2#~>vg2_?J0y;o{(CZ6Wg-|YZN(Mi|V)q5fnQ`l3PLCT}02x?Vb3g!h+gG#h ziZY2&rz@)GLQc*LdJeEaOfVK1A%o!ETs&r=9()H;@3snQVMJ%EvV0Zo#Qv3hSk2vH z>HfZzr_O@_G>Xt3s6Z9eIK~PH9gN|O#wP3{a&Q|mMY3K3o>|aR;0~xzJIYYk0VBI- zoeSq#FoY?|u>3eoB(vp4it3CBByvH*ti6o=IPM2fMac3Ac=h^ru!>+#Bs_&i-4(M0 z)#Kvo46GhOevpY>OTT6Nc8Z4jIvRnY92N!V)qa8<Lxpl{J8B6O>54~cJj=@nMJM$E zFF1^rHH3E95HYdlRE-j06}lzL4xvj%akBgfD^{-O1@HzDxc$OCpqzqPP*q`)n?14a z>TEVLC=lrOSavE>&bL>0b8-z#L?><}?i|m|D#DN*Ps*x3V#0m>#HQ1eq4PVP$rZo` zXEf^Nz?;ho4Uylefr<r<y(B~X0@piv>GBk^Fm?PYT;d;Yb|p>vNlOXY-Q}+q_E4R( ziZ#VO$ai7}8ExLA=r9^1RXjfk?FB)RTo=XwKRtMGLY=ovOK24IU3^Y?`k(!RpL6`X zs|)6T76h-k(*HGE|7@J!$>9b1Lk_Rxze(*Y`G*`77jC>>Parw|MGk+F&3`EfUb`^( zbpVmdt1=n_2<=IQ#r0Fy&1h|A2GeYEhL~|+%S#1^nJpy{*vN8sh!@~Im$^Ck8i>ev zCJQ|Kt-|k2x+Yo8+`Bl|#}_j*Q_s`8jBKRpIT)~@ZgV(sgy@4iCJ;RXu9uqH>4>WN z8#Dq=nRbu1S%DB#@rUv6@f+M0!D9_<EoeyJn@gab(4v0E2^?JJVBQLA#m2o1HsW14 zolFC?{(2VX=m;Vhuh^RRh4fviBBTEjs1w{}+<3E7yyko)l)-!BNWmBuxp!H}V$CqK zu!D@}?=iiEJ>e-?rBHSKAG|Ja_$j_!3}?k>EjzoLgaffTMa{SD<YYiBT_*tAnLEJU z)q#b;hz0W|r?K*^obr|1JFn_@Z|>%YE`GHUq9ZFTq#$YUkY^CxnXj$!w@%gy#}3v8 zz5}3?#KlC>ULvdx$aUa5T*y*n$j2NIX#k@Vj)9apM<*uzNGf{#&ij1fJXYJ~YIGa} zqTFu*V9H1iJoeiIbqG+%aEw-Q{};Z;=U{N7h%l2`7Mn1*GNuVB**5fdoZ+>;mj1)O zpNMj^R6;7O<0Q0fDZZLh6`j@WM;4$}*fS4nB`kIT=P<lE0Q0wqL2bmJR!MT)bW&em zk2xL>(zVev|JDO5yp<T25!@ScXX{P;o#0$8vM5=1yBeWVqgJ+J38ZR78u{vBMKqOl zFyUr*wO~vjR13szS~5mce*h&S#(3Vve;5=RJon3ZCL;3~j1Y~C)7Np05)5n5>gLag zz4c=ReWYvEY=m}8LmFG(kDGZ3D8b-`Cr%xvNEDoah5-XVnLkzKF~RMA;lU0K;G^;0 zP!OI^sWn8HmGLg4Kd@(GhDtLIo4(z0dKh{iqG`=0a6z4I5~0vTi5e@B8`$Pd+>UBS zKK34xZel_h6_GZe<0)%?x?xc8+xGcVswYnYj+^9?d{{|naq=m^m0{q;T|k?4Awr0d zrrihqqIBhco)Nl1CsYfAg)5!ssgpYYo3T)r8XIy2QqrA|ys4UL!X_WxtP4J1Wr&)j zbDi506IgTEMY+zxjLYQ`axgD>n7IKNEWbgA(xN<~QjoNZKRa}irw5rXnd?UByR+l3 zA`TprYN-Ao$t0qC$w=a~6=MFS5ocCx{Js-o-Grit59$=vibt^Hf9_+({)eK(_|KaU zuaPzUHMT#z^E32!-g$xk@XjmwZ-nr}JFnzf!*cia7w?2Y{(hhGFS7A3Hy>WRF#2@> zfhy9HSn|l)$8_?Q3N=NJ>doYVe)-q%YT5aE78H(C+6Hg<@DV|@mC#VO7~{W4kq!~d z?BlI`O?E#U@L-w}j7=H!I$w=;m}s&o5*^2z>clHQDOHdV8Xl7GhgbZ5CH-D1)aFPi z9BO?p-(x*r-7`xGtuUb^o^ST6lg76h*U67ZX;-l9j?6GYk{TN}{7o1LmHF?E67Io_ zL+qu1q4CwbHNoMr6TB}Nh)<cHn|5)(D){aKQE<w9=>IYov23XES?x(mD*apOG!2Tz z6bz(uBW5FI6413Rb(em_rOEy-rFM@Z_{)KrmZB%Nv}q$uVgltE_P+nX4J=^D#aE}i zIpI~NlZ`ZcA-tE3ppQI}ciILl%JW*C5RK5@mfpzGXFi<(yoz}zN%wA1xWuMdqIf;A zsUFq2;UDVce8ctMUu}VIgQ_(b`Nt|Y-mNFv^b9DaFvCy*f3t-bLzt5Z0I}!CasY{j z25jxLS<TNT$qxaCk}6H$FRHo?S=LgJ;K&H#dG40LWsLXTNz+GzCRE-=5u{)ZmRM<; zgbe-?4mtej@p!Y{)qsb0%Xfa7wtL$3G$Fh0(t&OyW*F5fI*LxAIALx_wnD#Pf4YXw z?yR>Zl=_A=A96;rY1}v>cH`~+B-F-d!1H1ydL%Q7JKyORRRJ3>@kcpn8R_BnSP05( zdgGqGX}OJJz-ubGM6Llu8aT@CscQWOUvmo90^8ZJh~NcG!Xz=#nOTrEFw&_`;i!Oe zMl5O6DvM$8=GZ#<$#;Q0kbe7f@WiU{7W!IZ{MO<hHM{A18Vmfps@%-lIV@AU-qE%l zspgiI9F*c(tC|c5&*IeAZ!#m|;v`d+ViE6x7=EZEd;`pdO*a!0Q39g0LU_49{gDXL zBtpfW2z}ziZmjw^)H?^o#(lp{8KY&^&jjqPvcingTHrWHO=0s4!Mm=*+sUfspp~J$ zu6`39JCiY~={=vnZ}vLr$xG7aQb%lX1F;k*IncpS!r0Wq09xXbT7F_d9jxgKt4LCU zD9hBsU+U<z#i`RuAN1*|&Q@9Wu0nG)@-T|T`6A>uS$s=pt9hbGAS`~oG`Dx_d|Cy< zT06_32$J|YIp9$)XsoD-U?)R8oiL6~P&+oVk&#gQixl+yJ|kLpYJ22%;3bk*Z44HP zfE30_`$V!!ai0`DgyUYoF4VZ;NcZ<5tvQ)v9eQ01gmKw3C6U3&^paUz@G9Dol#f9a z#F=|7BWplscQGs$1VTsDD`>^^jqaykyCXTE&Ur|aBx$kcVu>}qPGd@gN*7aPd>W}# z)wcO;SW4al{_s=We~_N#pNF)s!uzfCeun-|dN0r)()$hhk7DbUe6T$UL;oT@_kSt2 z{vuoca!C8yjq$J2^ZIMsb>M&!a2fy*s@7EXF`J)HY-$3Kz5Zyjy405!>}b`}-j_pQ z&cVkztn|d=Cbqh8sNi)2mJ|;UkEJlWTxR@>Wg|%|CRDF{q=wGED|IMJVP>YYIqVGY zXUluD;Lo5R;#KETb;ixpo{An=E32+fYi&MTY#?M3e`DARemcgDelp11x)VpiQkVNE zrH6+)nc!FPx#X~V>y&)?q}QELc(=Xyk<?<3wWStJssIp(!Mlm(hWes5X2PW1A$6bY z&H!J$HWePS0?qy;M3N`jVi&Ks3b(LlG8ZUx{lRE~lrn0@1}VmzvvV(N;OJB{pQEbJ z<}8}jbpqbyELG55r@7h^tAqjT2>o#q$YTakbBs1B)SSezodDdhT|0&%;;>Tw39P5? zY%4;+-`WR=C*@X~o}0D{LA_ZRt4Dg+0+|j(81ot$usDbiBv?*zE}C*Ce|muWg0dY= zpTNC+2pZE(m%D$WBx~n0Kras(N|Tu?U^8KXg|i)syzYex3lvJ>VV0*U8ikeLj=)_T zoz=AV7vwnEU5|yEK^afSTo$azUHqpkF2EF&u0Bd|g?=kI4THQDX^%22s3aoHFgXg^ zF^oo2Jaazs*%i}+!^-^GtJo%+&~8?F8SJ`L-E~8)TFuJd?Jf~|hTxRXq_{+&n@&8! zHby#CbH<k?n7-)oMAK#t)MbfQxH!Sw>wA856`=1WoBAUt2cwzaFe`t#)DzqR0X4s2 zG)$iO$g91FuvfDkBCt7<NWVVX5ElnaT0rUly!tH2hP->s-y~RH$_CcH)M9*}@DcM7 zJ2^a5A|;LU+Ovr=?i64kxgeF0y7G`nfD`p-VW5thKMrCd$w~6jC#dA4-J?XDPrGdj z@EgCJc!y<1W(9YBwYELKKmjVD^XUcHjrH-=Qmu6i=<t_{`5V)vn<rQP>84?O-C~&R zl=T86Ct9?s3fCp4I=eNn;u~~$$eNw20Utbn>i3u^yUTauC1A$wJH)*AmuDsA<pxA- z#nkzsbdmxx*&oV2Z%qJgk-tY)nbg}0S1WI0Ic*ap>U1eF2$%&iW)-|0(*0qP`2S!L zGsi#nb6x}ZHzE9I=<h7@0{vl;-;n>X$m`>pB6&I&z3kx*{mUNiUt}}KpZ9ZKyLtCF z7EzLnnx#k3men;vFAfBOp;GAqNCW+d8nK|7apWi-g>%B*a}CK3Cb?iA*p7Zv<$)QX zmZuOpa^rTsc)oGcV=iMbRFnD!78zJS?0evMSM?F$QvV(Li!@J=L76#8y?DJegEZp_ z2;A92{PcL}^uU~f%HTAV{*;}zq_h~O`QBz`hnyS|QmHZ@vRN(7Y4(M4f}13rc8?|N zp;%SC>w(Tp^U#6srPh{V=$7yx4e@n8y|*flUtRalJpy=-z3<?ew-)zq20oX#qK$eG zqjXfe0lUpTv6Ae2fHSqAX&jU6vV(xuk1|o`E%e0{zdNWUD=7~lLkFYO-%t?nIG&=~ z%cVw_V8?5}I{qTWrAfcL0G0_*LukJx8LbYcmQ`-Fa}O3FbHYFGf$*@SkkjjNFI5G( zrCVCYVX`L{NHx2ZLKr`XvBesB$(+A1puVps5Wr5XXOIKLuOI5YK~bj*C$R*4)z3Bg zsl03s6{E2#$Q_&iSZ<QBpxrBRR3n%L@EOMqZml-*6Mrxe4zsjpoXAx`RKinHU%4yz zB0ex1!I{%+?{t)B&X@ABa=7&cI5kkZ%!q}VstYF~aVV$aDWl%%D?yY4=~Sp#M5+hB zZW&*<8boZe&*KtD_;ND`$v|sgWP5{+Lamw`EXPS!Y6V3Pz9CQaaRi=Ra-^q^Q5cxj zX2sTV@?{8q{uHFEZSzC|1n1DwBfD8bB7bLQ(2yH<Dt8Q((#vy<o2FK1|Bb}3H&&72 z+{%ys1mb9@=s6`I?~QpwP{Bf%KYxl$lICe?AqFOtqCx+1V6L3<5ud1Nzu+5*i;mg# z9O#{=tY!*_DNS-($QBuRk$NFrI<*xA6&d^Mfk$fK_v3|Z97{8YG<t03^#O`)^D_{J zqA{%j72f}I^)lf<q}TAz4VTw1{@;B0f28+k=<m||0{xNR-;n=E?<+YKQkpIGCB63l zlHR|_hQDmMymn*yYkIAe#;lPUV0ato6k;fAwF$_#loD|_075>34;s~k=M%4S4w-r! z=U$6=9OU!ZlF<d78kuN@_84v18N7e`?&h6BKilF@7u?~KY=zMZDnwh2Xy^EJj(7eB zYhX(l?KY^US(ihnnkiN5EBdhB<609~G~~RV>$Bg->{5Kti`Il~D*Cm>2wXPz9ks4J zEj-hD?fTaCt^F^8S&8Jh+e||qjtN=3w>39u)zJ8dLsk(LY;QWRss;K$dJm;+86;u6 z+uvwRL#J(G3%RJlXiCMz)}k($l@dbW+X6Ig@sP!eB@0XVnew2nWn9MNmooS%5F~!g zpiO?L2CZ+lwM~E?oBd#ZWO`?zP*A+R=od;ZzVpVedln*Qp$bHllx;45DW9=-q=jNv zfkB^nktdo9=>BB^Dk~oK@L9?Ssd^WSCV}hZaz!`1HVxBB9pCw5%FyWtwYlDVtZgI0 zp1%H;oicbB(>;EmAooJ?s02I6e3!DJn;`XbwPP=Xw$SkyKj$12=gWKbx~wobVEv=d zY>#j|VXf=X@IfT+^x<Ra%a68=%A`k0yCUqEdB<i!gjzTd;dY+ZIcFd&XWmF<D7%nq za54h>o(uT-j`d#HSGg`D?V>LAmdyFq=J&_LNhoN6TP1X14t*@dQ04G+NGB(FFEYr3 zG~abBJS@$(Wwsrkk`J@ZObvAnJVDweXNlFsl$b3eDPDgdBX88*B_+<6ddi)(59SP5 zr1?>uXKBa1jTDSK)ZhPh!t4oF3%UE$v)i7ovF&My_+y~^vVW~S>oR25kU`S{Tc8Qb z@W2TKX;?=(BJ0Ib)-!d&TQpHQsMIe1+n&^WclDz()0|4d1aB0x&cV*QMnor8mXxm| z$drM&PyZ9w#Qzf4KW|Eyy?oPO+dm$j{0#kVT>tl`#Ba!d#PyXd=gJ{U_)@aN|4Yek z_$S%$mzxr=-I)J604t>~>zB!v$E71L5ukX>XG4V?NI<^?)ox>t_^iKbI~04s(P0bt zAQW1eZl^I=`CROjBpq*4G9{J0MeKTG(7FHh^z^n03A)nbYH><%>nmuKBAJ9)GP}np zl~`g!<oSH#(tzFf=h!AiXk&|v$GcnqCr=a&4P!KRzD{{LJ<`@er7}B-?UQR*Z~tN9 zot`>R_6xWXB<vbDQipjLk&T>!l%99j;kLNEAN|Jp*}jK2;KvJ*!F~q+p5Zfg&(-3> z_?{(~I%5c$iA2gc6(ZLhK7nXM?pwp$W0<|N{o7%uHH8GlT3+2GG(F`{4{)kz8^bh$ z;8t?=ivs2J!lXTuH^+=gKE(b3H=jjjDV3cT-&(>+=zFcWzD;*kFdcWm!tV(U#^$y= ze*b`v4N6IAf^R#8m>#hTt#`6Vx<yaFA_*;jf|<t3%!%6lc~4?CDYe11pRs$gLUH)B z30&A_l8I}<UBi?q>Ub(vC{Lj_%Zliyw_wH^h&P*sQg_57ZfEIIEVa+L1Hs9nD;P_; zFf3nz8A^bhj=3a}sX(Ma)0xrAR<szbu=A^-3<;;+n(E(MH}=!6Rqc#mGQ(to)vTJ= zjKP9MVvh`=pJ3Jo5A2{8pw?ECKP2WuSVr+f;(#6_<{%|!1c-Y<(Q92Xk_p3ov~QTv z?nE2DR8O1ILz7uR78mZ|2wgQ-J2MhTEejDFMlfG@`OwU0%$W~FSlk5yffV0YUF$Xf zsq8@_uZd-%2p&nmxR7b1i4YBaa}Rx~qK-NjATd`%$CSEuix+?Vu#w)=UA(ijcM?b) zq+MTs%S<>ZdHT$V{p*fMsthXSmoT+Gao$4^L5N4~v>B9aG~dVp+OkeLhZM*gN#JqG zxna>m$;CLPh|%0(^Qp$ubo-oE$8NSLBUi7`aB`snVM+NK7f-9hL<w}IjXBfS@3Vdv zm=?96*s0)~O{1~9!4@B##BvP2i-sR{P5P&JT4x22DkJqqS3`_sr+<KfRUU5BD`s6M z(U>R-Yn3v8{4~4w>HK<jNds)}Eg3(Te9;v6!7+J`$h4>PE!vM6Iq5%m!`|tSBHiL8 za<A<lz40^jciwn`{+Q-}L;k}XuVkwNXeC?_0Dz!>+28z&Z141Qk^b6^<*x(CR2g~w z%`R?_b`WBIZwSk9B0;T~2+z&Yt|cD)+Bbak@X@f<`t*AQG}J97@EJa-AFO33a$88+ zvyRZdy&)tlDFN>Sh09GH9v+Su4H?FCIg)6wZKC>KCAm6@Ld8Y1?vj7rJUUio+jQOt zrQ_f#^(C`0`~2R}TA5SpexUxl&n}D(2U_9N0=(@3fE^TD9)<o1Tn1?pl-c1C9)W23 zyNlFmM32FbBbBz$>$w%@lY8*mLFiLXAp4<wpL$wktxqJrH;(pMSgL%>V~-YNevCxW zPGO`j-<Y{y@<x;p@IzuFi$XuGkzmehaIvnXoeD8uAV|LVeIHRq0S9N`#WOo{pVHZ; zTE7zMDZ8&7D9F?S{}Cf?;mXS28|<y(rbd?XHFABVvUPXfx8sr$tZ$zHiQW{8`vl<7 z_MxPakXOvEGhkT+zyU*s9j_Vi0E^ABBG()aXQsD+WHeEv`#3Obp&GvhD~eX5hC%z% zG!7e=)Xff$qqfd``-V-#iW977=~j7h;5td@<lF-_`>7y@qJ~zz2Cx9R!zdvrT>6IS z{Z1Uj;5m^tTDx&V>G{?`ezQEr;2UiIbfKiNDUEdKZy7x$WbS2^gh%oOP<CNS(F?d@ zwfi5-Pfpg%o8EDkE0|2v-lRUXTk$404>TLDTglmK=Mx5pMu<#wMD%IN`YZ;ND4fh8 z3&6Lc8zn{g%c%v02t+30i(}H`yulvZ#3gPHn%qr}&YLXf8fth$px&+1YzDzAupR}3 zdSYa172H<Nk%;q&^i94_02VImLY4$c0wyrDzTBacSAbNTi?G-DNE<ee6*iEgX7?C1 zzfwZK4AdkKWXHsAz*7QfYdpO}!3Ab3Lad0>8GKf8R?sv5A>Y&~a<HUWGpyc&Eq02e zNd4Vas+a(PW|UeWUo4RD9Km@CEqOmbb-WK0@T17g&fr@@Q4*c?N(d77=$u3sD~IDW zOvI^7Gv_*%cL<33jFJjVy#b|6T}UTvDRzcH4J2GVh2~N%%x#Hh18KWf9Q1q4<Jb|) zNa>WpIaz+<4sY{F=CJn8sB4}x>Aa{d5Q+Dn&{#q><`FN7YwPRVyjb9(MT|2i1?zUv z0D@Y^u@<EWJo*`7uBdq>23zh7*NS+CZe41E7WmFbBzujchIN95!5+9LQNgDfty23| z%%QegfY!tv_%sx;HxZ5k5ozDU`QOl3P`uY=mTwa}z{uTL(n#b>B3b&5#EZwyZ8>QW zNDb0IV!FX9sDK6P?maGD#IX;B=QM_Y<D;0+WA1Vu?eX=(%jNv3hp*}4tfCEEx^?dm zj!in&afl;Tb2A!xz#2oN<2oRwE>6}i#{3F(&OWZYz}%jIU^apdt!TDRTekVK!J=>U zTK5w&(G00ghd1Zqna%${XFC3QCiD-=`Df_wocRL%kIuZF1B$SJSsFF`%hKpCvg0pj zLjN#;{FkK>5(5G+86A)qs61_F6%?N^IZZ7fNW)_9P1M}`OWEArUal`e+>lJ$H`cSz z;0e9Az1tJ(o=n@CTG|zCo!c(B-q*uZAVjb!oo1{C{RzG*p}{yChzo}pk8`@UNc#Ze z{NSOR?v6V7Tqui=_i$e!f>hR(lIf{5tXR&q5YFTx3U}T7mr<aB40gjL@ZTniI3rOB z_?#^6OMQ2Q=V6Cvou~w}<RR_hUjw^}VBrTD01VmGrc~)eT>_#ps*gF$72?=r6xD^# z%I@e(T8&2cwC+D~pId?FXS-ApId=1Q_v>;7C-SoEe^AomdAS?~qE_z=Nus6io*y2M zFMbcaZ%0l`m8@P1Jgh|5NHHWEp@+B&E07;ySjTH9?ICSZ023*_+^%+V+y;|Pp*c_> zL}WtJ1bFQuQcJv~d@AVHEi3_!!PIYVYYVFnZM~ixGFk4FMMVY;238C|6>rUAy3A19 zm5^(1=GkcswRHDs_pW4q!pyyw95(d8zC4+7n@}Y*{Dww6mvE*Xka<8Iwa}@rC162Z z4f(@|H+P>q0Uz6B7vX8d(ZWm1>TcIi3o#+Xz@l6gWUz8}Y|mQZRvgcSz?iz<13d>E zJcD|%SlnLrB{;$;0buwg({|bwd~NsPnR57~krj{%#lz8Xa*W@`@r?sIC~TxYPw_6H zwsxtEdY!^wKw65`R(BmK+r2oaFbt1y7RYrp;pqJXgonz0=*Fm%fLtFWb)BS_MlWMN zl8j)Fpf=;8FX6dHkE{(+;+|3l&M5;H9|f;1(bL_HhtuUzEjQ1?$0{I9txRrh`J2gc zHTFpglbWahxgDPTUuu^>FN|5eO#83xA8VJNp})(a{r_GV`wjVz+U1ozD7>ln?InlM z|FY)!i){bPg|XLetbZMVwo;ol76Z(O?Sa8r0vgO(!0LXPm~09K_F}FX&ihd%KJZ8M zvZ*nTulSm{_;mX4-lYn&hZ&CSI256H&%8$;sNGli2(VY9ND(e&$+nzM2+O0|wWUR2 z)#o~VoT0Bp*&5<i-}%a}T_vBMSR*NgQCsOgHGJ#5KghWNxihL>KEaC@mao2(66)!2 z!3gAQ@`|^V6afORPze1bpo8q*#|Oh;k?A50C0=u&A9<G~(OP*IXQb(mzIdPr`g~-` z*cuPmkBm;g-i1<$Xs*yA{c*NCFe7%lMOsL{o}=ZUhCpq2O@=S?{m%N+%X=Z-f$y^T z)c8K);k&}d+Pjv8=b7u-rH*C<@^RppCs!rQPK>wcws8w7GdYxv+&FfzpG%=QXv`c> z&8D8#kg(4}RU?ASY8)MLUL#~y1fCiZEbs}eh85XuQX4Nea+rm7$Qg9vadLyf!@pU? zF}>-pIb@!pQlayH_<p-KB$tFjX+SF+LLvq)mGmLOY;1}rtjF?83?^v>z-l}JF9pB0 zRsAJ|j$RxJ2<)c<u(E+sUyb|I^%I`BLy*bhSvwLjbWkuJib}P}^jUEd<fG=qP|w&p z$@zJg=H=3T+GVD7%(x>-*AJF>w|%l23XY6Yf;Wj$F_W>WZJisP9a}I<D%%>YPy;YE z2!T;D6z1%BlR|VA%w_sfc0-qS!Rx8qMnm;1`wUHUJ%URf14M+K$zIloZ3N5nbiK0( zW(3gi5U6w<={_XQS*;s`jWj-@_4RVY4t+!$5i8`eve;-&&$GGA8zja%WJ0ar>S(y1 zDdCSevFdpf_oVW=0+H8g$|k|X=n?L4v#;OdQ^I73tCU~28bN(ICTz6~Tbo{Tv$KzP z9k)CjivSwH6Hh=ojG=Rrd=3px-wQRDuBQu96wm)~i9JSsnI|vM5`@rb2dwst>sUlc zUI?Dlmln+L7y!8YMQu7s9jwMr3)Fi;tlCzP*3Q$jD7X$CD981?fCf?uedEMek>~%p zsgd#@Y+(E6af8iEkY3wA+TdsC?`-e_{V^;5hWv*OUdbk$C}YhpHdy?ZS@|!r?Jvg- zuie=GI)KbSXJxjRS=s7yElT#vCpmdJiLAs%S!c2#{ED_4Sta)^0$1NKVDtPBK4c4Q zo8l=L6-Y1tSgAAN>fLd75{|M|_LXek-%v9bzRURVaL$pQdnaE+XRlE(dPiFxCi+(7 z`|{?wUIjT;RtJm@%-vV144jKJ%*BEbrg!9T^(cr-d-an$x?B&{r6<wiQ7PW8eh`Fe zq&P|(kgMTNjRIdzE6V$xaAF_-d^ZL7?EU_3_!y+Pt)Oq|-SbqKXfXJ*$_jsPK}%>} zA|>jo*Wep;-upe~(p%fPRT0$|IYE_icFFlkFSMGIDAh7M?=sFn4B?P1pabm?4%LG) zs!!P>v3sO_AgrIhV6J+eT{!eh%xi0t=~+NE8)qm8i33>(Fc(s$z9|>h-HgaR#^6>c zb^cP-QbTcI7N7V*C8iDYdJ<oi*qwv9aSKSf0nRp6F8hSZk&k9*&LEJ$r%)QCAcc8s z_KQIbWVbQn8j5~sp^zD@ni5po&Ux>kz_Ir7W8CUx2R@3<C_X;$fxAgbxRXXxSq!c- z$yQDaA{AH*$@*&PWF;~8D&FmGWIz_I1D6~5(+rgceYFy!de~YSi(uDTJ@fKAA31{c zNtmP@;3_-)sPv*^{WeGqO8<E|;);-WDwoJCYA(m}F2l<dbcXAzeQ$<B2DtKsO{x+I zP9tu2%h~#%r1DZ6OLm(*a|L-7RuppMM?CGM;95o_;%6E#VowR@7yRCL;$7{euqJDV z9@z<`=IpOVV_LTRa5dwmClxle$KWaO$z*?qg0fEzwe<Ey2j5Ks5#2?kJm0Z}lXkH| zZq14o{^W~6*Xf7q-QQ&=+@AnZpErCOGDa-FAqqQ3!@kT1ThAz7@s1w{^C91zDgLDl z$<!P4xh8G85C)o{UPGweWK%GRWNFoU?!x;~5dR##-`)6hH~nL0;x!6?6NgvmkJL3m z&#nr-q|WJO4}ttQZ<l+4x|{yIb?{2J`!#UNisJT5{K(qr9(k1E?8-3`1{H16i50|H zNCje22K0lyVUfP{8b%0lC{Zy&YO6G5_JP+AIU26n>#OhG&*2T+brT9j_c7{i36eYV zM(I651|DImmlEQ*u%=j}c{4v66Z+3uAWaADG{`n$arIu_z`OPC0b^j&bHfd7Bz*aH zg%#8pce$<@YLvQz#@@FU!ml<WE@LIK&miu7S~bngaIpH8<vz9be88hk<lP=JJu1N3 z_8bm@*X_<Vk(g!IMdsz;Zo){_cO6&bnqtkgkk7D6hge3f1c@xM!KS(X+3&#*X&3PM z3+%!xEJDEmMdCj@u}|#tvp)hTW))hA;kNp>iztFqlv1AMYG-^z(8wkptr(o@kT5}U z$E5{CNMX(YMrdRsJeUTA$i=6@GTW%D2um*-dG-OFB+*-rmYlaz?HFiSvXk2aW$Vxd z4pHzcm-G@1G0)~+6xSd@6N$xbDFJv%?yy>J_nB#Cn9k1F;AY&L7Swagp;o|PKo#<4 zv*NN?6ktwT)}3xUkGCudp<sDmDyFSP#%XeJm^G=bR{VjPbW@R4#lgngVYgXTID$dl zs5+4D+BkRW<$$}EhVnRX@s~i%P3__7LU0k@rtX|@o+@Vre-PMk#?2;)U|d-mHsteD zJ9dCYu+d>oqVXu5lB5vF+;RwX`|{mGPUFDc<4FSWOdb~D!l(bihqt;r<Fl5;F45c4 zqHyM#9^(YaPv(5Hy?tu3O(&uIFRyX9V+F*Hyb$^#x-<U2zZ#wTA0{%VKi|@3|MHc5 zZT~ot{S5uxMD_yxF_Ha-{70l-$vag{nu#x4`J@oPzjF8&+3A<JwEaUjR>~vRGja&p zWY4|;#lq5Ni2*c%mI%VDRVO*6lnY7*>7pMMgg?E(E{0G}AbDeN6-?@kE&1r@@!pqi zGb7dGG_NwmaAGu*gUP|<Y<aaUGaB!9?ekjeLV5b2v(<!@l-Ba6^zPBI$kX(}0AvN^ zP2aDRc_s$%6se2+;{lgu;H3H2C8x`=O?7}$4oGu4Ry-9Ia&~Yt5rViBeYbD9UFr6) zbYuWXeXLY)+IzcTF5pI2oHqz7f#rF9tF6mH#pffk4So103B%<;n8@AhdrS+(s2Lp0 z-=_i%xVuC6@nsTxkX2<}lK##$V9QGGRPPTwK+b;vZQz}fFc8a-qhbpkid9U&M+(9G zm8^p(v7M)203cd4VYL(T4ZULgmBar-**Qk%oqcaVwr$&u(b%@x*lBDxwrv|t)7ZAn z#<rTId6H-5w>oS3pU#>W=j~_TXRZ6XzWZoz3Uw5?B?DpmfN>5+%w&u)<LHX23KmJ1 zds9dWkxQ0=UO){Ff96YNW5oUm(xqk1A>WJmY)Y{Y>5EJ?dA+OSOLMowO%Fh90sBCR zD@K<^=R}Syfv}yj8N@2ERkWS15hez(QOZxO=k6QO3<iLuTJ#%)&X7KE{g=lQOddOv zDh{zM&g!AK)ZAcv8kOv0iL^DMx5#DLmUswj&-NxL6v8-peKg1d)d&$z(|Jh}Pz$4T zyG>hkBLiPDhlk8`&RW)2*Vm1ljJ_sU8m!}7i&N-pG94&Jnv`$I*>L$-t&@^;$3UEs zG1e${7R*L|nvz%&X<jY9pP(0iR;RL+8@0!j;3j4jiN2QO%?