This repository has been archived by the owner on Aug 9, 2019. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathembedding.py
executable file
·46 lines (39 loc) · 1.62 KB
/
embedding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
# -*- coding: utf-8 -*-
"""Compute intensive functions.
They will be run in their own thread rather than blocking the event-loop.
"""
from sklearn.manifold import TSNE
from sklearn.svm import SVR
def tsne(X):
"""Compute a tSNE embedding."""
return TSNE(init='pca', n_components=2, # for stability
method='barnes_hut', # default anyway but good to know
n_iter=1000,
verbose=0,
).fit_transform(X)
def mappers(X, X_2d):
"""Learn approximate x and y mappers for the given embedding."""
# see below how to choose parameters
svr_x = SVR(kernel='rbf', gamma=0.01, C=1e2, epsilon=0.1)
svr_y = SVR(kernel='rbf', gamma=0.01, C=1e2, epsilon=0.1)
mapper_x = svr_x.fit(X, X_2d[:, 0])
mapper_y = svr_y.fit(X, X_2d[:, 1])
return mapper_x, mapper_y
if __name__ == '__main__':
# calibration procedure - sorry it's much automated
from sklearn.grid_search import GridSearchCV
import numpy as np
from data import s_buffer
def calibrate(X, y):
""" Finds best parameters for SVR. """
svr = GridSearchCV(SVR(kernel='rbf', gamma=0.1), cv=5,
param_grid={"C": [1e0, 1e1, 1e2, 1e3],
"gamma": np.logspace(-2, 2, 5)},
n_jobs=4).fit(X, y)
sv_ratio = svr.best_estimator_.support_.shape[0] / len(X)
print(svr.best_estimator_)
print("Support vector ratio: %.3f" % sv_ratio)
XX, _ = s_buffer.X()
XX_2d = tsne(XX)
calibrate(XX, XX_2d[:, 0])
calibrate(XX, XX_2d[:, 1])