-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtdra16qimo.tex
141 lines (127 loc) · 8.36 KB
/
tdra16qimo.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
\documentclass[twocolumn,UTF8]{ctexart}
\usepackage[mtphrb]{mtpro2}%,amssymb
\ctexset{section = {name = {,、\hspace*{-5mm}},number = \chinese{section},format = {\biaosong\zihao{-4}\raggedright}}}
\usepackage{titlesec}%titlesec宏包调整section与正文间距
\titlespacing*{\section} {0pt}{9pt}{4pt}
%===============================================================================%
\setCJKmainfont{Adobe Song Std L}%中文默认字体:adobe 宋体
%\renewcommand{\songti}{\CJKfontspec{Adobe Song Std L}}
\renewcommand{\heiti}{\CJKfontspec{Adobe Heiti Std R}}%adobe 黑体
%\renewcommand{\heiti}{\CJKfontspec{Hiragino Sans GB}}%冬青黑体简体中文
\renewcommand{\fangsong}{\CJKfontspec{Adobe Fangsong Std R}}%adobe 仿宋
\renewcommand{\kaishu}{\CJKfontspec{Adobe Kaiti Std R}}%adobe 楷体
\setCJKfamilyfont{huawenxingkai}{华文行楷} \newcommand*{\xingkai}{\CJKfamily{huawenxingkai}}
\newcommand*{\zhongsong}{\CJKfamily{STZhongsong}}
%\newcommand{\zhongsong}{\CJKfontspec{方正中宋简体}}%方正中宋
\newcommand{\biaosong}{\CJKfontspec{方正小标宋简体}}%方正粗宋简体
%===============================================================================%
\usepackage{zref-user,zref-lastpage}%使用zref宏包,引用数字标签值和LastPage标签,感谢qingkuan大神指导
\usepackage{bigstrut}
\usepackage{enumerate}
\usepackage{amsmath,bm}
\everymath{\displaystyle}
\newcommand\dif{\mathop{}\!\mathrm{d}}
\DeclareMathOperator{\grad}{grad}
\usepackage{scalerel} %\scaleobj{1.5}{} 缩放公式大小
\usepackage{CJKnumb}%中文小写数字
\usepackage[paperwidth=42cm,paperheight=29.7cm,top=4.4cm,bottom=2.5cm,left=4.5cm,right=1cm]{geometry}
\usepackage{fancyhdr}\pagestyle{fancy}
\renewcommand{\headrulewidth}{0pt}
\renewcommand{\footrulewidth}{0pt}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage{tikz}
\usepackage{fancybox}
\fancyput(1.50cm,-25.3cm){\tikz \draw[solid,line width=2pt](0,0) rectangle (1cm+\textwidth,1.2cm+\textheight);}
%solid,dashed%pdfmanual.pdf---p167
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage{array,multirow}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%选择题%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%选项单行
\newcommand{\xo}[4]{\makebox[100pt][l]{(A) #1} \hfill
\makebox[100pt][l]{(B) #2} \hfill
\makebox[100pt][l]{(C) #3} \hfill
\makebox[100pt][l]{(D) #4}}
%选项分两行。
\newcommand{\xab}[2]{\makebox[100pt][l]{(A) #1} \hfill
\makebox[220pt][l]{(B) #2}}
\newcommand{\xcd}[2]{\makebox[100pt][l]{(C) #1} \hfill
\makebox[220pt][l]{(D) #2}}
%选项分四行.
\newcommand{\xa}[1]{(A) #1}
\newcommand{\xb}[1]{(B) #1}
\newcommand{\xc}[1]{(C) #1}
\newcommand{\xd}[1]{(D) #1}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\textwidth=34.6cm %文本的宽度
\begin{document}\zihao{-4}
\setlength{\columnseprule}{0pt}
\renewcommand\arraystretch{1.5}
\fancyhead[LO,LE]{\zihao{4}\vspace*{-18mm}\hspace{-4mm}{\heiti 系别}\underline{\hspace{1.5cm}}{\heiti 专业}\underline{\hspace{3.5cm}}\hspace{1cm}\underline{\hspace{1.2cm}}{\heiti 班}}
\fancyhead[CO,CE]{\vspace*{-18mm}{\setlength{\unitlength}{4mm}\begin{picture}(15,0)\put(-3,2.5){\zihao{-2}天津大学仁爱学院专用纸}\end{picture}}\\\zihao{4}{\heiti 年级}\underline{\hspace{2cm}}{\heiti 学号}\underline{\hspace{4cm}}{\heiti 姓名}\underline{\hspace{32mm}}}
\fancyhead[RO,RE]{\vspace*{-18mm}\zihao{4}({\bf A}) {\heiti 卷}\quad 第\;\thepage\;页\quad\; 共\;\,\zpageref{LastPage}\; 页\hspace*{1.25cm}}
\cfoot{雷电法王杨永信}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{center}\vspace*{-4mm}
{\zihao{4}\heiti 2016$\sim$2017学年第二学期期末考试试卷}\\[5mm]
{\zihao{4}\heiti《高等数学1B1》\;(共\zpageref{LastPage}页\quad A{\heiti 卷})}\\[2mm]
%输出"绝密"字样
%{\heiti 绝密$\bigstar$启用前\\[-13.5mm]%缩短"绝密"字样与总计分表之间的距离