=!sKRlOVSo7o($~37Y z^)uL|_9|VIgIZS;zyCUd*BZrK^^VOix;udc{qnW8On!n9iY;|b9!g`E#D(h9aF>VF zgoHX`Izk(Fyr~v~SW#6ai!9csp+$^EQm^+_5JM*zGG#PHa1!5+uEV!Fb_lS?B0qhN zg&$-LFd{SLADF=9`DC|^jWHcds)^K{nwJ30NF>%9QVKE9<HPLmsD@+qWNlPrQ9V<H z<lW*R=7yIPr@iDz;zT(FN~|)WU#CVy7S{L?LRk!5a&cwcbCx_r`Bca`<xGnJxr1Zg zyjEBdJos^NdP_ytU#d}um$CX|SOV0h5P7ri^rQG`IPsIj>(f%X+D0`-x|RK%*?UQy znmT<6a&ugEzT<bCt<{OvD<}3sXsXs&qjTQ<=YCB$fx3&~9fC<MSR`q6DwVsgA#>@( z=ThC>-?FexY$Fc*sDsk%%Z_HM9>nOjdlDoe5V$Ud@%H|5#V7SYSe3oqAKz$)H=FvM zRs9|MJF9wy{<Nw$^8cs*T3q)Jt9m2Hz7Pxoy;>FQzf^JfAKBjS?<v4r2&Z2skfF3H zgUpZ8mN<Vdf=tp}VA>plUi|Leq^Tc0!$b~l?JD7Lc48TtQUh}zbdT6J>|8yc!Hdp^ z-H7*lBeG~DlVY{kBM)h3T<eRoybd4S+^n12jNOd!y`b%L$1fUh?D)Nb`Wxx4G2lI? zdvQXO4bm8<fy*Zqxfz3^IfeI>(CLKXZ)R|^Z6M6hqZf*{klsUo|BT1qHLyE2g1DP; zz>%yA*cSsn`TA^P?mZwczy$EXL03Y5lNbO=jsRQ^p<(z1YX=a*q`cNJ6ky9)a-UBz z`nT_PLP@<hrEDrKw(HpNE%H|)t5^vXmm)Zw<J=Z=7lmo}YXkcz9Z!CINqr!MG{8Lz z&WL3M5S8CT5d^te!Bs%G^J11iWlASE(*e(e_nWt=GvkYOizDo!_%Ric%=zPyPF7^I z*LyCc1GhvPb2X`K+NSg0WwCM+ia8f&stj{Ntl%u%S)RqT)#a7Dh;8==OdwluE}=(< zJ-#a}E1gZo08aJ;5qTD6ui!h$3Un0@TVfFv@*~1Oi0vZI0?ac@u2Q92@zV@n3z4Oi zkkXFH3W@6;GuZFAyFl&ep@ReFn1BOTA*ZeJDJ}zRZ#(bCUhd=JvIN+~>xey0%Jw2e zU2(Tu11B0^Dj%Hh!2^FJd~YKx_+^8Q-$>=-7fmf@&7o!@hgOLKjZqGJ7RvSO3#z~? zh1Y6m64pskM+%gSaJZZ67L&VWXFZV?6!x7=z46iNQ-0l<pA?~dXO);gi_+YMXf|_6 zSUPpM(I{fB<i;@D&vnwec28-`kbjMtL~6@--gNCk@us?BRje!r_8y4b6JSlZVS*RC zX!bD_N(DRaF|qP5cmiFHZKPfr{UpJezNv1A&0zzaaS7stGCVt5&#uU~ZPFyui=kT> zV?)s1QChBWEJxNx2_)q**DzIJCz#Z(+WVq>V=`(VbAi+t@92`rN1QrTkCGyAfHYI2 zp&3q1O@WwcKHJN#;pDfNc|@>(BOI_-k82b#C%q_0TmItwU1B2Xh3#kVp7tMn;lrQ4 z@FpqeUuE^r(BJvOEA*!?{D%C8FTDNSdnC1RqgP)L{g)Kxf8-Cp_`+KlmtQCFn!+d` z%OhxaC+Q_r0Z^%zVGmQ$uvMy8XG3Y3CRkjh_MjB}@RJb_BqWpp3fzdS+J9uroL+S{ z2BM2?{A$B1o7JY;_W{F=QP=(I^27~8ZyHt*GawVn5G!^fR)7uLqWP%mHu9GD+vDlR z`MKU1L>c<y8SjaA$2UALCEvJ8sYcTPLY_3u`#5F?5_sUj4VYzvCl)8HaiuKq%HyoU z)PXM}M!qY>%PWR3ET78c#flkCDxda@4Q<^NUhmt;&gq=-1bGkj6Y{?+$b`z_{7_P= zF+{*E2ufu(EdsUrz9;I(W)LDw7D^5n+U7zz@*~VfvKSHsts?j6<_dx-vvaC)D-9rJ zcgHa?21GmnFm(?R0h79fF$0Pn*7Wh@D2uPW=4ibiYW4s~eNowB29{xn7Qo4hmeDq! z((wiiKpK&yVWHoOm5s%=+E}$=(_O_^O07tmW}52?ahS1i5dZ^Uk}tcgE%dVy>LR8h zRPD@b#iT7V`b>(S$oPXHJLU=-Vp#=2)wO8UztHZTE4T=#>9|x`lXE2145suYCk!xJ zD}uDvPVMsfmhdi;Nel9N^z9)&t}Lj;-VHTDWTg+=^e*Q~ExHKCOOIxMW&p}BelOVA z*x4*JMl1cfaJM>%WJiclfY4z28UtYlizCN>p$}_@Hzz($WUUXD^k}PyXY-sp;c9|K zVb-H?pget;(TB@fYE(5({vmY$-@<Z6Wf}(Z>uS<6!W?-0O6dr_9DCQCB!CbHCFat? zTDow!=1v`ZPU)e|k0lfsV%e&Rb}SAR7xq}m8SN|kzzVnw$fRrm(KB%AYA^oYVZa2y zh6E)V&7$(pSgkile6uUlxXlY)of%C88cWf_5-$pjO1NF;x1}YAms2!0wSXd?#jS*B zc3sQEJBQanIwE?emCGv-{DCqCj>UjtOZ!_SvsfN#gNL>8@n0(eCxV6sSCRKVj&)Ye zA0a=y^pz5@9TT(I)@`)n$5A1C!$x|H9MFX=I1H&NZOXA(-BPaVkp;-$Me}5xHc1i` ze;EUJ?8DxZ94UylD4Sk>&%fbSZtc?(i&}bMgldwyD*goMbA=gYz^z>%i%QMHmh`>l z0h*!5c3jH*Q()*SIn102kjU}9T4R!F&Q{?aK8XkKW%3&DPnSsl57uM)r}ez4_Ww}s zKSO_KJ+IK8*7F<kAJ+5sbKAsZxwl_8Br5)88}NT*(_gITEsX20*5mlP4fy(soQGa^ z3TS!aq~2gYN4TaEHntMODbJuc$0#h2q%2uCJLzUZbRg_{yJcQ%2#x`UODs1(YP%ob z%tD|CWHhb0xBv5J*_M{QnueCP_v51YE+w$CkyPf=D3C4^YFJ%EVd22Coi61$G0*uG ziHU1<cJ*E$=z}*vHaYy0(bCsMXd4o?m#s(PdpBO9R_FsYE?ov@0@aqyAtI47>z59K zQBbX<_|7k-D>egt5j9a0%qk8&@1m;qp&;gZ7?@g6-DrD8blFjdWc&lW+Yo)<tL$gn z)<V|%)*^^c&~l`PgR|-z#)acoC+6XlhL5E+<SBHH$;k_vo9BTsMJM2XWT}M@s$lW9 zg$Wtr!N!6b@klTL_D{itS2KPFQ`WY)+S>fC7Uktp|Ex9By%rnzp6@b<dkSS5DpWjH zDJ%&}6C5WFiQqOES#OmE!^Du8BdJyN1P1gvh<m{-4`;6aj2SP!%NE1f1I<1$9_2b_ zAy6c=8RYfGAQnYRV*I@iYu-isJ`Oc$J?^&kfw~j661XH3V!9m?G+v<4m+J~})wH_J z?pbAP*-<mbeD0C?{7w6V>J(%GZodkI%Z{Z5yyvgR9tXHCbWH$Xw;N8FALNoFCiOF^ zkQ!UTy@Dclha8j+72ien+?rTNjMm_`F=XDKSlNS@e|g@y?b`cTgdD7s=1i>#pFrt7 zNZM4o=}_&`o3el8<skt3i7i76K0Qc}DZ&se=+MpfG$pd3rLj4g2UKOyMu!)a?4+^% z@F{re13ktpl11(pohpY}hQ9R;st`3D;faMP(K8nh{|nG-Z}!Q0EZtoYt**@k>f*v} zx<mNHs`vKk5?4MO(#o4Fne*Ypl#2VP2`&rGuk8ugzfT+`mPc>A$jbDau$o1g^Ab*# zPufbCDJX*h%EeNT`GLJ-N6>Dqe+oF)r4HREQd%PO+#{sat~BQ0QoG@ARaf2GoF$Qo zL~*?M%M<a8|DyaquQIv4iso(n<G#t?p}$rBU#~L#hWv-}-^iX`IPm7LNk{U(90!{I zNjClED$`pS_g^RAsnlG#!irGwSr-Xd<|DqX-;p(Lx37K1!T`&Pz3OMABoxZ%79bUE zo(~^7S|w2F!l5k@8;Eb)J&dmzj)@RRc!b8b(wX93q*W4lew@3_Zg-+JItMN6w5cpK ze!l_IJ*3bxZI#Br+lpB08N1req-hj#x!08@Z6oupf7lLJsYY{sF=;6qPD`T>=iQw3 zuoV1=d<nc_@FikMZ()b<xQ<aq#aD}8d&pls++J-EJn4}GW7hSnJltm%1=|qWZE(zc z$GyDF({qJ>vv$Zfm{MbU*I?Yy4{d|3+{LS&0>>Vwb89vTT6t6Z+n2lFA>A=@X}lT} z!)3L3AVEBKKnc&S!j3)SC10LumWcKA64BUUKsP|P7lI^|c7w8Kr@3t4S**R9ACKGQ z+<>ZbFA=Uf^vdVbSxkz`l@mf^Oaom2?ZKp-x2aIgl}(vUxS!p30t!!XmT@tP`ZA+D z7}{0&)7$l}D1cRhG@ys@1!8243Xa7H7&JZ);;S?JLP;z^nH}x$l0}gfO@glvj-7gh ze->@!z+c2st48jm1xX(3=PsI)BmDLtiOnn8ti$d=1|LZa<euh{gs+y%hX*wUdNQ6x z7Do_1xgOoCIwy#<2vR*Z$%d5#J<@_{=FIoR@BzA1J!(%@jBqq{DQ1?h(7q>|(jvZM z7AYF!J0q5jeU<PN*HRup;DCC~!b&hAiRDv1GC$=*MM+D=!(0VixlASxyjI@(=A%nd z)t$C754Hl;IPP#;E!|)hP5rBA9O3x5e413b9UV_vE67W<cNtM>qihKYFLB$FXHYgf zLtBHN3ec<!j3pAl0sXgKrUu1KN_<EeO;~B73&n|90<K#zH&)23sXi-+5agvJb`o6- zYVY($*abZ=z;yura9Y)RTu$aqBK1vVAC?$GtE9lB(m<M%r4#n}gx1XL*Ip8M%AAy% zsE7z9iNk~K7J8SV)L@eSvaK=~b#+70WOPzoK&kIA*Qulzl&DroM@NrFYVSpljk>T2 z9i<_Sq7egm)-w8xcjuX;gv4Mo>5N4WWbi&qafY<$g6nRZfiSqOq}=?nzcJ4@9d@%g zMeaL(5R|7Ab~{__qsnM}l$7q;)2$&T97k0~;0)insb2*u3^Pqp4S*({`6gypfI3qN zF#~HE{m&#J`#<=P^`F;*-lXgKt9<_%`aA!5h5pPu-pC&RH~A0$dHcEZke7hVubId5 zzhoZ&BU}G+E$AO6psi%}mU%p{t{8NHIq=J6FZ(<%E$KtEmJ2uG@kL^4#z?uvrUNu~ zTYvG7z^{)x2{KB}9qca>UG1LTB7$wa7oj=CVt27z0NFNzR*Ma*MfIFskbzb%X#R5l zxUV&+FUKpihnxoMFc#3IvU8`nF&RSq;ORrMj*3G8CixJPwU-y9`{VF&Yn2GSsPju4 zqY!^LuwDg5Q8=zIFUS0s4Wq5>N!o!d0)~b-4c{fWVr~AldLAViejG^H&e*Kpal*ZK z0~VlQ3hzI#ZX_P}@R2-@h9<>!<TbfF!ugla+cyUWa;$XMk6^$=sT5Bm*!g;Ah#FH! zNFqmsT1RL&-bCv1j1OjXf6Kj(ZuTYNVv$b;)|o)xuuP*5GdTsXO?CEhWw^SE?tnFC z?TRES(kX4#t*jeA!sL=P;)Uu&STDD>dALc<f*;1#(QTD)fOi8y!L~9Z@fL$60Yfjr z{5*$;(yS84o9Jwns_~=rlH+^v=sux7zys&GtB|#b2c5(?c5ag$-K>c@%T1<d=^%uY z4>3pJKA<b{k-DfefTj8g+8Bd#9E1x^bh(-@GqW;~<q#$*3G(;B-jrJ(Ay3}yh4J*q zaT|!wsZsGTFj+dlt;6=U?v#zBE5hwxLK8&ak85shky&DNh-d5<X22d(IMS#!;3ynu z_UBEgN6+l>e2=A{VfULmp7u?S3fcd(@wG`;BUFbghS4H0Q9*JlT#7E;`v{q-Z-o+Y z=$st0YS`539&vaQoJSdX7Jgn4r0@K?TD^SU!t<*Pd3#mda=mc#w=gKW!c_jbM&QKu zAwlxc!jZnrq3_#wrTU>a#dxUS*^}No29*0DG7O~RXw30#1#|@<a5lsBB<()Uxr;<p z`OIcG<xR;N3REN~y`bm-Mk%EfjFk8K=<!XY)YDwCHC793YsT|ts+GGTV<3C1KJ2FV zR+<=pg4h9naNuxnv#y)__7}nD{0G77oBXl+>GdkfxABh&$KRp96Z|Xmr{I4>{zLF@ z<gf;&`L}}_%YV5${Xeq4$=`QB-@<tRI)Mb0VVULEgPLxWYAU3inqs;6x@HNbCw}D{ zUdtfW&%P4Xr5aGBO-@K@>|Q^*TD@nOOm>&x0)){a8>3t^IPB?8$3!a~p*@N!ol0c2 znrvGRI4!s7>{08{S1#Y3j(UV++vBj<g&F^tLH*HHUoEx@Wn7VVRNITo*>}0W3fbn| zQ`ZxL>hYykt*f}(1acmRSCrXSqe&pKIxq=nlbnIlFA4|@_esfoAFFk>WST>=Seq_P z#3Gu?L`=LaAGu;w_E|M`5V5Op7XrbMJ!~b<`bz^D9Q^HF7EtzNKkBq0dX}{FmR%!R z(h~=ds{S)@4%8sRvQ=@1Zpvn2*C$#K8~2H?w=Qy<#y~}gohj9GWNJGA`5$-W*rU_B zKr*fovsu)VG&}^h!zL17GG%E;gE<Ng2M!gs1tm8t`g+wgD|PJdJ7rar#C7JF3xs+; zDtAbg?%OA3U(@SypYP81t4!Eus~>C^SsKx>VCE6=+%i9ghP?n@qFyEGz@WH~(ggT; z5%Jm-$mGu<g$tW9g}Lelr=qCwuB!w-k)$6+e*LbV4h{DMW?fwG*{^{|A|X}Pe}w)E zQo#F(G|FXe2k~sMZvDZou0cb}F9$!8z7z$h56YW$(<m{|J4mWT2O1EI2jX)enSpg{ z)Rd5#FBo*291CJFbL6A!bgB-jd?N1tCX(ooYxX`k{F=@Jv{x2FSBNo9X*O3f)i)~8 z4t@;}&o0_M%DK?PZx9>T4mXs5o?n(hF?gdYd^dJFr&OSDbV0ZtNc1TjkclAJ+_l=6 zLq(5J2^q!eFp;Em=7XDk9~_*7Jv|`|-Q*X?XAN`}nGp^`o4^pCso<fMnL7b>xYbj& z;E%M~wFXEz-k0e57Q!ENNF6s(fOjlaZ&t4K>Skj)NTm2ee`F*pD6tcF;gjkjpx)qM zv7JklBV-e%%vH*A_*@}Qws&_9-EUZPbe7_sYNR;I0!sA(lP?Nhw|V^NfgX_(GW$>^ zXzW+JdKFTH^Mrb{2*HTW;^$cH=qbrrlFHKV5i%b6ek%f24V^he`~#m9GfgoM)amlM zUbQxUWYiB&^(?6umJnZ4njBSt1L^1;fnjBiA_Yh^g!W|I6nQ5`T0!^N@WN*u+Wbd= zLiB+Te2q^LS<uz_P)*8rFFoPnE2Z1u+@@UyV%i45!<nUXlk6_f-9-`{%a$G<-nET% zHBaQkwTuNG;xB)(s@(rzRi=M7((rjz`P=wMtNJ_icUJWZ{b^OdA^%}jZ)5{f(9pLH zS=!g`ioa_D_&>7gFO4+b!ub9=fdrM+*G3vBZIw}*5vZl`8x_|w#liH|vkM^0B2z2- z%FRfrNcreZDiVD8Cex&SBq&oPa;d5*q8B61yCY*HsE569Tqa}bS!YiXIR=7Ef+;z# zW#7RA1Ic(9uUEHqVIq=E_d~ruI)r-{j?}<a-_Ge+awoZaWct|#E;r@`5CR!lU)Dbl zo+RECjePQ7*TdbqTp1dV;&;A%53_yK$?RWRpVNgOX5KcbPbMdGzo2j_Xql2(OR5sZ zLh0X7@?8}~pvSA8&OX!(D6=MXXr_ZYn6uYgbvwSEYuCm@z7=v(&#WYs6Z*Z5-jNj@ z3B*DsN4hEAy1pKla|urpUw|4AKcc_{OUF<m%*RydWyKH#%Egi;Imj&9q68-O&ir8% z0@hCpy5UIsYb~Vo-$P~blkdaReD?gJ<{m6ms9VTJTfcV(nHPLui!yLYsy6S8W!*Mp zFnjHrv;4*F^KGBxzJ-JkW|$+0o}y#5KfXwLk<1NFTDJ<*icWiisXp}slYlZM4;)*& zW2oMT0{Qj8fSW#<T3xOMuJbv!bWa=;Iu762z(SfhyDtYH1MX2nxl-?d06A`MWN$p7 z&#f<Orqq<RI!qvE5g6(9efpx0kt@r1KeJ16-ia03^Rf0E5WpC!chu{PSAV><A&W4+ zi3zZzUtFvbD_@_bYPM0$2#JY>O1$0R8)f!^t{A&$$C=~AE?X8%))c^*7ez!b+oo?3 zzHNL$y8HGNdpLs0*=9RP4Y&L)A~)4MoNV%7cvRKY!IZHcEC2zdFJY45^j#U!b3({e zk#mBitZWtFK`p%(7ECmRz1GKv@>POqueJGesgseA@bmLVyL0Jrs#~)ihsU+GsTIsY zhhXX>G{}8Hig@ej`7nUF?YvV5i!ih2@DxkiV;grlj*?{0UpdM`M!p362|4X8r3 zifPt3AWjrjRfC_DbF=8iJ-$W{x}d>qS`S`wy6Q>~(M{OZ(wwD0(fZwrTc;2C>!DsC ztT;Rv$<+rSdt!@$YV~*W$a{zrJqt-n0q_KI$9BBjku<^udWG&sL;C_pCE_B>7DhiQ z62hb@Y2q<+!t^^IM&M~-9Z};F@nnI2zl6#pQrVBd7YvNd=Qyw4G@0Gu<`fK`fIkv~ zjIx9t;C9S?`AgHmy#HW5hJRN2_j^_C+xSQ8`8)J?*7FMeX+6Io|6x6E<e;XHXdtiF zgZVGpGXEnR{!;1xEsX!K6EJ#xnfkgc;%3vW1zdeiyq9s}SP$yStfK3eQzA_@gK5BP zwG4Pp@SSj-4%x2b(_Zp*8DncR0Jzk0%^of;VrJ%#x4q6`6-1YdHcf>zq1K2`B(B{2 zG0n>sgmn4&-2?4#VA|8QVS?&tzsQD*1U&5!bNe58#NEF3^x7G1HqLTklsRY|ipZ^~ zYYD`+VE{|Z-uaBm8IaiBB!Qkb<J`ey1)m<4Awui`%I6CTiOuHjRrGny_o<}~Qwlde zF`H^8ggseAnR8HPCsOeJ<dtvcq^re>?|fr{AxA6-WH|8(P}p7il^b`~ROzA?D}5yz zM-X}|KwNFHyp4k9QvUqu$-J%xerNVgE+AJD%1BU^H_1Aw=`IrwS6p$E>d|RV0lU?0 z8p<kD(?E`uAjrioSglmKF@BCDLu?Yj3KDJvukO@sW-kDkh&;P378|9ccWpy^EME<< zCR-IKR|rrudU^tQ7S=Ho_5z>*1-ZxB=(r_0Z_O2dyy0*jE80}K0W(%sRFovq3F{yR z#t=KdV2!6Ppxw=Pp8H*4aeS#_cUsixddt&MI8A&0Z+e^jxD30gS~J8CGPN-jBc*5c zD$ilVk|keA0#eEg==0~*QU=V{$=N9(UOT5gP4t-_#?4xC-}^<%Vz}mHL$NLMjA?78 zq!j*$s-9>&HJ-$)%?A@eZjv*v8)&6}KSa1&C4pWj6HlDOoqUepV+&<OsCP0jn4%en z3;<mDT9P~7uRHn4ahJ%SkP@ww*nNqqG*wk*37gh73e@dz37OHs4Z42b1Xf~CsK9E= zsl$*+)ksKAe~7YX?V@D1>16V&ZhQ0fgUI35GrF-bA|F{9oso!OFN_*$lGCza3=QO$ z0Dq++9kZe)p(@QlOef@R?ZIi~PaaX4=V%VndHu%PHzYt`m(zFstMEpRf}_d^*4y_g z?ZM?C%K4I5={sHBf>8s*yxm3`QTLZh84lD(%)W6Jf3o&Z&2V6v*ulxdv6j1)DH)ba zIc?Hg31K0?g!%E8GE@2g!5J+6e82JORa9@|AD!Xv(BC=3EA*!`{D%C8GrW<F2ve<E zUY$YjUv7{5k8JVF`;E6Sfxk|`QF+xGOBJDwRW?>a9`$1>^Su15mXbs~`5>|q^rFV6 zUZ|OJ_2bo(CUtOwin#79U@DdMg2v?(&ma%`U5svFQvdN3Cf@ZC52k2LxsQY0c#dG; zRptd3`$W6T(Qy#-FYg~JyNa>yJ=lslsi|=`(_&%Csb$dgZybfy$5LACmgx3UD4tTT zZdNPte>f{Xh``OEKAjIBk9v&<M&89gC(rRX+sQK!!cBm)Hr5ll;VTlz@_sYedQs-1 zal&UycL%TXc2%U_!$$1E#3|_zWB2uB=2J+ubBv!X*QATs6{rApPITE(lA8q2>I;b{ z9mr_BDUvIj^vU6^OWleWTqkPS`rwYfwzO5Fdt(6o4N>T3Z#;7nKlh0#3p)5aAvw^k zvxgUg2^yATD^>WxaG};3&eQFouymdRXGx^+V~tbza!m92QepI$7-*>d{MjHNafz5I zh(MQRKypaDW+z}$a1Mc`9#Nkj{^M*u@-@?E7KIV@#~(<9dP3P#<S#n$0q?EXbkFZg z5a`LLE0U(}_fc=0utTJ>2Way^5PmEysSpxW;cK8hq@%%IHIr$R?9@&G1z4#8H;?vh zZNfIu?m6{r>WP|SC){yR)cbra&~z9gX0mPTEMVe7yMiH$^xQDpRV`}96<L*6o>95D zpxKol_@QL~HUHv9LU#gGRyyH%;KV!OS<79V94%Wo;(n)mAxgG_`Xjs`)hsZ$CFPSD zhpvi=_Uk=I$|UXzFkI{rWNq}rujc6Y%Zi_s!LcYGgxGsc0<AsEZg=OGoOC~4H>PV3 zZuZ1eUlH(X4~Vd9Qlfq`)Mz2tn{G2udy0z0Q3;evTE*(R3u-B?6a5@chpvWRd4n-x z7{FYnv_M|Pv^@NwD%~;Rsw+2aq~6Lvx)P5>q*x{iTe2?->#F8fU_Uz!r@Yf0_vY}r zb!KB>Y}G1l7Y`iLg9FUS6A;C<S!<xDu7<XSOYJ&>TsHG)1^;m6CEoyk?ZDXKTc9TR zP7^fGp&=0DP44q35G^C3$tZ0|0D!3WkL77)u>MLy3}mTjw2GS)WO<iI1sysm4($ey zZ!j0pv1lUL_W0%Uygluri5Sp~ig4BqUu>Zzaaj*xFL<4y3(e6Ei{-tWsQ2oszAx0g zXKrf0ou4|Ds2cP93MPWAH2<u?-&v37fcoGR%4LBdgsC#N#?ft$Zx!8QT#xB4xtBJN znDAk&<Y^6nIU>#Q=w%eTUQv7=nN`&q+pkYt^*}jwQb!amSc1F}t?m~0=WcDme{eM8 zKbKhnuV(Nz{?XC?4*i{@y+VIF+Hc5zINBRIo#Ko>@zv45|HaY%M>hUtne`Ut|8z9T zFkE329TTrWYEax=5xIVCkxK$%<77UxQ@BQ!>AkrvW@Se#Hxr`ZY%X*^>VW2tn4dr( zInyL>Jzrw>(hu9h{lZQwD}RhVK9-&dCr!FT_zV_sy&gS-d_&Swm0!b?t4vQX2ZK-x zJI&x%1J=#SJ+mh}?1XV%KE~~9Sa$0s?WoPE>;hZr>xf4h(06qEp7K6&hm#Zhl*9Ep zz0~W`{F)feq|rkh75SPDWJ=W=+x#83{RUtu4JpT+H`#omMMrJE3XX}7@qT~x^5Hl8 zMm&Yv)ZRxsX<lizN1MX0)6}jH8-k6VuuA5IAGXj2#;2(PTNm0<Hb$@efAk;R0Pz%c zHZ$LibhJ|lJ+)^3$o#S5{q^O8Z`&g((Svh4F3}5}^$XJV^79>SlNL4uiSqak+PU$I zg5LV6E{;#{!|JW>V&O~b5f}>krd-SDH*ukED4(98E}`3s`8}nlkr+52P4$E_QFJ2a z@=Ey-A_F*n=VAmE%tV?ma;jwox0zrcLU%_E&;o-GL=X=X)qoA6SDZAlakCqb2%8t~ zghXa!`uVzadW;lT>ktHDBU~@ME|54(*i7_KqN4&)RdG9Lg>u?NnT6QO^hJU@DTG@v zn-2{qUEIoV(k(Fg#rm`&2Jd?25|*AWSE5aVl~ZTxqwvJ_Wrk-2%F(;LT*FIqwOB4l z=W8^>W?P6;XY(h_fQZxtY3$J_j%&O4L_D2`S!1IWXluf^-bZ}`b1x;Pw2BXx=4Diu z@^3(qPYhkFkD!ejOe-Bk0j&-cHr%yW3&ibTP0P)4T9(PH*S5c~<Ul;lOiv%!LYf-~ z*3oX{LcgP5j#1P!FO%J#<I9LPGKgP6a5t}zVns*S(kgt0u$$A-i9R+_nlP|;w{$*g zRTu&_H36cFi?%mEF&{ouboDSCp4C1nKAK~_ob4x9`7+Wn?~3+WE5p2%z_nZ98xEM? zR~}Flfy>+=`W39&_v1j^cd69I)>U<hiP}7M3q-v~q<*$ZoWzm^>QTV?G7cZ6qYaH0 zFm;BX0T&t@YUd7EF|!qSXURU$DO0B1e?)j6U})*=7>=@!1wZ3_lU?XqZX^}o_bwM! zArdb6XlKo+AXl?RXTY0p7@DTbo+GZtPx&jiBNg5>o_&2O^J3;_b0dbV)*pGyWx$}q z_G@vt`u5(;gREV-;8C_FFcCSZRL&DUm^p47N}t5Ydc6PgUas&zc$JyqAG_B<uTp;- z|L9eJhyKp1UZFp|>Nn&+yy}e%9Dr7I^?F>T^e^kO|B=lM|Gs<u7AE-D2^c92zx7sn zZ^BDlgeDeNC_HJ;23c>0Z5Xo+zMr6PPbwLR2V1YZPPpTl&#{nb8j1rKl<Gp@?9_hV z1DFN<zPB*O4)sWowtMmW?g!hg2YN@RHSKBqu_mM!s}snq$-p(jkz&I4u;$oYX&7aE zdF-|&F7zC?A(_2ilC;E693N7wM7amExFonqHJQh2twF{`--qeWsXm}PJ=Q4=#B`jQ zx|sDDX3z}C34XIREspJs2KsL8lG{b=_Dz7WI(<QYAKMN9UKk!5)_NPm#3gini3|#R zVnU3GCV&;?ep4;498v0tMAw>(_5<X4Ws{mI{#^_JAj)%FyE$D{0HZ3$pzo|C&~-Ls z+J41`9fhLc1j(Ec?#}1hS?Wqb%FJp*E9Fx4O&SCIfC%{5X3oPUb!kr)0>v){6td~> z!PBtI98*(7vdk^s8HvU@S=M$I!imosjID)GQsYg(mT$1)DY?<WtR^PqAT};k=T=^Z znDAE!cnb2mW_BvYjIezyU2RPKB+YrSAD>%Nd45IM0ro|z>5943jes&ny}vM{(G+O; zBoA_oe*N6dn70i#X%Px9+);E@NEH#p%e{PETbS)ioIK}yMzjI<ZVj`>7X>b}aF&y~ z?eSB5mHx^=+JF-p4nX}REWz_jcIC4lyp17g#nlZ}n+yG}Yh;M#X7SQ`c&TPXz58|X z?}CwJ`X$R6KQCV7E3h~j_Ja#if0_eCt`3gXl|A6d#LuUVHv&9@)v5g;XoENepyr+3 z$~+r|dKamqgKM(HWT1n)zwouTt3G!zM;lidEEGQOSt)G<UsB3xESA=Ek^|wBtp9?I z6nz$jfW|}er|YXep}N8Ixsp%HtxJ-Pm=03p!D5%OFtr=sL-)u7mMZhdv*_seTHx4p z*=3wem<qTj$^dDWU7hCh(YKnXV?YdXF$&;W?hplYu>135=6Kc~r!|R=I~?Z4ijw9^ z7U6j@XGdcFn2S`<tPVGgnLoAW>puOZblBfD`@4sB#(&<Jd(%+JuR8jf3H=@VJ0p07 z{xpI&^8caGH}X#-Fl4X8n13~bfqyx-{vX-+mm70$AwqwhfV9#dP1a247-^%?%)awa zX){8EqQsGj?E%$|UQk4n2E-N)Ryyy4hL$si<pwdhRmH}i40gqu%5QIN#U*0ESDN&Z z=F>JAwjejJVGPZrVwIob5Am)$4txg1L%L}OfZGO0;~5TY5<s`ZdWkXtRtTcB1-ck` zhn0yPk_baslH=N1W)%q>nrsGz9c-{>qV4=#nUdYQV>9=%{f;^oK`M?*=Zjv&-UF=n zHWx!JELMFbhd?{_I7rtRMX1{}FDXcg@rigxF1ym2R7oO|{$?{k1(QOj`PL3aU;ah4 z9E+7j0&D|?eL#J$|IUqHH<yTyL7;O{k*FVtL@!h?Q$H>LLOe})G@k2CE0dXkJ@Le& z2@?9PW9rFzRZ9Wo*9<|KVkNxD&H#9E$&T=%lCov)Z`7s}xwiCP+u10&GnkT9!i*^n zqYl79OIL>WFQVlIH<hDe1brMNWe_?Sdv&1CHh6SINixM=L*qG|Y2YmELcM9xGgDXn z_(BkR@y&NxE^g1ckW0Xyb&_f=#DJ_vjP^36xZ+vqagTh|v=p1~i%aF48sx#4i{>27 zNXM*?D!!Mg_(e(Rcdu)CVQF6HHzOu|&B1&=<w^62+g2?si}rG9M!mWnE+6F7#@u80 z4q{#+)|Qb~B7cu--#c?QaOa&CGq;tu73UjOwGn-E>3{jCtuUnS`ej^GDZs)^*adbs z2r0JZD&rfro{7l<Zz`eB%$J3aDN8ZqM8p1RVVZ$tTU}M^-n9xfG(P1~=2h=Qv_g+u z(%4-Ub{y9l>=s*BqPWGArhr$eaPhJbPMG~uInjkIcXZSh4@ftP4%K_HfOLzOOaWPr zvl5}Uha@)vuj*Umos;W)JzTXaK7bwY2^*8>om-W7my#!8*FCX9Rt^v3T8ONs+nOP7 zb7h4wZz3{-)v6rD-`OBd^S<tlFVwWeMU@`o1TL#aoqm4#smr4O@YOf^vrgcfPW}(A z{4?}-Vt<AH6#H+;e~A6<=el7*G5NiUJ>y@*{y(zOFLeUn!i4`Sc5Njt8x($+%0ZhD zIXg-|hiIXg2|}XiV$=7Z+ajV|Eq4(QE^R8MVt}UPYrSEjOq@?ydymJ4Z}-lwTwpIo z=aJL;*Ncq~fp4}u^wdqy^npMl_i!)Cxi)Ni_}Fb?aPPP|8}SF>X6^cc4Y2M)O4k)H zR&)Gi=KSGF0bm$(+s7#$SMO;6E4(`pii*LJ9a3pVCZ$0$fTZ4We#}S$?qmfCXKt$l zF-PD?kKJ7a?wzUk#~(VQjf(q%j@CgHi`n#mMvmhKrZJZ<V6YV!PsQea*&q-%6o8E< zbIc`P9$U=RAcS2giVuu(hCLC2f_a#2(U}RAAV~=1msxRkb#HkT(X|_0gWMpfhxd*K zHYG9gn&@MGUq_5;B60YmT{;UFjde>tlj1e*;|K#SXHK;5-o*}|@*rmpe?P(DVH_LA z(<eJxP2Ed0|M&=k8qh&_Cr<IEGIf&u);!S*oq(8S1fUWQ3;Vh%z2&X}r%EE6Q`^M> zU8INfnxKHbBt7tJI0ak#K}ax$&v!PBs?Cen8tz*~<_!^s9z*rf@mvp*#yIABjw2uh z#*TINaz7@U3ok^ucmhgIb2gpS6A~v%L-GA*P>HW)3}|Ois^eK4yu3U)j2S-5?6c}b zxqDF~CYgik!Ng&Rtoh>x`!~)ow<nqw)*?NJJ3Bggk=Zp%^eUO_q!@)%tySH-gNGvV z`p(f^#y5s3F3Kj3h;5lVdbwRx;@Fy;_iJye5`JIL3S@v<5^IekpOYAtwBJZnmSW>k zyU=d-V<0>e5!&iAk&_%$H4SxIzzby1szn7~q4?U!SeMplyQQm1{hS+6{H>+-zGEx& zTASF;+=Tq)FMFZI|3#O7R<8(q{Y$@%f6T`J4*jhz|60A`H{?Hb`9=;;CN2|t-8l&U zmu%eVPqNW3)hph@{2#hBQf{@L;X|mjf302ts2$0NBwql5g!4&JCYK)t`F(AF^BVU_ zRDs+DTwVP9IY18Qq*@DvY}ZKn892qU_W0?O2h(~udbg)wBGHn=we=MI9g3^AkqH5T zatr<(po{pTaxK<?V<XO>Q?v)e#4x|!DxUrj;zOCymsFRlPg#So%$||l%%+2bwpeo! zZkLg|-*yRk(Wvb7sp0M-r3VpnwA}NJbsj}3+XJ}3b2v4$R;6}b_U;2Md%HeQ8l-(j zJ|o}TlXZP~-l1+cAzyY`lT61sVD$lEG3`;y(RWZ*1-i-b>*qXz%oQmRsdS;|fyq^- zg|d>Fuw|51qK@H3#*iL>OXEYA?tZi+T~q)H;?AE0e6}Cnt{8TuBWs!e0<P)Xbg3Og z<rB(%c{)X^u+#rE0-Q?;HPfp=Kvz}vxxs;NCJMxKCsCJFA7wChkcvfJ0E-oklv?Bq zR`s!05pqr7qzId3p!8B)DKJ9eN6QijIziwawQr^cXsO_ECBV`JsW8z*@8qg$Nbczc ziIO#gV_=?aj?^AXV4BIKvbKuA5=gjn{g*Gms3H*IJ5MNlm+w{Al6EJysc?g&;}*Ue zf|i3am9xxav2q;BDIO2ZK32259{-9%C|GU`0kNa)#8_z<?pC4>`x&ri=nTv~Y8o9; z9}T(**Fs^G2&f`DB#XInxY772?5dfzwO2TpC4)%4lfb&14SiII(6KM>DEBYV!h)}c zjn)gafyIUxp`J2s!1V%=@%AaCJnftd(2Du6W1gnctGmq+q%fGMNh8|b_sv>@Cg|)v z6I2uEM<gvp9-iPsV3>9<1(jUGM;|Tf$EdCS;O@X0$f?DvNu7S!3?Tuer@`I_C9uKz zHfnr@N>p^S1Iy7*k_bC|kB+)Aqzq!!2v`!PNd5?%Fc!;pJn_<6QlWj#q3$BfEQCt$ zFP*yeBPYX!Mbb(Ft#C}3#MATHBjg%(i&|O`AQ<7|mrSO+E&2<rzM2#TnHVY2AsS^L za0r$Zd~fl@%;&HGsz3|gj}W6upuoI$p3v`413eN=7`Dk7CSJS?ZczX7{!nOlq?Z50 zzgxWAc!*}Nq_Q2Mj<c?uWHjEF^WiV){ohUCcj>*6^&ji}H&Ol{!u<Kg|2y=z&SL$S zFaB@HKb-~B24rRQ^@|_)Z(saB$wt<HU+2GtiTKqTm6bZ}W?s)<oq7F%15y$RVd4|9 zR}-Croa(3PKI*YkMAjl6Ep$391TsCripq>IJo}%}6Ap_n;iV5m(r}BP8Od+XdBpmY zOH*4ccy(C>%@gY=vF$@Jr)9ZPN=|M`zTB9dl~`(P=5ev|yARU`k#YusrV*ZYib^V= z)@$=)FlDg!pti4{FFh@;to&GdT77DJZfsn9YEIIpMI_Kr%Fb8VRw^SDOYA-cPv!&r zI<`9viGGE<imRs?c_3-WbKVT3&GQu73ZvZOM^;Bi=F(?jCnMSaQJZQkb!Y#~3cFMr z1b+f^5ESV_X8=ABsimxg{aFrLoCqJs!E1klqd~@>62$x34ZhEQvYXW_Rklz?6FeZn zpp(shKv)+?S7vPK2uG>cv0u9-P7~1S6V#E`_ZaT8cZT3qd6cW_Y9`Xv2Bnl36nyn0 z+EFqaK;o`kTaZaMs}R!4`Osk9yY)%itYZmv)&>RqTA-Iiuw7qJwk8?WL@2b;L_s5L zSm0FGe4!@kwP7tbmE_}cc<S-7+Fd+)##1QuRbn&QG;R#3Gb$b&FU*=)+TSDERSc>+ zzo#8wo7?K9WNgJ|Se3(Yi2@?)pW-~8q&DWd;j4F@4VLOJV36+WmT;Rkm1C#q+WeXr zD|Kl-!p5}5=p7L%YNH%&dvYc`bnbRhOW(KPXox1;B9_59^8JE&gD78Bou0sKlkzLo zq>FJNqKch}1jy;6*bWyl0x%1lK3)hFx_sWZG%0i2z+l8G4vkXKZmfbOOK%$+Lougl zTo}_xjd^F$UEX3w>3YGB{%Wx^SZF(~uBH*g%=vcnpMiF4riRVU+v{0CXxRhS59Uzu zg(R~0##$!yy+I;pLR^g!LXkdbq!ZFC=O80(vNvXZma0w?_mJU7R_s7nIk<>VB(hdk z$8L6mIzq*yPi0R2A+aP;BNaf$^5OC?rE*ICL-Jt!XRZFoS9QFNe@q_!4*i|PU!gyf z`rnZMkoX%pf`*WE@Kxeb|90%~C)xOyTK#WfqJEt~!fU^t*KWz$T>S&3iw!{(P1Mo3 z<fX8ZjB;5-lzgHxG{dnUia~1!C<CV|$q(F_@@Y7neCfWOGo`y`5zZ>dJ*IIzg<O?v zD}==<Kv6oDXg;6-XVuBBoT=2_L82ps4t^fTn7i+xNAR^@N!y$ODq-%`h*VoQSSVB= zmiM(c`dS;xwD>uAMng#TojrT6lp>fgMQsf~9k>*ff6P58^;Obz_@G)T-@saEdGEzK z97X!J8-x$KmvvggoPlwn+4L=BH$1B}5o8fa6RsDJog7%hcKDK6Jc64kq-zY4`@>C_ zFRHCI?4#HhEiXrEr~*EUa;lT0m2w6fnntFb84PGgpO5O&+{aAT6#6Kx@m3T9DbWtd zfqc282_GrGnu05EP_PGtZBC6p)9kWn0?#m?vyLRGiO!0Y0~<OFP8}D)ddUEh$#+2> zD$P0dJW$c#%%sSJHRZZmkB6&$E_JM#Yiq@>Z?K*Njvm*m#>2*NgQSS8G5Ap=EJF&g z6V9|#RggS|-x?y?6Nn{I&v5pL!Xb~ycV_9=N8#rnNc>|oNJe){u6@skinm)Dhadc# zKBok(;|VAnjF?Q72}8`+EP!u{ao;h;j^oQ&au6G4s5Y_~wHs>5w`X^tv3iBBhVr1E ziDjrcmY{PbKEYWa#Hh7bIR^M0LGx!->U}O_Kp0pgJ<MXZOHT`vf%8Jl%>_ttI-o8b z4Cdv^+kT$A-{(->JtyGBgeVUwfAP?*sg;O_MP97uxf)A%?RcK4O!H`b>3QCPq-Gr- zSKWl&AF4bsN9C@E0|kGsKWprgnX~NUSLhFBg{|QJv0&<~gfJZtm<>q<fK-%dMGYRD z9t3V}_g$cbkxJa4mggL=7o13$AVs1Z31+`H{IK^Mbnn&8)z`J-kI%%}U!~#uEbFT# zmd^krA2fuQ*?1p59x~0fkh@>~rABw@e~`E3pKF8YS7p47f0Xy%p}&*&EA*$le?$I5 z-f!gkQh*V#*R{dFHADX&+47gQ!CRP^UngMox@Je_N2t7@2OJb~(gD>5=?o?4kq`pe z;cVuJu)#0#Om~pyGgBzc{pgQSq9`{p5e>GEKS=+<cy5nfK6JG?BV&(k{kRSItn0JC z4y8vvOBQCfJ!yU{khl3x83O8tjhNB)FpE|z+mHmj{DkzDILmiKDpVSA1^2LK3jfb$ zW{hY7;MARCCN4Db)0JvC;jt&Q!G2HIlv&&MVw5dgPjyz_ak&uE-0fP$I~{;F%h<yu z(aabV$;ms0opG+TPmpBIQo{bF4d+%`wQ+c(^cJeMI7=2BSpoYn_*Qn|Lr+lmI1`&7 zLQoG2d&5SK$Jw98{E*=jIDHizG;1-3*}qbFB={Alm3#{=8bl+oQ;QIm(zb>K+t$y^ z8h4l{muY@3lY%>(ExB5(BVkI84KcG}VA>GDfuvR3W-caDH}UXvH@I(8&<Ra-SAe9a zx}NCdl%|slz0w7ga2S**P(e1aPfs6_4ZvH+Z#fkYz{_PA>Z5_6>k)2OzhQE&YE?O5 z>BVS<LaFhAOHPuyU*(U5bYE}a7AW|TnckicJO9zO1X=|2Ib@rOB>$5aF|f|}!caYm z4pl9Go|MGGqim;?jR))MRqfg<#03gw!hY1~POhrzY`+UMWeQuog&(KiuuqTtJIQj^ zIUrC|kr%ML!SfZ-l3NiqrRT^YlF_LZk%gvGa341e1ljOouViZ7Y>2Wq;v@MriRM51 zcgxeOcPzppDCgVqi)TR==$A4*el#bu<{-jiX$@XbO~h1Xos@2N_0SqtBi9UkAFH5t z8YIv8@r-K1HMscO(yD5$=|`f1m>{5wj+cwm4>o7W-hoHh%Vi&+vT(RzK4B@W&|ydT zA21z6f~Jcj>O=%%5~KHO02V>(hyT#N_(6`85T9adGyp~js_eIE88wqKY}4Pr`jsmj zCAO;7ijjR!SB!kqAlm&geG&ui{OX%Lab|9o4dWFj*7rhp1eJz{#v2mYE96=p7rt(+ zgAL5+%{i)wQ#vmMekG;I{=?I6Tp=%i$?nVlgEu(*StT#-RaS4~AHCu4(BFB(EA*!~ z{D%C8H@uPM#nAiIUqAcwSiis6{Xeq9FGcv?!o>eNfiLQ-*2tnLZDg`QNZC(-jkH#? zX%b4;kW|^EtzuOBz%CI1xa9IB)$i(&r?rRe^eqbRtB!T<ghk$qJGU{dA0IEJ3DJt_ z^&O>LJ!YJxt1BtVPimrS7Z+FMhJ>ya?@I|QqDCmq%)oCEqq<XJ8QwY6w0&g#ngqY* zQddZ%D{Sx{ztprcH!&2*1D8)J`&(@2A(h64t8#Bu^}4F<Nnc+7dd22lWoX$1pTSM# zwuSyYOjbyKWatnT)R*v=0;YEla>Cx^7NHs)Ta?T?d>TagfP}PA7r0C!3tCPv#ReG* zw}|@7b-GSqYEs#iK=Mh39sQkR!h7rub&66`8s>d6RtqTYiP6mO8Zvn1`;nKI&Yw?A z#5F>r2xUm-MhWks^Q4z&eFnYI*u6j4_ew(?Q!)d$FV%@zW2>WAiY=K4weu`>94y{U zLkf~n@%ZS;db8Z0l4d#Aa59yRx*u@`XKg6>;bu<>4dX;#5|Te0zFU}Mr5Yu0Zv@lY z^3;Ye)UUYEE~i!ts`Kb@sfr#<hq+iW(TEj>59>+3qkyqBFLyTAEu4@vOws4@*PUsY z>Kq=qhxhU9?b4J91*je}?PzX*S$24`A@jB=aAn{_*K^$f_btIrV{9A-z6XFkxnoZI zgeJeN`>h)hom?LR*UI;M>OD)(1>m4G<2tjE8A(uw9rh8{H+lbzL@`9v6Kj7EYOmR3 z%%~K~?iOHh&&pf09=d2`xvv!Z1h^g{9ju?=DRV|;RgH<v`Bz41vc)h1Fo%tYM7U-k zW?ye#zR0+fOpb|59%y4Jrl7G7;Py-LZ*-&=eG83-rYV_7;*q?95AI!ps3Fwm-v^D~ z%kE8wjVT1(*d#lxRkLDj^9<?{(#lY)3EJy}(B3tvHV)qNjQ6$Gfz}p9qk@<RR5*)4 zfsPo|j49NEu@C=TNEEj^9MIC}scZ2=X=>Hc{;`u&Qq?~G(~UHm6{6&@GsbJ@BWd8` z-Sm?W-q1ox7|&QblG>16K!c;w`qh2KxZS}9$L<!ng={TxQ|$?mNjYEPen@>RKi$7j z2&)Tb+~o8<A*RH%5EvjhT-p`H?;BslU{dL@v<issk1uB>BEeSTG9nePB*_9?bb=uy zc5&;l%8AU5%m}wRQ#(a=%H}EQ>MubfS}S~l)Pncn-6a1y=4R$Se>A~rFi>8oQV>)B zSu?>WdTrfzZA&?w%|RqyP%0JteAwP@$~JS@68pm@ds!!squ9HWM+{?c=0la9QW2lA zkp=<)>44x1?)+QsTw9<Tyfo%&=x_|M+AH79971<jjS*}vILk5dj3nmi6&hA!M+i1t zao8<aT{2`3*bKN#t_5RReGRGbWd%)$j^t;?JR{|^HZAPt4_Ot}Rtg2gNJJC%3?@!b zG7jSuE&^n6Et0-u$}i+H^ow`1VdUdkr>DHGx0mXdRxf+oTWPDhcXu?-99sp~X(R<p z>dTglOn8y(5^dhsH(0(pEcPjsTa127J&9b#2EYmvhUXn{GBqY5IKbm@(WK6V@IjFg z!B6Eyxr#{54rNGqkt4S_!VRdZ`oa+Gf|v9f`Wj=_?t=yagYB$ZUQcGuXLsA{T!ZUD zFX?9|KWdAvF0a*j=$(x1u!9<{q6c9p;WEhFSMl7k?ovUAv)Bxrn+7j3CDC_7O}JZg zLm81>IrX3<7ZwfWC*0WZEUnnl(;OT+D(OTrU7d<40fdb|e%xc{f@`>u8?!rB{&M^A zZs+QGUFVobUENIhG)>bg`b4EZ#33URm!K=);ky8et)o|LjHM^F`+)`?o64FCH}XgA z2h@Ft0a8x~iUWzD0U1aO4hniqyXOMao})<sD@Yof8u7;Y)YR$E@9j|=M4*u^Qw2TS za?iu`9pjRujxt&!0*-H}gVm^;o&f~O9n2n_ZD?21xMTN~kXmdX*Hmu9>pvK{n`9V& z;%r$O6`b}~$j*E%B(|1Spl&NRVKEYQVG&&0dkH8iK!$aIj2Bg=3YcfD7C%i9^gTDn zwa0;(V^8YAm7*18le;Sr;t_Kkzs<9yK4Ki_I(wRllCiERY_P7}a(N)!Q#&XP$Q^W7 z$YT9sMo)eEgKfzyS^qQ{AiueoF2hX7BwemYvH}mIQu<6fEKy@WI$@iqANClef!;dF zNP5`keyOkQ%-%lANJX}{pvGY&EIt;nkmp5HC3yp_wjk9UPT$?rfTv>l3_QR)lbq4R zXxhWe>7b8L-KNnAE_KGo0#QxVV}J~I@c_|X;!L1u#lE1B-Jx*FE>NzX)>7$~w5uAf z{J+x9JS>VM3*d;N@x~C1exia3;>oD1h^z;AAn`)QBe)96j9~<n8zG<w1`y*BPLFtC zP$9;V2p)*UZ?lOfK}AsxT@T!#0R@l5s2j6YUGt^7s;M`_xA=#^AN`y6<5hQcSJ!)m zwwsfRZ7v*G?X5cIm)~pOL9+>}mc@>}v;TD@$tC%~ipGSSX|sE%Ri>q(Cx<(IGpuft z`$S!fycu6QsBE35#4T)9a&cm6lFmu9GxLYK!yZn5jQ%{L)bHM))A^B$Gjh*X4L;vS z+j>#Nv>?}t$`MCxvI`%LT0L;b<@(z_PWimQH8OGfWS<o(|2eiUF{efb{+aKx)Vuys z_06iY^ts=W=1e#A?+T=&D|LqQYArq}INgxHD*zmsOgHeyUFg!cI2GNByfCm#5vo6O zsN!7#0R}Bo1ow0>*Zp`tu%Dl8X~i(hqJmzPJA>3(yVos#Yqia@rgqGj*x`!~yjW9~ zJ*_7BfakZ%!g_77f6(Kt<FTTML+)<Qfej}0S6;;wMOYr`^r&;GZ5PW^t0vtvjqrQ9 zaA!%GZq2Trwl63cJ$A^|<yIlNZ)<HvtJRA_dsYXmsr}^5%%wknkl~q?mDuiyW$^|_ z=c9QW?{)5awI<DHbLp&9*N+lsCXGDpH_A)ft-C5?LG`uyKlf`lVv*aa6NAF)9#&dM zHNLWlToO@dl3!BPU^Q{RXGmjpWnJ5H>-2GdeAcbT_w~lLAFA5lJ6v_}zI)-dnd=%a zZhGeJxjw7AZCur+(4D$}Iv(j%y7f@%>UGiSp=-YF5chQOxb;aJhW5$5>N<SZM@2U( zAH17sbNp7f->-!3nt!r#YnV&<`BjsSKObM7RygFui4z67g6|4mR@@ogzR|<!R$r^V zx2#vj4~`76TkpH0E;!!VCH!O;|BSr!Rr|mDe)x*lC9w@Rw`8@tRN`W8x^$WD+Ld4K z<&5d~^i1BA$88>U-R8G=UD{7mat0s1V|ONa-igEGHEy4EUol5jl9rR{7rbEBF7**r z{k|R-`nXJ9`^4AcYv-&<Wx);Bu2s5%<Gw=@BU8us?RwG9@>{P9OUGyy7fl(rq4v5@ zy>^!E0Ns-HY2)|p4a@70GN@XkjqtnaKl$>9`9Hj0TQurf*WX60Ub$CSac75h`MXYu z@lNksmiPJ5rf@}zQIFpJ+B!Mequ9Q?->02#m0arQ_G#Mluy()S&CEO=|L55y3qHTq zW!J{j^EP^&$PT!4)50rS+j_n8@+TIiC83omQ=|Tq^xg8}yn7qYTXl(Zk955rpViUk zWxVy<hIM~VsoQG5t}H6l%i(tR2s7`t;|hKVv`jygQ@EtB@AY2yXZM+~_S^-x4E31~ z-*|?%ep!0CqHsun>QG~@YyN=Ux2yKVdIgofu)Vtbadq2ti;t^v&#s(1E#iay=E2Sb z$DaDHDrUgiocoq1FD6~kG<@CXi$9WfXK7p<qfgq}nq7GttV_At5L7aAf9JsKVM8b7 z^_@{~ZvS+1V$He6A01lMesAUQ#>)OHt?A{zf3<e|<+P;JqnG*KDN(zIj<Jg`igtDM zoNHM-=&@bGgvGx_&wAj|<4w@8>6c#gAGfn^U)lC+W_CmGrlD){gq|aQ(M*jo_x8UM z^WFyS<NDZJW!_`|cDqfSzk5V{Zqf0B{@N0Ye{?b%(Jdjm>zKR8ep>1A<{^3{+QPJV zOSEAWeI;_Is`e(`rQe&Fn43It#^0*L0s<nv^mi|2CM{<*b&{e7<j;NGnFCH?54g<7 zUpjJ#CKSI#fsT&PB8odMdUXEd_GFHp2^>8H*Ag-O@p*t11E_}qMo1!OTuk}2vs?dP z(X-ua(((<l-U1yzd;L`OpUgTV356k1Lf9H3h679D{?M$s{iw>j5Q(d2BY->nr{Mvt zxmPfNniEopIZTOc9sZ;rx>i*v%*{c+0m2~W*s9uw14{<YRijFnB4nUG=jOrYcmQio zg^ExB0BTN1A?7e;%bk&XmLqc$rK`L==aP+}1S)b)h$JVMO`y4X9mRo#<82@4Pct7j z#{*b%IWT~l6H<sdOxdg{K6eI<)_g_InRWuhkSO8ob`ZmXeGZzl=^{pkgcEZMVRJly zH5UZ~s5v2pn8TFncBi$^k-7I2Id{VdN=P`fXpPJXktF9fgXV^I6`S+L+o}=ZW7r%I zV9mwB0BTN1A?7gUvv*~^&CzImE3N*?N9%1PD8B4=Yr}zU0nN?pAvPDFzj!Z(&G7)% zTn-GN=7bbt4pZD_AG=tCaxPAhbEfEVs_1Nr!jLEd?5mN;oDfNJZYyYRMlUf^jn|nG zU<quF2e9U{U;s5Iq!4qM@=Sf+>EFm4S(1|H+*>0kYIgnEaA4a&a}%w_=2qdY&IsTI zo8tkjxpWvn%?T;Q9HuPIO?ll0jn<)xoNF+GvWndT-Tc7V`P>p4vALD{ob&#F%pHRP z)SQq)&CRR$H3rX092Mp|*n(k5l$DB{6C%lI{Q}In@_}NcMn9ih4x8fvY|afD1Oliz zA%&R3lp8*}sJqA<p1lp#->IOR2Xqgy!3c^*F`pA6iMbTe+@)dS!2I>I5+B$c4`9vp zu?GRvoRC7yValVLs~uFxT$Cc`B8{N<D`q7^Br%r?nlm3M4or(*RY0c$4Q!4Fu;w%{ zfSMChh&fF0wTKSSL05>2ika|PBPd$-6$ZnBrGe&3M~lt*=+ASXz~*=WYp$OI2%zSK z6k-ljcC?-8umhP3R+x)1g5sk%&k2zv=h8uQF=K(i^z%6_Y>o%8=E`6IH7BGHbC}}3 z#?iGe8m*lbqjiWA7=}dgQOxIrNMbGnG<STw7#WN!W}~F`gU#^()?B*@Ab^?^QiwTB z2{_o^qc?i?lAyRksEwcmvz4@)9~e6;c|1uRnA8Hi`2g13_{kukS?1Vg;PRR9b|WZU zYjDGX@g0>}b3v}+z)%-tDd%v{W8l##4`9umg8|f>kV0}!*}hqB&T1MMhD70-IU{pI zBpI#B7MKJ{9$~MWE=EcXZV>?YhXu^>0M^_M7(mSlDa0J6u&r+8=7!Ax!;mOk<J;y3 z#^&7Y*<z&BN)!PCMdoNsY$H*5OxZAiYby%TNFwmv8`*HC%@v0uHHbujCYwXj)dwEH zCc<tQKodboA<~qsBIVLv8A0J1M;Z={Zzji@d$B-lPU=^O08Mt3qvm)3Yi`;?5J1fd zDa4$zbDiAWej_McA3MW=DSLPkBsuxCUn~wx>ga_4xFHsB^5FrjId2$1%?T;QoU*r< z+}vp+C|sv6!+|MV5XsFYc!|wP4T%t-$!0_}=Xd~Xt{MhVb3zI+r)*6mH#f=~3`3%D zjfxBh#&=s`M{BGPfYeV<n{4Jn&G7)%TsaJ&=7bbtPTAT;Zq8l}hC$3Jrl&$Axk4zL zPsnr5#8-?&y&a@U7VhK#j8-1Nnwt*;s5v2pm{T^TkefSd1chr+fpSiWB<A>n`)tlV z^AnqsYWgEUllA;*&hY@&+*E%MK+Op$#GJCazueqDBPd+0f5U<C^}ktjUj~W;lS+&u zKrEbdJb*R#3<gkhLJBdbEH*ATH$4apgN#<iBB&5aa*i)w%$oZ!OpKH&BqMWiusI&U zn)8PN)SQq)%qeRn%gvoLg2Gi!HXImV-jy{sJW^~<svwI1O;(Skqm>7+<`Q54H7BGH zbIMw>a&z~Lpm3FC4F|@Tkz~!aTq`ywRjNb)T<8(FLhu0A+#(o2%?T;QoU&%6+}trE zC|m_g!-4U&tXOkL<HY8qx_JnI%gzDjcmQjzRXhlw=7bbt4pZ0)dUA71ji7M#^qL<S zYwlEnI54Tu7y>j|3XG0c*j&d%5J1fdDbyTWa!hXS6C)^G0W!mZ9ReTJ9!M4kCRJ@h zfF>(8QFA<i&AB%)fSMChh&fDQ>o>{Gd29m1kSJU=C&Pj9r775)8@B~O>KCMNSsGxp z@&MLc3Jjp;gcM>9Q`ibSa&z@YP`G+K$ea*KW+i-Jthvk-z#Og{f&fj{452y416XtQ zFo2p9Qm8q$f{5JQ)KoAGl5=c55yOG;wGvo!Q5j;SRE_}wnk>aY&G7)%+!Yu=%?T;Q zoU$;3+}yxSFbs*pm1!^>7~U+7mi7PoV$FTLQ;d{$x+4JIC=QHP9>AK@!2oJbNFnAh zh28TmH}~EyFbs*p?SMBN7~V?zmp1ebYc6b$7%A-oMgY8x7BI&HSaX+P05vD15ObKq z?g*Bf>%SKaL!xl|gAE79zsS#;dw38);w?=GVBlST9>AJ&JOl!$IU$9Z!xVONliXaY c5fpB#lPEAVv^H&G5{dqK3^y^^d>H@qKSK9}M*si- literal 0 HcmV?d00001 diff --git a/datasets/polyglot_ner/dummy/cs/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/cs/1.0.0/dummy_data.zip new file mode 100644 index 0000000000000000000000000000000000000000..18b5fd847acd07983ac3a56be9baf34439d99018 GIT binary patch literal 1742 zcmWIWW@h1H0D%RqhJj!Pl;CENVMr;>&8>`2Ni0d!4-MgDU_NsyIUa;dE4UdLS-vtd zFtCUKl?UK7L;}^2#N-^XX~n4}#blZ&jmN}fVhvSoNA;@$enSxfu=H$leDy`F0RRdJ z4hE3P0Tq_+O3Vxl{A>&ix<r_qTpVAXnVqSZoS&DI0}f}9HOqh)Eu3>h4(44k5U?%Z zzho-I%0~?k!Zes16IY8BK6s|`?%2l1oifKuiXSn*=;RL7f3l-J^u5Ph)!Fh7y=Tm{ z*zNJ<!HKeC#_#u5e%mO_y`lQ^&5KTtzO(iPt9xZmx2Qg&?J;$G@B8aJZXGZD^MB&b zVD8lHIe&kCYyMXw8Woi)Zef2QFd#u~&xw$=g<g-}eBrHYKBe;H@YWiOk9?<vWj0r; z6<;rRd$4HPjKk?)x(np&<~N;lF#prNU174bI`38XKXV$+{<7X(Zd7l&SZB^jZevxS z)R`QMv-qbdKM44-{o3EIqR=9jQ>FKUrUY-Xi=QT*5W4C&U%2>#Q@T#<xdGd5I<7Nt zRXcp)>uaNF4JyqoU$44d(F!fS>5{|el~{YH!ew?vP{z4pX@$d`?J_onuj_v+$gpZ@ zr709#6rA02mpkFjGqpzs26w!<1K&u^GBdFfJ9PD#*Oh5Aw^tl9I&@)u@Tse5d|eNx zrBy8Zx&2~>*twa~owmzkP4Bp`a$!r268!pbxzA6P)0OXL`<QO|FL%6sy89i;TZ?&2 zzcU-IW-5Jc?Jc6s;=?-IM11X?7{gqdrJJ~tl`gtuB>u|VaZK;t#wVwxOnBz9ZN8he z`7AG6ugvL_5^toov>$&WwoGixCXL@ymvZFvIdICdz7||0Jbg}!XDydO%x5EYSHAg0 z+b_o+5I^-Pa@NHJalacPp04{XJMU&iyi4&ETifArN+9cg`Mh05sa8vwlvW;O;SipD zbkmmF>#NrO_FA&j^!y5bVaL?v#t(KXiAy|uCUI;1R-MHRQx`|YW$0{qWT$ZM<qm_I zD$fIJj$B}hWZ9RP_$br0ZTh8mDHh+KxXttv)B4aA@yyfiC5scs-`H7~MHh-U_8!