({\zihao{-4} 考试时间: 2017年6月28日})\\
\begin{tabular}{|c|*{7}{m{2.9em}<{\centering}|}c|}\hline
题号 &一&二&三& 四&五& 六&成绩&\makebox[5em]{核分人}\\\hline
得分 & & & & & & & &\multirow{2}*{} \\\cline{1-8}
评分人签字 & & & & & & & & \\\hline
\end{tabular}\\[5mm]
\end{center}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%一、填空题%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{填空题\songti{(共9分, 每小题3分)请将正确答案填在题中的横线上.}}
\begin{enumerate}
\item $z=\ln(x+y^2)$, 则$\dif z=$ \underline{\hspace{2.5cm}}.\\[-0.3cm]
\item 已知曲线 $L:\,y=x^2$ 从 $(1,1)$ 到 $(-3,9)$, 计算第二类曲线积分 $\int_Lx\dif x+y\dif y=$ \underline{\hspace{1.3cm}}.\\[-0.3cm]
\item 函数 $u=x^2y+yz^2$ 在点 $M_0(2,-1,1)$ 处的梯度 $\grad u\Big|_{M_0}=$ \underline{\hspace{3.5cm}}.\\[-0.6cm]
\end{enumerate}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%二、单项选择题%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{单项选择题\songti{(共9分, 每小题3分)请将正确答案的代号填在题中的括号内.}}
\begin{enumerate}
\item 二元函数 $z=f(x\cos y)$ 具有一阶连续偏导数, 其对 $x$ 的偏导数 $\frac{\partial z}{\partial x}=$ $(\hspace{1.0cm})$\\[3mm]
\xo{$\sin y\, f$;}{$\cos y\,f$;}{$\sin y\,f'$;}{$\cos y\,f'$.}\\[-2mm]
\item 下列级数收敛是 $(\hspace{1.0cm})$\\[3mm]
\xo{$\sum_{n=1}^\infty\frac{1}{n+1}$;}{$\sum_{n=1}^\infty\left(\frac{3}{2}\right)^n$;}{$\sum_{n=1}^\infty(-1)^{n-1}\frac{1}{2^{n-1}}$;}{$\sum_{n=1}^\infty\frac{1}{\sqrt[n]{n}}$.}\\[-2mm]
\item 设 $I_1=\iint_D\sqrt{x^2+y^2}\dif\sigma$, $I_2=\iint_D(x^2+y^2)\dif\sigma$, 其中 $D=\big\{(x,y)\big|x^2+y^2\leqslant1\big\}$, 则 $(\hspace{1.0cm})$\\[2mm]
\xab{$I_2<I_1<\pi$;}{$I_1<\pi<I_2$;}\\[3mm]
\xcd{$I_1<I_2<\pi$;}{$I_2<I_1<\pi$.}
\end{enumerate}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%三、解下列各题%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newpage\section{解下列各题\songti{(本题满分24分, 每小题6分)}}
\begin{enumerate}
\item 设 $z=f(x,y)$ 由方程 $x^3y^3+3z-\ln z=0$ 所确定, 求 $\frac{\partial z}{\partial x}$,$\frac{\partial z}{\partial y}$.\\[3.5cm]
\item 求曲面 $x^3-3y^2-3z=1$ 在 $P_0(1,1,-1)$ 处的切平面方程与法线方程.\\[3.5cm]
\item 已知平面 $\pi$ 过点 $M_1(2,0,0)$,\,$M_2(2,1,2)$,\,$M_3(1,3,2)$, 求平面 $\pi$ 的方程.\\[3.5cm]
\item 求二元函数 $f(x,y)=x^3+y^3-3xy+2$ 的极值.\\[3.5cm]
\end{enumerate}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%四、解下列各题%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newpage\section{解下列各题\songti{(本题满分35分, 每小题7分)}}
\begin{enumerate}
\item 计算二重积分 $\iint_D3x\dif x\dif y$, 其中 $D$ 是由 $y=\frac{1}{x}$,\,$y=x$,\,$x=3$ 所围成的有界闭区域\\[5.5cm]
\item 计算第一类曲线积分 $\int_Lx\dif s$, 其中曲线 $L:\,y=x^2\;\big(0\leqslant x\leqslant\sqrt{2}\big)$.\\[5.5cm]
\item 计算第一类曲面积分 $\iint_\Sigma(x^2+y^2)\dif S$, 其中 $\Sigma$ 为锥面 $z=\sqrt{x^2+y^2}$ 被平面 $z=0$ \\
和 $z=2$ 截得的有限部分.
\end{enumerate}
\newpage%\vspace*{4cm}
\begin{enumerate}\setcounter{enumi}{3}
\item 计算三重积分 $\iiint_\Omega2z\dif v$, 其中 $\Omega$ 是抛物面 $z=x^2+y^2$ 与球面 $z=\sqrt{2-x^2-y^2}$ 所围成的空间.\\[9cm]
\item 计算第二类曲面积分 $\oiint_\Sigma xz\dif y\dif z+y\dif z\dif x+z\dif x\dif y$, 其中 $\Sigma$ 为球面 $x^2+y^2+z^2=4$ 的外侧.
\end{enumerate}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%五、解下列各题%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newpage\section{解下列各题\songti{(本题满分18分, 每小题6分)}}
\begin{enumerate}
\item 判断级数 $\sum_{n=1}^{\infty}(-1)^{n-1}\ln\Big(1+\scaleobj{0.8}{\frac{3}{n}}\Big)$ 的敛散性, 若收敛指出是绝对收敛还是条件收敛.\\[9cm]
\item 求幂级数 $\sum_{n=1}^{\infty}\frac{1}{n}\left(\frac{x}{4}\right)^n$ 的收敛域及和函数.
\newpage
\item 将 $f(x)=\frac{1}{4-x}$ 展开成 $x-1$ 的幂级数, 并写出其收敛域.\\[8cm]
\end{enumerate}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%六、证明题%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\newpage
\section{计算题\songti{(本题5分)}}
计算第二类曲线积分 $\oint_L\frac{x\dif y-y\dif x}{x^2+y^2}$, 其中 $L$ 为不过原点的任意一条闭合曲线.
\end{document}