+; zdmx~A2Ip6A=5yZHPPxDIzB$Rb=gi_$Sr>P_on5qOPst(kzLbjE&Tb9oWv<?Vo6Bo* zUrzOs2zhWVW6z%}O&_JQw{*(PWPiBx%*3bd+4D<17A5_0?|yagLi3E8yag?4p~6S{ zH*uU^IC~xsZ|JGL2`kO+t45t)(Y41X>+h;7&sM$va^+SO+cOt+2kXEU7ujFD)>!0r zsiy3kcz`z}lN>Xy0!;#1v<Wc0bp$a{iZ@nB@rIV=@EIt<fNY>Es)1-l9qFb^qnJJ& zkLloIkFW)pg&wl=-{7|ZS_A@Z0hLWy0|{3F2(blNS1>GTbOTaIp^g$rKyQF;K`Rb% VS;-14T^Sfyf$$~J(DN)H9ss)rUZVg2 literal 0 HcmV?d00001 diff --git a/datasets/polyglot_ner/dummy/da/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/da/1.0.0/dummy_data.zip new file mode 100644 index 0000000000000000000000000000000000000000..c6447888c91c7e3943c9a4ce6a01498d65489f06 GIT binary patch literal 1674 zcmWIWW@h1H0D<YPhJj!Pl;CENVMr;>&8>`2Ni0d!4-MgDVBU8sIetG7msW5yFtU7Q zWME(s0V)r`X@~@>A&JR3VAG0IONtRDf=ngaL}@%GrXV>Juc6ZIsD4$zZzv)Frk+iX zufB-YxuAgHU;vr?G3B`RJthW*N30ACx<r_qk{Dl}nVqSZoS&DI0}f}9HPe9@EmTTF zPUhV<5U@Qy|6(xnj@G#*jm2l1mShC67e;^a3QeB%Oszn0!5{xmygOeXw=$mc<k^L0 zjdjNF_f|ex+W0NQ_V%}YMYRL-MEo9|H#eEOVflyO*Y<}#C|gwO{{6M~yr^}4=QHJV z?{zlhhL~DNRR*ieU5>iEKcSk};&X}h<$In6UQGRU4ITnJqzi)^*qlCT3G|)+aduwD z`cHk2x6N64Bv_B}xko_1#=Z3_p~uy%eQWLb^h!;gyEs>}8ch6j=Huo)ir0(YJNr(S zY1|-{ugD?QscR<ca(Ta(kJs*Pb`CzLBwCjo;!w_7`t?Y{WTRD0I<>+E+U#+0bJnZb z8Fo&P&{&`7lhZxHYW5Vt<&0v>zpAN=Bs08CO*teLGx2tGj{S$sK9QDgo+DkhYtK|_ z7Od%5s3;<p6>=iwtw{L%lWEJNI06+n)Gy!+Kfr6Z@UXS$Wd5$@_I@w;r)jy|G!c&% zliB$|LpnG-LF;-~#1GlcW%~o}X7M+Eidl6^W4=SMXji)6y0nB7u95w7Cm$^`oW?j& zeIi%UX|;zbQ>TZjZQg40eZR=`*o{WY*I(3i?_sZ+eaGOJ@8Q+Qm%Qfu>2GV_y?{mk zoaFNDhO%=4TXhzn(_5B!*ldNzvIKb!>&UOmKkx4hXPvU`Mx=#rOP8I_dD#tyS}UwH zPo9l&R_zv_I=ib{n(K%5Lo2&~b02dw-*p%KBC#PPW2?=beY#ag{ywZQpS8lGYbW#d zRWIDGpMUr5X2E)<n+qiqi<GB$y|vN&*WecZ?#0JvD^C>aE8TODS~Mv`?bX_uY+u<7 z(kEA_isT5gMxFN1V7ckd!Oqw3eC6H-i5h|K`~!W<>TaxAS)yqjBr3099a+3psxzKH zzx(<06SptyFIcz2I+(dIvuV@cY>&sR$Nn!jT<EwpaCSuJr##trvgXT+A1%qfsd+s3 zIrp)sH$kjr>dimB9)zW<zyI3$H-M*ZPSXEZB|Ed$xj7t`U3zBo{s3=ACOKwYg^>ib zSQ21(>j+|^6iuv<q6sa#;4@Hy0og!TR0Gk9Dbh`sMlpRl9@D`^7GVo83oK;kzrk+- zwD<zr0xDOq1`@8q3t|hfoM%|l=mw;aLLDWLfZhPxf>xB_vXYezXd(kE5WWN&+RXyu F0RV8yEL#8o literal 0 HcmV?d00001 diff --git a/datasets/polyglot_ner/dummy/de/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/de/1.0.0/dummy_data.zip new file mode 100644 index 0000000000000000000000000000000000000000..f33eba17294e72e8c701ac4a7e98e21296893f40 GIT binary patch literal 1712 zcmWIWW@h1H0D)(%hJj!Pl;CENVMr;>&8>`2Ni0d!4-MgDU=BE)91p^!72FJrEMFNJ z7+6Gr$^&p3B7tg1VsZ}HwBpo~VlqvX#$#eiDv^eow4?e}0l%S$062U$IllTL)&Kwn z1P24i<n~<!Vl2!I43caN47x;^oRS(}o|&Dgmz<xMlLHQCkTpku7%iMrLk{NMHsG-} zkKe?2cfy*8+cJ~QUT#y%ov`ip%)X514juMQG0Aps<;!HtUYUQHGW-9Mc%w<1<}z4E zEXw@(@#DlR*WWy;`@kFIetY@D43}uGd&+OUK36qMX05*A67T3(-Bu*Svwu!3Px}_# zt^Pf3t$&^>+cv+hnfy)Twb9eFyVK@Z82P>2d8&8O+AVw9<ns;KW-oZUS=6d^+TmSZ z;<K-mA2814pVK|pO}T{Cp^=qS+Pu1M`R03#fA;K?^pTx1ZGqO6PKz0Cp;jmTp7uH0 zT>RWP?_y>4oyO}sm!?=wV&UvjzQff0ea`19+xeGP-Hb8QUngeSF20vx@}?Dm`9aaQ zmRx`L_IiAj{J{lZ7cp8-7dg|uzFy_NYQ{5TJL}0Sc7?xww{WRN?zh<@ca3+QSeWa~ z^6?qlCZ9EF@(aBUCQWC!BP82vAAjlFyrT?kZh;nsQs$c8^_zC=pX9KSIof<Zt92*S zZt*!&+2>2W;gY_=n5>~*^ZxAl9CiDRpB<;9oL+1uc4<wriPZf5es86>W+x>iPFXlQ zZ>)`HEc*J(?#DA%PkEme)w-gWx8=M$%NJej_$c9_qpZQRSut0XfBJ2jsBvc1`)y%= zyH9(s+^W(#bInryCD$Wnp2)nfZlTF>!7KjHg<~17CST35{n6CtFHyO00hjr0yK}M8 zGiNUQ*T3PyzISOC<u)y0a}wSakhSH+UVWQWiqF=2i7)e;qP);{#s~Q$g<PqM32#rF zoEbe?n1Oj+@G9#mO^0XvDSf8Ytf(orO1b)$@v2$jez&A`3;S8CUfmKlDyib$c0HZf z>$%I)+{a}HQk23|T>_F$X>Pptapl!rZ!d0--@p6IPq$Z(|B9!%3OcB*)=PDBKFSjz zI=$?+^F$rat*y-=r{Xe~?{Zlm-6mNk{3Q0|<<ORz{^$>4CBBP~r^S9%VcLFs&a>wA za%WRJ`d2I5-~W7FF?%4#8i(m-`UfkkIz-#L>#NS}6n$}PmBGu%GntR9R<z_b&zf6e zeBr6ge3`s}Z+<IJ2h4o8E8$M3se&ZWKgIxWMkYCCTt$`ywD1yOc<Tsaq7-1PkOB-X zQ{gjEf&tk;S5yPh3NzA8mqsytIv&%(1sh=tFpD*0=fA;k0kn_<+5#$lum%#YA`W5; qur^>=(&z@HkU||LkbvF*+k#f$;j)qySbj1vuma&rprIRCKs*4@cuA}P literal 0 HcmV?d00001 diff --git a/datasets/polyglot_ner/dummy/el/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/el/1.0.0/dummy_data.zip new file mode 100644 index 0000000000000000000000000000000000000000..4fa891f0c5c3a26b861789a17e39f51c7a87bb0f GIT binary patch literal 1931 zcmWIWW@h1H0D)PphJj!Pl;CENVMr;>&8>`2Ni0d!4-MgDU_NpxIsPaRmsW5yFtU7Q zWME(s0V)r`X@~@>A&JR3VAG0IONtRDf=ngaL}@%Grsfc7sA4;+Uls5hiU@$YXOrVC z&SP~hC?Gf(Kqg;FURQOWnSr5;lYv2(2$NHD;>$C$Gxd`5^Kx>);S927J`kgYN^6*} zw{)OL>}&nN4MCe%ltk{*Xl+{hg+F59(u8cyl8doPLiP%REU_WtqK}LwfACQ|sp9us z{?7O5Rqu{h8((yqIO9z1`@8+c=Xd6>a6c!1@qqlgH*12toKKw$JjNgV=d*9UPiOus z=Wee1&z4r-Um97nAVhrml+}~%uY50!`f<79!u(gWKJ!|XnDDfDM?J`Q*eNNnVQKoS zDZkiKJBoamxfLQ0MYHqEOsV^5sPfk2|IVj!--8;TGHF`*%{%ttTF>p|sH+kGe0*mA zSaV5NH0mM`XW0&^9a__vz7*&jOx*q{?fFx!*u%l>hQXCF!8J0z89R8UPSJWN^St@^ zS6;@BkKap|Tywo^{N}-|B4_#d==1Y!dw<3znTB4EIl!@lyDq0rr2k#R0S3F^C2ywv zs_c_f$&hxJKRj_}^`^z$^R@;wb|=<<e#H8iHDcF_=83^Oe%_y&fB1OF3=<x0<{t(8 z9s<|=T3Cu4q>EYlxf%By$iKUEq3Y5Ob}pYaQyf-o{MK<hCdkWjPMhujLtb)5lN+DR zN)+c-3Vkf<q-oafb!X=V&h`)8oTvU)|NZ*-;C6ZWZ}#us&U*Ux;J@?!_sjQ7q<AFv z?QuUNp&5KWt5E%p!HuG~_arRJ5*|6v6jEEtdD(mCxzwJC4_tm-;CgVC@%_pW1K~`~ zpN*Gxhdbuidj1XY_47ToZz6}*V}sPg&n^W#SjqTBJ7B8yaY0=^twR?#C2nub(llFE zaHXrK{f3m%G!OU7S6J?`sa-ta+SjtqNZMCyWA-WbT@$wkUPx~}%-Qt(8ox?7e|BPw zheMv{{OCglhj%P%KDe<mbDw3-jDzWVdtZewUc36m8o9jiwBxQ<WVda5Xd);lJ6&sy zw8~SK<aryEgqW>m^e<27S<Mo1N9oh^OY@aE(|W>+lqJs3dpa@l99MdA@Q&wA5B*YZ zn_X43*yHbN<Qu~-E4;Jox?%g%ic^oLhp%JZ(0Qby>3sE*3lnC}K794h!y}~$f!=zH zb$TAyFqy8LR;<sX#go5{hcQP^EoYUf*on<YyVg$&;aEF2M&Z`}0|l~MV`iUdIJ{|L z*zLNF;uR^?DZR2EoSQDJ{H9+J{U%t^)${eOYtO!wz1_%Sw&jXtFw4}d(_8)qw4GhC zQ}M~1$k|Gh%$;H<_U<rJiv8fjef_zS_@SBmdLOrb60Y4cL0Z+(NAk_S^V7>$9`!Nc zD0$ZMl<Qpb=|g{3#9Z@x9cK_PDR9pJU5ML>3$s^Wkz?PecY4PBHcgee&vu`_$Mo*! z1k-Fq=T|y+#8(>ZsCxVTP_HG|dt0?>-g?s4CaOf&zMZh9ZOzRYehoXc!y_Ks=bNss zXAJOWWRhdXRT@h`%VhzEw~intO4-Z`DVx#C3w#DjFd!S~ifSNQIZe9h(kP}+$74FU z%qDCBW{HjL{5SY5fR^7tTR;UX)<D8ldP8ghR&)$Y8r^^tQmCT@63`o9ThPjKTvoEO R0Zn9J1;Up=Lwi_3JOE*7xrzV) literal 0 HcmV?d00001 diff --git a/datasets/polyglot_ner/dummy/en/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/en/1.0.0/dummy_data.zip new file mode 100644 index 0000000000000000000000000000000000000000..5fcc8fd47a38c0ebbec546224ad313d7207c7e0b GIT binary patch literal 1657 zcmWIWW@h1H0D+V?!$2?tN^mpCFr<{`=2ph1B$g!VhlX%6Fx#9-jtAk=3T_5QmamKq z3@jo*<pDSikw7&hF*yfpT5)PgF_|Vx<1sNck4QtU+EM+gfZtF=0GvOY9A9%0YXE=( zf`b8MvSdEXowG~~3~j6o47x;^oSGM3o|&Dgmz<xMlLHQCkTn;87%iMbLk<>QG2pQ+ zw{K={ojFaBXUa6`yVJ_r%eGzCD@d@==-VXt`o_Vs8*Rpac-{TZ82oL1tFL(4^OoG4 z6MZ_ip6^owA6~1O)U58SoqeP3P<H!u<+u>@7aS(D=T~ZaUwrKS|7+&^l{vA|i>=KZ zt555<t6H_Q&Q^SP(A_&obX%;Wgz;R9Bcl87f4KGM=AAqLZvDCYXW!qQJ8%BkJv~WR zP$4R0!IGdSA*&TVrX7CAKEr`+`?+VAImJKA-jz*=?tAH7WcOh=Q>@*eNqc!h_cW<( z(Nn89mR;oMeY_x6>)foTFW%=$uZm@nzaV*%Rp@8j3H~;rJ*y8`{0-ptRFan|se5t3 za))2DCQJR7D*j`|7Z01&&GKIs7R}x|HTj@<@d?*>nRvf*w_eMH94$Q_yJvDVV_6H= z>zH2?ZQmQFu&-aNc{eg5-FHLsDoqIuhixjc{eBOaJS(jqb575{%i$Zkgq!W~vu)F# zn4O!tB`<lYV+`vjCEi0@MIK)?h;Y-06?13p%{S!>zt_lhQ9qV9`(a4n<b`(I<fZmk z)EqfKQ!^=S(meC1uPNGd*ZwU1n7PYzzl~tg+LPhsHo7OwuRT7jX|z|`;BJ6KML(0; z@k>^3E^4P)e|6Yad9}mm_)-JkLx;VpE@uQ-XdHUDecB|SPkCp|jqe%N_jbAGhfXMb z``-1`hpLa8^pD*rO%e0o<1yFj%&(6o50sXKN9rqNKGfW<b+IC?O)#v;&5PyTMUSV} z$^y)$d`WVhTH=9=AI<j3Ds1ZzTyGh*iuJJ6(px$8`S~dxWfNq1GWw#fm%Bf+Ut#3C z&AFgCV$u~Uv8Q`0GkQ;(EGfFandxc%rPEni`?s00=vuVie|b$*-o<Oa!?`^dlImId zu5?zWPVEv(jGCjUb9<q%&_j!z^Edl!nC@BQ=O`R}K;X{Hk5i^8<%LE{@2=u{Eh?!$ z%VfqsuUlRleOmQQ6F<oZcr!A|G2<$GB%q~`0K;2H5EG>&Vuh4MXt@KQff5YJ2D+je zh*m0*Zn`vz>C^F;4lbbxTYy<UAv^yKehZ+b70?z?F@iOaaFtaMTY$wn!;(ffAcYj_ fD1ij@2G|y~k_(rWtZYCN8CZevCD70+77z~r)g2#= literal 0 HcmV?d00001 diff --git a/datasets/polyglot_ner/dummy/es/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/es/1.0.0/dummy_data.zip new file mode 100644 index 0000000000000000000000000000000000000000..0d0a424e2a630ad4c1b42d7d29e160ab9d294574 GIT binary patch literal 1582 zcmWIWW@h1H0D<H-!$2?tN^mpCFr<{`=2ph1B$g!VhlX%6Fk78TjtAk=3T_5QmamKq z3@jo*<pDSikw7&hF*yfpT5)PgF_|Vx<1sOnSVJw_QT?ib-%vyVoIRTyUvm*_0DuC5 zg8^i6l@yn86B7f&Tvi4KT_Q|QEsihG%+AzH&d<xq0f#fln)5)67S6FD*7+iiJnK&8 zcLo$`I+RRsnRr1_X~K#Oo6Y-r`zv#v3BLT4zs_eO)1|;o^*sIQ<?qanzBzaL+w=FI zD|kPiy)Hca`27{Bub96+Igk*U@ji)(wePv?Cw1!w`9~Zq@+ZoEx3$_Sf0FNN(Q)Qv zsqdYu?gxLoyRg~sS~I^Y1CK%c{_`5Y@BYwXTw8xYVEGDm;gVT8XD<4(&Smm3v?`c8 zo%x^{OOMIEEi73AmUAXOyUBd?%C=_tQ}1>ACvO!OJD@d5a@S8Wb(t!*sB24{k{`EC z(K4_9w8Lrgsa9z@zc<#NYbLEQ-r*v>%w3*Y<h}HTP7%ph3$hQ+<C^NN$ka4%?fcI^ za$ffydNyIB@DAq$IYS-ZnbZ2dC>1O@c3@)oH07S(MRQE8b@KKsF%JGB`}>T6uGPW` zjn6+mbqGCawb1dn!mC%4%_aV{6zN9Ce-dk+(yOqM^(23pmFKS2kt#3tE_VMI*E;dG z0Mkm#?BXr!6K)?mQMOJ==3U{<6Y)Yn=WJ|mJvKdo{R>}EVev^$HiOOI^LK{tzWF7p z`tkCt9la?vr?yR)V*S%QO(rX$^bCtaTIrVJfPWWvFZ<|jZP&UgW8uTH$f?sVtm=|) zz9Opp#V=X+ipYj3rX_WCwU%iHoBdvx#r0R$X$wxzVol(gEa7&qS+=8j=M|Iv(=wKA z68hUyURqYCR<zseXh>Gv%+${H_tyWYX73WRZ@i}WY0A#-;G6!_&Uie|D6OmdxK5@p z{loFthvAC9?$2*C;JW3pce465uhZVe52l6snA=5sjNRR2p!nX+<?*rf0PmCG8C_*J z<k}2kHi@#|(b&GzXv^%Kg^%N-wf`<^UGZqorXL3$cYTRfF3L(*|IZlU&B!FjjH|$q zfEFDB3~wDlOqAk-6;gblC24#HN-!WB=!$9}T2Vr}>Cz~sPsd|AxL6@<0cN3s?EE+Q zEr1p=KwCh0A8R1tDqtYC0Lx;AC5>)C3Mtf40tx61uq|lC4K6EL*?=Z8uma&rprQIK GARYkaItQZw literal 0 HcmV?d00001 diff --git a/datasets/polyglot_ner/dummy/et/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/et/1.0.0/dummy_data.zip new file mode 100644 index 0000000000000000000000000000000000000000..87703bac018fc2ea2639b9f34cab6797d7ccb7eb GIT binary patch literal 1776 zcmWIWW@h1H0D<H-!$2?tN^mpCFr<{`=2ph1B$g!VhlX%6Fk78TjtAk=3T_5QmamKq z3@jo*<pDSikw7&hF*yfpT5)PgF_|Vx<1sO{gh)dz+fn_hfZtF=0GvCU9A9%0YXE=( zf`b8Ma?cFq)h^5o3>|C?47x;^oLUlJo|&Dgmz<xMlLHQCkTvIl7%iMrL-*!gaS&Kn ztk2}Z7~AI{6u6W_NTwy&Z;_*ju+669yYJb)?Oz)3k#EbC>mL{vT3w9T!{LAE%$oP? z8gF9Hzxz{Te7{HhaINz+rCTLm@-Fdz7paU*O;=C|-6MaEvBL9a=q9NXr8{L#mQAQJ zxNzDr;jUcLDZ!tsQ@75l_}nu8B(F(rpRGy8$&-ar*Ltfy^~FDWrf4swRg|R7_r1^e zq~OAs>LqD$zungDZ?$G$XcZN6*XLQq^B-+FM-Oejm^^#4@O$;=&;2WZ{(Y*wKVAKH z#XaviGB3><SWGjHL@Z1y2@PlZI=AV#)oad0ZcE+PRp{ICEDF`-%JsWYXyhBBJ<(oR z!uJH<YzJ}Q!@qM>Zw4{7+b+4t__z4<leMQS_0;xU-^w1{xa(7FyH-P&?WcE_RD+%# z|8s_UktWxbqd^LK>sN2yQQ~l=pC#kzw0PAdk&}~7YMDklNtubMYP)Tf+VG}sx$wre zi*DvQZN9fAuVNNhR*<ujL(iG{X~d(9rDC(#`BpOfE}g|QLCG*+!$y@K`p!x-qB|z? z{K<bE@pC25ZZ)6zkC(GeRk2;veETDtR<9uc!M7TXw||7+oBr&=6D`?x-^n+&r?9SJ zHC|(SUCPYzRY35Y6IXw4Fg3mt=gAS2^WYSdh1k=Hxlt+4)`^~ON;aDtcjDUb=+xKR zuTNIFZsL+y=@c$lGQ*?NvP!2Z=vhR@zWr-UGH0;(7<x&4y4v+Ss5h>7#ep@=YvxPw zZ{VGf(3a0D&2dKiQrZsLIu^hBhGm-X4qj`GnV9%AYj)Vt_$QX_K_{n0>$o32_9)Lw zr~SQ+G1o5E0-=~-JG+io%sl(+g2EQ1{BDTR{@wrhMaSW`jhvTme!duYoOiB^lhB`& zM}LN}o!quhTRv!=sCeefoU<+70#6-&m&Q+2HSpLVAmx=I)GT1dlYP6$Zi;V=PuH>C zUDa;4O%+3IK9wC#>buzE>Nb02TdqvHvFDs67QF#Go-N<AM}WhKZ_2Io%ZIa%FU{Sa zzPvp>HAGJ^b-_zZ=aox;?WvVqVwugfR;=SiuZPxD4apzn7m|+8W_|5G^>qHi)5<r$ zckGDVYV*qF*_lm_Z<`N$u1Pzk^L*vH{Q_I8wyaS(JEhU;Cv$)|Ba<96t|CtYTKEYt zymbUIQ3^m-NCAkJDe)O7!GLU_E2@ELg(2ytOQV=R9gpeYf|0NVn8hNp^WWgN09r@_ zZ2^^DSOW=H5ecycSeq~`X><cpNTH4rNI-9ZZ9ywAaaqX<EPojoSb^{*(9n-8ARYj# C?Od|} literal 0 HcmV?d00001 diff --git a/datasets/polyglot_ner/dummy/fa/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/fa/1.0.0/dummy_data.zip new file mode 100644 index 0000000000000000000000000000000000000000..3ff9d973acb3d574cf755646353eefd444f0d312 GIT binary patch literal 1653 zcmWIWW@h1H0D-hN!$2?tN^mpCFr<{`=2ph1B$g!VhlX%6Fx#I=jtAk=3T_5QmamKq z3@jo*<pDSikw7&hF*yfpT5)PgF_|Vx<1sOfSZ7+dqxw|=zoCc#xO6r-zUCs<000F9 z2Ls6DUL8f%lS~W@{p<`3x<r_qmKa~2nVqSZoS&DI0}f}9HJ5=HEu5!@dgt9X5Qw!t zeqz<l9qk&sv?nZ5U&ZTf6fj>&)4|<O=k%n+6|9?1XtrHir~b0qc!`c>S)<;g55{vU z=PO<fo&0;Y^`FkqE1v{)PY&YJEL|D>Q-pc`7XLf%!!~{A6c^|^x%s@rwI4_H1saR* z%zk)<X{E{0sJ@8%$v2h-DF-$dr*7ZWWqfmU$CW6TaKmDYqdviGt{R&*I_k0ea5Yc- zp{o6P`sJRJ5vv?d-0NC%^y7U#jX6)MI2y$3@@7xHmYlXM^YS;&!~ABxN}S7CcFES+ z6$P;Ec+zt#bBaJ!2503&q3WMs4>gJw=JEda*cww;s?D|3L1T^9+v#`K8072hG=6$T zg1fY#Akx?Njd7kvl1Sy0Tn(q06H0{J92TvbTA;B#gFVPn!=knO;idC`b)K0<GhZ?J zV0LDDg!@&uHOwg`CojEO&Rgflq!xIH^Hs>TvLipWbY!l~3}oB2s50+-PsHX`r5ms9 z+bg|oN8UB&3Fi|w$Vp37accB!O#Zjr)lZe-X^-*K^-E`5lHc3uexyyxYn#FQ-y)WQ zf)4L<nvQ8Sl{hQ^JKOFT|2Sa(^9C*Z!@e?(?2nSHyktw?vhwkG_^nSjn7DmD!=vEI zza%~0Oj%>PP;kc;tq1dsVs~s(e{%IHx71OW&!-l1{Z;nUw!Fo?$g71fTVP_u{`IA; zO|Q8f=dVlHyxKtE#7)&#^G%B8%<lH%s}o$bh+$^gOYLPRJM66&Klyv@#|z8wXCD;o zB{|k~uK8aRzj2e-6kg$*+w4A{n^Sq<@0E44Yj*xW^7kpHw%Pgf;SYIVoLcuXOVoB7 zA1nLcZSQv;^1GIE%rWSAhZ*l$+kZDQ%0mP$x3(?d)M5}?J}p<9y<<*0dtT8mr<F!p zp2?f+KFA$qR|-{_>2+9$=f%;US4SUlAN~CG^Y(jh3jQiD*zU`JEN9#L3%B1hc>j!Y zy=`v)v*4BSwLR+9pTz^b8JXmmag{p~&=N?1;jJTxiBbx&LP{aDoPp0k2?k^XT~Q50 zE0IVyT^hyo>3B>BmrjH&z$}}Po&N^E1<;ZTXbY$a!5T=o$|;B~z#^StNuwK(LJD=1 eKmvLLYztbch097-HlT?NtU&k@XlNM=hz9_Q2_{GY literal 0 HcmV?d00001 diff --git a/datasets/polyglot_ner/dummy/fi/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/fi/1.0.0/dummy_data.zip new file mode 100644 index 0000000000000000000000000000000000000000..d6d6cce761fc90f3f703223693f3a562da4bb0c7 GIT binary patch literal 1858 zcmWIWW@h1H0D%{+hJj!Pl;CENVMr;>&8>`2Ni0d!4-MgDU=BH*91p^!72FJrEMFNJ z7+6Gr$^&p3B7tg1VsZ}HwBpo~VlqvX#$#eyCXt4kwWIn~0l%S$062a&IllTL)&Kwn z1P24i<T)De^`|j2FtD>TFz6Cta$075d1iK|UUGh3P7XMnLDrlEVzh8B4fXDpbrp$A zuWQq0m3`(Ga6H!SlY(;E3<t4yd^=4qKfm_aB(zkjDqX2#fwg#(cI)l}$rct)tJ&V) zYX47sKIhfGo~G`1>(>1{_xty%_pZ|~R&z9*Tx#v#r^WI}C?-7co?O7XIdj&qaYS^# zo9h_C9KUeU`(m|M2YJeGzmYw*<95|y)dQOrt~<nb>)3%QLMM_+tA5S2>3eEr#s1E+ z^2?l6b-%N|D2t`<tnm~T{-VcnDZE}f%h0y?0pltiRm<=7YS*V_AK0`cOeVb{?Zxp8 zw_iOf-YFOKZPwA>MZWgF=D+ioZNIEt`SXGE&RX7(tYwLh#ZH{Rtj)Oh#(t3pXTKc( zcl_m7CcEVacbj}ab6~%Q%b&gT{>}S$r+)kY#KwKUMU{S*@0V5jub1~<=*#WD-*tDz zNE@hxo_{L#A?<%q!u@ygG7U$6-u)JTbJ_n{uh~Sz9|r6>`^eMfFjvEoQ-@r>t-by{ z<j<Ljd`!`iQ&+o-E19fW7uczk%;#9XLLf|Xn$FgM@YPGd&0|aKdUiHhtgYjvo8YTy z5zNUG?vzDK%P!dYT5<P{?=Egv{Ej;uiaU}Te0Ph0)1=<Yk98k~EYr=?lip6~Zxaod zJ)rBdaG$%0i}~s#w~m7vu6rbRze>4SQMKmloNP%)k7F^tC%+%LHuct@Pj@DycZANm zvaMgvGs*At6{j`ghw3VORxOG#{iu3<V|4e`J<7ALF1e7&q!i(-Q!IYr&89;RZnfp7 z%_dC<(%sne*rvaQt$LNRX6}?8UwflSpXMDRfz!I~ZR^$TKRJ8VNfFi!ZLTTLiX+-& zkKdiWXnxskzs1{Pi$CUA3ci~+XU>VoLf6hS$Hnfn7XPk)dtz{O)@uJJ*Bs_fNKKw{ zN1!@ut&f?wcudT)zZ^x^;^HQ}Ne{V@TwI+~{(5iFDb|d1CcViMinHEkoqiQuS(9@5 zYV6w;udkVXx_VqaZ0ngl*DJ*~$IQ*zt5A73=#dOt({?*n5vNa!+V$^9ZL&GfWcz)V zc3R&0Ez_pO+HJX^bo8}qQ{i+gW$&et{me`JN)j(mNJ+aP8F%_G<Bgp=HeGvZCb=N^ z*;Tbfy->~BKMDkFT2pe$OM66KNbz4O|GHpV<(gEVDaQ;K@dowr&3OIvUh2|C(R<=f z)H|H!);UycIeBAK=yuyuExF5b#oJby+?=;LE7f5B-hYctRx`7@7T=pJn^atHa?<S3 zBKH2mbe`UYqFUt_jz})7vJ7eQP&-l&Ed3an<d|_4q7u;JRDj{FBZ!Goq_RSaRJ3f4 z&p-(VWCLAM4MZzmNjF^@#q{ZTOa~XWge|}<Xpx=&2EPT+Vi#x&s650PNVp1Jh%LbS oiD5~j8<0W@b(BB?dIM|=S`m!PN>(<Yi43ej_!4NSGb@M(00LT{SpWb4 literal 0 HcmV?d00001 diff --git a/datasets/polyglot_ner/dummy/fr/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/fr/1.0.0/dummy_data.zip new file mode 100644 index 0000000000000000000000000000000000000000..4783f21d4ffab8411f3d57af953c1dc75054e63a GIT binary patch literal 1667 zcmWIWW@h1H0D+`7!$2?tN^mpCFr<{`=2ph1B$g!VhlX%6Fk75SjtAk=3T_5QmamKq z3@jo*<pDSikw7&hF*yfpT5)PgF_|Vx<1sO<h)6>%+EM+gfZtF=0GvLX9A9%0YXE=( zf`b8Ma*D+kiR(-Z3@2C_7<7p+IjtzZJTp5}FF8LiCkGtPAZyM7F<LnLhIr@QG2n?! z*E7<cAeQ;d@lvc2N0-QCHIL^^Th4yen4sD^Y1zqj<u6#f));j!YB#7_KWWO_lZPf{ z1U`BEc=9v}{&nfcRF~-PO4%d4`<}$9E3>55ypum=f4}s^W>z_&ue%xeo-oX|JKeU+ zNxVqve}6i2P`hR!)5jBrQuCxcr|~GRTv)kxb#5PX*NjXq>5k-k>9OU1*Uen8_i6sM z|4$6HCkgmWwvOAHu=e>+-ufrj2Ag=Lwym>t+An>c<<L2euByxSsw^wh-g+KbWD#=D zXXP}Zq=&m1)*1&L%zFG(<Jgjq8v;yov#0Xz&?s)*cC`8F*QUePZVkz8<;$15H?epf z<vMD7T-Wi&6rG+4a+P2A8fQ8cD_{7XE+qb~bk^JZ>-Q|x+&<UYZ$*e)-@#UXPwxXg z%U7<xZTm<&<HDjs{kkU$L>66<^j`03G_&Mv33L0c&nd<K-PbJry6&up!ZAyg)f{mj zpKoFPn=hxQG~I7S-Kp~nt!A^ETDTmYJ>klw&&TCmI1;Ap{yx8=>hB`XTg;o|rf<sj zV9Gm_`h1>`^%OIG+1CvbF~PfktXLILwj+?uWcjtyOx1IFuh;%s9oE$Em2~)iOr2Ep zmnFLer*2;;`S+dO?1srt!k4X{P*<^A^z*mVYff6lN<KIE#getsW8d8QD+7PX79YLx z{>1nC*%PllUi^4+WB>XG6JCF6{`5OG=u~9o*7MOJt=XBb6}->dg(mI!Jok}wLVEfQ z`&o(&SGL|Ln0agBd8O0Mv%90))E*yNA6dUCXroTUn*OZyHk~nDuPbI-R0cgQy|<(2 z=H5H~ww}{3G2hjam76c{)}(osmAFgJ)40gsm#PnzzluC6#T38dRtBT#oB7kYo}BW2 z$oP5Np1|@MTN-OBW7a0Jy>xI*Q%U%cyRv?j`gG|nf6O@7oj$QB+wJb0!c5^O*7Lhf z9txVUZ3=rm<$J!+W%~o^oHsV^ncTnXjZE9^@cwt3{|9(8GRZOHDupDV<&glxTSpKR zrA%Ullu2m$1fPKt49Et$q8f-+K9O#^G>Yld@t6)Ss|Z_wSyCZ8{|$Z%pyd|O7EpnL xHIQ(XS`b@+1w6x&MmHdZ6zV8}1oQ^j7PK-9mzAt+Koc2Qf$$~J&=wXD4*+_8Kg<9C literal 0 HcmV?d00001 diff --git a/datasets/polyglot_ner/dummy/he/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/he/1.0.0/dummy_data.zip new file mode 100644 index 0000000000000000000000000000000000000000..e02482ea05029c74eefb18333451ec22160e84c7 GIT binary patch literal 1724 zcmWIWW@h1H0D-BkhJj!Pl;CENVMr;>&8>`2Ni0d!4-MgDVBU2qIUa;dE4UdLS-vtd zFtCUKl?UK7L;}^2#N-^XX~n4}#blZ&jmN}{R3Z(PY)AF00)9gg0Wk4wa{K}y#u5Oa zfZ$*NncVvClAHiD1H*521_oUsOwLG+FVD=*)Jx9K%gF(UGsv1rnAS`UJ)3vgLBMW% z|3TIXL07_>rWLIb5Dy4A%3aVA;JBb;Rg<&)p}aRsynCc~EB>owo7Y?`yYFY(@v=bv zkcp4)-n{wq=d;-x<Ex$r|1ZwoV|(ba{?0F^DI3c->D0W;j(ifaEZ{^zvzH`GcKk`B zPrdts>RZ*1@Bh5EBPsr8Z-45}FU9j`EI#pn!t`d7R@GPMYFG6g@y)q3LvS0<BTl)C z-4!m*OV3}q*SkmPjp`Rk+k-oTGhZo3u1Tm_>aIGuA|bK+^0w_0UcU6`O$k{Mdi|i& zs*T-uC1W!Z_+}X!PkB_qeDDy<)&nhPPqAoQaV<PnrQRCFeDd|jjS6!D1Q_1S6s^`% zUKZ`}Y}>tkHaFQmSt^wOn|0egK&sw)_MAt5^FIB&{8C&e?m^|U3#YzznRd^-fA90% z+O>^KA{XouI?*>r=G)N|Gd};*D|NQaR?)6B{NQqCBGabYH9M?)L&R8PubGtT9&%ef zL&Gn7<@CHZ1?Op>gH%%uu4iv5^)0(5J4vvytjGDnPN5V2ag7i8D}!F>J-q6*d8tQY zuV7&IlbMI>&t+L^$DY}AZpt@Xm1=f&f7eTgo<v1Xnh;eQZpQJ;BuuTRr^a%Hz4F5> z<v`8o(<`s0%0!)86q>j5o>znazp@Bz+YG_5*Wy`8&MR*7{ZP81lGJ~mT}QZKmZGS5 zL=MvtM-`J@JXR+KoivtytbS+4WAxkpYxLB8pPQc8q#vKzwt}O-KC!mt`Hz~e|K^jw zr$3KZ51P|(G|}Vr<1ftr^tT+%pYk<GHQS?Vwx*$Ub!IZlg48lmSr5*-UZ2zRo==RM zG+F!cf2Uhj20N$yI`vX-i}RtN#Gt^8HPS2ZO{%&p;#nG^75U$m*V$IONZfGpWVH(~ ziv51&Rk^zD>U#TB=V=>rbFub;myhlD_pbSSy@fUY<)?Mlwo|VeegD07j?SCM#xlng ze^1L};w;|fnPbG-RcdLP({g6j9OJi@KNiHk;Fw+a-gCmu8HF;AiYvv`FGYWqUH<)Z z!Rsu)HDX6t=7}n-jIOLdyx~&)JT^I{zLmEQta-3-OWsfJ0B=SnIc8kNmjtvR6JU7j z2x6iXW~`9H3?m=oHc)~A*+5rR1JMdL(oL5}F?~87)4_!tVGA&eIArI)!EXVyzysO> zDv7WL60YJ7VhgZlU|7=V2BeTe9VL)}-T>QzR`}tvl9df;A_FTBz62V&mj%QF0D%Ts AuK)l5 literal 0 HcmV?d00001 diff --git a/datasets/polyglot_ner/dummy/hi/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/hi/1.0.0/dummy_data.zip new file mode 100644 index 0000000000000000000000000000000000000000..d1c34008005f3705f41d6fe7787c0aa38fe78418 GIT binary patch literal 1809 zcmWIWW@h1H0D-5ihJj!Pl;CENVMr;>&8>`2Ni0d!4-MgDVD>$o9PbCjr4`%^j4WRn z85meZfXV}K8X|#eNMdph*tFu*l4693AXAApQ5uhl8JR>HYSfPER|WirA_CyR+2r`@ zi&&it3J4AckjcratX-+h3=F!!fYl|!<c!St^33c^z2yA7oE&gCgRD6S#Au;1HSBJd zu%pPnb^Q-}MOX1ZSo_6qMTh=|t2bC~yIs2TB6PRVETJXhyTZI2mZV=+J*FaZNhM%b z_)PbYXUd<QIj17}>L{Oe`nfst-~Z`dnCxuqJagggt!vra+SKfgzTABh&(k|2<3(3} zK}k>jvNId`HhjAlmt#A<x@KNeVcYGU3tJVLQu97-`+M^3wC~H$v^3vOkbV5=&Z+bL zj^*EMc%FPcXwtlD+rmTg-C6rCCaDGZ{kReI$vJ1{yiKZM{id4DJ68S*XK^}Gw@t6O zE0by7#;#LW4rq5+9jy<4GG&|fv;3OCy_^>lGFQ&B;<kxPc%7@K!f|7s<(v$;`$-Ab z<ty!`JG4eHISM*mFg<W;8c)G2?%Tng0-85h-U{HHue*Gzapb`zr$rRZT5iPm2)($s zM^*n<m%sdsA3d`ho;USh`<Wf4y+`fr-d_jXvz8{B_a|3O-;i~1lG&3KgUlx`s<*dR zZT@!5`$e{wi)42xOG0qzhGu!UHOu|J%FI3-W_%}Z|I~~m?VrX@p_+Dl=KD*#5)zjN z-fwIDddzQAy!8$157(;Z)XJpmSvFp6Tc$I)XzR;@)*qr>*0a7dF<O58>i@Nt`$OKR zjh7-qV-BQqUKKFXPii<e;f?UR)%Ke$ysf@_EGu>}JMvP2CnfU0wj|FD1>f@3degp6 zY|YWXd2_wTn)_F^cISuB?VLD?YudL54rfgoxYwThxL@X)mGtV{&NHH&WUjjlim!g6 zzsL34&ObumAN`s1>Wrk-zQU8*e77I<E}E6qqjvG->9gS(B^gHB*jfcxj!nI2@Xm0x z(BG+@mzI}L_4fB)&-ikaew`H01digEf}d;dDqOC+cm0FU+cTX#A3p3X`rvzB>s#j2 zlHd34UAiNAvZO=%wHW6MXN@U&6RvkNEST2E(6oAq@mq~;Dmei=OWLNszSQ@t>brl! zf0;?OxAU!ch`MYFo}DMdQl_zf{mGWlMf3H}*KD6~vO<jKVcyA4R+aI-r}QoqZPIx^ zlS{Yhn`hpfQ_TsY9|i7|{7enl)+$^p?ZFyz{GeT6ji=II7jGX1yLQ`22mXIo*~!;d z*Y#oocO!HEG+AN)WfT4cEAq?^iIy|5;yGUas#h*X>b174lHGjvU!S<<DTTf0m3MCI zTVnZP!^8BePi?K7J1+3QcH!*L;XYwoy68VsfHxzP95b#mQ36^z3NXBN1Tj%cNLEM* ziI!{e87RSkY@jQufoP>A>84Agm_8kk>EM!+umzaqCbIM2;I{x;iUMr`6>nGr30D~k ru?1M&Ff3_w15!w#juJ>fZ-8w<D^YP-$;t*ak%1KmUjhvkVg>O45XXZ| literal 0 HcmV?d00001 diff --git a/datasets/polyglot_ner/dummy/hr/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/hr/1.0.0/dummy_data.zip new file mode 100644 index 0000000000000000000000000000000000000000..48244b8b4ef054ab5f96c4b5b03cabe48188a587 GIT binary patch literal 1680 zcmWIWW@h1H0D%XshJj!Pl;CENVMr;>&8>`2Ni0d!4-MgDV0Jm391p^!72FJrEMFNJ z7+6Gr$^&p3B7tg1VsZ}HwBpo~VlqvX#$#ee5s`-KwWIn~0l%S$0N8#uIllTL)&Kwn z1P24i<b59gwojNC7}l~fFz6Ctaz;^nd1iK|UUGh3P7XMnLDuX9Vzh8B4LO^4+knST z-~STR?F(<WC0}3Yx^W%vq;(Qyi<6HoOzmz{Sv@0u!St^e+)s3Wd9vra$0<Go9&3+9 zOZuN2m(R?0I>K^x_U@y{H*faev*-E79eeiKoOhS6Sjp?(r<LU^!dc-JA$90fcMr4w z!HP8tC;nZscG|RiTZ*>Tv524i%9Ov*@!|yEFG^w$yb3?<ecki?Yn^+p_=$}bhmtd$ zHstK?bnElG|Ea{epKGtGeEI)Xck)jh>)qIY!6dBYh++Tw7hD|Iju;s45v|faawgtF z^psz7+u?nJjW%H~78Gvc+}5~B!1IEx<*Xidv!s;CJ@Ol-EtXl;b8hyI#X$$p1q3>0 zWi4hio-kFmz;qLT`&!fbLY~f3cG6N@XKJP<GdIta<c~=E%N81&{rU03UlILvHQWBi zTseGiQk#v#r*_**BA2<kJST;8Pv?qemzgZ2@U25Q;jXDfdWwnV^u6wHd04-++uq1r zEOTw!dlR`ShYBUqYQ&1CO%eGr@kX0l*KU@_lV?b2%$zpmM}yhokNaQ9Xsd3MeUkSw zvP?RJ-J45rPLU9|T${_*FKgMuXK#6U_-bgL|Jh8VCAMd-FL_w}a>Gnv1>2^z0-p}t zx*_*>ds@v)*$TZ~4BMaVcx&=AU`Fr7q<LCGJNL5Jwf8+cRTA<l*s$-&xAeT;vm0gi z8O;0fHn*64&DOt9za4sBuw1w!Zg#nLH2+l1`je`=Ry{1)P;qqTi`R8EPP{GVb3ORy zv?mz%rm(fYsw#Xpvv0?qox5k)v4)+@kF#f0d%JW0t3Mr=67?mn3S}?a8n?dWs==}Q z541WX;#@D>=y!i#QPcd9^-I0Q#cfjY&sbs(J)Ek&V%ZbDSNzk~+Z507`rPoqH}v71 zdDnYRYX-j%omz2Y_pcun7QZgMp0;Mfga7`1$J5O+`?Ks7FRi&)=({>7l#MZ9lJ>bK zHbV=6*uC5Sw0?-!?s}mVa!alDxuRz5x-?7ch_8-&Bf}p*ysF~YCsO*6J;0lhNsbv; zkt6{voCFx&I)a!e1r#f!fI`bO_zaX_KsL}7)j+huigeSZQB0qX$8>PPMc4w&Vhh>% zZ}3|HEyRGffJzsvfrP6FgV+Kr?HQIdx&bMqP)7+Qpf|v_pcQDitYl>an#jNkgfD@H IPGkY`09mU=8~^|S literal 0 HcmV?d00001 diff --git a/datasets/polyglot_ner/dummy/hu/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/hu/1.0.0/dummy_data.zip new file mode 100644 index 0000000000000000000000000000000000000000..ca6ad9c2f7dfff852b0a3ec50e6659ee48529364 GIT binary patch literal 1814 zcmWIWW@h1H0D*_ChJj!Pl;CENVMr;>&8>`2Ni0d!4-MgDV0Js59PbXqr4`%^j4WRn z85meZfXV}K8X|#eNMdph*tFu*l4693AXAApQ5uhl8Kp!Ts^5<4R|WirA_8F7+2r`@ zi&&it3J4Ackjb@mGW=Q03=A{a7#MVkFgc?%zC1HKQ!hC`FDC~a&LC@c12I~t)Q0R{ zcgIX%?dEtPX1@aY!lu`GvWFXs=iWGBdZ##iv(R)A%?W#$!eZ?b6A$e564mSB&Jo<9 z{B3_t+82X2N&+f&F6SQ4F`oS2H*BiizYkScpBxn1S>Ar*>AtWVJAZv;ihre%kg?ZS zLhf<zy(8y7Kbxns)1~4^yszp$wfb#8pY()n5Uc#3zGwC6*|W8K>>pmO$#E_a{=|GI zd28>fgd0y4-)u4R3u}yVj6KyH*;5>Gl70GbONpzM+XMMFn+6qj`afZp{89RR@w|5* zf{thI=iJA$Doww#L-uUqzLR@xSKO_2dQ<c6+P!>%n8lY~Jo)tO7iYD^BAvRO(|Y`4 z?KoL#p0X-_$nAbpGsXM=pN+Sa6B4G0S@5tvV0m(*-7Dl-`+}>Nt@HU!^Xhj0ezPy2 zifR3#PXeD0B&@kM$25KUn$W3T6EoT>7>n6_%b#e8W`$-Lr`!Ime%iY1t;}s%iRH)U z_175e4|kliKPgv(IjlX3`;@%XME}&KZ#)zXqBftDk2GoI^18*9`TD87TEE)zi|qGL zo_kl*v)O&GrTk5qhz-IAby;SdJ8rxDT7crCpWf2;?z`hGO4RuKbeXDW*G!j>SmYqb zb&2)u`T1&-6?!h-pKvt%nzPVNmJR1FnoCXRKC?$Mv)tj2K_d66$o}X49*SpY-I{pS zVOjB!1)AAY)?O8w!1BvTD!+KW>mTb|iy7KZL~gusr$bOB=g$&hN6nvWSMFK+^V(Xz zHGcE#_+u8^?0)^pJ^bmu)ivfz!zbJJ6vo7NgheNPo*?5oW%3f8SpiSuYISotKZzO6 z?Vo+teCpKylb?9M=gNP2>hZ~zrDD0sX<k#=8JnL}TsrBIzOq5pDBVnF!ZJ@~)7CG0 zB_G^T%hTE%<fgEAj^IJ1k0)cF9_=k^|9gY)0OP;1yD`6S&#<4a+BnVPwAU%IbsCad zQ9{@J^;~OO#CDrB?O)mU&Sd(mX~BYA-ZFO5RbAibhU`e6^Z!ZMwf@gvHFl-GU9nU% zspQ(hkc9SW5$p8y^u<(*>-42XZ#?AgkMb3Xn#lQn&)L6n-)pCb2pQyGESJ(}O17CF zd_{HnN9*rT3=})|tz47!>G;mYjdOS(u9z9{OTL|}woH1z`J~@rXQ%Z0#NYe#Ek%>h za{b)4D-Itrn%0W)nCL9u$PlfU^-%IqYozf?WdpO-`T^dIOmfV)3PuTN5h=j%))B-+ zDJEGV#UxtR#b=-d1G0gxs0N}HnWUR8jbi$AJf?$-Pr?>p7M{q?e}mrwXi*BZ1ysgi x4J2FzDa00Fox`xC(G5r;g*r+g0lfjX1+7@cWhE=HlxARH1;Up=L&aG^JOIUydQboW literal 0 HcmV?d00001 diff --git a/datasets/polyglot_ner/dummy/id/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/id/1.0.0/dummy_data.zip new file mode 100644 index 0000000000000000000000000000000000000000..5d6358ca1232060b5284d18ab6937aecae96f769 GIT binary patch literal 1695 zcmWIWW@h1H0D+gShJj!Pl;CENVMr;>&8>`2Ni0d!4-MgDU=BN-91p^!72FJrEMFNJ z7+6Gr$^&p3B7tg1VsZ}HwBpo~VlqvX#$#e;3Xz7Ix1;)10l%S$062LzIlks1)&Kwn z1P24iWad_}<)4`t7(&<>7<7p+IWr}`JTp5}FF8LiCkGtPAZtzmF<LmMhMdm3W58pR zZm+yt%%gjm>&0So&TW~}DHETtznGd-tm@q+$Ga{5zT(r`C6+g)Wpv5#wa=<hC@<Up z;Rxe=ZkwaaCKidlcGf+7^VhS)!pA@LOUv%XUY0+%OXz>@Th93x+wLizS)pjdn<Z^M zTVl1tVvE9+75bLnI_Dj&^VU`VW0^QJ*WLEyd}}XT)o7FRoAOxByW4cfUkm>!UiN!S z$cc#u-e*)~9!r_4b0Wa`QDMf4Ne3q|{mQFYbV#@Ak(1(vIX41dNEb2iyYfr(<~@-} zujsmeON~qV!UYdwomMlE9}goIuMzb5qY|H|rklulf8DN#4EgU985l+W?%SWG*WYRs zZh5ltsyEY@1)Q^AtbI_V5$t?H<yxxj)6JW%YOizFoVOt*H*{6xL!D&#)?WTeyRBZ` ziuA2DRS4d?RKtIc4f|~A)upp$y3NnZHcWM&T$Z!x;4(hXtI6l?b!uwMUA`4HHP>$C z*C@#i%Bq&iY0DyQLvM3jXbx)q(_Z(*q->RBZ{hD%cXv)}@wIySV#=bG>ppx|JixZq zXV+(wRaFX_6C;l=o4YfE>Gs>joaglKf2c~c-zPi$CYM}Ksry}*a6y*3>NWRcUClpx zsxSOCcS5r5vyCQETZ61KdraS6dvgAreAw}IZMv;*bu1Z^rb{`0_+%0K{-6EM&e<zA z>{$Qs#_`H~YJyprQ+yNTW@Vl_`eMrz!ww<8<KC-xZoc_(Nswt-%5ioV?Urkd!W%j! z#rwasoF~6TcS<VbYu>m`iO%_grx+sY7wk2;+AsROFD_0t{g!cZoa~Dm+czEBw&>=< zSXo!LF8;}XLuQ|m_x33}H%T|+qNPBKfAfueAN~0nPEkK+w0!w|%w@~T57$<<gzmlN zy;HKpN4>-2(<Giv4}Nt$S8u(wZpr!idiu}z@R`S3_?4v_FSWg}no;L=W!d#5;*WP< zp2(6SE3uT{^t+(*Lh0j+{jS;F`+YfD>CJ(X>mJLeUt4*T-(K?SnMqA1%frNSUp-7S zY1z9Z{tt72HzSiAGp-U!0$NrHFuZjHF;U7ZR!Dh;mWS{eD8Ybipew3@Xk{1arc0xk zJ{^zg;Bt(x1(>B6vh&~Iw*XqE0c`;lHdq4*SBVC(1z7kqENOHDQb?hW5=cOAfNeo5 X-*8#U3M?)e7+8VuCD70XEFc~L=u1Aj literal 0 HcmV?d00001 diff --git a/datasets/polyglot_ner/dummy/it/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/it/1.0.0/dummy_data.zip new file mode 100644 index 0000000000000000000000000000000000000000..20e368a827cb601302c92d7e53817f79a30edd57 GIT binary patch literal 1620 zcmWIWW@h1H0D(EJhJj!Pl;CENVMr;>&8>`2Ni0d!4-MgDU_O2-IsOC?msW5yFtU7Q zWME(s0V)r`X@~@>A&JR3VAG0IONtRDf=ngaL}@%GW|k0Xs8TzsUls5hiU@!OXOrWr zFJg5rC?Gf(KqhAh*OaYbVqiGQ%D|vYgvpsD@#UG>nR?0jc{w@Ya0Xek5Qx!2r8dO7 z?}~vytbcrp#L89{9__Hh46|70i}l<HpYy83vrqPo#o;fU7Hr-(idy$ceBD?r)e^BJ zsPpvK%J(<lKX`LE%P;BV=9xmgBFu?he_H=kM4onC)BMEX<E$E%6Momc6DB9jN}82= zo<r`+ONH5!xo5X7I=-QOmgun=PxelmHNp7$kzFRmix#P>`K)bFzY-ID$>PR)#jn%i z_Eq1?J2^32{>$+LbF(^+|5=ll(<PC^&$4~;)`lbB!v21*c>cb+#qM?8Pkxg}H=lhy zesy()_?c=I(fyk$nJcgTGgEzD&2GF~JnFUTQwtW>ZD)*imfScxVP*P@E$XY+b*M|Q zX(c`ga;$!RQTy3q9SJWB`F)>Xe{i;rHh6l2Z7#!RrJ_gP{gG@D3)ZDP`Nh`b_r~FR zwZQKuL5q%5|MJ<$`6zzPTFbO&9<AC}Zp~1dd`<F^S??#4r8ka8K2LCLu~11!TEyg# z*je{Lb89@G*DdDH$E+``TDSI^nB<O)ZB;T3uLCX^E!$T+^-NT|DdT_HO1^trdRIBL zGs&9x)=YBy+|oDY--@H_D%fu-Fq<pBE4^~$QeVxY59`jZ<GX)@FM?HnZqJR&8$XsR zdvcYoyqI!i(`P5q7rryOCJJi*ZaU=GSh-nHM*ZqJuU85ImtRb0y7$5VNP9|W?yl`Q z=Tz@(adLn0L*)EX%horaEN9O?tC^I!Wx>R)R`zq8uC8i}kInz5%EVW^`>_AR)vAF% zGn2M2p7b{0HP?(Iwy))8MJzA+p_+VTVzB1>+$MuJ9IsBU_&=j%iBQ(|wq-XCHapDl zn-=|c&2mX8uHd9&w_6tngub$OcR%JN<n?j?mHUghpZr^}OSAZ5w1yt%Za;pvZO-xf z5qE;Z{EEID|Et4Xe{Q+C<*myvbra0rZ)*wOd;Ky;vipQRE$i!;1H2iT<d|_4D-zHG zMu6e1BZ!Go$gn~R8MK6t&p-(VWCLAM4MZz&NH<*?#q{ZTOa~V}ge|}<dXSy}2EPT+ zf(U2}sD!{8NVtk2h%LYpn_)?#8<0W@b(BB?dIM|=TA_r?N>(<Yi43ej_!4MnC<}-O E0Q~7K761SM literal 0 HcmV?d00001 diff --git a/datasets/polyglot_ner/dummy/ja/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/ja/1.0.0/dummy_data.zip new file mode 100644 index 0000000000000000000000000000000000000000..b26ef66177745811adc72182fd37edd11be850fe GIT binary patch literal 1806 zcmWIWW@h1H0D+mUhJj!Pl;CENVMr;>&8>`2Ni0d!4-MgDU_NvzIUa;dE4UdLS-vtd zFtCUKl?UK7L;}^2#N-^XX~n4}#blZ&jmN|+Vx1}5j_Owh{DvX|VAk2>`09&T0{|2d z91I|ngKvDTO=4zXuw-Lk&?Um;ti<^8%<N3P<ovvx9B?>;teFGEXyM!&de<+?QDEP+ z<tw*c{IW}YZ)VaZ^MGWjNo==oEqgh4_i7Fqk$|6qAK7g`EncJ$B`6}FcEk4h9@q4= zgBQ#)s}5S;KX-HP+?nrZA56*j*=A`d&Gl`Om8`Qt`~LHSH7#Fm?cArYyvbpERLfiA zr>`EHF$sh#oKpCuu)Xpo`^2PzY+bebEHCjldSX{)TTk4!G<npuM@H^bdy3tSw-;tH z=6!$HRZ_y@G&y+Bk`HR>Yl4lMZ?Ts0eVTM`SLx*F>%Ck_^{Ks16HEir7l?T5;<>_m z!svayRIO_bzm}PgSbX#E+D~5{G=F?NwP5ms+htX0-Av}Ceb;wCSu}^^)|V-ag;~XX zKew`V@OZS_O`m0Ed*`kFx}vhXiH9COUD|o`d%m;2`ts$Ps{8f_8oEEZzGZWB-t?Gm znf6%bpA1^wa#EtPx0E)uEH1Wxd1FDa;ZmvNZrj<kT_<q*y_Zl?o3G~nI=$}wjrS8{ z%RiqvC&{s{=?25almPaLKYr_UFm;@o5VP{w2m8PO+u2iky3($g=6CU}H9qg-zgHsN zs(VXgPV=e8RmzJOgmtXXo8%Q!p!q#Zd&RrW&wH1NuP-t=6*J}Le&$7nLNC~wvnPn{ zP`DH}t>j^8<o){-UY~1=&yUXfahTWj(bP$E+K+VnET~iYqxe3ecg6Jh$D0H;L~Ze3 ze~V?~X<w1gzwfxuG&?cn>(jf-&N_C+uoPbMo)DdQT(oCG>h<#GQ>@(Vi$9#3D`;|- z$642}^!vG})slIvn|56lJhJVq;!(AGo6MC8Z=H;K^yl?1J4G!ve%JGFi!Z7Ml`@@T zY+aT0Z{reUzNa5-Wjb5zb?Y7kxn7^KC0XE#U)@@R7e(eKT(eTUE`57c`uk*kM|7UK z<42u^X+1%QwZtZREpFXgrm{~gQ{!wsr~di#u400EE&Km1xPEE-38x>A-`|>9W4lbY z()(6m*Xqud)88_DPHz49vt@7Ia)A!#=)!r4D`tltvpubUqEsw9>Bi@{{}<nEZT@<; zvwU;DMv$7?llgWtqi4CM&9BT`Hcxtvd)jR4_eCm-dDew}6<2u91uRywG`UrsS;>@i zTS$T{M(dS!kaywacP~o=4OlL%zII6T=+8ojjVi5YeYS6!=WXm3|H(+T^ifCFhaIw4 zJkI?(AbCGc^RPYFTd`bQr~SZ^jFCx>8CQWQ0WBH@7~VR9m?*^~E2MZt%d+?klwd$M z&=u7{w4#!9)1^^NpN_|LaIs0)0?a}a+4*nqTL3LWfwq9kHmre!s{n=A0<3EomNdEn jDWp(G2_&F5z_y?jr?{+S1(wbX46H!-5@;wtD~JaGsYHI# literal 0 HcmV?d00001 diff --git a/datasets/polyglot_ner/dummy/ko/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/ko/1.0.0/dummy_data.zip new file mode 100644 index 0000000000000000000000000000000000000000..ee6b19ef44147b9112154ceabd01cd4421452e47 GIT binary patch literal 1896 zcmWIWW@h1H0D<SNhJj!Pl;CENVMr;>&8>`2Ni0d!4-MgDU=BK+91p^!72FJrEMFNJ z7+6Gr$^&p3B7tg1VsZ}HwBpo~VlqvX#$#f3K9Po+wxjx00l%S$062O!IllTL)&Kwn z1P24i<W$93xqFxy7!ueS7<7p+IXgeTJTp5}FF8LiCkGtPAZv~RF<Lm6hThGS3K!UC z=0C|RP_$r`$@RdiF(F=4)K3bBaNmq-Im&fqP2`)qZ+AtqC$F7+cs{dM*!`tDZ_li4 zuPJ^eaoAP0`TR^{`}=2Vj3-D26r4OPSIWk|K5Oa67fR1=PngVc{lCr6b%$0+{irct zVWq7t^KkYgUUh9hv81o1u94?v?kT#Z_k5<tpP8S(-d!jEuRQpt8{ak2KOasApRGIJ z*7tqN-x=5J%8LRG6!|W&o9*1DR3#s*;BWsZ`SJfy2c0r`^EuV*>+36nwVz819+8w; zdBDS>vDU;PXjW0_l#6Sk^?IK<tz|8rR`E0>;3E6{W1Uk}Pt4u<b$P(*iwz6yx6FDx z#reL{j>n1B;`eSn-WdNinfsBT%h%`U=UtRv^v8HUcgHV9b*69SHFW~%Vp64hwR&Ej zUKVpt=FhiRuD*+dtXB59{@z&Db9>_M54V<0*gBD$>&23*?M$9t6EAVJRorG&=ak!B z#;nS2>2&Led&3dOHwzrp?`8Zo4LTF~`=5|vg3E$S>i^@WwA$p|i~sOrrGUQr<+al< z{dghzwM@FxXTb^G#Vi8<Zrln}R9G(`CH8ZU7~kjJYOyL$H(g+A&5dB*efHSnhrGLV zpO+nZnBblvJ@vb##<qrnrO_p)l#L7b9b9T`E%up5t*`b$=CknSyJg+(28Lb<`}k4k zS>TC(A;sI5eEjMae}UECck160Z|kT2jj8rj7hB-k`{U`F8~y%kwF~&2wXQO==V<=P zw2Ti+k5v^a(wuI)mQ7arjBu>@tL<6hKW+za4rQ0p{OMwGG`%gacJ;Ss*Kd`@7kt?{ zC-&sSBU7|LE7-@LaI=Wk6m3a~+N1FN^1kGVKmC0&VQoIs?@Ar|-o9tm7Wd6Pdg2k{ z>%K~yNoh4%9dbi`z47hSiR<T-PW^mnQTLf`xyiok<W$^N_)VAgKGrYwdE+;y7YioK ztT|XM`}NhAy;mOGICnR9_A@zl&KgU$)LKT7%H1(1j%?YeyT>}>ORu{Byw`W+U)}k? zB$@x-%e0b5ZPDyccX8XjN@3#sy6Ep&CS4=J^s~C1tqkt5|88FnWjnr3Q9{^fg4o)x zGlc^yeh0<r`B=v8sCmTmal#}qH|b*eHG%d=_PbA$;5G{8%iFQFklS0<>=o}v`*QAO zSz@nN1lI4;e!gY>uNxa}Om^-6cKy;jul46@x3jqkhg|;~<altKV2S9@vM%dv0T;=z zbN4I{7t7~P*ps$RvfBIk?CXM46VI*ubC1EKcXrC_|7W?k1$$l>HVe;_ZaU@}{xWpd z#W;7d4lnhcVq3n+26!_v$uZ+9Y9*kBt^mVZM-UUG;AMpryl901J_98fkPUQ2H4v>3 zCf#&t6w{~UF&$hW6Se@eI7W8<8~heP3umA$pi&cSAmJ*SA+`W(F@`0LZa@kt)KLNn c=nb$fXazMcD_PlqCNi)B;Y*;QnXDil02OSiWB>pF literal 0 HcmV?d00001 diff --git a/datasets/polyglot_ner/dummy/lt/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/lt/1.0.0/dummy_data.zip new file mode 100644 index 0000000000000000000000000000000000000000..fcf695065f8e185e1a092785c7a0c96807574ff1 GIT binary patch literal 1714 zcmWIWW@h1H0D<&2!$2?tN^mpCFr<{`=2ph1B$g!VhlX%6Fgu<}j&}m$(h6<{MwYLP z3=AwHK;;2A4Us@KBr!P$Y+7+@Nio7ikf}tQD2>O&oDw1pwQWcBs{(#Q5dm=ZY;t_f zMXb&R1q25J$mDIS7|yUUGcY`2Wnj=H!sMKi`0~u`Ougj%yqp|xID@RY2E=Hgk{e>3 zFYG9=?xQ~ANtd!X)>xK<T?$9MTv(o3?Y8XAmtS5xrzFrJGiceOf@Xo0!2uU8Okle& ze^Ng&?b>sTz^=Qy=gxg@e*eur=J$s-H^*t#EHRxgxu95e$t0%wtf#95L?7gPq&_)q z8nf5@lox;C1>eV>roU3OM0Gras=Ie<G;hw#G!koN*FJbIy+UWo<#iD<J(J$*b~OF@ zqB;Lbv4`fK$A7lu)=yr<;cL4;X2sJ3jQO{vPp_O{B5`5HjHf9FCs*qJ;Z)o0<J!Dx z$A{dQO_Sx$>Su><lDU;_IluJ<k9=-XCLKV&XEWO3p8dE@!%)Y3N#TFx~I^G~&E z3@(Y@Bzf9myGG5_rWLbSKI&S2QcR&JqSw_YHjk6-Nz&r^=S!}u`|bX_+K2De)s>%b zZc#CwF{v{%-@y2Rn+&IJ@Dr02N|EU`wbjW#_65at&8iOK)YtlQ;h>eTUO?C9ct)?1 zlU_^1gwu=X%sJ!VDtBLg&pXdnxkU!2j_Gjd9dX?s`PI05{ob&*rbi`qbBSzh;F~es z=f_>gNu1U9ci1{DO`JDp{}SHo1(hqg-B|y2J~38V(o(0)9QSKkSAxcY@R(-1nbVfN zUQjmk!Oy%6cVjnw7QCThqIg_%!a?ix8x}Nu6bscTl)Lfo-6QFDubU65Exd2ZAv#O= zhV)_fCBb4d_6kP(UQ_3oA+8-P>~d+Q?C%H3&gSxyKKpH|%2!(OU`n53w9@s>&4&Z^ zBM;o<6$o8Y=;%40b7|5l<KG2YYI&AQQl@)5ZiG*h3^%*zySuU`=5&O5beqkjpon+v zfmQ|YwJub4tax<mZuq8*0;Q!B+nGKd`2X=;V*Y#K`nK27w^t`}&6ly|X^{%LqbJ?l z{L=VkAL|@X!MNTINoDb)QH;yElY0Kee*C8{G<C|%jMNisimahc4|Dpj%sicc{P^AN z);%JV*6+<VvUncvq5d#=LiO)C7bW;Ue0~(DJa5tbe521+Qooi}3xw_1vGc16?`Ppn zb`=hXrCvUeobd3PR_{B#IswO!kiO%u-aWGJ{LdWV&B!FjjH}R+fEHf@3~wDlOq3#w z6;gzuWh;CJN-!WB=!$9}T5(3Y>Cz~sPsd|AxM(A60cOF5?EE+QEr1qtKwCiN57t1! uRmeeX0oDf$OB&sP6jG?81QO62U|Z0NJX}_?vH?wGU<JaLKtngPfOr5!Y(g*q literal 0 HcmV?d00001 diff --git a/datasets/polyglot_ner/dummy/lv/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/lv/1.0.0/dummy_data.zip new file mode 100644 index 0000000000000000000000000000000000000000..0202c746d12e6b361762a6169dffb7a78ea976b4 GIT binary patch literal 1756 zcmWIWW@h1H0D;-9hJj!Pl;CENVMr;>&8>`2Ni0d!4-MgDU_N>(IUa;dE4UdLS-vtd zFtCUKl?UK7L;}^2#N-^XX~n4}#blZ&jmN~CG9nFCY)AF00)9gg0Wj}ua(vx6tN{QD z2o462$uAyX;4xrkV5nkaV9+JP<eakj^33c^z2yA7oE&gCgRGek#AxAM8|s~R$ABl+ z{P+tk#!C#0Tw5~2|1NZ}_qceT(PG=H3!Bz7+OfU5n^V+i>3FTUA+KxAo9eF<H!VN8 zjJsd6Q%zo8-gJ5YI=^!ta(1Zhk>WZM*c%o1yh5i_bot!5Wm&wJ?XKqh%51;NI&X6L zwV83}vS$5T@!M>}#?NoJ<X_ExATU?uhvB34f3M~G|0T_R^wU#RIx=9sPlCMIg(*$z zudaT%>Csz_+i#9kDY-t~xAL!A_A|5HTiAS-F)|s}?bQ9M^Kr|B^J)8vXFj+7nWW&k zWhOu8dhwz+9p1Lnv!BWz*(kUC@P)-po%esI+)&f%yPPjPA<OE(vjxXry^UUKx$$WJ zyMDEb^Ze!SW;#{H?b?(hz1mRvmBil*Ox2eKqtEK~b!MrS>{Db<-WNMTv*+c8z<+Fq zx4wJS6V#m7z+^k)TdaYN-a&!LU9QrHeNSbJ=(D&=ec@(Y*`~zO9^iegU+ePHOUHFS zYV8wGRIJ)}l3S`W-saf()eD|nWjJChF1j-_oN<@Zvh1=#(ZKkRVWwQ7%U>?2$q?7f zZF=JPbFY5xrPvQ5ll-4n-}rjMucl<NsdVpCg?|gI8E1$dJgUVWbS#%IDrw0b-|Dr} zT+@`Lx&k!y&Pwjckk7K$xN;}s#mfy#uY8`kGr#kYS)iZH)|v75lVi3-Z#eS!pqqhV z`;4n<a>}d^OKn~AQ{pyWOZ~K3s!?LH@}<mTowZYQ<z(A!?muhNU(Z_az4KU))`@-- zA(PM#pAwv&u&`!*HA<d-e!gAoGl6HDA9pxDJU!Lm{+aEQCh@8*(`x>I_rH_5$kW#j zJDs+zF=yL%Yj^6eDf6ZN%1rO>^qMit>PyW|tx0bgj!$1UQ%PsTOJzqZu~#>aZ`E;_ z#BqLFsrTQ8w$*R;Rj>B6kKKEb@rOfz=l+~IbJyE!+Z0>m;J8dosqF1Xwy$}wFW%ac zH-YukhxOOLX59MvufpNd&QnG4D|r^qxW7!eR8M^4`ifhnTMO^8t^6v%&$;=@=i?3X z%{ui`qEB!CJhz%Hb>9;eyI-H)tzNe-N!fg*&eBeOZ%4m{^VVK{be`#vM!iVbg@k9_ z5$pDvzTNAje4u=FQp**VR5Pb<C*uRW8JXmmaTRY8(1K2Y;jJTxiBj0HLJB*y42aJ_ z2?k^XT~Q50EBHt^T^hyo>3B>B7lMQ>z$^lho&N^E1<(Q!XbY&M!Wu}pibIGkz?y?$ mNuwK(LJD=1KmvLLYztc9h|5Y=U|Gw+zzT#ffrj2?0r3EdqHQw( literal 0 HcmV?d00001 diff --git a/datasets/polyglot_ner/dummy/ms/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/ms/1.0.0/dummy_data.zip new file mode 100644 index 0000000000000000000000000000000000000000..1efbc85b15840884a7787f8b63b5d390b19a0318 GIT binary patch literal 1679 zcmWIWW@h1H0D)<(hJj!Pl;CENVMr;>&8>`2Ni0d!4-MgDVBT{oIesq?msW5yFtU7Q zWME(s0V)r`X@~@>A&JR3VAG0IONtRDf=ngaL}@%G<`QeDR6D9)74RF12!P3FljEx| zVs$PkAUGI6CVTpCI{BE1fuV_wfkBrDlXHvX%QLex^^)`Ra&o}o46<e_5Tk`kX{dMJ z9Rr?NbM===K`O4BIW}coaBW_YaY2E7!SOEL*U8R8!ajW0xW6RTE=ftBwT-)9v$IM? zUfwqT<lf(PMP2D3-Sadbq%J<1Z>SlN_B`{5mV{1MsmRrZGZb$s<@JAK-7OckKK)$E zW6gkzp-SZom>zSTPnxuS<8zA_k^U$3u1ua`wmYS{cM7ZUbmO?2C0Dkxgj-85$Vf>4 zwk1C?Zt?-P>|GmQRJErsieR`KW}>h=&HB-WGkuRHT(9MuGs{w4J7QM2ncnud4$As# zQodNMkJ-bvE9iYl#$&P8+v>MJ&z7>fGIeX)xh3web8gKz;`YSlR!?kf`ZAZ}d>$E| zYVtc}rmK6Kmu<PWDOUOk!!vdpb@}t>&VSfvE_`6=^>Vd$nTo6L&EGn6lXuL?Z)+NM z1o(&^Pr49veC_{(OYT`*y6XGpdB-1>#n)bcKJ7nU`>#jxs=n(DT~&S8WH;D{tt{N) zzhd_%Zciunm@iq))`xz$Z)h@e<*h2*CO9E*<+ddovh)`nl6srio0e0_ydvao=oQ=P zTI~r&MM6au+Meb&Uvu<|@JAc&&Hdm#t9{Ay@0-K_bK9JMVlvT3Su1lho8F@fd5y6l zih}u?IyypoT5|*#`Aq%X?^&ffhw`qsSmCuf^zoO9g-h?uy4dt7Q8sFtmsbD%3*F5r zC2I}0%*pxt|1aN?9jj%Sp09ArPxX$8cPP9gwc!NAnvJH?TkgMl;54VNBuA|InqP=w zG>Z?PsGjt8;jgQ>^P)6$Za!n)r{niC_j{91*QXH2>l@;?^e$K}6wJEu@&h?}XU7>8 z7rHl_f3=q23|?jJ>Mg?ZbBXB+zfP_d=}WXi@~2;GyqXueFs$I_S{IX(>xwu+mVQyU zcXvIXH?8N6jQ6b2ZPEuF*@PHE9d0g4XKLk~7rQ8F`_28%a~T?bHmk3DSI_^e?$1|a zJE{BOT9uhq(-N<ID_L|sME%O_MYArdFqh2!IQ4sJgZwwYf1#7+>=%D=Kfs%jNsbv; zi6j9nn*<o%I)a!e<r6EUd_v1J_zaX_KsL}7)j+heigeSZQB0qX$8>PHMc4w&QVZGn zZ}3|HEyIAefC?9^frP6BgV+Kr>=~9cx&bMqP)7+Qpf|v_pp|F1tYifij|>c~K==}9 J=mZuJ4**u9H1Yrd literal 0 HcmV?d00001 diff --git a/datasets/polyglot_ner/dummy/nl/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/nl/1.0.0/dummy_data.zip new file mode 100644 index 0000000000000000000000000000000000000000..01c2f5685ef9c977c9f252f530850a974e90f1cf GIT binary patch literal 1671 zcmWIWW@h1H0D(uXhJj!Pl;CENVMr;>&8>`2Ni0d!4-MgDVD>nj9PbIlr4`%^j4WRn z85meZfXV}K8X|#eNMdph*tFu*l4693AXAApQ5uhlc{xNHYS51AR|WirA_8Fd+2r`@ zi&&it3J4Ackjd9MKQZ2BVqo~o%D|vYgvoh1@#UG>nR?0jc{w@Ya0Xek2Z+%^B{n2C z@3sNY-@A8`53rRu1}wPU@b}iOByO`cuDj$M`Xr+#`czGt!?5#k-qz+``E8Tmwx`Zo zbn^Ie_q&I$K33x0`NK`;m6SzA&JC6)soW8hx;Kf|UcTYS9lCV))*ruL#GFhDuy=Vb zJe#-VT<f8*r{9AgT<lc-S=*p;UsOhe&HLxX`Og=($Nziv`|({R@#P1%PBwCJJj|T1 zR$_UNY@@y9^{o$5A1}D5dt$zV!H&sMjkow##5&&FW*6e;D8tEnaMJvv=M|qDp2%ip z3$jTxdob<I5eJpuXS=3PI<R<Gbtzx-n(M{8+uAJe9Nu<Df~P-h#btq_#`?MLX&PSM z!o6L2y-}rK`{M1+pPYO6(V`y{b~mb6n+DEej=LcKAZNCIcltZ_O|!}yDh)n=o^XIS z%j{5}((<@fd*jz_IsaPH+B?;r>!85>HF^0zzs{P^e_A>&esACo{wfv`>D)|}dJkR| zHu05`o3F`<><*i3Kdn4>R@A>$pDcf^IQv2|iQ%W!hf0?`w;DaK^U{lU73p0~&occw zuXfc*j<N=2%eEJcmCCOp-OCwrBHxOgGbo?TQK2(oO+=%KNhnj!DM?io;a?|@&ivNk zQft59#`!tF&*yV&p4C5vhi85q^WM|No2oT;s@`$kzqM<syUqFN2anZqBo27aeX(pV z?;DL$oroPWK`*0^FTM~t;mUKnUz7B&STtRGbGdOwf9H#q2iteWM|H(nPc+JIn-=7K zsmDiePW@|P<70O;8Bcvsmt223Blm~k>5J@kp~6@BuLrXn`|xE$<eKZ*wcGvF_phIP zdz<U-N8Ma{%Vs%V+sQm_|0!qnu4QMA%{%q$$@f)BU0+woiT<*fZd2O2rb*D?#4MSp zYYvZF548$d?dCf&{n?*u)o#7(8?MeRTYSks#cAz~>HkII82dwJE<Lm6XhVX-g_+xQ zKAZ2{;PfPViv7HZHC4hA!Zmk)KAUrNU3yvz$5Zy7C6?9u^0r)iq#xkT$Rx*%t0a<u zmPrB(ZyiBQlyZp`QZAw86?_ItFd!S~ifSNQ8AZD3(kP}+$74FUydrD?W@&}&{5SY5 zfR<fATR?>h)<D8lazShX7V->B8r^^tQmCT@63`o9ThPieTvoEO0Zn9J1;Up=LpxYN FJOJTfLOB2c literal 0 HcmV?d00001 diff --git a/datasets/polyglot_ner/dummy/no/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/no/1.0.0/dummy_data.zip new file mode 100644 index 0000000000000000000000000000000000000000..4514105ac9acc370332d1c85516300958edcce75 GIT binary patch literal 1715 zcmWIWW@h1H0D&2;hJj!Pl;CENVMr;>&8>`2Ni0d!4-MgDU_NjvIsPCJmsW5yFtU7Q zWME(s0V)r`X@~@>A&JR3VAG0IONtRDf=ngaL}@%G=H(M<s7yPmUls5hiU@!iXOrWr zFJg5rC?Gf(Kqkknob;2OnSnu<4Ty;_IWIrHJTp5}FF8LiCkGtPAZum<F<Pj^hTP7( zZNO9Ow=adYE77ri;mzdfYqBp(UrKym<a@fSl+)#=bHiW1Z=2*bHf(=-+%0I^<!=YK z=!uk8RIKPeY$s~HR#D1h^6$*VMjaK`<`dkjl#A1KF1_CvxNnWZr3)9#XV+USj=zxd zD#5$V|JbCr3sj=LT-MGxvgV~u#1WRt+UgsVW4DS;)+#KnVDta{{fn=7!gka93gM~m zB}zip1q<G~GV_?!`iqj@&ojQu)`r_L?o`=X#VC7YL+OK`A1;-vvE4s^q;jK5b<rV7 z?K3me9R9lYaV(TBkmmoL#_(~$2hW?zr%W6|>{hDeaJC<tc6_h-$5dv`{*ZFFb3bBv zIiFrQusz^n$+7CVLk~{mIR)-f@Qcw3b-8R(YnyjAICsmZ$+Lg!Uk;Ai(Xt{ZQ{{xx zn<YF<e-CLbT*S5UX2Wf#7Mo;-IaZ=lmTOE|j~l!=(#W_`V4d?@b^g<)g&%~=j2`{I zmSDr}D8lR-ecVy*abxt>&sx)r;tuv5{umHY%YBV;nTOLv5rH|1>DMMpwI=ZIS3dGM zOl^73fjyyt8}-gV{~Xx0`RC0w&!6Yk#Qk>U7Il8c>bQ~Xoa7xAeV*jYQ4e`<inQ+) z(VU(zMLx6bR_ha1=Y66l556$6sM%U>^{$;GL-kbPIi6mVoCh<)FQ;*eESqwr$gk*} z+&tD`&UNScBe(5iTi<RaEFZKZ{!ZqU@YgFh&5=Ir<iK+NX-?DaqJ5g%w{6vRJh{j; zsO;`B#V5%@>+%Y9yhMH1|J9Mt`P36!8hN~yPjdG?fqlFk9v-`9My+-Y)4!#)-}#e~ zr~1;KTr=zcH`uqk@jYMujA_xbE3DzJs$ZXZ9NM(dT%C)Bd*4J0Z8a;G&p)pPY&TYZ zQ>j{I`QIeWm2>~U(C`Ki*Q3W&GA>={y#D0C^!3b1?{p*AF+aQ=w7vI_4%14f)LQS( zqpkN3*y%3`S|AnIw7z`u@2^k2(~haFQL?BC{Cwk?SlNP=(Vo>BPbQo&$`_guXOt?u z{{L_1XKh@nUzSf`{`b4uitGLEOI}gSj()s4;~#r~HzSiAGp<rg0$P3vFuZjHF;U7e zR!A9!map&`D8Ybipew3@XyqB{rc0xkJ{^zg;IfUd1(+opvh&~Iw*Xqs0c`;lKv)9_ vS1AXv1y~_4ENOHDQb?hW5=cOAfNeo5^Ke<o3M@hy7+8VuCD70<EFc~L$fHK; literal 0 HcmV?d00001 diff --git a/datasets/polyglot_ner/dummy/pl/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/pl/1.0.0/dummy_data.zip new file mode 100644 index 0000000000000000000000000000000000000000..a0af1958d3bf54f269038af2482b44303c4ceca7 GIT binary patch literal 1806 zcmWIWW@h1H0D(!ZhJj!Pl;CENVMr;>&8>`2Ni0d!4-MgDVBUNxIerTemsW5yFtU7Q zWME(s0V)r`X@~@>A&JR3VAG0IONtRDf=ngaL}@%G7UU3VsAxN?Uls5hiU@$tv&r$* z7qL1Q6c8K?Ad~y<8qZ5&W?*n&V_?uF!sLRS`0~u`Ougj%yqp|xID@R|0%EjK2@N@! zC*mn!dpSNyWkbu%k4EO(ZnBtsYS1Y>z0Pa;;%R4s^t4jvPGEh+Y*G0~^u+eY=<>fD z@rSxkXc^0F(q3e2{OM@7_{Rq?&Q*o>+~RF*`ugC>6PEdmuXmcJ8kNsmKYxwK;r-oT z-`-XKqZK?cuhw}}<grJG_|y^?2OiuOl90T2m-;?u4%66k`-)s|O~_B;f9~`9!o-h` z)}4phtEO8$O|&rz^_FS7J~OG>a`Q#E=_@%8Ok4a)t?bqW{y7KiuDx2>$Ld_?Gc`+B z{j+rSHSSF>xkI;YEuM9L(dNA>JK9rYS54D+Z6sWDKwWr}j=NBg^7CKEE-aYq?<ijL z`%C}T`(2rtZ@<XBFZne6Nae{LR+qMl2Pk;{eDJ1nR&(wofh%t(N6xdmd(S7HcmK1@ z@>YKj*~Q5&J68Ygm?Rm*eLk`Ju|*lL-%pRn+sqI0?dC5yxAyfB24^;nGI_4p!f%E= z*N#3txm{!O+<i>lLNQqz<h~`ecr53dllJMKY=cGvpN0P<@3pg5e{o`ues<!_>siHX z9-YxHzOnGnqK%Ia$4B~qZ@JEEs5L|HSBYP*R!}ZW{{2-+)y5`H4VQI8L!|lY=dYZx zjy=e`ukG=?n=g$dcb$E~;~;JS=*c_f;1zSt_DEW|<+D~iaZx>5!z$^2ot1Z5{Y)FF zV8c_5+gHr`S{5Mr&VKXZ&^4jS&rfYLVVWAvv@f7fWct@~_g!}~!q2uGxvgA3iE&G1 zx22^`Le-9YY5VWLpH|GzKeKST+lD92|1b8=En6A5$SQME;BUEKJ4LFbvz4aLNi384 z!KLjbS-f-Y1NluC>J#VX7JENn4Hdto+p;_8&F73RhihkqAO5SE%k$dDQR4sQg$BLc zzJdQ$Ld%XZ&PrO`JA0?#E4^#K*yo-Ky>r8HkvC`2irZPTp7C2-G@0j~*vzASyZH6b z4ZB|zAFb(7U6^vHhs|)?>9ef50S}Cxn@wDN;z;|Ht?IA3?7#0;`Fmwo+{V*e-apN> zxKyHhE&HjH$m=}0MLtOmvtr#COcUSvymz&b*t&EQ<2Li--zwtEcN(wpFP*0;!MIme zLDiXe&m}W~*|V}0Q*G?*A~rp*`j+*Jf5w)>t(6DlJx^UW?O49^_Q#`Z<ZhPj))w3I z<zxKq^Q#oM#oJoP?k!YRvuEM8yYake-9F|3Z$>6LW?TiL1hi-rV0h~YVxkm}tdQan zEz9CFP=W#3Kvz@)(TYmaO_xS7eL5b~!Nn$F3or{!Waq!ZZvnIj1=<2C+pq=_t^yQd r3$U(XSkmYQq>w@#C6IvL0Na9AoZ_;Q6<9hmFt7sQOQ50rtRNl$qtbp= literal 0 HcmV?d00001 diff --git a/datasets/polyglot_ner/dummy/pt/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/pt/1.0.0/dummy_data.zip new file mode 100644 index 0000000000000000000000000000000000000000..834b764033ac5496da5c6999de117fd918147a4f GIT binary patch literal 1638 zcmWIWW@h1H0D&c~hJj!Pl;CENVMr;>&8>`2Ni0d!4-MgDV7`1RIUa;dE4UdLS-vtd zFtCUKl?UK7L;}^2#N-^XX~n4}#blZ&jmN}-5+V)NXh-#{0)9gg0kGz5a(wkgtN{QD z2o462$!S)iXLm6%Fx+HiV9+JP<bsm;^33c^z2yA7oE&gCgREHx#Ax9>H{@)du%UpR zxjvIe?$s@#3-7E72n_IAFm;E2nfghE^?Seihg3aMtZ3|F&RROJLH&mLL(dtK>xF@W z8{*Da)b0QIrd#yZ+VASmo0Fp#^B+uo`SMzcfz6YpZgJ0cIQ2h?4dm(n=Jx0I!}kg6 zHKZ5p=ZWL_`Q2xZ?8jMBH<xu7r)#(*XsWC^k~n?;!HSoWz8AzNi)p&to#({0L-W<t z;{ls(X7;h)p0#4hpDAyOCjb9=k@0_B{m)acSyt{{cJx;I|BGGj?d<=<?l>G-w!3r5 zR4uW)wI_rm?0!8nS@W&n+FiHs-2qNv=PbOhU#Jz|{H8B_ZDHM7t5!+Zjz>%{VmmCu zU#!($wa{(iGqs~EW~)9(-K}}|vG|zR_1IYTglw)|sdIvyJ(;o{O_poT6k6vR|FCEA zYe}1+HDw<*?%u5VB6IT8d0`XwN`1MY5Ux^XX|m%HQ|NZSf|&se-x!zJ>z=%p)T-F9 z+?Qq943o20J|s=xJd|p5Pc*S}xpO9OL<ra3C-0A(aC{wm`|qT?pY|(=#+^}6V17}R zwz|7CYUkPsa%HNI7VQ?)X4|cL|L&R#8&quW%71&>+p>VS*t$~V-(~G6gH0hukzM!J znmQePx6R~sdP9KX{R=$P7BO!uOzfMz;&tL)&M2+s>j5h3JJQ2GiI_%|zYZ)vbz4(E z`TpIbLMJ<pTQ6}<+c-t>ZO^x->&%aG`7D`Hvij++n#E3bL3e@{Pd;5!=)<@BOwZ)Y z+a)KyRl0toss4cc=O;7FrpI=^Ds-H===t4#shoWc*1P0pPg}lo-vs#}d%uNOxwwj^ zcjnYJO0Ykj#^U}|Q0x7Z0zTjJe33m1`dwEwO6nhI6019Qu+a6`6pn36PQC3os}lIY zo%foq#cg}uZAPB!(;Z}`elM*up4`1=?c9VD4PVrDespCzuX9ge%R}>^q+ZiKG5-(B z2Y53w$uZ+9Xe6LTjsU}3M-UUG*kOefJ7`$}pMeq#$OgKi8i-Z|k#4#)is{qwm<}$E z2wQ+z7$H0V4SoxtMHA2#P?>=>kZ=`D5L<v{IKz@gHz0)+>L`H(^aj`#v|<XEm8@() Q6B$^6@FmdDbQTZ~0IpUung9R* literal 0 HcmV?d00001 diff --git a/datasets/polyglot_ner/dummy/ro/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/ro/1.0.0/dummy_data.zip new file mode 100644 index 0000000000000000000000000000000000000000..9e0db26097f42ccc02031c6f5e5b319d25013419 GIT binary patch literal 1700 zcmWIWW@h1H0D;A=hJj!Pl;CENVMr;>&8>`2Ni0d!4-MgDV7_=NIsOt5msW5yFtU7Q zWME(s0V)r`X@~@>A&JR3VAG0IONtRDf=ngaL}@%G7UdIZsCql9Uls5hiU@#JXOrWr zFJg5rC?Gf(KqjAXeVFiriGhKeje$Xz2$PHQ<I6L%Gxd`5^Kx>);S927H4vkPN^Hp9 zJZVFod5@2uxT2^lwS{rhF~125HG?cxT3@#Mbtc4~{jbE@i)X99D@4mF=qK{mtqHpF za!!ebtY)YDf4f)nbgJ&yE6UvMQxo{)ul}g?jncZleX+joyph-TH<WRIaW~&SIXu15 z|K8{6Z{Oqzhji)W#{b*?<G`;Mi$1daOxbk%jr?TSz)e4WoDc6Wmu$7)Svxt$+l`5N zeNg8r$2gIyqxL+8*>lT%xjZ+&NbLPN&1=twpOaFen<Z|(2xk5ND#vKgWX5A65(f7V zif$0h3fk>E|H`4(ITJ7K_H_>2X1V*tX2pn8_x$YV)<3!bFL28FboQsF4VxSP$}3dx zPAsZe+r1<!p>XDzIj#1VvRTtNPWL~5Zg>1%8|P5t;<cy0mK?Nr?;~0qb@}zhD>L72 zR<*dowMmfOKkC&ht1kj`*SEe+QM_UAc(-ds;X|F&n>#EsJNE}99gw%OVdLi)x+$CS z_1NZ@CYQCt^y_~A`F8JQz%)^<Bt6#-RS$ljY4fIJp1o+>bvWn41Sz%k40k6h+G#q( z=5G7M5tlGYl!bTIGPbqH&ooB;dVBwk?WC717gk;=RP~TxWwX`X5YapPil?f`t6ft& zYbI{>zJ9%Y*X=dW^==#Amzwm-yJB9B{I{e2Q9&g}K2Be!`b@Ymapv9w4-V{q#B(d` zag-U?ah}Zrt$lu)Sr+maob}h6tWE4IJo#yB`~8_VDJQp?J~!NX?Xc6W>f_2v2d3BN z3GP+AeO>>^6@g4eZhj6ieaqPms=F5Kd2nKfZiD-_Z2_l>k19XtxuY@BUq-z2|CPli z4^&g1s5|drj}(`?s>T1xN_v~!)Mq|R4z`Ni*Ij#oy~{x0r`*CX^$J=%b3DV=ec6-3 z_2ISBo}8|Gmu^)S7EP`=m-F&$57TjZ&ndz$C+Jst|L<&{{j4*~cbk4&u;<cwpJdKz zd|DFdxVueYM<H{>f4PzsN*c@AryZTu?oiUg`1C`>rD>6Do10=->&|;@Dsa*(tf^Vi zzEy&0QN<s}DB&3fJI;T1`wuK%7@6dlaTQY%&;m<<;jJTxiBf2>LJBRkjD*iX2?k^X zT~Q50E5JxMT^hyo>3B>B7iNSlz%0s;o&N^E1<-;GXbY&s!5T=oiZzHWz#4#INuwK( iLJD=1KmvLLYztZ;hs#P<V42ClzzT#ffrc(+0r3FyZb-lY literal 0 HcmV?d00001 diff --git a/datasets/polyglot_ner/dummy/ru/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/ru/1.0.0/dummy_data.zip new file mode 100644 index 0000000000000000000000000000000000000000..a8f3aa56a3de188ddff995af8813c428a62c731f GIT binary patch literal 1994 zcmWIWW@h1H0D(oVhJj!Pl;CENVMr;>&8>`2Ni0d!4-MgDU_O5;IsO6=msW5yFtU7Q zWME(s0V)r`X@~@>A&JR3VAG0IONtRDf=ngaL}@%G7L^ids9HO!Uls5hiU@!eXOrWr zFJg5rC?Gf(Kqlud;|`HyVPI(EWMI%G!sMdT`0~u`Ougj%yqp|xID@QN3B+ijGB@mW zo`|P_P4zw&6^A;GoNi^Om<c^K56>LDWvj47$lidzpLbKD!81i&o!x2ta~fvO%kw|K zc(>}l1+T<^2q`J8Ud?`xm2dIPQ>RY#oas0vRsPCrd%;faKO4R8UJ%u`*1cc8^!=_g zXEzq?e7}P$uDHVI!`vMU-~UR^3$=>*b$r{OhNnDnmg39*-QX{H!BEI$zC<(e4c{EK zX<V5vU&$-F&rbh1^O9ioiTS5D6mZ{Py#D=#XZ*2k5*JHZo_E@>I=tII?~T`=9cPYa z=Y;)OV$ttm^0!wYc7~D8x(Ank-KrDxa%>VdSMQT}yV=WR!S?dJEqWI_vTi6&|J7LE zvsROjFR9k{%IRM-4(tuzcBi+-|9NbylktB3`I574e9mpIV{-|97_}hui^#U#(7Z!S ze!O12TKdN-MrEOuo((OsdPhZPscNjha^FxoyM>RLv+MP}BwJ>WYi1&wU!IyfdpFCR zotm>7icMm~QeD_q^hfCMh=165j(5_uLl*q95%*2L37Na)TCp9z^)2+~@h{Vy-@LCD zTljC;BF)Wuk((KpiR@3A($?+!Rk{AjB#smBm1D*CrA}G%{?YNJy8<Oo2+26icAj?j zV$^KzA9D_`R<BySLFrYXB3EJ8wEi1%9$TKzU-#zCy{w(-HtT}YF6n)p`Fmfk-Sl0@ zcO~D?4Je3Rs?^@u<92?3&(RqFhMO&`gWg;dapd14kut5XIUu5~!?Aa&f~S;$tdPvv zhjJ>r+Achu-oNC+I_s0$g%l$X#qG-EuyefM$0YV9B_p?e?>ft=va8gDmd3S6%bDF+ z;H5f6ikUkx;ALrTi_hM2*V=QZ_sYoT$}p8gA3Ce!5HjVMAJ+w2&i&_~w)~sIx@WRM z@v@IndjuxBmA>O&uyR4$e}|X$7vGAsdwcBSP550PGsD|$+t1H4JscUL`yyKHCo;KS zQ+z)|Pve+_&g2Fz=D%*2pPX<}a#xMJzkx%ws(;bc^4#Lrv!nzs&dn^_YML$}m}ul3 zbn8gV8sme)Z_H;DCNphUwYFWJ<+Iyl@6>n4XFbieG<armPNwI!@NBL2MGKldi(Qte zUXy<IPG|G~x%#y_*@7z1|B0J+MqL;DxN^(3ZF_4?`TE^b=U#By`c#~uZTC6pn?8!w z$BcMB>)3gn*!?s4-U{23-^w?)-LQXu+WSaq->JB^Q*6I&E{L&TGRmEK^iCGnquosR zJd5q4f@K~GylNHHtLJO}s++A@A8!)4*ZGCy;s>{)rrJ+az4b@fPTs;M=R#7e4$HCA z84t{yf}~li>dyJDuzb!XUwT&IYeVpq!&&9;`>VfytSx{4@38&OkMGv+W%u3l>?NPM z@5GXmmNTOt_H!T4lZ@K`rDej_N&bZsvObGlE1Gm@Syqvv;*}nK@fBCL#`^F2v_1Ri znJ@9HM3gV9<?pYvy7?|Yz?+dtju}^BE&(mp1sL8sf|w{pJ1eAUM=Ngd87RSkY@jQu zfoR1%>84Agm_8kk>EI%tumzX}KC<)Q;I{x;`~z(PmCINI30L6{u?1L9GAwCy15!w# gjuJ>fZ-8w<s|s*g$;t*ak%1KmUjhw1%?jcH0D)Q6jQ{`u literal 0 HcmV?d00001 diff --git a/datasets/polyglot_ner/dummy/sk/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/sk/1.0.0/dummy_data.zip new file mode 100644 index 0000000000000000000000000000000000000000..b2418e0dc20134dbedce7c82c12a21fef8f7f8a0 GIT binary patch literal 1743 zcmWIWW@h1H0D+0EhJj!Pl;CENVMr;>&8>`2Ni0d!4-MgDVBUBtIUa;dE4UdLS-vtd zFtCUKl?UK7L;}^2#N-^XX~n4}#blZ&jmN~|Y$6R6X-D;|0)9gg0nmOnIllTL)&Kwn z1P24i<Vv=(x5~^63^!OA7<7p+xi~w%JTp5}FF8LiCkGtPAZt2-7%iMbL-tO(Y#^{s z-=E2+K}E)Xq0PVk+1AezUZh4J?8;p`F@@LD)zk4=9OL;5F@>TbGapJ>>K~fCVfQp< zkxi;^|8Kwl%4Eybk_U&M9=xexuKlO4(30Qn>-3T}2Q=^N92WaNvxKWY>VdmR#rhcM z=oqt{-Mt&4_==Qw`+kX)-YGKg&;5g@RZAc1>ZCq=@$06#x^F#qq~f)b?@<;%75^A` z+1QD)8LbrE`E|##&%Y=CH|;yHDB^b0rPH%{gk;xgtX?D{xoT>TwN=~Jm<MU!*JgN$ z>skKjjehdUAZ`1E&P=Cli!&*5juopvO|rRj?CbB(=0bK-rz(}p<Bz<HYLBnba#<Ub z;eAJsvrB5um6eC2_x_6a$>U~kJG<sZ;;NMS<t_yVpZ(IDt6er;Z@;_sm6=zC;ge5t z_IJaVDw>P@efu&vFE>NENPoc@ht)C>{!+_>R4>`=s?!UfDZ*Q^;=>me^9e267}hT` zO?r^}#(eI5PTz;UVZVR0l<v6X{L?$~>y8Q4i&MgQQg2KxJF#p_LSbu}+t&jXH)F%Q zUO%>*bZ2o*hhgvRr582^PC1`rG*_^)v!BD;Q*_d^KZ2%QlSFsESa<OFkL(~ewj?|C z)2nWN4LTUkUu7TU{`Z!`l^*VQ8~oMO)Vev?R5VrRGF&aNkQFZF5qa{~t;GM+;gc1= z!i}D3OqyL&k^kqz`X_4Fs}?zU7gg|V3#&SR?Pi1HjcI4DRHsxGH`FG!_#H0Gm3$}V z^)y8Au<FC<;;QQXEvMI<*)caYV`kF%@5>%Nc=CpGdYdNW<P@v<!7?e<%62n(ZKmBl zy07fZt}u&reHX37ULJS5)ogzL+{D0B9aFadeWLI%bccy=%ZD#dPaeGav-@Jynym){ z1yV&MUYJ=(xL$5w`fz`Dwo&iLi5fc--%1|b$Cs=7X5ZDjts3RJ=S9N~T~3X?aV@LB z-!w9P$>rYP=`uAx?&X%Py(F@Y&t6w0=g{Gu0?Td%e^TXZdnPXQo6+*R^O>j>lcuiu zd?MuRHTP9IoG+9;GFplZI<6ep^tbsy?hz}Vikdi$;?6%CIm8xgO?zT`^!g&xQ{Oy- z4Z3W8F$Z`vGRZOHD$yjMWt#xQTSpKRrF>(Bly7Kx4xfP%49Et$q8f-+){$<yG>Yld z@t6)S_Xt~nS?VD>{|$Z%pk*M?7Es}YHIQ(XfDl`Nl?B6+MmHdZ6zV8}1oQ^j7PRsZ VmzAt+Koc2Qf$$~J&<iXe9spTpVTAwy literal 0 HcmV?d00001 diff --git a/datasets/polyglot_ner/dummy/sl/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/sl/1.0.0/dummy_data.zip new file mode 100644 index 0000000000000000000000000000000000000000..280e3afeff86a6147d3e0a91b58632cf20681112 GIT binary patch literal 1697 zcmWIWW@h1H0D<aO!$2?tN^mpCFr<{`=2ph1B$g!VhlX%6Fn66wj_(HI(h6<{MwYLP z3=AwHK;;2A4Us@KBr!P$Y+7+@NimrwO5-uHIEP3>h1*g6s({~6L;$p&O^&a=h&2E} z0l~olGP#=HQ{^iY1H(mD1_oUsOfJreFVD=*)Jx9K%gF(UGsv1YAVv%4&=Bh)5l5ch zz3PTj7IOK_EIMU=U`lVH;0&b;?>e?FtBwl(%Wd|EX&<vpL&qJ?-Qo{bJYLN_%JTPp zT~*bjUsA_5?LOT6*){1UlggL9daJj5e)?@1lkA+i`(xhhOFm(HtYPn3`O`m{j(NnX z`TNbEf1*I;E$btp<v-h%K2P;|^GW-SqQtgRX*t8w7DcB5c-?ZJ?FbX;``a_g+uf)j z>p)ekheotlWVy`qmmj^0<k|w#CQsjUWJSBaP3zTzM_->lnjU%d{{Cfum;V22tZ`UB zOS5vF#H8Tj_)O=#qz?hNK2GMG5*rrs`PYw%U4_@CFBSiOV9Uk1_V@RB|NoM*?9;|g zh3}FgUt2i!9laeknR(mx7mjJ?pQ(%ASsA~0`Ke~R&MVH-eq8X1-_y>=HaBKd`-1Sx zaWOl!+RDn+R`X1BR?m{`*;Kr@GNJq~L!9X9BD;5w4K^Kbob&0nM|Aay#xIp_<`1~q z|2M7{?7HCdA?Rku@sxRYQ`V%+D0{}b%}Yzfd&h~`0IBQ_*>lsG!u6yw)=lbb%nPxU zQGCW&6+Kg&Yu6S%Cxzhmvh1A;Rl|;)Yw6qaJF)Lh!JCqv3lo{|C$N7~Y5SDpA``oC z*JQWEYmcSg9Cf=;GEKqa(;XYT9BI!s_e)`}d`7Q6HM)M#?Kl75B6noszSQtjg5~80 zjdV10TGwn{y61H5dySG8Lauu+Z`5u|wDflj>@AYCJQTFy6wfu0?K#;;uU;|Wy>MjN z*@Q<SckaE~&}VSkCSlti>sc37rn414I(xPC%LCDOT(!yBb?cPbE}ED<S1G+yQ`9E8 zCdAMG-&3`3x|i)6*H74TCHr?xOB?Ho&gV~8-<<xxl=Jd?L$8T>3tp9coTr*FtyAFp z$^82qn?kr}b~nv$=5XAcx5#ta64hku2{o08lQectQe#nHDyDljGdWB+x=!w%@%INW z{-tuSxl}&!`aaQ@3sY@!^B3~l%=b2{yvemzM#0PQ&BdNz?lnxCSBrRW*1r?7^_6Od z#fLLFYRQXq|1kx4Gcw6B<0_*hprw@n!&^rX6Q#srg_Kxmxd@+u5)8-&x}qA0R(g?c zx-^RE)A5)NF3AX6fLV?qJO2%S3!tSM&=yc}gEf$Fm1z)LfW<$<l14Wmg%s*2fduph a*cP-B4wsdzY(NtkSb^{*(9lIJARYkI^h(VD literal 0 HcmV?d00001 diff --git a/datasets/polyglot_ner/dummy/sr/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/sr/1.0.0/dummy_data.zip new file mode 100644 index 0000000000000000000000000000000000000000..09281c7babe3cc54b87470fbe417f687ebd30be6 GIT binary patch literal 1710 zcmWIWW@h1H0D(KLhJj!Pl;CENVMr;>&8>`2Ni0d!4-MgDV75P<9Pa?cr4`%^j4WRn z85meZfXV}K8X|#eNMdph*tFu*l4693AXAApQ5uhl#YIFKs@;z2R|WirA_8F3+2r`@ zi&&it3J4Ackjaz&E1YCvW?<lDXJF7J!sOzj`0~u`Ougj%yqp|xID@R&48&-mGB@O| zpRl9IzG>G#xCyK5UYfDHQ+$P?;l+$5eS-@NWjEbbJiTDrYO#<VCdasscs${~w#^~= ze_Z0TUYqA<{KZr*dTjb~=I8A9*7t8-wJ%Ams><6{l~$D|U&md%=={f>UyB^;nU3$& z`y#<#d-<qL*No)Z2A7%FTnx4~YM)@``aDEj&z1k{6`2M39GT)1ZY+N+WW)Vyvz+6h z6VJ|_5qviHrR9ux#$yxNFSgrFzh=W|&v1eH#LGidkMHteP+922w@@*q=cCyHCV`8A zF{im0_q?BRtYL-tqhCcX(~o{#WgfPt@V+$vp1{v;ccrFkd~%aHc-}Vq+Q((Hf80Cq zLgc`oCWq<ASQK@bkK8C1T&=*d?opS3v#l9>7>n)ViMLzk`Oes_$9$drc-Fp16M2ur zo&wKAnv9pLTx*t7y|{LP#kSfTbC~z^rCIL^dssNf@%wx;D@Bj;74yPQTXEcxx$!;c z{ltA+7O$!Bcyhe;f^fFgE%6E6zYUkIUUhYb1oMn07Pr6d7Hb{e&Tp&q?7n5{?$V?r z|8mkH<@t<@GiR(1*Spgc-E*(gU(?GccH;cb$%oG+zc}#yqv(MndVI{57x<XN)O9yD ztXR#qf8U40(zlP<S?4f3lsho#&GZFzilTR_bMCP#oxio_<n<$R?7tOl@?D*`J}`Go z4J+6h9b*!GYPV9!UazH5XDy3OHSd4<sMYp4h;gs1SKjpg*Fl;$`D7p7&%XF<_4^}z z*&4+MjgL;55P7NT@Vu5_uEwh&CY#-LzIR6Nw)V;?J5Z$)EO}?qM3drc2X!kCUyAip z-#+o8(7q+*4=WFe)N6e<3tqQ|x&B1ob0@Po`NsSnA9pvTxXfaEb0j^tdFdb4+mm)` z-#XjkWi{tvWQw$9KJ(m9EM+36uU_3|5$y0JeV5-+iTGs`^A+|VShXhTO@P`yO(vg; zYdbD2Epnc|Km6$b(68xdizj{*+Bv1PVxEKYtW(=WW;(qTy0Sbfx<^}ELvUW!)uR?s zWlcBdy;gYf)wT8cHrdqHYrZ#~b=Uka|K)XI`hW8PZ$>6LW?Ti91hnW9V0h~YVxkmZ ztdQahElc4uP=W#3Kvz@)(TXzCO_xS7eL5b~!NnS33or{cWaq!ZZvnK31KI*Ad$0x) vt^y8X3$QL=SkmYQq>w@#C6IvL0Na9A+~Km4l?`Yj11k`|1RA=Y1;hgYV5v-x literal 0 HcmV?d00001 diff --git a/datasets/polyglot_ner/dummy/sv/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/sv/1.0.0/dummy_data.zip new file mode 100644 index 0000000000000000000000000000000000000000..99fbd1f839ab320fee69f1cb95eb5ac9b010761c GIT binary patch literal 1694 zcmWIWW@h1H0D&p3hJj!Pl;CENVMr;>&8>`2Ni0d!4-MgDVBUTzIerHamsW5yFtU7Q zWME(s0V)r`X@~@>A&JR3VAG0IONz-fQ5uhl#brbqD$$PWR|WirA_AcQY;t_{MXUh; z3J4Ackjb~Xc4dBI0`k}x7<7p+xwtI8JTp5}FF8LiCkGtPAZsQ7F<Ln1hQ#LGHsGnt z^V`H2+nC57D}UWAdi&Ow6H3_^DBlYFn(nd5`n}Cb(JIFH9F^4NnitqTx4G2)@u<7> zbVqna(f%J&YdUX~O})xyoBQXATn6WC-LtRF{rob2^esE5-LpmO%pTJZ3)!DPEjRk- z@R+frdzM{Lfz4v3w%-+nb&lLW>h4rdeG!~<OQ4wP`GNd{=9l%VR?l9`U>#zzegP-5 zi_gKbNOpae^BFqpN@qK?Y8CuY?~zkh?%AzjF()cTO5k&2P-|z`1!MLXnY;G<FWwzf z8@+Dkv*+EPC4X<{^fiiI+Iv`M=l*23`I8nt{rg(u1^0cShZ?7=YSNTXL@K4<k<b)9 z<+ey*kHAu!cirym7azRBZoOmX$xWL#-2BzoZ~kHx#~q)yvkT>)d)+EbH_A7DxAE}H zh5Jn{a^+jsFU{~($y>Q;!J8j*F3G&{<GHdUUGKmT(F)Uo-Kr~C7$;kA`8J_Y_F(GT zNz&i<+)T}^y6DBY(s^A|g^1CS>*gXyD|CDHE&TrQboVkx`<?Cot@dLL|E~po$yNu% zWjS76640~EJT=ML$l1hT=iQ$3zN-#pcS}A{JhEhgpoCeOGoP8stpCe5J2R+;*={wO z^7hc&yJ3o-UcUW%HRbl!wT#}T&*oj1jQ{gmV6S@d+?Izs{Fl8vCCECb@~(%Y(=CTD z2Qx2ypYlg#jS5flN*&`BTT7WX@l8E*m}l#w+o#mme%W@&<E!IW51SbdY}&nATw;~0 zJZ~3x*#7)DGsNbdnVP@&qpso&(>gxJZhBz;dH2F!UxIY!KD1b|<g3!za0Tt0M~u#U zgfn08{x{y&dVglMieu7A=XYQDt9%o}?58j7U3lG&^Oi5W;J;3v%=3?Rq|T@?_`UXf zb>^i*PgSzooMoG{^qz^c>dpNVwNAX`>i<)77lfVHI-oxBz$Nn#e%1S`=erKsG<Do& zx!$JfCn#W>Te7g<rE=|SDdkDu48sIY3kORr{96)lbm_t;wMKU9C6ixzZfa~fZm*Ix zNuoIV4|{+&Ba<96t^!H|T2u)zymbUIQHm>8NO6Uhh42|D!GLU_E2@ELMHlI&OQV=R z9gpeYVvMi_n1vX!^WWgN09vF0Z2^@vSOW=Hfd;V!SoSk4X><cpNTH4rNI-9ZZ9yyE Wa9PO;EG-!rSb^{*(9roTARYh!1wugp literal 0 HcmV?d00001 diff --git a/datasets/polyglot_ner/dummy/th/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/th/1.0.0/dummy_data.zip new file mode 100644 index 0000000000000000000000000000000000000000..12059f336990b055d28d30f2c6520307c9c6b56f GIT binary patch literal 2821 zcmbW3c{o(>0>@{JHQUX;M2NBPLQP~FjqI{-gVCTd)?rLcs6@7iUt-84Yb0BtEK^yt zW+_ItbS>ExLy=3rp690ftNXk6oaa67d!FY!pYQvA|2ZEsLlE^L!2acRP0{?@;`@UU za0K8Ughu1w?yeYDc`Hi>00`QNfbWl>5JmuydL0M=P;=~kZuUzE&q0VQ!uuO7@H{5) z|0MGNhKTX}n^5iOgJ%``J@nrN40j>mVXywOfc+xq0sCZg7<Y>u9RMKD2LQ<a4Kl_P zj`c!$$sv4wyuH8mydOi}8$b2@$Zph!{R~F~*p!NmxDBk8MGq3rT7F`XB8t_+q-H@O z2~h&#=0#<SkJ<a3Is)8Kd7BRxoGDQKQwG=u<?)3DGC@xk=F&2s{_#uJa;BZ7rTHrd zPN%}chdI|{#|meSpyxOfEC&Wyr;c%kO7Xc<Fy#$?s?}+%V<A=fB5)|;)Y1E%r8&1^ zslo)bEQ#-K#(t2ppTJo)KP(%!@n3AY*E;@Sl2RI5+^dCHFMW@4d&87{JvTA-rPQHE z@w<7-id$yTaB)<uJ!wi(#aYW<Bo`<wduUZaS%1hen5htvHMDWqZKMhwOlxaIETu9} zb0@VvgF$E1YpTu}_1Rx&F+mS;G~P;5QLM?*eACK4LSETf^f0iGy&-HO`npSalkuMM z$Y4bKB`)=F*T80D`UOc9P$Rht=EHBtT?!+6=rwARNpr*N{S3NbDa{BM)9~Y)OJdpB z@{`KNU7_=knCuCQ%L2qcy^bSEYr^7N9~6gPt4ehVh1SwKPT`$c^W7e-I+aM<MpuQA zLLMfyXELq6^{~GQWsPgPO_5;ozfgj`0MG9=bWeBFyaFGn>3i1Exyc%VZ+`Az5(_AM z=}CH8!!&}~_63Lg=HV2yxLt4)bdg2;1f|*z&?bO+k)lGl%4I$RfA``rx40X<06Ow> z#^&*+RbacZ(zwcbFVSdH0RKGSJM$}9w_t}k7k#c!OJ5qi&3hwV@<knp4qv*#)g+h1 zZdNVfCL|Dcouqn|Rq}3^sSQ%(g7(`k86u1~injy#QXeuvKX@OKx@!_D`l{Q&aL$SE zTsoI(n?S3P_5>-j;9YDIqfAk6nx^4L)|h58eYvoc_AE{646!+rIXRzZViLSmVT)F3 zz(+UfIcC|GN6)m-J576(A!BCnsgeH9j812`r0CxOEtZox7!%qZlJi}d0^=+5MN&pP zqUvh#aMV}JzR{q-FV9XI+61OvT{q@JA2#g3@(il&7=sF@GZ$UM8THb5cKDnPofw`| zwRai2m9-QKyof<8grait)#_6E8vkHOyIalj)yS`8X?E2jt|~@p@?_-VF-cyOPMgpN z^0e;JmY!iAWowc*Ix49(wM11!l;09^Ud*6WG#fY^%p`m)<RS@uH<6f_74N%jyTl$$ z)GT`5TErzXmcPy5$Qp5aQoOqRqF4Bv`Ce5-TS>lkUh?Bghd&~c#>OMZrmQm6F#4&w zMj3P~9f1LT{&zaO`CTW~i=Sx*!4!+W@F2rgK3F&1*N^D#tPuhjN5!ma<Zfu>_*0b& z5>(0<<9TQ+K1NR76%NJOck)A6yt@su(p382%BUiP=+y)an5S@XFnbtt7Rw#T5Yp7m z-Y9;=!hxQ2dq?Tsd8_3HNB*a-*$>Ll7J0|mM0x`iJc74PFg+3>I^dK#!$`2zuDFT( zFl8`KyeE5U=`?O*&2A07JM(^uFbbzoWUwcu@;(tn^T>81-b%`XiRxz?!auF^MLHi3 zOqZNex=e1m1wkS}7QOB(Bo>o$5B(#c9+o6AtT1bIVnWPzNkPszwx^h4Ho?TsjU&(+ zP8&BUy}It2yuF)!w@+w0BC5Sn)$!7{7j~KQejL(19=)5ny!f@E;N#jSJ5BjuWB`A3 zEjp>4Ns=WC96Bm^F`JS>(~+%)z&>eTy<^Bd9qXY{pA)OZjyvgc$Z%-b-MsgrnxHpY zotuEckV@tB@8E(9B>_;RpWlo+gr#QPtUF-A>d}TD<)0sS#+?^5?d-guO9TgW(xUa_ z>zJ%W0iownTc33}{DUstO!mf0htAmxs#%YPXt4V^ZE?=hw~65~5_4yx+e{cxCnV%~ z19tK}o915u&<rxZ<p#BHGBWxrPX%(;=rgi=XXxS^a#rHpf>P3q=CkS(q88SrV{E0L z>;QDdF<x6(U)fQD#?4tvwmSbWW7Zq-k6jU=9$Cn%C+o;vy8Yo6#5=+=pt0;cJAYU& zs`JJwDyE`&4R}Te%s0m_c%#?`c+bZ+wO=CobIx5{6Gr94jL{ZOqMl<?<M}oEFT6cR z8}N0H6MBw(BK9jwDpeK4wO5sRkF>?(ouUa;p)}KasPWYS7rTB}|Dr)~Yd;vMeE|kn z7`XmQE+_1^g{G2a=0GO1NNp>(a0C7_e>VfdWn8o~Gp@4Ls9IemJi>~tz<+}V87F!? z0>#X*QqWg)udUvny6i;o=THKu@1_<ajP6+)mOD<SF}_5Oah~&HKey1Db5Hj*PS4C_ zD)(tYAa_WL$01qRBMvZy17bQPIl5FK1utr}aerG2PKc=&Ys>R>QK&#w3J~*YPAh=w zPYC9|co3r#n}=Mv_Bz#+*Ij|C8&j<aDUq9xGt(*smKkNLDS)-1mu;v!+qF_+N+IVn z(wgRrEg?Iq@z`$Egw&HtoWrf6MzVA(ofoYw7Uq9uXjti?SZ?j?abL;wj)k|pH3+sF zxM)K?1X97<9IS({QTE%d)NyuMm>qddZZtClQVD{7<v~2(jp!eMMeY6N0V|^U(~5rj zQ~wUg1NadLJqY~Ckp6c%{{ed1Z|L7_>Awg3rz`!q{e|BLd^e}PlzpZ7%aVTOO@F5B pDJCE{Qh#syq4fhL?H%J=%1;*ct4JE!JtBZ+@1EO((lYG7{R>l{X0QMN literal 0 HcmV?d00001 diff --git a/datasets/polyglot_ner/dummy/tl/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/tl/1.0.0/dummy_data.zip new file mode 100644 index 0000000000000000000000000000000000000000..3105cc0241ca768cb310054c47b0b6d35c136c47 GIT binary patch literal 1566 zcmWIWW@h1H0D(oVhJj!Pl;CENVMr;>&8>`2Ni0d!4-MgDU_O5;IsO6=msW5yFtU7Q zWME(s0V)r`X@~@>A&JR3VAG0IONtRDf=ngaL}@%GmgEp=s9HO!Uls5hiU@!eXOrWr zFJg5rC?Gf(Kqh~=#?({9#K5qfm4QK*2$M^4;>$C$Gxd`5^Kx>);S9276%eC^%F>Xt zdBTPQcIx^}9;|_S2R3rqyK3leVPx5U^T^k}YxSS}7e75>{h`f<)A;e%yer)7Q;vK) z^7#Dy8so>&F|q5-4?HfHtNU{5B8xKbj02fwNynx%hIO{fJ`lX|Qu6P$_$|WE8O}Md zcRs8tiCbzddh_ouzV94uVfRC(8)!%6n!b+_co)#K{Ap$LZBcHfq^Dh83NBOK%7nEY z8{XV}?(?UF-`0X-&-o2(Ikswt9qzGx?lE;>InLPeFjgz<sMswg-IQ$;UM_aFd}!nz z&%a>d{-e|G_Dj^{9eY!C?GC?#`KK_q*OhfuO$W=^m1_%+{SJw-J<zv|C1P6{r)o@M z)za?C3ZB21pBHNAX-|*b!h9-3e~0Et|DFWFr@W3!dy==>CHq$UW-sIE^}W3>;?3*5 zJPS3Wk1umpPE*~<_@%*Zi^{Fgw@#IZT)o&OjgMs&6!0c;=iQ&)abaEQ0&R6}Hnx@g z7boYLX52R1a&XGxqRg5Dsa&^yu6p`&_4V_aRYx><J6{y7o38a(DXg>mtFGr_rOW#m zO^!#3EiXN~yXA&wgvh*kLO-t_VEnt+|0ch#r+D|8wOha46I(9D*~QjZ5#%Sm=t;r5 zJ$!dc-Z`@wAF5~i-}2%=YprSaw@*i>l<<TwNH$H^J5adn`@RO-i^Z#=7PQRdvbEg) z=C#6J%O959ZC$6gEeZZPWy_XZYjy5xHaq(Im=(m|7hYJka?$cGd8I2%6=$Zrs{hSV z9rnEQ!I@IWfTNr`TfJ+eju<T!_H#Py6l-*|QR#iuVgG#Lsn0^@$i6j{w%4>PQ2zJx zYjx?TS6ggsZ_MAwBo#B)CN}Wvg>w-W7c|p0|KkquW@M6M##KN_K#K|ihPRF&CQ5O^ z3Mnqok}y64B^ZzmbVW4~t>_@#bZHdRr{gglT#OL50J9K5cK#du7C?&>pe>-hjx~^Q u6(|r}fMqYkl14Wmg%s*2fduph*cP<n1(%hqY(NtkSb^{*&`^065Dx&H<^M_m literal 0 HcmV?d00001 diff --git a/datasets/polyglot_ner/dummy/tr/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/tr/1.0.0/dummy_data.zip new file mode 100644 index 0000000000000000000000000000000000000000..c2449e7116ecee7aae45a218d6ba34a0ee98d59d GIT binary patch literal 1855 zcmWIWW@h1H0D-JF!$2?tN^mpCFr<{`=2ph1B$g!VhlX%6FuR{gj`slK(h6<{MwYLP z3=AwHK;;2A4Us@KBr!P$Y+7+@NimrwO5-uHq=-mEo!U|Ts({~6L;&1An;c(r5o-W| z0)m49WOBHZ(%#9;3=E&y7#MVkFu9~CzC1HKQ!hC`FDC~a&LC^<05MuPr-tq=k~SAu zcl3CHa<<yJ8+tOkx5(a{RhW{g@ssfz%Y>-M&n+w(3?r6)uDG<s<8jy0sEvuGvVHoG zB!63O+Fiapz|*ndJ;R&x-)nc5%dF*l!GBIoP-aJ-^EIaO>@VT7&RkkoG5hR{uq|d* zIv0`@idX)Au4<N&5>X<3JGbI_`Y+$OXCl+07A|b(dMmTH#nN&8hRz54q8A=dN$x%8 zH`(2*-M7PdSGH+<rkI4mw6NP3L!T*g8AW*R*rrwb`pHejst@0VD`U%FGi*My`@Mog zXjJis+c#fxUR9iG`?po>amLTiI&lN;2di%_dl<0uqHq0&lieQ^q8b-Us5RZ{E}6CN zpygV=bN$OF=hxRvEveYZ)AUZ;wy~o{SAOLMcSAp~-B)ft`sb^<^}5)P^Ch!Gx8Lk9 zb-H>y&w1-7yQ@=n>TKJ#ZOghX`?h?!ao3FdLx}ZtC58Fd6|<VPD~mN6GiJUnYIbxg z+b)<hZNt>OMf(mJru{tA@cvrgLY7l!oCKKS64zZk|LVaC3*~ovHn_fIe<3;{JGy?# zS=SZXtM6*;DGJ`U+Ah_zRU$3W;LMa2)3b}h{AQ=DHF&c?@`SvTOWoTH;Z=?coi7!= zS9HI%Zp+pTo%YJfc1ofrHDor%pNO+ajo$5Q+w%N!@|#RQHT89|jZ^Fv%rD)*GfC@q zYG!%%wH%kz;+u~MJ>PBmQS_Tpe%AbTH}1|<y!wx?z1dnw=BoTr)tzaKrZ4_|W$Wq+ z*{d&+UCn>}%qeBh>M5T}xqjTAK7DKR|NXIHJ=X<ickT-AjNi5-_tZ7v_?k?%M#rSL z!c1pMZccKmdfKrsY43&yEyooEn*u7`FE=mbRsGVe`1^hRf7jRj`t_HpO5)A$EHPqD z;I!Rxq(Els@)bK{l`<~NKJ=HjuRC_ab6UzCo;6WrY+ufuzOhp$*I@aFmF}C>=ia$B zuOYth+-J25b6?)(oGKi7Yvul|Adhm9MFK^RnpQjh7}ToQt#~N2{ba|9)c338C;si2 zyD-(svSz!Q8teJrMe8PAcwczNcM*TV<x*Ye4N5+51oYqawm&}h;ix&|^Fs>ezZCQr zXEL3(SzI^c^puWWW{DYh&!o7QSZFlwu5q`F3X*xQ^-`nFKKfgY-=h%8Uxj+!r#`FL z&U(Gz(u|9&8oKwVsGpy2FKzTH)vZ<_A?JK8M@#0*Hx1V>C0Lo<VQ<O_C~sc5d+V~C z%rn9<e5^)dZ8f46_cxu*3i<U!KERuiNsbv;2`T|CO9dF-I)a!e<tZzqJVndn_zaX_ zKsL}7)j+hem2}gkQB0qX$8>NxOV|R;QWn|yZ}3|HEpvgkfC@vbfrP8Xh1deDoEVlg lx&bMqP)7+Qpf|v_pq0P4tYifi=L`(2K==}9r~@mA2LP&EnF#;@ literal 0 HcmV?d00001 diff --git a/datasets/polyglot_ner/dummy/uk/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/uk/1.0.0/dummy_data.zip new file mode 100644 index 0000000000000000000000000000000000000000..c71ba7692cb839fcfa4f78b9646d776da5709bdc GIT binary patch literal 1857 zcmWIWW@h1H0D;@BhJj!Pl;CENVMr;>&8>`2Ni0d!4-MgDV75J-91p^!72FJrEMFNJ z7+6Gr$^&p3B7tg1VsZ}HwBpo~VlqvX#$#e>Hj##EwWIn~0l%S$0N8LgIllTL)&Kwn z1P24i<R=@Aqo*=6FsN}bFz6Cta%pyad1iK|UUGh3P7XMnLDp;pVzhA14LzNAIY1y* z{eL6FN>|^^sV%xrIRdVCH@;c4M(ajM(rownL9VNWWL9#7PEi#q%57IGlkxuBR9)Yw z|8UOC>bFZabR?fYGuP6%IPKl-yL;#M%YVCf_1>Nv>t>%Q%RTSo6LWjj>_cbH_P(8c zqD3S~<YD9Y3ro_H_%&zVbU4@YDU)4o>6g`SZ%^F0mC>hI_*z`9?fUfrg?yKLoa8i* zesi&@(0?W!=f|MdkQ*ku@5n)(k9=qDls!<|z#M4TxG8TPtLOEeg~<&L7nHgKSd2BQ zwjIt`?xAB?oK-)Q>3CHYN0a?r#d-eWX19F*SRXGi(<t56%zRwK;RSb6-Ha*6CmJpa zE8y;wUa4rW#$obZeZTV5eYVSvGxWPpxqE<9$RK#~=VFaW5x!f=uEnkAEsZ2+NSsTX zuy*}gQ}2o&8Ju2jpG;32WsI_HHu)5qCV2dU>aE++ry4&_S)l2WIOnGE#>GePp1*bN z+v#0Dnao>XFbUpC{j~gpQmJVh??L~$%3-|gbq`kdrYH0EhyF49Q2l`0AenJhjQ#_~ za?S?6<DcGm8P`0$7*;aLv^=s)R@;`%A!?n)xoNr^-M<O1UXUXvaPMz%x`>9W%;IA@ z!cH3mddn^^p6<nU<LtF(yB_PEIk9!#=~J0;@Aurld;flFS?cx~>yq!weDTysiZ*^3 z+?T%QK|sEBL+*W5mBSM`-m4jH3_iH@YG2DGuUl@r@2>c9LErOlq*h_T*<wjATV*r1 z310&27qp!VeD%T4;9jk@%e?e;s!hqywCh&g3*fpR;rV0x8M(dvChHB&n<gBdsv`c$ z;xo&Vsi`7`+8Y;(>^$W4G5pWzLp44ZydnkX2<)?+k`W`|v3&hHQ-7(JQ#U1Us@B=8 z=Q#CN!f&<Caz3v|ufOy>KJZjQ`dnYj_DTFFjapOHQXEfQkhN<mdLk`xd6H_h(BWB& zr*a!9c^vIr#c|?DgGtHn2${@3d8x~@H(XgRRKKUhqe^c2<k(xKDrK6dSe3&rByEXM zQtRGXz!B;p?tSyl`P!@MouThs%4fchQ4l_0c|B{BYcPAq?~|7whxs@A?2NNF+ECCv zmFuC4`tJD4zdhgeDF5-=)0z{oX=j9y-klduum13k+qfmkOFc{0!r_gf)!q%$^6tDX zb`cBDlRA5?{`iNcU0>VcZ}uE;p1wy)W%ib^b<Zk0ugy{Z;B)x!qxsV5g}pDEwA*JF zuYP@H{Z9|QCr74wa|l>}a+P}?AK=Z%B*%=a43&VErUDFa9YIW#5|tHFqN3$;d<IG| zARFk4Y9LzaO1kOND5g)xV>-B`C2Rp^Ig9N4H~1}pmbyS&K*b@}K*Ck#LTmw6PYg>M k-GCHQsG|fD&>LV|&`MxjR<g1IO=MsN!k0ipomfFU0Aae13IG5A literal 0 HcmV?d00001 diff --git a/datasets/polyglot_ner/dummy/vi/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/vi/1.0.0/dummy_data.zip new file mode 100644 index 0000000000000000000000000000000000000000..ba9992bd33b1cb6c1e975d7dc9499a48ea04c661 GIT binary patch literal 1640 zcmWIWW@h1H0D;M^hJj!Pl;CENVMr;>&8>`2Ni0d!4-MgDVBUHvIer@umsW5yFtU7Q zWME(s0V)r`X@~@>A&JR3VAG0IONtRDf=ngaL}@%GmSqxYs8~CyUls5hiU@$7v&r$* z7qL1Q6c8K?Ad`Dj_a58B#K5qbm4QK*2$Rb)<I6L%Gxd`5^Kx>);S92-7l_e9B{t-C zmawD5KEHd;0UVPu79Y9o(jjp>sJ8K~+F6~O&OT|%)samVicOAHimpCUS)CF#OBCM4 zd`VjL-Z1}B{fxURdvDCWIrsmU+W+7EwJ!y)-w@98)ueH${+CFO*9!xMBYJ-Eyr1|_ zxa^`^h1=eV8=`%CtX$2--y}zTXRW*2x;)~#vAA->TZ#TB`{mu{1~bI_Km5xvFE;T? z`LFhceTI_)xwRA)-M_SC|69wS$tUz?RJ@rKmps+Uf9Hm)77MJF3)YoNp8m^qOt8w$ zEVRNa$K}Aj1t%9aCx*TEwK{xYU!Z(qro}=B@5T2fW{YRNEdF=Xs`s?TXBKDmWw*Xu zS|lZGFTrBQ+|F_3bi*~C+8eGV^Y`Q~Q10i-D3(2vb$arp_aaf%UmrO>`Br4atPxox z8NBHocivnPLz%=a(>HpGEAHGjsl!~AtzXrqGtTno{<I^%m%Hg^I-i_9?>*0?L;oH# zd&?iH>h8&SwDzUSzUvD=yVaDqNMG+_<2;~sYeD<<6E6HQcV(_~KU7e*O}tc`vi0f9 z^*K}Hyp>LHZMo4S91!nuMnBi#*OV&9k6Kqh@l{pr+sE}qX0Q9keT%dNqGvC)J@eya zrTbDg=|eX!`KGR2U;VVmQhi@kwMV?PtcpW##@Z$!-fKm>cLvpSThv!gd}4f!jngRp zm$;YfB%`Md%N1STU#?m6;f0y@lw}*#l@|2toK{tODE6<kreCO3DJ{a+<H_sFJ)7k? z^d`^bb$DN7Y<=!;;h9byUF8c?&KL$)`Yf|^4tRI}=dmNtmCiD!{VM<YtHAYM%pTc! zoBti`nfxZLcjetV8MkM8<vwqGT3vB?d*&7Ph*wUJzkcfRubmv%X0z<2YHUzg+3Z@Q zS4X^R-`(o4XLc)oXcQ(E$8ku>z|Uo&2J5%$&lp(qy>7h<xb^XgVTZ8VtkWl?cBk3B zNlQQaKfs%jNsbv;Q6m8@bOadQI)a!e1rIBv;6cj__zaX_KsL}7)j+gDh;-AXQB0qX z$8>OkMA!n%;t1LKZ}3|HEu4V1fJzOlfrP7Qg4hBq#Tk|~x&bMqP)7+Qpf|v_pcPcO UtYl>an#jNkgfD@HX0m{I0G;hA`Tzg` literal 0 HcmV?d00001 diff --git a/datasets/polyglot_ner/dummy/zh/1.0.0/dummy_data.zip b/datasets/polyglot_ner/dummy/zh/1.0.0/dummy_data.zip new file mode 100644 index 0000000000000000000000000000000000000000..5b1b33f077423504e478c5fc588eb8956f7465e9 GIT binary patch literal 1316 zcmWIWW@h1H0D+sWhJj!Pl;CENVMr;>&8>`2Ni0d!4-MgDV75A)9B&Q8r4`%^j4WRn z85meZfXV}K8X|#eNMdph*tFu*l4693AX9OgsM(I{ENMI@R%Jj8U3WG)zWO3oLqX2v zU;r7qll#hDCng4lQWgdV4g7{yWyF_fW@qXp=jY|*fCB<#!+Ib_b9QL3XVEPOk=WVQ zOSHNzLMM17t>5cAb-jwT@G=jdB!d%2x_TQ8qEZAViS|u!j<~D4wy5>X??q7+3-8~p zuX@j)R24sEx%+d;Z3T+c_b)kPP~CC-FVCi1QzltUUo`8tn>#;MsrgE_@TImV+x>S) zTOaxKmA~@HGiFIC0~@}R52k$h@mad<z@$(2gF91ZJ`uM#dauJF;<Tq<uG@1%&$_o8 zFPRv=xa(s2Yv!K!$E)|cr9Trf5M#La_?oO@?YAdils$3|ew_R1#M3FKH~xvMNZq_L zdRE6(-jJ8lDSH&BnoexbSlqm@p8ciX4F!i~h2873JJ}fBCSNVJIRD(i;x9w+g5|j$ za(kNhxdpRpuF-n8ICjo_fvANlXV#y%xZf*Hv`S8oQDBDI(jQ7G`K~8sF$r4RN10yP z5g*KJ;NJUgo`mYux&S>5yA2VqnNE2hu*nvE^s<~!(CNFi?=4*w+lSBktWPNJRL%aj zMv;B>;!_ce553En+ZFfZ?1_hygm#O)&pEk=v7IqYV^`+NwG%~|t@O;E94f4KF`d%M zw&cV5OL=bRbQj5*MC;_<X=XN#pD7aV$#!lZ?_;wt%XZdE?ft?(_gX#K7QlS)*2yJS z-xO}KWMvfb>vzZrxXgU=#_Db8g7$fi56a{gs`eP&xpgYpzA55$F|R;=oXIrZ>NOX= zH9e&s6}MJ?_){Ga^`ff!pBLl1Kwg254aa^r*ljvA=W2}CQ)QPmE4ocKA5NXZxhl*4 z%8{cH{yX1vK37*-@Y9S@ruU=s2lprE{;&slGcw6B<I0f|(7Y+Y@YWH;M9H75ko<|3 zB=H$2!GLU_E2@ELd6lr~m^l^M^yzp^2j^R$1)yAo)%mz`EyMy~F~qQ>@eO_p(DE=Y U+gRCv#xSq|VI9!e3CtiK0L|{W`Tzg` literal 0 HcmV?d00001 diff --git a/datasets/polyglot_ner/polyglot_ner.py b/datasets/polyglot_ner/polyglot_ner.py new file mode 100644 index 00000000000..2ebd02b0e47 --- /dev/null +++ b/datasets/polyglot_ner/polyglot_ner.py @@ -0,0 +1,188 @@ +# coding=utf-8 +# Copyright 2020 HuggingFace Datasets Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +# Lint as: python3 +"""The Polyglot-NER Dataset.""" + +from __future__ import absolute_import, division, print_function + +import os + +import datasets + + +_CITATION = """\ +@article{polyglotner, + author = {Al-Rfou, Rami and Kulkarni, Vivek and Perozzi, Bryan and Skiena, Steven}, + title = {{Polyglot-NER}: Massive Multilingual Named Entity Recognition}, + journal = {{Proceedings of the 2015 {SIAM} International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30- May 2, 2015}}, + month = {April}, + year = {2015}, + publisher = {SIAM}, +} +""" + +_LANGUAGES = [ + "ca", + "de", + "es", + "fi", + "hi", + "id", + "ko", + "ms", + "pl", + "ru", + "sr", + "tl", + "vi", + "ar", + "cs", + "el", + "et", + "fr", + "hr", + "it", + "lt", + "nl", + "pt", + "sk", + "sv", + "tr", + "zh", + "bg", + "da", + "en", + "fa", + "he", + "hu", + "ja", + "lv", + "no", + "ro", + "sl", + "th", + "uk", +] + +_LANG_FILEPATHS = { + lang: os.path.join( + "acl_datasets", + lang, + "data" if lang != "zh" else "", # they're all lang/data/lang_wiki.conll except "zh" + f"{lang}_wiki.conll", + ) + for lang in _LANGUAGES +} + +_DESCRIPTION = """\ +Polyglot-NER +A training dataset automatically generated from Wikipedia and Freebase the task +of named entity recognition. The dataset contains the basic Wikipedia based +training data for 40 languages we have (with coreference resolution) for the task of +named entity recognition. The details of the procedure of generating them is outlined in +Section 3 of the paper (https://arxiv.org/abs/1410.3791). Each config contains the data +corresponding to a different language. For example, "es" includes only spanish examples. +""" + +_DATA_URL = "http://cs.stonybrook.edu/~polyglot/ner2/emnlp_datasets.tgz" +_HOMEPAGE_URL = "https://sites.google.com/site/rmyeid/projects/polylgot-ner" +_VERSION = "1.0.0" + + +class PolyglotNERConfig(datasets.BuilderConfig): + def __init__(self, *args, languages=None, **kwargs): + super().__init__(*args, version=datasets.Version(_VERSION, ""), **kwargs) + self.languages = languages + + @property + def filepaths(self): + return [_LANG_FILEPATHS[lang] for lang in self.languages] + + +class PolyglotNER(datasets.GeneratorBasedBuilder): + """The Polyglot-NER Dataset""" + + BUILDER_CONFIGS = [ + PolyglotNERConfig(name=lang, languages=[lang], description=f"Polyglot-NER examples in {lang}.") + for lang in _LANGUAGES + ] + [ + PolyglotNERConfig( + name="combined", languages=_LANGUAGES, description=f"Complete Polyglot-NER dataset with all languages." + ) + ] + + def _info(self): + return datasets.DatasetInfo( + description=_DESCRIPTION, + features=datasets.Features( + { + "id": datasets.Value("string"), + "lang": datasets.Value("string"), + "words": datasets.Sequence(datasets.Value("string")), + "ner": datasets.Sequence(datasets.Value("string")), + } + ), + supervised_keys=None, + homepage=_HOMEPAGE_URL, + citation=_CITATION, + ) + + def _split_generators(self, dl_manager): + """Returns SplitGenerators.""" + path = dl_manager.download_and_extract(_DATA_URL) + + return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"datapath": path})] + + def _generate_examples(self, datapath): + sentence_counter = 0 + for filepath, lang in zip(self.config.filepaths, self.config.languages): + filepath = os.path.join(datapath, filepath) + with open(filepath, encoding="utf-8") as f: + current_words = [] + current_ner = [] + for row in f: + row = row.rstrip() + if row: + token, label = row.split("\t") + current_words.append(token) + current_ner.append(label) + else: + # New sentence + if not current_words: + # Consecutive empty lines will cause empty sentences + continue + assert len(current_words) == len(current_ner), "💔 between len of words & ner" + sentence = ( + sentence_counter, + { + "id": str(sentence_counter), + "lang": lang, + "words": current_words, + "ner": current_ner, + }, + ) + sentence_counter += 1 + current_words = [] + current_ner = [] + yield sentence + # Don't forget last sentence in dataset 🧐 + if current_words: + yield sentence_counter, { + "id": str(sentence_counter), + "lang": lang, + "words": current_words, + "ner": current_ner, + }